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Introduction and Motivation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• No answer using simple entailment/subgraph matching
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SPARQL with Implicit Solutions

• So far: solutions through subgraph matching (simple entailment)
• Only the Bgp(·) algebra operator (exception: property paths) generates

solutions
• SPARQL 1.0 specifies a BGP matching extension point to overwrite

behaviour of Bgp(·)

Idea: Instead of subgraph matching use entailment relations
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Previous BGP Evaluation

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G if:

1 the domain of µ is exactly the set of variables in P,
2 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
3 the RDF graph µ(σ(P)) is a subgraph of G.

The result JBgp(P)KG of the evaluation of Bgp(P) over G is the multi set of
solutions µ (multiplicity corresponds to the number of different assignments)
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Naive Idea for BGP Evaluation using RDFS
Entailment

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals such that:
3 the RDF graph µ(σ(P)) is RDFS-entailed by G.

The result JBgp(P)KG of the evaluation of Bgp(P) over G under RDFS entailment
is the multi set of such solutions
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Conditions for Entailment Regimes (1)

• The naive idea produces not always intuitive results
• It is not that simple since such extensions have to satisfy several

conditions

A so-called entailment regime E specifies

1. RDF Graphs that are well-formed for the regime

2. an entailment relation between well-formed graphs

We can address this:

1. For RDF(S) all RDF graphs are ok, for OWL we will further define
well-formed graphs

2. We can use already defined entailment relations
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Conditions for Entailment Regimes (2)

An entailment regime E defines furthermore

3. The effect of a query over an inconsistent graph

4. Conditions to guarantee the uniqueness of the results modulo blank node
labels

We can also address this:

3. Warning/error

4. Automatically satisfied for RDFS entailment
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Conditions for Entailment Regimes (3)

An entailment regime E defines furthermore

5. Conditions such that for any basic graph pattern P and any graph G, if
µ1, . . . ,µn ∈ JPKE

G and P1, . . . , Pn are copies of P not sharing any blank
nodes with G or with each other:
G |=E (G ∪ µ1(P1) ∪ . . . ∪ µn(Pn))

6. Condition to prevent trivial infinite solutions

Condition 5 makes sure that blank nodes in solutions correspond to blank nodes
in the graph (no unintended co-references are introduced)
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Comment for Condition 5

Example
G: :a :b _ :c . G1: :a :b _ :b1 . G2: :a :b _ :b2 . G3: :a :b _ :b1 .

_ :d :e :f . _ :b2 :e :f . _ :b1 :e :f . _ :b1 :e :f .

• G has as simple consequences G1 and G2, but not G3 (blank nodes are
merged)

• Let P = { :a :b ?x . ?y :e :f }. We would have
µ1 : ?x 7→ _ :b1,?y 7→ _ :b2 and µ2 : ?x 7→ _ :b2,?y 7→ _ :b1 as
solutions for P over G since µ1(P) = G1, µ2(P) = G2

• But G ∪ µ1(P) ∪ µ2(P) is not a consequence (contains G3)
• Problem: we introduced unintended co-references
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Problems with the Naive Evaluation Idea (1)

Even an empty RDF Graph RDFS-entails infinitely many axiomatic triples:
• {} |=RDFS rdf:_i rdf:type rdf:Property for all i ∈ IN

Query
SELECT ?x WHERE { ?x rdf:type rdf:Property }

 Query has infinitely many solutions under RDFS entailment
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Solution (1)

• Bindings are limited to a finite vocabulary

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G,
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph µ(σ(P)) is RDFS-entailed by G.
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Problem with the Naive Evaluation Idea (2)

Taking only the vocabulary of G is too strict:
• { ex:s ex:p ex:o . ex:p rdfs:domain ex:C } |=RDFS { ex:s

rdf:type ex:C }

Query
SELECT ?x WHERE { ex:s ?x ex:C }

Has no solutions (rdf : type /∈ Voc(G)).
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Solution (2)

• Let Voc−(RDFS) = Voc(RDFS) \ {rdf : _i | i ∈ IN}

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G or Voc−(RDFS) ,
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph µ(σ(P)) is RDFS-entailed by G.
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Problems with the Naive Evaluation Idea (3)

Blank nodes have existential semantics
• { ex:s ex:p ex:o } |=RDFS { ex:s ex:p _:id }

for each id

We already guarantee finite results since the possible range of µ and σ is finite,
but . . .
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Problems with the Naive Evaluation Idea (3)

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data
G1 = { ex:s1 ex:p1 _:a }
G2 = { ex:s1 ex:p1 _:a . ex:s2 ex:p2 _:b }

• Has 1 solution for G1 and 2 solutions for G2

• Adding a triple that is unrelated to the first one causes new solutions
• Solution: Skolemisation
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Skolemisation

• Skolemisation: we consider the blank nodes as constants/normal IRIs

Definition (Skolemisation)
Let the prefix skol refer to a namespace IRI that does not occur as the prefix of
any IRI in the queried (active) graph or query. The Skolemisation sk(_ :b) of a
blank node _ :b is defined as sk(_ :b) = skol:b. We extend sk(·) to graphs in
the natural way.
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Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b }

X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)
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Problems with Skolemisation

• Of course we do not want to see Skolem constants in solutions

 Use Skolemisation only as a condition, applied to the graph and query
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Solutions in the RDFS Entailment Regime

Definition (Solutions under RDFS entailment)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G or Voc−(RDFS),
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph sk(µ(σ(P))) is well-formed and RDFS-entailed by G.

The well-formed criterion prevents literals in subject position
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SPARQL Entailment Regime

SPARQL entailment regimes define
• A name for the regime
• What entailment relation is used, e.g., RDFS-entailment
• Above described restrictions to address extension point conditions
• Legal graphs and queries (for RDFS all RDF graphs and SPARQL

queries are legal)
• Handling of inconsistencies
• Errors handling
• How a regime can be described in SPARQL service descriptions
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Standard SPARQL Semantics as Entailment
Regime

Definition (Solutions under simple entailment)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS simple entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G or Voc−(RDFS) ,
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph sk(µ(σ(P))) is well-formed and RDFS simply entailed by

G.

 Same definition can be used with simple entailment to obtain subgraph
matching semantics
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Implementation of the RDFS Entailment
Regime

The definition based on entailment relations allows for different implementation
techniques
• Materialisation / forwards-chaining
• Query rewriting / backwards-chaining
• Hybrid approaches
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RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• No answer under simple entailment/subgraph matching

• Idea: we extend the queried graph with relevant inferred triples
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RDFS Entailment Regime via
Materialisation
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• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)
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RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person }

UNION
{ ?x a ex:Lecturer }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Idea: extend the query rather than the queried graph

• Rule rdfs9 produces a relevant consequence

u rdfs:subClassOf x . v rdf:type u . rdfs9
v rdf:type x .
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RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer }

UNION
{ ?x ex:presentsLecture _:y }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Rule rdfs2 produces now also a relevant consequence

a rdfs:domain x . u a y . rdfs2
u rdf:type x .
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RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer }UNION
{ ?x ex:presentsLecture _:y }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Solution µ : ?x 7→ ex : Birte (from 3. disjunct)

• Disadvantages:

– Hard/impossible to find all solutions (RDFS vocabulary used in
unusual ways, queries not just for instances or subclasses)

– Query Rewriting is done at run-time every query is evaluated a
bit slower
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Hybrid Approaches

• Combine materialisation and query rewriting
• Common (beyond RDFS): do not materialise owl:sameAs

• Extract schema part and use that for rewriting
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Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary
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SPARQL with OWL Direct Semantics
How can we use OWL’s Direct Semantics with SPARQL?

1 Based on Description Logics
2 Semantics defined in terms of OWL structural objects

– owl:intersectionOf, ObjectIntersectionOf, u
3 OWL DL ontologies can be mapped into RDF graphs
4 Not every RDF graph can be mapped into an OWL DL ontology
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SPARQL with OWL Direct Semantics

1 OWL Direct Semantics Entailment Regime only works on well-formed
RDF graphs, which can be mapped into OWL DL ontologies

2 Basic graph patterns are mapped into extended OWL structural objects
with variables

3 Type declarations required to disambiguate the parsing process
– ?x rdfs:subPropertyOf ?y .

– ?x a owl:ObjectProperty .
– ?y a owl:ObjectProperty .

4 Variables can occur in class, property, individual, or literal positions
5 Definition of solutions analogously to the one for RDFS plus specification

of well-formed BGPs and graphs
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Implementation of the OWL DS Regime

• Materialisation impossible
• For example, we could have arbitrary disjunctions in the query (e.g.,

matching students that are not profs):
SELECT ?x WHERE { ?x a [ a owl:Class ;
owl:ObjectUnionOf ( ex:Student ex:Prof ) ] }

• Turtle is not an easy syntax for complex OWL expressions
 Usability problems

• Queries go beyond simple instance queries
• Optimisation is difficult for such complex queries

 Often we have to test all possible bindings
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SPARQL with OWL Profiles
OWL Profiles better suited for web applications
• OWL RL profile can be implemented via materialisation
• Polynomial complexity
• Extends RDFS semantics (i.e., can be used with OWL’s RDF-Based

Semantics)
• Works on arbitrary RDF graphs
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Further Entailment Regimes

• RDF Entailment Regime (just simpler than RDFS)
• D-Entailment Regime (adds datatype reasoning to RDFS)
• RIF Core Entailment Regime

– Specify rules and query an RDF graph plus the rules
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Summary

• SPARQL can now be used with RDF(S), OWL, and RIF semantics
• Entailment Regimes overwrite evaluation of basic graph patterns
• Property Paths from SPARQL Query 1.1 problematic
• Definition of solutions (relatively) general

– Works also for subgraph matching/simple entailment
– OWL’s Direct Semantics needs extra conditions/definitions

• Implementation and efficiency for OWL problematic
 OWL 2 Profiles
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