
FOUNDATIONS OF SEMANTIC
WEB TECHNOLOGIES

SPARQL Entailment Regimes

Sebastian Rudolph

The SPARQL Query Language

TU Dresden Foundations of Semantic Web Technologies slide 2 of 79

The SPARQL Query Language

TU Dresden Foundations of Semantic Web Technologies slide 3 of 79

Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary

TU Dresden Foundations of Semantic Web Technologies slide 4 of 79

Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary

TU Dresden Foundations of Semantic Web Technologies slide 5 of 79

Introduction and Motivation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• No answer using simple entailment/subgraph matching

TU Dresden Foundations of Semantic Web Technologies slide 6 of 79

SPARQL with Implicit Solutions

• So far: solutions through subgraph matching (simple entailment)
• Only the Bgp(·) algebra operator (exception: property paths) generates

solutions
• SPARQL 1.0 specifies a BGP matching extension point to overwrite

behaviour of Bgp(·)

Idea: Instead of subgraph matching use entailment relations

TU Dresden Foundations of Semantic Web Technologies slide 7 of 79

Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary

TU Dresden Foundations of Semantic Web Technologies slide 8 of 79

Previous BGP Evaluation

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G if:

1 the domain of µ is exactly the set of variables in P,
2 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
3 the RDF graph µ(σ(P)) is a subgraph of G.

The result JBgp(P)KG of the evaluation of Bgp(P) over G is the multi set of
solutions µ (multiplicity corresponds to the number of different assignments)

TU Dresden Foundations of Semantic Web Technologies slide 9 of 79

Naive Idea for BGP Evaluation using RDFS
Entailment

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals such that:
3 the RDF graph µ(σ(P)) is RDFS-entailed by G.

The result JBgp(P)KG of the evaluation of Bgp(P) over G under RDFS entailment
is the multi set of such solutions

TU Dresden Foundations of Semantic Web Technologies slide 10 of 79

Conditions for Entailment Regimes (1)

• The naive idea produces not always intuitive results
• It is not that simple since such extensions have to satisfy several

conditions

A so-called entailment regime E specifies

1. RDF Graphs that are well-formed for the regime

2. an entailment relation between well-formed graphs

We can address this:

1. For RDF(S) all RDF graphs are ok, for OWL we will further define
well-formed graphs

2. We can use already defined entailment relations

TU Dresden Foundations of Semantic Web Technologies slide 11 of 79

Conditions for Entailment Regimes (1)

• The naive idea produces not always intuitive results
• It is not that simple since such extensions have to satisfy several

conditions

A so-called entailment regime E specifies

1. RDF Graphs that are well-formed for the regime

2. an entailment relation between well-formed graphs

We can address this:

1. For RDF(S) all RDF graphs are ok, for OWL we will further define
well-formed graphs

2. We can use already defined entailment relations

TU Dresden Foundations of Semantic Web Technologies slide 12 of 79

Conditions for Entailment Regimes (1)

• The naive idea produces not always intuitive results
• It is not that simple since such extensions have to satisfy several

conditions

A so-called entailment regime E specifies

1. RDF Graphs that are well-formed for the regime

2. an entailment relation between well-formed graphs

We can address this:

1. For RDF(S) all RDF graphs are ok, for OWL we will further define
well-formed graphs

2. We can use already defined entailment relations

TU Dresden Foundations of Semantic Web Technologies slide 13 of 79

Conditions for Entailment Regimes (2)

An entailment regime E defines furthermore

3. The effect of a query over an inconsistent graph

4. Conditions to guarantee the uniqueness of the results modulo blank node
labels

We can also address this:

3. Warning/error

4. Automatically satisfied for RDFS entailment

TU Dresden Foundations of Semantic Web Technologies slide 14 of 79

Conditions for Entailment Regimes (3)

An entailment regime E defines furthermore

5. Conditions such that for any basic graph pattern P and any graph G, if
µ1, . . . ,µn ∈ JPKE

G and P1, . . . , Pn are copies of P not sharing any blank
nodes with G or with each other:
G |=E (G ∪ µ1(P1) ∪ . . . ∪ µn(Pn))

6. Condition to prevent trivial infinite solutions

Condition 5 makes sure that blank nodes in solutions correspond to blank nodes
in the graph (no unintended co-references are introduced)

TU Dresden Foundations of Semantic Web Technologies slide 15 of 79

Comment for Condition 5

Example
G: :a :b _ :c . G1: :a :b _ :b1 . G2: :a :b _ :b2 . G3: :a :b _ :b1 .

_ :d :e :f . _ :b2 :e :f . _ :b1 :e :f . _ :b1 :e :f .

• G has as simple consequences G1 and G2, but not G3 (blank nodes are
merged)

• Let P = { :a :b ?x . ?y :e :f }. We would have
µ1 : ?x 7→ _ :b1,?y 7→ _ :b2 and µ2 : ?x 7→ _ :b2,?y 7→ _ :b1 as
solutions for P over G since µ1(P) = G1, µ2(P) = G2

• But G ∪ µ1(P) ∪ µ2(P) is not a consequence (contains G3)
• Problem: we introduced unintended co-references

TU Dresden Foundations of Semantic Web Technologies slide 16 of 79

Comment for Condition 5

Example
G: :a :b _ :c . G1: :a :b _ :b1 . G2: :a :b _ :b2 . G3: :a :b _ :b1 .

_ :d :e :f . _ :b2 :e :f . _ :b1 :e :f . _ :b1 :e :f .

• G has as simple consequences G1 and G2, but not G3 (blank nodes are
merged)

• Let P = { :a :b ?x . ?y :e :f }. We would have
µ1 : ?x 7→ _ :b1,?y 7→ _ :b2 and µ2 : ?x 7→ _ :b2,?y 7→ _ :b1 as
solutions for P over G since µ1(P) = G1, µ2(P) = G2

• But G ∪ µ1(P) ∪ µ2(P) is not a consequence (contains G3)
• Problem: we introduced unintended co-references

TU Dresden Foundations of Semantic Web Technologies slide 17 of 79

Comment for Condition 5

Example
G: :a :b _ :c . G1: :a :b _ :b1 . G2: :a :b _ :b2 . G3: :a :b _ :b1 .

_ :d :e :f . _ :b2 :e :f . _ :b1 :e :f . _ :b1 :e :f .

• G has as simple consequences G1 and G2, but not G3 (blank nodes are
merged)

• Let P = { :a :b ?x . ?y :e :f }. We would have
µ1 : ?x 7→ _ :b1,?y 7→ _ :b2 and µ2 : ?x 7→ _ :b2,?y 7→ _ :b1 as
solutions for P over G since µ1(P) = G1, µ2(P) = G2

• But G ∪ µ1(P) ∪ µ2(P) is not a consequence (contains G3)

• Problem: we introduced unintended co-references

TU Dresden Foundations of Semantic Web Technologies slide 18 of 79

Comment for Condition 5

Example
G: :a :b _ :c . G1: :a :b _ :b1 . G2: :a :b _ :b2 . G3: :a :b _ :b1 .

_ :d :e :f . _ :b2 :e :f . _ :b1 :e :f . _ :b1 :e :f .

• G has as simple consequences G1 and G2, but not G3 (blank nodes are
merged)

• Let P = { :a :b ?x . ?y :e :f }. We would have
µ1 : ?x 7→ _ :b1,?y 7→ _ :b2 and µ2 : ?x 7→ _ :b2,?y 7→ _ :b1 as
solutions for P over G since µ1(P) = G1, µ2(P) = G2

• But G ∪ µ1(P) ∪ µ2(P) is not a consequence (contains G3)
• Problem: we introduced unintended co-references

TU Dresden Foundations of Semantic Web Technologies slide 19 of 79

Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary

TU Dresden Foundations of Semantic Web Technologies slide 20 of 79

Problems with the Naive Evaluation Idea (1)

Even an empty RDF Graph RDFS-entails infinitely many axiomatic triples:
• {} |=RDFS rdf:_i rdf:type rdf:Property for all i ∈ IN

Query
SELECT ?x WHERE { ?x rdf:type rdf:Property }

 Query has infinitely many solutions under RDFS entailment

TU Dresden Foundations of Semantic Web Technologies slide 21 of 79

Solution (1)

• Bindings are limited to a finite vocabulary

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G,
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph µ(σ(P)) is RDFS-entailed by G.

TU Dresden Foundations of Semantic Web Technologies slide 22 of 79

Problem with the Naive Evaluation Idea (2)

Taking only the vocabulary of G is too strict:
• { ex:s ex:p ex:o . ex:p rdfs:domain ex:C } |=RDFS { ex:s

rdf:type ex:C }

Query
SELECT ?x WHERE { ex:s ?x ex:C }

Has no solutions (rdf : type /∈ Voc(G)).

TU Dresden Foundations of Semantic Web Technologies slide 23 of 79

Solution (2)

• Let Voc−(RDFS) = Voc(RDFS) \ {rdf : _i | i ∈ IN}

Definition (Solution)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G or Voc−(RDFS) ,
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph µ(σ(P)) is RDFS-entailed by G.

TU Dresden Foundations of Semantic Web Technologies slide 24 of 79

Problems with the Naive Evaluation Idea (3)

Blank nodes have existential semantics
• { ex:s ex:p ex:o } |=RDFS { ex:s ex:p _:id }

for each id

We already guarantee finite results since the possible range of µ and σ is finite,
but . . .

TU Dresden Foundations of Semantic Web Technologies slide 25 of 79

Problems with the Naive Evaluation Idea (3)

Blank nodes have existential semantics
• { ex:s ex:p ex:o } |=RDFS { ex:s ex:p _:id }

for each id

We already guarantee finite results since the possible range of µ and σ is finite,
but . . .

TU Dresden Foundations of Semantic Web Technologies slide 26 of 79

Problems with the Naive Evaluation Idea (3)

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data
G1 = { ex:s1 ex:p1 _:a }
G2 = { ex:s1 ex:p1 _:a . ex:s2 ex:p2 _:b }

• Has 1 solution for G1 and 2 solutions for G2

• Adding a triple that is unrelated to the first one causes new solutions
• Solution: Skolemisation

TU Dresden Foundations of Semantic Web Technologies slide 27 of 79

Problems with the Naive Evaluation Idea (3)

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data
G1 = { ex:s1 ex:p1 _:a }
G2 = { ex:s1 ex:p1 _:a . ex:s2 ex:p2 _:b }

• Has 1 solution for G1 and 2 solutions for G2

• Adding a triple that is unrelated to the first one causes new solutions
• Solution: Skolemisation

TU Dresden Foundations of Semantic Web Technologies slide 28 of 79

Problems with the Naive Evaluation Idea (3)

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data
G1 = { ex:s1 ex:p1 _:a }
G2 = { ex:s1 ex:p1 _:a . ex:s2 ex:p2 _:b }

• Has 1 solution for G1 and 2 solutions for G2

• Adding a triple that is unrelated to the first one causes new solutions

• Solution: Skolemisation

TU Dresden Foundations of Semantic Web Technologies slide 29 of 79

Problems with the Naive Evaluation Idea (3)

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data
G1 = { ex:s1 ex:p1 _:a }
G2 = { ex:s1 ex:p1 _:a . ex:s2 ex:p2 _:b }

• Has 1 solution for G1 and 2 solutions for G2

• Adding a triple that is unrelated to the first one causes new solutions
• Solution: Skolemisation

TU Dresden Foundations of Semantic Web Technologies slide 30 of 79

Skolemisation

• Skolemisation: we consider the blank nodes as constants/normal IRIs

Definition (Skolemisation)
Let the prefix skol refer to a namespace IRI that does not occur as the prefix of
any IRI in the queried (active) graph or query. The Skolemisation sk(_ :b) of a
blank node _ :b is defined as sk(_ :b) = skol:b. We extend sk(·) to graphs in
the natural way.

TU Dresden Foundations of Semantic Web Technologies slide 31 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b }

X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 32 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b }

X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 33 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b }

X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 34 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a }

X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b }

X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 35 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b }

E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b }

X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 36 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b }

X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 37 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b } X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 38 of 79

Example: Skolemisation

Query
SELECT ?x WHERE { ex:s1 ex:p1 ?x }

Data (Skolemised)
sk(G1) = { ex:s1 ex:p1 skol:a }
sk(G2) = { ex:s1 ex:p1 skol:a . ex:s2 ex:p2 skol:b }

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G1) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:a } X

sk(G2) |=?
RDFS { ex:s1 ex:p1 skol:b } E

sk(G2) |=?
RDFS { ex:s2 ex:p2 skol:b } X

Only 1 Solution µ : ?x 7→ skol:a for sk(G1) and sk(G2)

TU Dresden Foundations of Semantic Web Technologies slide 39 of 79

Problems with Skolemisation

• Of course we do not want to see Skolem constants in solutions

 Use Skolemisation only as a condition, applied to the graph and query

TU Dresden Foundations of Semantic Web Technologies slide 40 of 79

Solutions in the RDFS Entailment Regime

Definition (Solutions under RDFS entailment)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G or Voc−(RDFS),
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph sk(µ(σ(P))) is well-formed and RDFS-entailed by G.

The well-formed criterion prevents literals in subject position

TU Dresden Foundations of Semantic Web Technologies slide 41 of 79

SPARQL Entailment Regime

SPARQL entailment regimes define
• A name for the regime
• What entailment relation is used, e.g., RDFS-entailment
• Above described restrictions to address extension point conditions
• Legal graphs and queries (for RDFS all RDF graphs and SPARQL

queries are legal)
• Handling of inconsistencies
• Errors handling
• How a regime can be described in SPARQL service descriptions

TU Dresden Foundations of Semantic Web Technologies slide 42 of 79

Standard SPARQL Semantics as Entailment
Regime

Definition (Solutions under simple entailment)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS simple entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G or Voc−(RDFS) ,
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph sk(µ(σ(P))) is well-formed and RDFS simply entailed by

G.

 Same definition can be used with simple entailment to obtain subgraph
matching semantics

TU Dresden Foundations of Semantic Web Technologies slide 43 of 79

Standard SPARQL Semantics as Entailment
Regime

Definition (Solutions under simple entailment)
Let P be a basic graph pattern. A partial function µ is a solution for Bgp(P) over
the queried (active) graph G under RDFS simple entailment if:

1 the domain of µ is exactly the set of variables in P,
2 terms in the range of µ occur in G or Voc−(RDFS) ,
3 there exists an assignment σ from blank nodes in P to IRIs, blank nodes,

or RDF literals in G such that:
4 the RDF graph sk(µ(σ(P))) is well-formed and RDFS simply entailed by

G.

 Same definition can be used with simple entailment to obtain subgraph
matching semantics

TU Dresden Foundations of Semantic Web Technologies slide 44 of 79

Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary

TU Dresden Foundations of Semantic Web Technologies slide 45 of 79

Implementation of the RDFS Entailment
Regime

The definition based on entailment relations allows for different implementation
techniques
• Materialisation / forwards-chaining
• Query rewriting / backwards-chaining
• Hybrid approaches

TU Dresden Foundations of Semantic Web Technologies slide 46 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• No answer under simple entailment/subgraph matching

• Idea: we extend the queried graph with relevant inferred triples

TU Dresden Foundations of Semantic Web Technologies slide 47 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• No answer under simple entailment/subgraph matching
• Idea: we extend the queried graph with relevant inferred triples

TU Dresden Foundations of Semantic Web Technologies slide 48 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

ex:Birte rdf:type ex:Lecturer .
ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 49 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

ex:Birte rdf:type ex:Lecturer .
ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 50 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .
ex:Birte rdf:type ex:Lecturer .

ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 51 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .
ex:Birte rdf:type ex:Lecturer .

ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 52 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .
ex:Birte rdf:type ex:Lecturer .
ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 53 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .
ex:Birte rdf:type ex:Lecturer .
ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte

• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 54 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .
ex:Birte rdf:type ex:Lecturer .
ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 55 of 79

RDFS Entailment Regime via
Materialisation

Query
SELECT ?x WHERE { ?x a ex:Person }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .
ex:Birte rdf:type ex:Lecturer .
ex:Birte rdf:type ex:Person .

• Query over the extended graph: µ : ?x 7→ ex:Birte
• Disadvantages:

– Size of the queried graph grows
– Each update requires recomputation of the closure (extension)

TU Dresden Foundations of Semantic Web Technologies slide 56 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person }

UNION
{ ?x a ex:Lecturer }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Idea: extend the query rather than the queried graph

• Rule rdfs9 produces a relevant consequence

u rdfs:subClassOf x . v rdf:type u . rdfs9
v rdf:type x .

TU Dresden Foundations of Semantic Web Technologies slide 57 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person }

UNION
{ ?x a ex:Lecturer }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Idea: extend the query rather than the queried graph
• Rule rdfs9 produces a relevant consequence

u rdfs:subClassOf x . v rdf:type u . rdfs9
v rdf:type x .

TU Dresden Foundations of Semantic Web Technologies slide 58 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Idea: extend the query rather than the queried graph
• Rule rdfs9 produces a relevant consequence

u rdfs:subClassOf x . v rdf:type u . rdfs9
v rdf:type x .

TU Dresden Foundations of Semantic Web Technologies slide 59 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer }

UNION
{ ?x ex:presentsLecture _:y }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Rule rdfs2 produces now also a relevant consequence

a rdfs:domain x . u a y . rdfs2
u rdf:type x .

TU Dresden Foundations of Semantic Web Technologies slide 60 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer } UNION
{ ?x ex:presentsLecture _:y }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Rule rdfs2 produces now also a relevant consequence

a rdfs:domain x . u a y . rdfs2
u rdf:type x .

TU Dresden Foundations of Semantic Web Technologies slide 61 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer }UNION
{ ?x ex:presentsLecture _:y }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Solution µ : ?x 7→ ex : Birte (from 3. disjunct)

• Disadvantages:

– Hard/impossible to find all solutions (RDFS vocabulary used in
unusual ways, queries not just for instances or subclasses)

– Query Rewriting is done at run-time every query is evaluated a
bit slower

TU Dresden Foundations of Semantic Web Technologies slide 62 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer }UNION
{ ?x ex:presentsLecture _:y }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Solution µ : ?x 7→ ex : Birte (from 3. disjunct)
• Disadvantages:

– Hard/impossible to find all solutions (RDFS vocabulary used in
unusual ways, queries not just for instances or subclasses)

– Query Rewriting is done at run-time every query is evaluated a
bit slower

TU Dresden Foundations of Semantic Web Technologies slide 63 of 79

RDFS Ent. Regime via Query Rewriting

Query
SELECT ?x WHERE { ?x a ex:Person } UNION

{ ?x a ex:Lecturer }UNION
{ ?x ex:presentsLecture _:y }

Data
ex:Birte ex:presentsLecture "SPARQL" .
ex:presentsLecture rdfs:domain ex:Lecturer .
ex:Lecturer rdfs:subClassOf ex:Person .

• Solution µ : ?x 7→ ex : Birte (from 3. disjunct)
• Disadvantages:

– Hard/impossible to find all solutions (RDFS vocabulary used in
unusual ways, queries not just for instances or subclasses)

– Query Rewriting is done at run-time every query is evaluated a
bit slowerTU Dresden Foundations of Semantic Web Technologies slide 64 of 79

Hybrid Approaches

• Combine materialisation and query rewriting
• Common (beyond RDFS): do not materialise owl:sameAs

• Extract schema part and use that for rewriting

TU Dresden Foundations of Semantic Web Technologies slide 65 of 79

Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary

TU Dresden Foundations of Semantic Web Technologies slide 66 of 79

SPARQL with OWL Direct Semantics
How can we use OWL’s Direct Semantics with SPARQL?

1 Based on Description Logics
2 Semantics defined in terms of OWL structural objects

– owl:intersectionOf, ObjectIntersectionOf, u
3 OWL DL ontologies can be mapped into RDF graphs
4 Not every RDF graph can be mapped into an OWL DL ontology

TU Dresden Foundations of Semantic Web Technologies slide 67 of 79

SPARQL with OWL Direct Semantics

1 OWL Direct Semantics Entailment Regime only works on well-formed
RDF graphs, which can be mapped into OWL DL ontologies

2 Basic graph patterns are mapped into extended OWL structural objects
with variables

3 Type declarations required to disambiguate the parsing process
– ?x rdfs:subPropertyOf ?y .

– ?x a owl:ObjectProperty .
– ?y a owl:ObjectProperty .

4 Variables can occur in class, property, individual, or literal positions
5 Definition of solutions analogously to the one for RDFS plus specification

of well-formed BGPs and graphs

TU Dresden Foundations of Semantic Web Technologies slide 68 of 79

SPARQL with OWL Direct Semantics

1 OWL Direct Semantics Entailment Regime only works on well-formed
RDF graphs, which can be mapped into OWL DL ontologies

2 Basic graph patterns are mapped into extended OWL structural objects
with variables

3 Type declarations required to disambiguate the parsing process
– ?x rdfs:subPropertyOf ?y .

– ?x a owl:ObjectProperty .
– ?y a owl:ObjectProperty .

4 Variables can occur in class, property, individual, or literal positions
5 Definition of solutions analogously to the one for RDFS plus specification

of well-formed BGPs and graphs

TU Dresden Foundations of Semantic Web Technologies slide 69 of 79

SPARQL with OWL Direct Semantics

1 OWL Direct Semantics Entailment Regime only works on well-formed
RDF graphs, which can be mapped into OWL DL ontologies

2 Basic graph patterns are mapped into extended OWL structural objects
with variables

3 Type declarations required to disambiguate the parsing process
– ?x rdfs:subPropertyOf ?y .

– ?x a owl:ObjectProperty .
– ?y a owl:ObjectProperty .

4 Variables can occur in class, property, individual, or literal positions
5 Definition of solutions analogously to the one for RDFS plus specification

of well-formed BGPs and graphs

TU Dresden Foundations of Semantic Web Technologies slide 70 of 79

SPARQL with OWL Direct Semantics

1 OWL Direct Semantics Entailment Regime only works on well-formed
RDF graphs, which can be mapped into OWL DL ontologies

2 Basic graph patterns are mapped into extended OWL structural objects
with variables

3 Type declarations required to disambiguate the parsing process
– ?x rdfs:subPropertyOf ?y .
– ?x a owl:ObjectProperty .
– ?y a owl:ObjectProperty .

4 Variables can occur in class, property, individual, or literal positions
5 Definition of solutions analogously to the one for RDFS plus specification

of well-formed BGPs and graphs

TU Dresden Foundations of Semantic Web Technologies slide 71 of 79

SPARQL with OWL Direct Semantics

1 OWL Direct Semantics Entailment Regime only works on well-formed
RDF graphs, which can be mapped into OWL DL ontologies

2 Basic graph patterns are mapped into extended OWL structural objects
with variables

3 Type declarations required to disambiguate the parsing process
– ?x rdfs:subPropertyOf ?y .
– ?x a owl:ObjectProperty .
– ?y a owl:ObjectProperty .

4 Variables can occur in class, property, individual, or literal positions

5 Definition of solutions analogously to the one for RDFS plus specification
of well-formed BGPs and graphs

TU Dresden Foundations of Semantic Web Technologies slide 72 of 79

SPARQL with OWL Direct Semantics

1 OWL Direct Semantics Entailment Regime only works on well-formed
RDF graphs, which can be mapped into OWL DL ontologies

2 Basic graph patterns are mapped into extended OWL structural objects
with variables

3 Type declarations required to disambiguate the parsing process
– ?x rdfs:subPropertyOf ?y .
– ?x a owl:ObjectProperty .
– ?y a owl:ObjectProperty .

4 Variables can occur in class, property, individual, or literal positions
5 Definition of solutions analogously to the one for RDFS plus specification

of well-formed BGPs and graphs

TU Dresden Foundations of Semantic Web Technologies slide 73 of 79

Implementation of the OWL DS Regime

• Materialisation impossible
• For example, we could have arbitrary disjunctions in the query (e.g.,

matching students that are not profs):
SELECT ?x WHERE { ?x a [a owl:Class ;
owl:ObjectUnionOf (ex:Student ex:Prof)] }

• Turtle is not an easy syntax for complex OWL expressions
 Usability problems

• Queries go beyond simple instance queries
• Optimisation is difficult for such complex queries

 Often we have to test all possible bindings

TU Dresden Foundations of Semantic Web Technologies slide 74 of 79

Implementation of the OWL DS Regime

• Materialisation impossible
• For example, we could have arbitrary disjunctions in the query (e.g.,

matching students that are not profs):
SELECT ?x WHERE { ?x a [a owl:Class ;
owl:ObjectUnionOf (ex:Student ex:Prof)] }

• Turtle is not an easy syntax for complex OWL expressions
 Usability problems

• Queries go beyond simple instance queries
• Optimisation is difficult for such complex queries

 Often we have to test all possible bindings

TU Dresden Foundations of Semantic Web Technologies slide 75 of 79

SPARQL with OWL Profiles
OWL Profiles better suited for web applications
• OWL RL profile can be implemented via materialisation
• Polynomial complexity
• Extends RDFS semantics (i.e., can be used with OWL’s RDF-Based

Semantics)
• Works on arbitrary RDF graphs

TU Dresden Foundations of Semantic Web Technologies slide 76 of 79

Further Entailment Regimes

• RDF Entailment Regime (just simpler than RDFS)
• D-Entailment Regime (adds datatype reasoning to RDFS)
• RIF Core Entailment Regime

– Specify rules and query an RDF graph plus the rules

TU Dresden Foundations of Semantic Web Technologies slide 77 of 79

Agenda

1 Introduction and Motivation

2 Conditions for Extending the Bgp Operator

3 BGP Evaluation with RDFS Entailment

4 Implementation Options

5 BGP Evaluation with OWL Semantics

6 Summary

TU Dresden Foundations of Semantic Web Technologies slide 78 of 79

Summary

• SPARQL can now be used with RDF(S), OWL, and RIF semantics
• Entailment Regimes overwrite evaluation of basic graph patterns
• Property Paths from SPARQL Query 1.1 problematic
• Definition of solutions (relatively) general

– Works also for subgraph matching/simple entailment
– OWL’s Direct Semantics needs extra conditions/definitions

• Implementation and efficiency for OWL problematic
 OWL 2 Profiles

TU Dresden Foundations of Semantic Web Technologies slide 79 of 79

	Introduction and Motivation
	Conditions for Extending the Bgp Operator
	BGP Evaluation with RDFS Entailment
	Implementation Options
	BGP Evaluation with OWL Semantics
	Summary

