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Abstract

The notion of homomorphism homogeneity was introduced by Cameron and
Nešetřil as a natural generalization of the classical model-theoretic notion of
homogeneity. A relational structure is called homomorphism homogeneous
(HH) if every homomorphism between finite substructures extends to an en-
domorphism. It is called polymorphism homogeneous (PH) if every finite
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sification of HH countable tournaments (with loops allowed). We use this
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author.
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1. Introduction

A relational structure A is called homomorphism homogeneous if every
homomorphism between finite substructures of A extends to an endomor-
phism of A (when we talk about substructures, we always mean induced
substructures, that is, substructures in the sense of model theory). It is
called k-polymorphism homogeneous if every homomorphism from a finite
substructure of Ak to A extends to a homomorphism from Ak to A (the lat-
ter kind of homomorphisms are called k-ary polymorphisms ofA). It is called
polymorphism homogeneous if it is k-polymorphism homogeneous, for every
k ∈ N \ {0}. The notion of homomorphism homogeneity was introduced by
Cameron and Nešetřil in [1], while the notion of polymorphism homogeneity
stems from [2] (see Section 4 for some more information about the notion of
polymorphism homogeneity in relation with other topics of research). Both
notions are related to the well-known notion of homogeneity from Fräıssé-
theory (a relational structure is called homogeneous if every isomorphism
between finite substructures extends to an automorphism of the structure
in question). While on the surface these three concepts look rather similar,
their respective classification problems are quite different, each having its
own beauties and difficulties.

When classifying countably infinite homogeneous structures of a given
type, the main tool is Fräıssé-theory. Namely, by Fräıssé’s Theorem every
countable homogeneous structure is determined up to isomorphism by its
age (i.e., by the class of finitely generated substructures, taken up to isomor-
phism). Moreover, a class of finite structures of a given type is the age of a
homogeneous structure if and only if it has the hereditary property (HP), the
joint embedding property (JEP), and the amalgamation property (AP). Such
classes are called amalgamation classes. Thus, the classification of countable
homogeneous structures is “reduced” to the classification problem of amal-
gamation classes. Alas, the ages of relational structures are not nearly as
important when classifying homomorphism homogeneous structures. On the
one hand we know from [3, Theorem 3.5] that a class of finite structures is
the age of a homomorphism homogeneous structure if and only if it has the
HP, the JEP, and the homomorphism amalgamation property (HAP) (a.k.a
one point homomorphism extension property (1PHEP), cf. [4]). On the other
hand, in general there may be several non-isomorphic homomorphism homo-

2



geneous structures with the same age. E.g, it was shown in [5, Theorem
2.1] that every chain (C,≤) is homomorphism homogeneous, but all infinite
chains have the same age (the class of finite chains). When we talk about
classifications of homomorphism homogeneous structures, we mean to give
a transparent finitary description together with a rich source of examples
possibly covering all homomorphism homogeneous structures in question.

The goal of this paper is to characterize all countable homomorphism
homogeneous tournaments with loops allowed, and, starting from there, to
identify those among them that are polymorphism homogeneous at the same
time. Here a tournament with loops allowed is just a nonempty binary rela-
tional structure A = (A, 󰂄), where

• 󰂄 is total, i.e., ∀x, y ∈ A : x ∕= y ⇒ (x, y) ∈ 󰂄 ∨ (y, x) ∈ 󰂄,

• 󰂄 is antisymmetric, i.e., ∀x, y ∈ A : (x, y) ∈ 󰂄 ∧ (y, x) ∈ 󰂄 ⇒ x = y.

For a binary relational structure A = (A, 󰂄), a vertex x ∈ A is called a loop
if (x, x) ∈ 󰂄, otherwise it is called a non-loop. If a tournament contains no
loops then we call it loopless or irreflexive. Otherwise it is called loopy. In
addition, x is called a source if whenever (y, x) ∈ 󰂄, then x = y. Dually, it
is called a sink if whenever (x, y) ∈ 󰂄, then x = y. For two subsets B1 and
B2 of A we write B1 → B2 if (x, y) ∈ 󰂄 for all x ∈ B1 and y ∈ B2. Instead
of {b1} → B2, B1 → {b2}, and {b1} → {b2} we write b1 → B2, B1 → b2, and
b1 → b2, respectively.

It should be mentioned that the classification of the finite homomorphism
homogeneous and polymorphism homogeneous tournaments was carried out
already in [6] and in [7], respectively. Our task is to extend these results to
the case of countably infinite tournaments.

2. Homomorphism homogeneous tournaments

We start by a rough classification of tournaments that helps to divide the
task at hand into digestible pieces: Let A = (A, 󰂄) be a tournament with
loops allowed. Then exactly one of the following holds:

1. A is loopless,

2. A is loopy and 󰂄 is intransitive,

3. A is loopy and 󰂄 is transitive.
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The case that can be resolved most quickly is the first one. Observe that
every homomorphism between finite substructures of a loopless tournament
is an isomorphism. Moreover, every endomorphism of a loopless tournament
is a self-embedding.

Proposition 2.1. A countable loopless tournament is homomorphism homo-
geneous if and only if it is homogeneous.

Proof. A straightforward back-and-forth argument.

The countable homogeneous tournaments were completely classified by
Lachlan and Woodrow:

Theorem 2.2 ([8, 9]). The countable homogeneous tournaments are:

• the trivial one-vertex tournament,

• the oriented cycle of length 3,

• (Q, <),

• the countable circular tournament (a.k.a. the countable dense local or-
der),

• the countable universal homogeneous tournament.

We are not going to describe these tournaments in detail as they are
part of the folklore of Fräıssé-theory. The interested reader may consult [10]
for further information and for additional references. Thus the case of the
loopless homomorphism homogeneous tournaments is done.

Let us come now to the case of loopy but intransitive homomorphism ho-
mogeneous tournaments. Clearly, every loopy intransitive tournament con-
tains one of the following tournaments as a substructure:

C
(0)
3 C

(1)
3 C

(2)
3 C

(3)
3

.

It is not hard to see that onlyC
(0)
3 andC

(3)
3 are homomorphism homogeneous.

So from now on let us concentrate only on loopy intransitive tournaments
with at least 4 vertices. To settle this case, we show:
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Proposition 2.3. A loopy intransitive tournament with at least 4 vertices is
not homomorphism homogeneous.

Before coming to the proof we need to collect some auxiliary tools. This is
the moment to introduce a simple but essential notion in classification theory
of homomorphism homogeneous structures, the witnesses. There is no sense
to define witnesses just for tournaments or even just for binary relational
structures. Their natural habitat are general relational structures in the sense
of model theory (cf. [11]). For us a relational signature is a model theoretic
signature that has no function symbols and no constant symbols, but only
relational symbols. Relational structures are denoted by A,B,C, . . . . Their
domains are denoted by A,B,C, . . . . If A is a relational structure and if
B ⊆ A, then by 〈B〉A we denote the substructure of A induced by B. All
the terms that we previously introduced for binary relational structures have
an obvious definition for general relational structures.

Definition 2.4. LetA be a relational structure. A witness in A is a quadru-
ple (B1,B2, f, c), such that

• B1 and B2 are finite substructures of A,

• c ∈ B1,

• f : 〈B1 \ {c}〉B1 ↠ B2 is a surjective homomorphism,

• f cannot be extended to a homomorphism from B1 to A.

Moreover, a quadruple (B1,B2, f, c) is called a witness if it is a witness in
some structure A.

Clearly, if a relational structure contains a witness, then it is not homo-
morphism homogeneous. On the other hand an easy inductive argument
shows that if a countable relational structure contains no witnesses, then it
is homomorphism homogeneous. It should also be noted that in any witness
(B1,B2, f, c) we have that B1 \ {c} and B2 are non-empty.

Our next step is to show that homomorphism homogeneous tournaments
cannot contain certain types of subconfigurations. Recall that a monomor-
phism is an injective homomorphism.

Lemma 2.5. Let T be a tournament that contains a loop that is not a sink. If
∆1 monomorphically maps to T (see Figure 1), then T is not homomorphism
homogeneous.
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γ

β

α

δ∆1 :

γ

β

α

δ∆2 :

Figure 1: Two forbidden configurations

Proof. Let u ∈ T be a loop that is not a sink. Let v ∈ T \ {u}, such that
u → v. Further let µ : ∆1 ↣ T be a monomorphism, say µ =

󰀃
α β γ δ
a b c d

󰀄
.

Let B1 := 〈{a, b, c, d}〉T, B2 := 〈{u, v}〉T. Define f : B1 \ {b} → B2 by
f = ( a c d

u u v ). We claim that (B1,B2, f, b) is a witness in T. It is easy to check
that f : 〈B1 \ {b}〉B1 ↠ B2 is indeed a surjective homomorphism. We just
need to show that f cannot be extended to a homomorphism of B1 to T.
Aiming at a contradiction, suppose that f has such an extension f̂ . Then
we must have f̂(b) = u, since a → b → c implies f̂(a) → f̂(b) → f̂(c),
whence u → f̂(b) → u. Note now that d → b, while f̂(b) = u → v = f̂(d), a
contradiction. It follows that T is not homomorphism homogeneous.

Dual to Lemma 2.5 we have:

Lemma 2.6. Let T be a tournament that contains a loop that is not a source.
If ∆2 monomorphically maps to T (see Figure 1), then T is not homomor-
phism homogeneous.

Proof. Analogous to the proof of Lemma 2.5.

Now we are ready to prove Proposition 2.3:

Proof of Proposition 2.3. Let b, c, d ∈ T , such that b → c → d → b. We
distinguish the following three cases:

(1) T contains a loop that is not a source and a loop that is not a sink,

(2) all loops in T are sources,

(3) all loops in T are sinks.

In case 1 let a ∈ T \ {b, c, d}. By the pigeon hole principle, either there
are at least two arrows from elements of {b, c, d} pointing to a or there are
at least two arrows from a pointing to elements of {b, c, d}. In the former
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case we can assume without loss of generality that b → a and d → a. But
then µ : ∆2 → T given by µ =

󰀃
α β γ δ
a b c d

󰀄
is a monomorphism from ∆2 to

T. Since T contains a loop that is not a source, by Lemma 2.6, T is not
homomorphism homogeneous.

The case that two arrows point from a to elements of {b, c, d} is handled
analogously, using Lemma 2.5.

Note that cases 2 and 3 both entail that T has exactly one loop. In the
following let us denote this loop by a.

Case 2: Let b, c, d ∈ T , such that b → c → d → b. Clearly, a /∈ {b, c, d}.
Note now that µ : ∆1 → T given by µ =

󰀃
α β γ δ
a b c d

󰀄
is a monomorphism from

∆1 to T. Since a is not a sink, it follows from Lemma 2.5 that T is not
homomorphism homogeneous.

Case 3 is handled analogously to case 2, using Lemma 2.6.

The following corollary sums up the results we have so far about loopy,
intransitive homomorphism homogeneous tournaments:

Corollary 2.7. Let T be an intransitive, loopy, homomorphism homogeneous
tournament. Then T is isomorphic to C

(3)
3 .

Proof. This follows immediately from the observation that the only intransi-
tive loopy tournament on three vertices is C

(3)
3 , in conjunction with Propo-

sition 2.3.

Note how the previous result is completely independent from the car-
dinality of the vertex sets of the tournaments under consideration. What
remains to do be done is to treat the case of loopy, transitive homomorphism
homogeneous tournaments. These are basically chains in the sense of order
theory in which some elements are comparable to themself (the loops) and
some are not (the non-loops). This allows us to use order theoretic termi-
nology like upper bound, lower bound, minimum, maximum, etc. We employ
the convention that x → y reads as “x is less than (or equal to) y”.

Our strategy is to filter out all transitive loopy tournaments that contain
no witness. In order to see that this strategy is feasible, we use that witnesses
carry some structure that equips them with an implicational theory. This
technique was used for the first time in [12]. Here we give a self-contained
account of the relevant details. The first step to be made is to observe that
witnesses may be classified into isomorphism-types:
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Definition 2.8. Witnesses T1 = (B1,C1, f1, c1) and T2 = (B2,C2, f2, c2) are
called isomorphic if there exist isomorphisms h1 : B1 → B2 and h2 : C1 →
C2, such that

• h1(c1) = c2,

• for all x ∈ B1 \ {c1} we have f2(h1(x)) = h2(f1(x)).

Given now a witness T for L-structures and an L-structure A, we say that
A realizes T if A has a witness isomorphic to T . Otherwise, we say that A
avoids T .

Example 2.9. Let T = (D1,D2, f, c) be a witness for tournaments. We
may depict T as an unlabeled structure by drawing a picture that consists
of three parts:

1. an unlabeled graphical representation of D1 on the left hand side in
which the vertex c is colored differently from the others (we do this by
drawing “usual” vertices in white and c in black),

2. an unlabeled graphical representation of D2 on the right hand side,

3. arrows 󰀁→ connecting vertices from D1 with vertices from D2 indicating
the action of f .

Obviously, from such a picture, the witness T may be reconstructed, up to
isomorphism. In Figure 2 some witnesses for loopy tournaments are depicted.

The second step in our venture to classify witness-free structures is to
observe that the class of witnesses comes naturally equipped with an impli-
cational theory:

Definition 2.10. Let K be a class of L-structures, let T be a set of witnesses,
and let T be a witness for L-structures. We say that T entails T with respect
to K (written T |=K T ) if all structures from K that avoid all witnesses from
T also avoid T . T is called a complete set of witnesses for K if T entails every
witness that is realized by a structure from K.
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󰀁→
TA :

󰀁→
TB :

󰀁→
TC1 :

󰀁→
TC2 :

󰀁→

󰀁→

TD :

󰀁→

󰀁→

TE :

Figure 2: Witnesses for transitive, loopy tournaments

Example 2.11. To see that the entailment relation on witnesses is non-
trivial, consider the following witness for tournaments with loops allowed:

󰀁→

󰀁→

T :

Let K be the class of transitive tournaments with loops allowed. We claim
that {TA} |=K T . Indeed, let A ∈ K be a tournament with loops allowed that
realizes T . Let W = (B1,B2, f, c) be a witness isomorphic to T in A. Then
B1 = {b11, b12, c} with b11 → b12, B2 = {b21, b22} with b21 → b22. Moreover,
{b11, b12} → c, f(b11) = b21, and f(b12) = b22. There is no loopy vertex above
b22, for if there was such a vertex d with b22 → d, then, by transitivity, also
b21 → d, which is a contradiction to the assumption that W is a witness in
A. Thus, W ′ := (〈{b12, c}〉B1 , 〈{b22}〉B2 , f↾{b12}, c) is a witness in A. Clearly,
W ′ ∼= TA.

Proposition 2.12. The witnesses TA, TB, TC1, TC2, TD, TE given in Figure 2
form a complete set of witnesses for the class of transitive tournaments with
loops allowed.

9



Proof. Let A be any transitive tournament with loops allowed, let W =
(B1,B2, f, c) be a witness in A. Let Lc := {b ∈ B1 | b → c, b ∕= c},
Uc := {b ∈ B1 | c → b, b ∕= c}. We distinguish the following three cases:

(1) Lc = ∅, Uc ∕= ∅,
(2) Lc ∕= ∅, Uc = ∅,
(3) Lc ∕= ∅, Uc ∕= ∅.

Case 1: Let u := min(Uc). Let B′
1 := 〈{u, c}〉B1 , B

′
2 := 〈{f(u)}〉B2 , f

′ :=
f↾{u}. We claim that W ′ := (B′

1,B
′
2, f

′, c) is a witness in A. In order to show
this, we need to show that f ′ cannot be extended to a homomorphism from
B′

1 to A. Suppose now on the contrary that f ′ has a homomorphic extension
f̂ ′ to B′

1. Let d := f̂ ′(c). Define f̂ : B1 → A according to

f̂ : x 󰀁→
󰀫
f(x) x ∕= c,

d x = c.

We claim that f̂ : B1 → A is a homomorphism. Since f is a homomorphism,
in order to show that f̂ is a homomorphism, too, it is enough to show that
it maps arcs that start or end in c onto arcs. If c → c then also f̂(c) →
f̂(c), since f̂(c) = d = f̂ ′(c) and since f̂ ′ is a homomorphism. All other
arcs involving c are of the shape c → x for some x ∈ Uc. If x = u, then
f̂(c) → f̂(x), since f̂(c) = f̂ ′(c) and since f̂(u) = f̂ ′(u), and since f̂ ′ is a
homomorphism. If x ∕= u, then u → x, since u is the minimum of Uc. As
we already saw we have f̂(c) → f̂(u). Since f̂(u) = f(u) and f̂(x) = f(x),
and since f is a homomorphism, we also have f̂(u) → f̂(x). Since A is a
transitive tournament, it follows f̂(c) → f̂(x). Thus, f̂ is a homomorphism, a
contradiction to the assumption that W is a witness in A. It follows that our
assumption was false and that W ′ is indeed a witness in A. An immediate
consequence of this is that f ′(u) cannot be a loop in A, because otherwise we
could extend f ′ to 〈{u, c}〉A by mapping c to f ′(u), contradictory toW ′ being
a witness in A. It follows that u is a non-loop, too. Thus the isomorphism
type of W ′ depends only on whether c is a loop or not. In the former case
we have W ′ ∼= TB and in the latter case we have W ′ ∼= TC2 .

Case 2: This case is handled analogously to case 1, leading to a witness
W ′ in A isomorphic either to TA or to TC1 . In this case u is defined to be
the maximum of Lc.

Case 3: Let u := min(Uc) and let l := max(Lc). Similarly as above it can
be shown that with B′

1 = 〈{l, u, c}〉B1 , B
′
2 = 〈{f(l), f(u)}〉B2 , f

′ = f↾{l,u}
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we get that W ′ := (B′
1,B

′
2, f

′, c) is a witness in A. This implies that l and
u both are non-loops. Depending on whether c is a loop or not we get that
W ′ ∼= TD or W ′ ∼= TE.

Altogether we showed that whenever A has a witness, then it has also a
witness isomorphic to one of the witnesses from Figure 2. In other words,
whenever a transitive tournament with loops allowed avoids all witnesses
from Figure 2, then it avoids all witnesses altogether.

At this point the classification of countable homomorphism homogeneous
tournaments with loops allowed is almost done. We have a finitary de-
scription of such tournaments: A countable homomorphism homogeneous
tournament is either

• isomorphic to one of the countable homogeneous loopless tournaments,
or

• it is isomorphic to C
(3)
3 , or

• it is transitive and avoids all witnesses from Figure 2.

What is still missing, at least for the third part of the classification, is trans-
parence. In the following we refine the description of the countable homomor-
phism homogeneous transitive tournaments. Note that there are two ways
in which a structure may avoid a witness:

Lemma 2.13. Let A be an L-structure, and let T = (D1,D2, f, c) be a
witness for L structures. Then A avoids T if and only if either

(1) D1 does not embed into A, or

(2) D1 embeds into A, and for every embedding ι : D2 ↩→ A there exists
some d ∈ A, such that the function f̂d : D1 → A defined by

f̂d : x 󰀁→
󰀫
(ι ◦ f)(x) x ∈ D1 \ {c},
d x = c

(∗)

is a homomorphism from D1 to A.

Proof. “⇒” Suppose A avoids T but neither Condition 1 nor Condition 2 is
satisfied. Let κ : D1 ↩→ A, and let ι : D2 ↩→ A, such that for no d ∈ A the
function f̂d defined in (∗) is a homomorphism. Define B1 := 〈κ(D1)〉A, B2 :=
〈ι(D2)〉A, and let h : B1 \ {κ(c)} ↠ B2 be given by h : x 󰀁→ (ι ◦ f)(κ−1(x)).
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Since B2 is the image of ι and since f is surjective, it follows that h is
surjective, too. Moreover, since κ and ι are embeddings and since f is a
homomorphism, it follows that h : 〈B1 \ {κ(c)}〉A ↠ B2 is a homomorphism.
By construction we have that W := (B1,B2, h,κ(c)) is a witness isomorphic
to T . Since A avoids T , we have that W can not be a witness in A. Let
ĥ : B1 → A be an extension of h. Let d := ĥ(κ(c)). Then we may confirm
pointwise that f̂d = ĥ ◦ κ. In particular, f̂d is a homomorphism, a contra-
diction to the assumption that A violates Condition 2. Hence our initial
assumption was wrong and one of the Conditions 1 and 2 is satisfied.

“⇐” Every witness (B1,B2, h, c
′) in A isomorphic to T must have that

B1
∼= D1. Thus, surely, if D1 does not embed into A, then A avoids T . So

suppose that Condition 2 holds but that A has a witness W = (B1,B2, h, c
′)

isomorphic to T . That is, there are isomorphisms κ : D1 → B1 and ι : D2 →
B2, such that for all x ∈ D1 \ {c} we have (h ◦ κ)(x) = (ι ◦ f)(x) and such
that κ(c) = c′. Let d ∈ A be such that the function defined in (∗) is a
homomorphism from D1 to A. Define ĥ : B1 → A according to

ĥ : x 󰀁→
󰀫
h(x) x ∈ B1 \ {c′},
d x = c′.

Then it can be checked pointwise that ĥ◦κ = f̂ . Since f̂ is a homomorphism
and since κ is an isomorphism, it follows that ĥ : B1 → A is a homomorphism
that extends h, a contradiction to the assumption that W is a witness in A.
Thus the assumption that A realizes T was wrong and A avoids T .

In Figure 3 the left hand sides of the witnesses from Figure 2 are given.
Let us, for reasons of convenience, state what Lemma 2.13 means for transi-
tive tournaments with loops allowed:

Corollary 2.14. Let A be a transitive tournament with loops allowed then:

• A avoids TA iff either SA does not embed into A or above every loopless
vertex in A there is a loopy one,

• A avoids TB iff either SB does not embed into A or below every loopless
vertex in A there is a loopy one,

• A avoids TC1 iff either SC does not embed into A or above every loopless
vertex in A there is a vertex (loopless or loopy),
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• A avoids TC2 iff either SC does not embed into A or below every loopless
vertex in A there is a vertex (loopless or loopy),

• A avoids TD iff either SD does not embed into A or in-between any two
loopless vertices in A there is a loopy vertex,

• A avoids TE iff either SE does not embed into A or in-between any two
loopless vertices in A there is a vertex (loopless or loopy).

Proof. This is a direct consequence of Lemma 2.13.

The finer classification of transitive homomorphism homogeneous tour-
naments depends on whether they embed one of SA, . . . ,SE or not (see Fig-
ure 3).

SA: SB: SC : SD: SE:

Figure 3: Left hand sides of witnesses

Theorem 2.15. Let T be a countable tournament. Then T is homomor-
phism homogeneous if and only if there exist nonempty subsets M,M1,M2 of
Q, such that exactly one of the following is true:

(1) T ∼= C
(0)
3 ;

(2) T is the countable universal homogeneous tournament;

(3) T is the countable circular tournament (a.k.a the countable dense local
order);

(4) T ∼= C
(3)
3 ;

(5) T ∼= ({0}, <);

(6) T ∼= ({−∞}, <) + (M,≤);

(7) T ∼= (M,≤) + ({+∞}, <);

(8) T ∼= (M1,≤) + ({0, 1}, <) + (M2,≤);

(9) T ∼= (Q, <);
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(10) T ∼= (Q ∪ {+∞}, <) + (M,≤);

(11) T ∼= (Q, <) + (M,≤);

(12) T ∼= (M,≤) + (Q ∪ {−∞}, <);

(13) T ∼= (M,≤) + (Q, <);

(14) T ∼= (M1,≤) + (Q, <) + (M2,≤);

(15) T ∼= (M1,≤) + (Q ∪ {−∞}, <) + (M2,≤);

(16) T ∼= (M1,≤) + (Q ∪ {+∞}, <) + (M2,≤);

(17) T ∼= (M1,≤) + (Q ∪ {−∞,+∞}, <) + (M2,≤);

(18) T has the following properties:

• below every loopless vertex there is at least one loopy vertex,

• above every loopless vertex there is at least one loopy vertex,

• in-between any two loopless vertices there is at least one loopy ver-
tex.

Proof. We only need to treat the transitive case. The intransitive case was
treated before. In particular, the irreflexive case (corresponding to (1), (2),
and (3)) was handled in Proposition 2.1 in conjunction with Theorem 2.2,
while the intransitive loopy case (corresponding to (4)) was done in Corol-
lary 2.7.

For the transitive case we use Proposition 2.12. It is not hard to see that
tournaments of shapes 5–18 avoid all witnesses depicted in Figure 2. Thus,
by Proposition 2.12, these tournaments contain no witnesses. In particular
all of them are homomorphism homogeneous.

In order to show that the given classification of countable homomorphism
homogeneous transitive tournaments is complete, we need to show that every
such tournament T belongs to one of the given classes. To this end we
distinguish the cases given in Table 1 according to whether the structures
SA, . . . ,SE from Figure 3 are embeddable into T or not. On the surface it
looks like that we should have to distinguish 25 = 32 cases. Observe however
that SA, SB, and SC embed into SD, and that SC embeds into SE. This
decimates the number of cases to be distinguished to 14.

Case 1: In this case T is either reflexive or it consists of exactly one
loopless vertex. In the former case T is of shape (18), while in the latter case
it is of shape (5).

Case 2: In this case T contains exactly one loopless and at least one
loopy vertex. Moreover, this loopless vertex is the least element of T. In
other words, T is of shape (6).
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SA ↩→ T SB ↩→ T SC ↩→ T SD ↩→ T SE ↩→ T

Case 1 − − − − −
Case 2 + − − − −
Case 3 − + − − −
Case 4 + + − − −
Case 5 − − + − −
Case 6 + − + − −
Case 7 − + + − −
Case 8 + + + − −
Case 9 + + + + −
Case 10 − − + − +

Case 11 + − + − +

Case 12 − + + − +

Case 13 + + + − +

Case 14 + + + + +

Table 1: Forced and forbidden substructures of T

Case 3: T contains at least one loopy vertex and exactly one loopless
vertex that is on the top. Thus T is of shape (7).

Case 4: T contains exactly one loopless vertex. Above and below this
vertex there is at least one loopy vertex. Thus, T is of shape (18).

Case 5: T consists of exactly two loopless vertices. In particular, it
is irreflexive. By Proposition 2.1 it should be homogeneous. However, by
Theorem 2.2, the two-element tournament is not homogeneous. It follows
that no homomorphism homogeneous transitive tournament falls under case
5.

Case 6: T has exactly two loopless vertices u and v and at least one
loopy vertex. The loopless vertices are at the bottom of T. Without loss
of generality u → v. Clearly, (〈{u, v}〉T, 〈{u}〉T, f, u) with f : v 󰀁→ u is a
witness in T isomorphic to TC2 . This is a contradiction with the assumption
that T is homomorphism-homogeneous. It follows that no homomorphism
homogeneous transitive tournament falls under case 6.

Case 7: This case is dual to case 6. In particular, in contradiction to the
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assumption that T is homomorphism homogeneous, it can be shown that
T realizes TC1 . It follows that no homomorphism homogeneous transitive
tournament falls under case 7.

Case 8: T has exactly two loopless vertices u and v. These vertices are
consecutive. Above and below u and v there is at least one loopy vertex.
Thus, T is of the shape (8).

Case 9: T has exactly two loopless vertices u and v. Between, above,
and below u and v there is at least one loopy vertex. Thus, T is of shape
(18).

Case 10: T has at least three loopless vertices and no loopy one. In
particular T is irreflexive. By Proposition 2.1, T is homogeneous. It follows
from Theorem 2.2 that T is of shape (9).

Case 11: T has at least three loopless and at least one loopy vertex. Each
loopy vertex is above all loopless vertices. Since T avoids TC2 , T should not
have a smallest element. Since T avoids TE, the subtournament induced by
the non-loops is a dense chain (it might have a greatest element). Altogether
we have that T is either of shape (10) or (11).

Case 12: This case is dual to case 11. Thus, T is either of shape (12) or
(13).

Case 13: T has at least three loopless and at least two loopy vertices.
No loopy vertex is in-between two loopless vertices. Thus T decomposes into
three parts. On the bottom there is a reflexive part, in the middle there is a
loopless part and on the top there is another reflexive part. Since T avoids
TE, the loopless part needs to be a dense chain (it might have a smallest
element, a greatest element, or both). Thus, T is either of shape (14), or
(15), or (16), or (17).

Case 14: T has at least three loopless and at least four loopy vertices.
Since T avoids TA, above each non-loop there is at least one loop. Dually,
since T avoids TB, below every non-loop there is at least one loop. Finally,
since T avoids TD, between any two non-loops there should be at least one
loop. Thus, T is of the shape (18).

3. Polymorphism homogeneous tournaments

From the definition of polymorphism homogeneity it follows immediately
that every polymorphism homogeneous structure is also homomorphism ho-
mogeneous. Our goal is to filter the list of the eighteen modes of structures
from Theorem 2.15 for polymorphism homogeneous tournaments. In order
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to be able to use similar techniques (notably witnesses), we recall a simple
but very helpful observation from [2]:

Proposition 3.1 ([2, Proposition 2.1]). A structure A is k-polymorphism
homogeneous if and only if Ak is homomorphism homogeneous; hence a
structure is polymorphism homogeneous iff all of its finite powers are ho-
momorphism homogeneous.

To reiterate a previous observation, a structure A is not polymorphism
homogeneous if for some k ∈ N \ {0} the structure Ak contains a witness.

During the classification of homomorphism homogeneous tournaments it
proved useful to separate the intransitive case from the transitive one. So let
us start by identifying the countable intransitive polymorphism homogeneous
tournaments. Looking at Theorem 2.15 we see that there are four possible
candidates:

1. the countable universal homogeneous tournament,

2. the countable circular tournament,

3. C
(3)
3 ,

4. C
(0)
3 .

Lemma 3.2. Let T be a loopless tournament. If the the oriented graph ∆3

from Figure 4 monomorphically maps to T, then T is not 2-polymorphism
homogeneous.

γ

β

α

δ∆3 :

Figure 4: A forbidden configuration for polymorphism homogeneous tournaments

Proof. Let µ : ∆3 ↣ T be a monomorphism, say µ =
󰀃
α β γ δ
a b c d

󰀄
. Let B1 :=

〈{(a, c), (b, d), (d, b)}〉T2 , B2 = 〈{(b, d)}〉T2 , f : B1 \ {(a, c)} → B2 be the
function that maps every element of B1 to (b, d). It is easy to check that
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(B1,B2, f, (a, c)) is a witness in T2 of the isomorphism type depicted below.

Corollary 3.3. The countable universal homogeneous tournament is not 2-
polymorphism homogeneous.

Proof. Every countable oriented loopless graph monomorphically maps to the
universal homogeneous tournament. Thus the claim follows from Lemma 3.2.

Corollary 3.4. The countable circular tournament is not 2-polymorphism
homogeneous.

Proof. The countable circular tournament is up to isomorphism the unique
countable homogeneous intransitive tournament into which the tournaments
given in Figure 5 do not embed (this is a direct consequence of [8, Theorem
4.3] where it is shown that the rationals and the circular tournament are up
to isomorphism the only two countable homogeneous tournaments in which
the successors of any point are linearly ordered). It follows that there is a

Figure 5: Two forbidden subtournaments in the circular tournament

monomorphism from ∆3 into the countable circular tournament. Thus, the
claim follows from Lemma 3.2.

Proposition 3.5 ([7, Proposition 5.2]). C
(3)
3 is not 2-polymorphism homo-

geneous.

Proof. Let {0, 1, 2} be the vertex set of C
(3)
3 , such that 0 → 1 → 2 → 0.

Let B1 := 〈{(0, 0), (1, 1), (1, 2), (2, 2)}〉
(C

(3)
3 )2

, B2 := 〈{(1, 1), (1, 2)}〉
(C

(3)
3 )2

,
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f : B1 \ {(2, 2)} → B2 given by f :=
󰀓

(0,0) (1,1) (1,2)
(1,1) (1,1) (1,2)

󰀔
. We claim that W =

(B1,B2, f, (2, 2)) is a witness in (C
(3)
3 )2 of the following type:

(0, 0)

(1, 1)
(1, 2)

(2, 2)
(1, 2)

(1, 1)

To prove this claim observe that any homomorphic extension f̂ of f to
B1 needs to map (2, 2) to (1, 1), since (1, 1) → (2, 2) → (0, 0), whence
f̂(1, 1) = (1, 1) → f̂(2, 2) → (1, 1) = f̂(0, 0). However, this leads into
trouble, since (1, 2) → (2, 2), while f̂(2, 2) = (1, 1) → (1, 2) = f̂(1, 2). Thus,
a homomorphic extension f̂ of f to B1 does not exist.

Proposition 3.6 ([7, Proposition 5.4]). C
(0)
3 is polymorphism homogeneous.

Proof. Let T = (T, 󰂄) ∼= C
(0)
3 be the tournament given in the following

picture:

2

1

0

Observe that Tk ∼= 3k−1 × T, where the structure n × T is defined to be
(n× T, n× 󰂄), with

((i, x), (j, y)) ∈ (n× 󰂄) : ⇐⇒ (i = j) ∧ (x, y) ∈ 󰂄.

If we show that n × T is homomorphism homogeneous, then it follows that
T is polymorphism homogeneous. So let A be a substructure of n × T, let
h : A → n×T be a homomorphism, and let (i, u) be a vertex of n×T. If we
can show that h can be extended to a homomorphism ĥ : 〈A∪{(i, u)}〉n×T →
n×T, then we are done.

If (i, u) ∈ A, then we can obviously choose ĥ = h.
If (i, u) /∈ A and no element of A is of the shape (i, v), then we can define

ĥ(i, u) := (i, u).
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If (i, u) /∈ A and some element of A is of the shape (i, v), then either
u ≡ v + 1 (mod 3) or v ≡ u + 1 (mod 3). Suppose h(i, v) = (j, w). In the
former case we define ĥ(i, u) := (j, (w + 1) mod 3). In the latter case we
define ĥ(i, u) := (j, (w − 1) mod 3).

A routine check shows that in this way ĥ : 〈A ∪ {(i, u)}〉n×T → n × T is

indeed a homomorphism. Thus, C
(0)
3 is indeed polymorphism homogeneous.

To sum up our findings, the only countable intransitive polymorphism
homogeneous tournament is C

(0)
3 . It remains to sift through the list of tran-

sitive homomorphism homogeneous tournaments from Theorem 2.15. Alas,
the complete set of witnesses for transitive tournaments that we used in the
previous section is not sufficient for the test for polymorphism homogeneity
because the arc-relation of the finite powers of a transitive tournament with
loops allowed are transitive and antisymmetric, but not necessarily total.

The next task at hand is to find a complete set of witnesses for binary
relational structures whose basic relation is antisymmetric and transitive. To
this end, let A be any such structure and let W = (B1,B2, f, c) be a witness
in A, such that |B1| is as small as possible. Let us first sketch our general
strategy. We split the analysis of witnesses into several claims each of which
will be proved below:

Claim 1: f : B1 \ {c} → B2 is a bijection,

Claim 2: For each b ∈ B1 \ {c} we have either b → c or c → b,

Let B11 := {b ∈ B1 | b → c, b ∕= c}, B12 := {b ∈ B1 | c → b, b ∕= c}. Moreover,
let B21 := f(B11) and B22 := f(B12).

Claim 3: B21 and B22 induce antichains in A,

Claim 4: B11 and B12 induce antichains in A,

Claim 5: for each i ∈ {1, 2}, if B2i is a singleton, then its unique element is
loopless,

Claim 6: for each i ∈ {1, 2}, if B1i is a singleton, then its unique element is
loopless,

Claim 7: for each i ∈ {1, 2}, if B1i contains a loopless vertex, then it has at
most two elements,

Claim 8: if c has a loop, then B11 and B12 have at most two elements each.

About claim 1: Suppose that f is not bijective. Let B̃1 be a transversal
of the kernel of f . Let f̃ := f↾B̃1

. Then f̃ : B̃1 → B2 is a bijection. Observe

20



that (〈B̃1 ∪ {c}〉A,B2, f̃ , c) is a witness in A. Since f is not bijective, we
have that |B̃1 ∪ {c}| < |B1|, a contradiction with the minimality of |B1|.

About claim 2: Suppose there exists some b ∈ B1 such that neither
b → c nor c → b. Let B̃1 := B1 \ {b}, let B̃2 := f(B̃1 \ {c}), and let
f̃ := f↾B̃1\{c}. By the minimality of |B1|, (〈B̃1〉A, 〈B̃2〉A, f̃ , c) is not a witness

in A. Let f̃ ′ : 〈B̃1〉A → A be a homomorphic extension of f̃ . Now define
f̂ : B1 → A according to

f̂ : x 󰀁→
󰀫
f(x) x ∈ B1 \ {c},
f̃ ′(x) x = c.

It is not hard to see that in fact f̂ : B1 → A is a homomorphism. Thus, W
is not a witness in A, a contradiction.

About claim 3: Suppose that B21 is not an antichain in A. Let B̃21

be the set of maximal elements in B21. Let B̃2 := B̃21 ∪ B22. Let B̃1 :=
f−1(B̃2) ∪ {c}, and let f̃ := f↾B̃1\{c}. Then (〈B̃1〉A, 〈B̃2〉A, f̃ , c) is again
a witness in A, for, if it is not, then there exists some x ∈ A, such that
B̃21 → x → B22. But then we also have B21 → x → B22, a contradiction to
the assumption that (B1,B2, f, c) is a witness in A. Since |B̃2| < |B2| and
since f̃ is bijective, it follows that |B̃1| < |B1|, and we arrive at a contradiction
with the minimality of |B1|. The claim for B22 is proved analogously.

About claim 4: If B11 does not induce an antichain in A, then neither
does f(B11) = B21, a contradiction. The argument for B12 goes analogously.

About claim 5: Suppose that B21 = {b} and that b is a loop. Define
f̂ : B1 → B2, such that f̂↾B1\{c} = f and such that f̂(c) = b. It is not hard

to see that f̂ : B1 → B2 is a homomorphism, a contradiction. It follows that
b is a non-loop. The claim for B22 is proved analogously.

About claim 6: Suppose that B11 = {b} and that b is a loop. Then also
B21 = {f(b)} is a singleton and its element is a loop, a contradiction. The
claim for B12 is shown analogously.

About claim 7: Suppose that B11 contains a loopless vertex but that
it has more than two elements, say, B11 = {b1, . . . , bk+1} for some k ≥ 2.
Without loss of generality, let b1 be a non-loop. Let B′

11 := {b1, . . . , bk}, and
let B′

21 := f(B′
11). By the minimality of |B1|, (〈B′

11 ∪ B12 ∪ {c}〉A, 〈B′
21 ∪

B22〉A, f↾B′
11∪B12

, c) is not a witness in A. Let f ′ : 〈B′
11 ∪ B12 ∪ {c}〉A → A

be an extension of f , and let d := f ′(c). Let B̃1 := {b1, bk+1} ∪ B12 ∪ {c},
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B̃2 := {d, f(bk+1)} ∪B22. Further define f̃ : B̃1 \ {c} → B̃2 according to

f̃ : x 󰀁→
󰀫
f(x) x ∈ B12 ∪ {bk+1},
d x = b1.

Then f̃ : 〈B̃1 \ {c}〉A → 〈B̃2〉A is a homomorphism. Moreover we have that
(〈B̃1〉A, 〈B̃2〉A, f̃ , c) is a witness in A. However, |B̃1| < |B1|, a contradiction
with the minimality of |B1|. It follows that B11 has at most two elements.
The proof for B12 goes analogously.

About claim 8: Suppose that c has a loop but that B11 has more
than two elements, say, B11 = {b1, . . . , bk+1} for some k ≥ 2. Let B′

11 :=
{b1, . . . , bk}, and let B′

21 := f(B′
11). By the minimality of |B1|, (〈B′

11 ∪B12 ∪
{c}〉A, 〈B′

21 ∪B22〉A, f↾B′
11∪B12

, c) is not a witness in A. Let f ′ : 〈B′
11 ∪B12 ∪

{c}〉A → A be an extension of f , and let d := f ′(c). Note that d has a loop.
Let B̃1 := {b1, bk+1} ∪ B12 ∪ {c}, B̃2 := {d, f(bk+1)} ∪ B22. Further define
f̃ : B̃1 \ {c} → B̃2 according to

f̃ : x 󰀁→
󰀫
f(x) x ∈ B12 ∪ {bk+1},
d x = b1.

Then f̃ : 〈B̃1 \ {c}〉A → 〈B̃2〉A is a homomorphism. Moreover we have that
(〈B̃1〉A, 〈B̃2〉A, f̃ , c) is a witness in A. However, |B̃1| < |B1|, a contradiction
with the minimality of |B1|. It follows that B11 has at most two elements.
The proof for B12 goes analogously.

Now that all the claims are proved, it remains to enumerate all witnesses
that have all the postulated properties in order to have a complete set of
witnesses. A complete list is given in Table 2. For better readability, all
structures in this table are depicted as Hasse diagrams. Moreover, to preserve
some space one and the same picture may represent several witnesses. This is
achieved by introducing a new type of vertex symbol, the diamond. A vertex
that is depicted as a diamond may be interpreted as a loop or as a non-loop.
We are going to refer to these pictures as shapes of witnesses. Each shape
has an index given in Table 2. Note that there are shapes that represent
infinitely many witnesses. E.g., shape number 16 has on the left hand side
an antichain of length n consisting of loopy vertices, together with a loopless
joint upper bound. On the right hand side it has just an antichain of n loopy
vertices. Here n may vary through N \ {0, 1}.

22



1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16

17 18 19

20 21 22

23



23 24 25

26 27 28

29 30 31

32 33 34

35 36 37

38 39 40
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41 42 43

44 45 46

47 48

Table 2: A complete set of witnesses for antisymmetric
transitive relations

This is still not the end of the story. In order to test whether a homomor-
phism homogeneous transitive tournament with loops allowed is polymor-
phism homogeneous, we should in principle check for each of its finite powers
that it avoids all witnesses from Table 2. Of course, this is not feasible to
do in a brute force manner. Instead we identify some properties of transitive
antisymmetric relations that are stable under finite powers and that, each
for itself, imply that certain shapes of witnesses are avoided:

Definition 3.7. Let A = (A, 󰂄) be a binary relational structure, such that
󰂄 is antisymmetric and transitive. We say that A satisfies Condition

(A) if every finite nonempty set of vertices has a lower bound (loopy or not),

(B) if every finite nonempty set of vertices has an upper bound (loopy or
not),

(C) if for all finite nonempty sets B1, B2 of vertices there exists some vertex
c (loopy or not), such that if B1 → B2, then B1 → c → B2,

25



(D) if every finite nonempty set of vertices has a loopy lower bound,

(E) if every finite nonempty set of vertices has a loopy upper bound,

(F) if for all finite nonempty sets B1, B2 of vertices there exists some loopy
vertex c, such that if B1 → B2, then B1 → c → B2,

(G) if every finite nonempty set of loopy vertices has a loopy lower bound,

(H) if every finite nonempty set of loopy vertices has a loopy upper bound,

(I) if for all finite nonempty sets B1, B2 of loopy vertices there exists some
loopy vertex c, such that if B1 → B2, then B1 → c → B2,

(J) SB does not embed into A,

(K) SA does not embed into A,

(L) if for every finite nonempty set B1 of vertices and for every finite non-
empty set B2 of loopy vertices there exists a loopy vertex c, such that if
B1 → B2, then B1 → c → B2.

(M) if for every finite nonempty set B1 of loopy vertices and for every finite
nonempty set B2 of vertices there exists a loopy vertex c, such that if
B1 → B2, then B1 → c → B2.

(N) SC does not embed into A,

(O) SD does not embed into A.

Lemma 3.8. Conditions A–O are stable under finite powers. I.e., if some
A satisfies one of the conditions, then so does every finite power of A.

Proof. Straightforward.

The next step is to analyze which witnesses from Table 2 are avoided,
given that certain conditions from Definition 3.7 are satisfied:

Lemma 3.9. Let A = (A, 󰂄) be a binary relational structure such that 󰂄 is
antisymmetric and transitive. Then the following is true:

(a) if A satisfies (A), then A avoids all witnesses of the shapes 5 to 8,

(b) if A satisfies (B), then A avoids all witnesses of the shapes 13 to 16,

(c) if A satisfies (C), then A avoids all witnesses of the shapes 33 to 48,

(d) if A satisfies (D), then A avoids all witnesses of shapes 1 to 8,

(e) if A satisfies (E), then A avoids all witnesses of shapes 9 to 16,

(f) if A satisfies (F), then A avoids all witnesses of shapes 17 to 48,

(g) if A satisfies (G), then A avoids all witnesses of shapes 4 and 8,

(h) if A satisfies (H), then A avoids all witnesses of shapes 12 and 16,
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(i) if A satisfies (I), then A avoids all witnesses of shapes 32 and 48,

(j) if A satisfies (J), then A avoids all witnesses of shapes 1 to 3, 16 to 19,
21 to 23, 25 to 27, 29 to 31, 41 to 43 and 45 to 48,

(k) if A satisfies (K), then A avoids all witnesses of shapes 8 to 11, 17 to 28,
35, 36, 39, 40, 43, 44 and 48,

(l) if A satisfies (L), then A avoids all witnesses of shapes 20, 24, 28, 32,
36, 40, 44 and 48,

(m) if A satisfies (M), then A avoids all witnesses of shapes 29 to 32 and 45
to 48,

(n) if A satisfies (N), then A avoids all witnesses of shapes 5 to 7, 13 to 15,
17 to 19, 21 to 23, 25 to 27 and 33 to 47,

(o) if A satisfies (O), then A avoids all witnesses of shapes 17 to 19, 21
to 23 and 25 to 27.

Proof. About (a): In order to avoid witnesses of shape 5, it is sufficient
that every vertex in A has a lower bound. In order to avoid witnesses of
shapes 6 and 7, it is sufficient that any two vertices in A have a lower bound.
Finally, in order to avoid witnesses of shape 8, it is sufficient that every finite
antichain M of loopy vertices in A has a lower bound. Clearly, all this is
entailed by Condition A.

The other parts of the lemma have similar straightforward proofs. There-
fore they are omitted.

Theorem 3.10. Let T be a countable tournament. Then T is polymorphism
homogeneous if and only if there exist nonempty subsets M,M1,M2 of Q,
such that exactly one of the following is true:

(1) T ∼= C
(0)
3 ;

(2) T ∼= ({0}, <);

(3) T ∼= ({−∞}, <) + (M,≤);

(4) T ∼= (M,≤) + ({+∞}, <);

(5) T ∼= (Q, <);

(6) T ∼= (Q ∪ {+∞}, <) + (M,≤);

(7) T ∼= (Q, <) + (M,≤);

(8) T ∼= (M,≤) + (Q ∪ {−∞}, <);

(9) T ∼= (M,≤) + (Q, <);

(10) T ∼= (M1,≤) + (Q, <) + (M2,≤);

(11) T ∼= (M1,≤) + (Q ∪ {−∞}, <) + (M2,≤);
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(12) T ∼= (M1,≤) + (Q ∪ {+∞}, <) + (M2,≤);

(13) T ∼= (M1,≤) + (Q ∪ {−∞,+∞}, <) + (M2,≤);

(14) T has the following properties:

• below every loopless vertex there is at least one loopy vertex,

• above every loopless vertex there is at least one loopy vertex,

• in-between any two loopless vertices there is at least one loopy ver-
tex.

Proof. Let us start by proving that all the given tournaments are indeed
polymorphism homogeneous. For the transitive tournaments it is sufficient
to show that they avoid all witnesses of shapes from Table 2, since these form
a complete set for antisymmetric transitive relations.

about (1): The polymorphism homogeneity of C
(0)
3 was already shown

in Proposition 3.6.
about (2): ({0}, <) is isomorphic to each of its finite powers. Since it

is homomorphism homogeneous, it is also polymorphism homogeneous, by
Proposition 3.1.

about (3): Tournaments of this kind satisfy Conditions B, C, E–J and L–
O. From Lemmas 3.8 in conjunction with Lemma 3.9 it follows that these
tournaments avoid all witnesses from Table 2.

about (4): This case is dual to case (3).
about (5): (Q, <) satisfies Conditions A–C, G–M and O. From Lem-

mas 3.8 in conjunction with Lemma 3.9 it follows that this tournament avoids
all witnesses from Table 2.

about (6): Tournaments of this kind satisfy Conditions A–C, E, G–J, L,
M and O. From Lemmas 3.8 in conjunction with Lemma 3.9 it follows that
these tournaments avoid all witnesses from Table 2.

about (7): Analogous to case (6).
about (8): Dual to case (6).
about (9): Dual to case (7).
about (10): Tournaments of this kind satisfy Conditions A–E, G–I, L,

M and O. From Lemmas 3.8 in conjunction with Lemma 3.9 it follows that
these tournaments avoid all witnesses from Table 2.

about (11): Analogous to case (10).
about (12): Dual to case (11).
about (13): Analogous to case (10).
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about (14): Tournaments of this kind satisfy Conditions A–I, L and M.
From Lemmas 3.8 in conjunction with Lemma 3.9 it follows that these tour-
naments avoid all witnesses from Table 2.

At the end we go through the remaining homomorphism homogeneous
tournaments from Theorem 2.15:

It follows from Corollaries 3.3, 3.4, and from Proposition 3.5 that nei-
ther the countable universal tournament nor the circular tournament, nor
C

(3)
3 are polymorphism homogeneous. It remains to show that tournaments

of the shape T = (M1,≤) + ({0, 1}, <) + (M2,≤) (cf. Theorem 2.15(8))
are not polymorphism homogeneous: Let u ∈ M1, v ∈ M2. Let B1 =
{(0, u), (v, 1), (1, 0)}, B2 := {(0, 0), (1, 1)}, f : B1 \ {(1, 0)} → B2 given by
f : (0, u) 󰀁→ (0, 0), (v, 1) 󰀁→ (1, 1). Let c := (1, 0). Then (〈B1〉T2 , 〈B2〉T2 , f, c)
is a witness of shape 33 from Table 2 in T2. Consequently, T is not 2-
polymorphism homogeneous.

4. Concluding remarks

Related research

The present paper does not stand alone. Ever since the seminal paper [1]
by Cameron and Nešetřil the classification theory of homomorphism homo-
geneous structures has been actively studied. Already in [1] the problem to
classify homomorphism homogeneous graphs was posed and solved in the fi-
nite case. The countably infinite case was partially solved there, too, but until
today it defies all efforts for a complete classification (cf. [13, 14]). Exam-
ples where a complete classification was reached, include strict and non-strict
partial orders (cf. [5, 15]), lattices (cf. [16]), monounary algebras (cf. [17]).
Examples where a complete classification of the finite homomorphism homo-
geneous structures was reached include tournaments with loops allowed ([6]),
L-colored graphs over chains ([18]), uniform oriented graphs ([19]). There is
no hope that the classification problem of finite homomorphism homogeneous
structures can be solved by the currently known methods. The reason is that
Rusinov and Schweitzer showed in [13] that the problem to decide whether a
given finite loopy graph is homomorphism homogeneous is coNP-complete.
However, so far all classification results in this area entailed a polynomial
test of homomorphism homogeneity for the finite structures in question.
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Other modes of homogeneity

Meanwhile a whole spectrum of homogeneity conditions was introduced
by Lockett and Truss in [20]. They form a hierarchy of 18 conditions including
homogeneity and homomorphism homogeneity. The classification theory for
these conditions became itself a topic of research (cf. [14, 21]).

Polymorphism homogeneity

The notion of polymorphism homogeneity entered the stage through a
different door. The notion arose as a byproduct in the research on weakly
oligomorphic structures with the goal to get a version of the Theorem of
Engeler, Ryll-Nardzewski and Svenonius for endomorphism monoids and for
polymorphism clones of countable structures (cf. [3, 12, 22, 23]). Just like
that homogeneous ω-categorical structures admit elimination of quantifiers,
countable weakly oligomorphic polymorphism homogeneous structures ad-
mit quantifier elimination for primitive positive formulae. This feature was
essential in the proofs of several results on polymorphism clones of countable
homogeneous structures. E.g., in [24] polymorphism homogeneity of certain
homogeneous structures is used in order to show automatic homeomorphicity
for their polymorphism clones (see [25] for more information on this line of
research). The classification theory of PH structures was initiated in [2, 26].
It soon turned out that the classification problem of polymorphism homoge-
neous structures is amenable even in cases where the case of HH structures
makes problems (e.g., in [2] the countable polymorphism homogeneous graphs
are classified). Despite this, classifying polymorphism homogeneous struc-
tures is far from easy. Up till now we only know that the problem whether a
given finite structure is PH is decidable (cf. [2, Corollary 5.5]). Nothing more
specific is known about the complexity of this decision problem. However, it
should be mentioned that up till now we never came upon a class of finite re-
lational structures where the problem to decide polymorphism homogeneity
is intractable.

A bonus result

In Table 2 a complete set of witnesses for binary relational structures with
an antisymmetric, transitive relation is given. Such a set generally can be
used to devise an algorithm that tests whether a finite structure of this type
is homomorphism homogeneous. Modulo some small consideration about
those shapes that represent infinitely many witnesses it is easy to see that
the polymorphism homogeneity for finite, binary, antisymmetric, transitive
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relational structures is decidable in polynomial time. This observation ex-
tends even further to the class of finite binary, transitive relational structures,
because, as it was shown in [12, Section 3.2.2], such a structure is homomor-
phism homogeneous if and only if its maximal antisymmetric retract is.
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