Finite Groundings for ASP with Functions

A Journey through Consistency

<u>Lukas Gerlach</u>¹ David Carral² Markus Hecher³

¹Knowledge-Based Systems Group, TU Dresden, Germany ²LIRMM, Inria, University of Montpellier, CNRS, France ³Massachusetts Institute of Technology, United States

08.08.2024

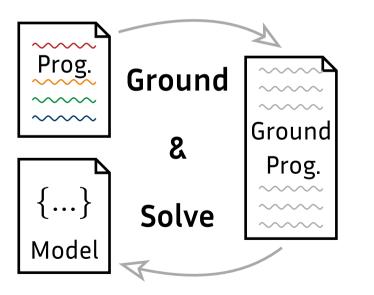
International Center for Computational Logic

General Procedure:

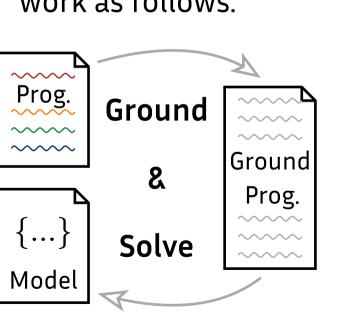
ASP systems like Clingo and (i)DLV work as follows.

General Procedure:

ASP systems like Clingo and (i)DLV work as follows.



General Procedure: ASP systems like Clingo and (i)DLV work as follows.



Example: Bring wolf, goat, and cabbage over river.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT)

Ð

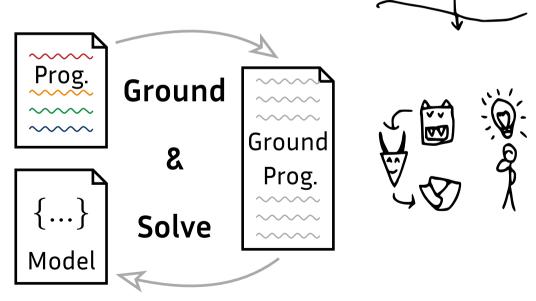
General Procedure: ASP systems like Clingo and (i)DLV work as follows. **Example:** Bring wolf, goat, and cabbage over river.

Prog.

Solve

 \mathbf{z}

General Procedure: ASP systems like Clingo and (i)DLV work as follows.



Example: Bring wolf, goat, and cabbage over river.

WolfGoatCabbage-GameRules.asp

bank(east). bank(west).

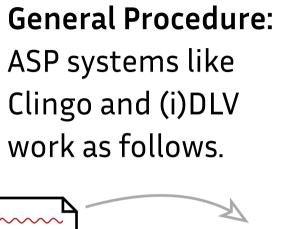
opposite(east, west). opposite(west,east).
passenger(wolf). passenger(goat). passenger(cabbage).
position(wolf, west, 0). position(goat, west, 0).
position(cabbage, west, 0). position(farmer, west, 0).
eats(wolf, goat). eats(goat, cabbage).

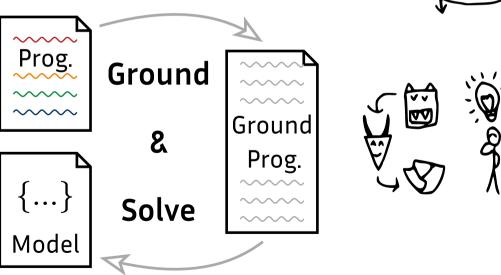
win(N) :- position(wolf, east, N), positEncode Basic Game Rules position(cabbage, east, N). winEnd :- win(N). lose :- position(X, B, N),

position(Y, B, N), eats(X, Y), position(farmer, C, N), opposite(B, C). - not winEnd. % we must win eventually

```
- lose. % we must not lose
```

Ð

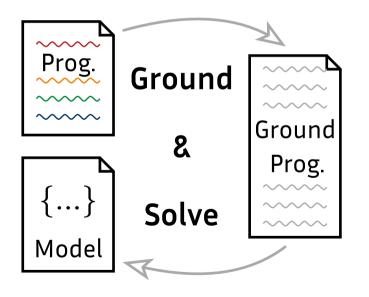




Example: Bring wolf, goat, and cabbage over river.

```
WolfGoatCabbage-ChooseMove.asp
goAlone(N) :- position(farmer, B, N),
  not takeSome(N), not win(N).
% ... or takes some passenger ...
takes Choose whom to transport
 passenger(Y) (position(Y B B))
not goAlone(N) (position(Y B B))
transport(X, N) :- takeSome(N),
  position(X, B, N), position(farmer, B, N),
  passenger(X), not othertransport(X, N).
othertransport(X, N) :- position(X, B, N),
  transport(Y, N), X = Y.
```

General Procedure: ASP systems like Clingo and (i)DLV work as follows.



Example: Bring wolf, goat, and cabbage over river.

WolfGoatCabbage-UpdatePositions-LimitStepsAndRedundancies.asp

```
% Numbers are functions! e.g. 2 = s(s(0)); N+1 = s(N)
steps(0..100). % Common Hack to contain Ground program
% based on the choice, we update positions
position(X, C, N+1) :- transport(X, N), position(X, B, N),
    opposite(B, C), steps(N+1).
position(X, B, N+1) :- position(X, B, N), passenger(X),
    not transport(X, N), not win(N), steps(N+1).
position(farmer, C, N+1) :- position(farmer, B, N),
    opposite(B, C), not win(N), steps(N+1).
```

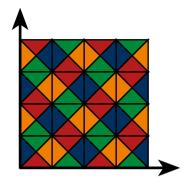
% we forbid configurations that already occurred change(N, M) :- position(X, B, N), position(X, C, M), opposite(B, C), N < M. redundant :- position(X, B, N), position(X, B, M), N < M, not change(N, M). :- redundant.

08.08.2024

Why are Functions so hard and what to do about it?

Understand:

- Consistency is Σ^1_1 -complete. [Dan+01, MNR94]
- We reprove e.g. hardness by reduction from a variant of the tiling problem. [Har86]
- We characterize **frugal** and **non-proliferous** programs.



Finite Groundings for ASP with Functions

Why are Functions so hard and what to do about it?

Understand:

- Consistency is Σ_1^1 -complete. [Dan+01, MNR94]
- We reprove e.g. hardness by reduction from a variant of the tiling problem. [Har86]
- We characterize **frugal** and **non-proliferous** programs.

Overcome:

We propose GroundNotForbidden as a grounding procedure ignoring forbidden atoms that yields finite grounding for frugal and non-proliferous programs.

GroundNotForbidden.pseudo; Output: P_a

1. Set
$$i := 1, A_0 := \emptyset, P_g := \emptyset$$
.

2. Set
$$A_i \coloneqq A_{i-1}$$
. For each potential ground rule $r = H_r \leftarrow B_r^+, B_r^-$ with

$$B^+_r\subseteq A_{i-1}$$
, (a) if H_r is forbidden add

 $\leftarrow B_r^+, B_r^-$ to P_a , (b) otherwise add r to

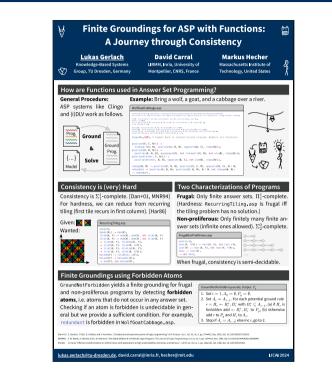
$$P_g$$
 and H_r to A_i .

Finite Groundings for ASP with Functions

3. Stop if
$$A_i = A_{i-1}$$
; else inc *i*, go to 2.

1. Set
$$i := 1, A_0 := \emptyset, P_g := \emptyset$$
.

Oops, time is over :(



J

We hope to discuss details at our poster with you :)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT)

Finite Groundings for ASP with Functions

08.08.2024

References

 [Dan+01] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, "Complexity and expressive power of logic programming," *ACM Comput. Surv.*, vol. 33, no. 3, pp. 374–425, Sep. 2001, doi: 10.1145/502807.502810.

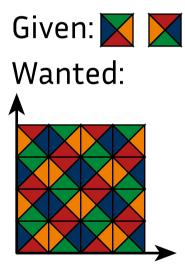
[MNR94] V. W. Marek, A. Nerode, and J. B. Remmel, "The Stable Models of a Predicate Logic Program," *The Journal of Logic Programming*, vol. 21, no. 3, pp. 129–154, Nov. 1994, doi: 10.1016/ S0743-1066(14)80008-3.

[Har86] D. Harel, "Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness," *J. ACM*, vol. 33, no. 1, pp. 224–248, Jan. 1986, doi: 10.1145/4904.4993.

Hardness: Reduction from "<u>Recurring</u> Tiling"

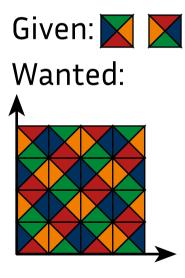
Hardness: Reduction from "<u>Recurring</u> Tiling"

Hardness: Reduction from "<u>Recurring</u> Tiling"



5

Hardness: Reduction from "<u>Recurring</u> Tiling"



RecurringTiling.asp
dom(c0).
dom(s(X)) := dom(X).
<pre>tile0(X, Y) :- dom(X), dom(Y), not tile1(X, Y)</pre>
<pre>tile1(X, Y) :- dom(X), dom(Y), not tile0(X, Y)</pre>
:- tile $0(X, Y)$, tile $0(s(X), Y)$.
:- tile $0(X, Y)$, tile $0(X, s(Y))$.
:- tile1(X, Y), tile1($s(X)$, Y).
:- tile1(X, Y), tile1(X, $s(Y)$).
<pre>below0(Y) :- tile0(c0, s(Y)). % each tile in first</pre>
<pre>below0(Y) :- below0(s(Y)). % column is below a</pre>
:- dom(Y), not below0(Y). % tile of type 0

Membership:

Reduction to NTM that admits a run that visits the start state infinitely many times iff the program is consistent.

Membership:

Reduction to NTM that admits a run that visits the start state infinitely many times iff the program is consistent.

$$H_r \leftarrow B_1^+, ..., B_n^+, \neg B_1^-, ..., \neg B_m^-$$

NTM-for-Consistency.pseudo; Input: Program ${\cal P}$

- 1. Initialize an empty set L_0 of literals, and some counters i := 0 and j := 0.
- 2. If L_i^+ and L_i^- are not disjoint, halt.
- 3. If L_i^+ is an answer set of P , loop on the start state.
- 4. Initialize $L_{i+1} := L_i \cup H_r \cup \{\neg a \mid a \in B_r^-\}$ where r is some nondeterministically chosen rule in $Active_{L_i^+}(P)$.
- 5. If L_i satisfies all of the rules in $Active_{L_j^+}(P)$, then set j := j + 1and visit the start state once.
- 6. Set i := i + 1 and go to Step 2.

$\operatorname{Active}_{I}(P)$ is the set of ground rules that are unsatisfied in I.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT)

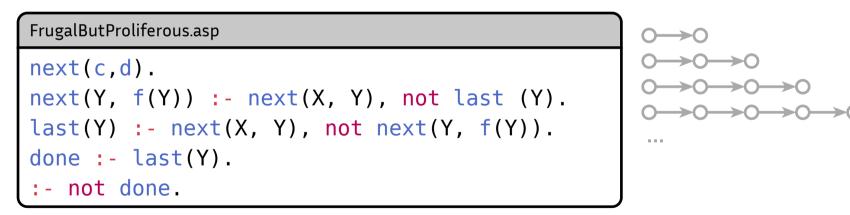
Finite Groundings for ASP with Functions

Frugal: Only finite answer sets. Π_1^1 -complete. (Membership: Use NTM-for-Consistency.pseudo but halt instead of loop in step 3. Hardness: RecurringTiling.asp is frugal iff the tiling problem has no solution.) **Non-proliferous:** Only finitely many finite answer sets (infinite ones allowed). Σ_2^0 -complete.

Frugal: Only finite answer sets. Π_1^1 -complete. (Membership: Use NTM-for-Consistency.pseudo but halt instead of loop in step 3. Hardness: RecurringTiling.asp is frugal iff the tiling problem has no solution.) **Non-proliferous:** Only finitely many finite answer sets (infinite ones allowed). Σ_2^0 -complete.

FrugalButProliferous.asp
next(c,d).
next(Y, f(Y)) :- next(X, Y), not last (Y).
last(Y) :- next(X, Y), not next(Y, f(Y)).
done :- last(Y).
:- not done.

Frugal: Only finite answer sets. Π_1^1 -complete. (Membership: Use NTM-for-Consistency.pseudo but halt instead of loop in step 3. Hardness: RecurringTiling.asp is frugal iff the tiling problem has no solution.) **Non-proliferous:** Only finitely many finite answer sets (infinite ones allowed). Σ_2^0 -complete.



Frugal: Only finite answer sets. Π_1^1 -complete. (Membership: Use NTM-for-Consistency.pseudo but halt instead of loop in step 3. Hardness: RecurringTiling.asp is frugal iff the tiling problem has no solution.) **Non-proliferous:** Only finitely many finite answer sets (infinite ones allowed). Σ_2^0 -complete.

When frugal and non-proliferous, consistency is (only) semi-decidable.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT)

Finite Groundings for ASP with Functions

08.08.2024

Sketch for Σ_2^0 -hardness of Non-Proliferous Check

Reduction from universal halting (Π_2^0 -complete) for machine M.

- 1. Checking if a TM halts on infinitely many inputs is Π_2^0 hard. (Treat each input as natural number n and simulate M on all inputs of length n. The new machine halts on infinitely many inputs iff M universally halts.)
- 2. The complement (i.e. checking if a TM halts on only finitely many inputs) is Σ_2^0 hard.
- 3. We can generate finite inputs to a TM with an ASP program such that the program has a finite answer set for the input iff the TM halts on the input. That is, the program has finitely many finite answer sets iff the TM halts on finitely many inputs. (Generation uses idea from FrugalButProliferous.asp and is actually frugal.)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT)

GroundNotForbidden yields finite grounding for frugal and non-proliferous programs by detecting **forbidden atoms**, i.e. atoms that do not occur in any answer set. Checking if an atom is forbidden is undecidable in general but we provide a sufficient condition. For example, redundant is forbidden in WolfGoatCabbage.asp.

GroundNotForbidden.pseudo; Output: P_g
1. Set $i := 1, A_0 := \emptyset, P_q := \emptyset$.
2. Set $A_i := A_{i-1}$. For each potential
ground rule $r = H_r \leftarrow B_r^+, B_r^-$ with
$B^+_r\subseteq A_{i-1}$, (a) if H_r is forbidden
add $\leftarrow B^+_r, B^r$ to P_g , (b) otherwise
add r to P_g and H_r to A_i .
3. Stop if $A_i = A_{i-1}$; else inc <i>i</i> , go to 2.