

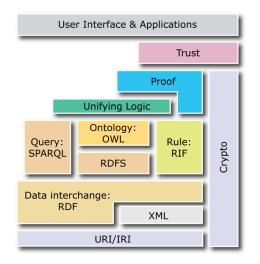
TOO MUCH INFORMATION CAN AI COPE WITH MODERN KNOWLEDGE GRAPHS? Markus Krötzsch †

reporting on joint work with David Carral[†], Irina Dragoste[‡], Maximilian Marx[†], Ana Ozaki^{†*}, Sebastian Rudolph, Veronika Thost^{†*}, and Denny Vrandečić

[†] Knowledge-Based Systems (* former member)

TU Dresden

Full paper: https://iccl.inf.tu-dresden.de/web/Inproceedings3217/en


Invited Keynote

International Conference on Formal Concept Analysis (ICFCA 2019)

Formal Concept Analysis

2001: The Semantic Web

2012: The Knowledge Graph

Google Inside Search

Home How Search Works Tips & Tricks Features Search Stories Playground Blog Help

Adoration c

romuo

do da Vinci

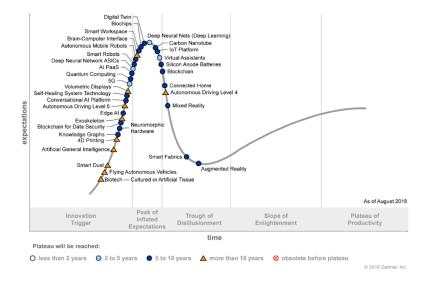
Leonardo di ser Piero da Vinci was an Italian Renaissance polymath: painter, sculptor, architect, musician, scientist, mathematician, engineer, inventor, anatomist, geologist, cartographer, botanist, and writer. Watemate

Born: April 15, 1452, Anchiano Died: May 2, 1519, Clos Lucé Buried: Château d'Amboise Parents: Caterina da Vinci, Piero da

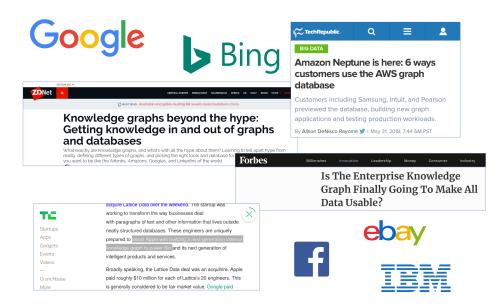
See it in action

Discover answers to questions you never thought to ask, and explore collections and lists.

The Knowledge Graph


Learn more about one of the key breakthroughs behind the future of search.

Markus Krötzsch


2012: Wikidata

2018: The Hype

2019: Knowledge Graphs Everywhere

Many knowledge graphs, many technologies

There are a number of widely used publicly available knowledge graphs:

... and a variety of technologies for working with them:

Markus Krötzsch

Knowledge Graphs

What is a Knowledge Graph?

More than "a database used in an AI application"?

What is a Knowledge Graph?

More than "a database used in an AI application"?

Charateristics of today's KGs:

Normalised: Data decomposed into small units ("edges")

Connected: Knowledge represented by relationships between these units

Annotated: Enriched with context information, meta-data, and auxiliary details

What is a Knowledge Graph?

More than "a database used in an AI application"?

Charateristics of today's KGs: Normalised: Data decomposed into small units ("edges") Connected: Knowledge represented by relationships between these units Annotated: Enriched with context information, meta-data, and auxiliary details

- Typical for many KG applications
- Often comes with a promise of declarative processing

A Free Knowledge Graph

Wikidata

- Wikipedia's knowledge graph
- Free, community-built database
- Large graph (March 2018: >680M statements on >55M entities)
- Large, active community (250,000 logged-in human editors)
- Many applications

Freely available, relevant, and active knowledge graph

[Vrandečić & K; Comm. ACM 2014]

I'm in ur phone ...

Who is Grover Cleveland

Tap to Edit 📎

OK. Check it out:

KNOWLEDGE

Grover Cleveland

22nd and 24th president of the United States

Stephen Grover Cleveland was an American politician and lawyer who was the 22nd and 24th President of the United States. He won the popular vote for three presidential elections – in 1884, 1888, and 1892 – and was one of two Democrats to be elected president during the era of Republican political domination

dating from 1861 to 1933. He was also the first and to date only President in American history to serve two non-consecutive terms in office.

See More on Wikipedia

Ø

Date of hirth

March 18 1837

British computer scientist

TimBL | Sir Tim Berners-Lee | Timothy John Berners-Lee | TBL | Tim Berners Lee | T. Berners-Lee | T Berners-Lee | T.J. Berners-Lee

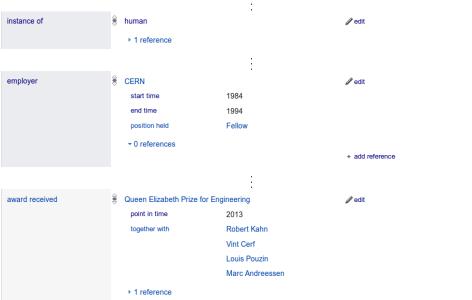
Tim Berners-Lee (Q80)

British computer scientist

TimBL | Sir Tim Berners-Lee | Timothy John Berners-Lee | TBL | Tim Berners Lee | T. Berners-Lee | T Berners-Lee | T.J. Berners-Lee

Tim Berners-Lee (Q80)

British computer scientist


TimBL | Sir Tim Berners-Lee | Timothy John Berners-Lee | TBL | Tim Berners Lee | T. Berners-Lee | T Berners-Lee | T.J. Berners-Lee

Tim Berners-Lee (Q80)

British computer scientist

TimBL | Sir Tim Berners-Lee | Timothy John Berners-Lee | TBL | Tim Berners Lee | T. Berners-Lee | T Berners-Lee | T.J. Berners-Lee

Statements in Wikidata

Wikidata's basic information units

- Built from Wikidata items ("CERN", "Vint Cerf"), Wikidata properties ("award received", "end time"), and data values ("2013")
- Based on directed edges ("Tim Berners-Lee –employer→ CERN")
- Annotated with property-value pairs ("end time: 1994")
 - same property can have multiple annotation values ("together with: Robert Kahn, Vint Cerf, ...")
 - same properties/values used in directed edges and annotations
- Items and properties can be subjects/values in statements
- Multi-graph

Elizabeth Taylor (Q34851) Elizabeth Rosemond Taylor | Liz Taylor | Dame Elizabeth Rosemond Taylor

British-American actress

instance of: Elizabeth Taylor is a(n) human

Human relationship	s	~	
	Own statements	From related entities	
8 statements 💙	Larry Fortensky (construction worker and seventh husband of Elizabeth Taylor) end time: 1996-10-31 start time: 1991-10-66	th Taylor)	
	John Warner (Republican politician and Secretary of the Navy from the end time : 1982-11-07 start time : 1976-12-04	e United States)	
	Richard Burton (Welsh actor) start time: 1975-10-10 end time: 1976-07-29	>	
	Richard Burton (Welsh actor) start time : 1964-03-15 end time : 1974-06-26	>	
	Eddie Fisher (American entertainer and singer) end time : 1964-03-06 start time : 1959-05-12	>	
	Mike Todd (American theatre and film producer) end time : 1958-03-22 start time : 1957-02-02	>	
	Michael Wilding (English television and film actor) end time : 1957-01-30 start time : 1952-02-21	>	
	Conrad Hilton, Jr. (American hotelier) end time : 1951-01-29 start time : 1950-05-06	>	

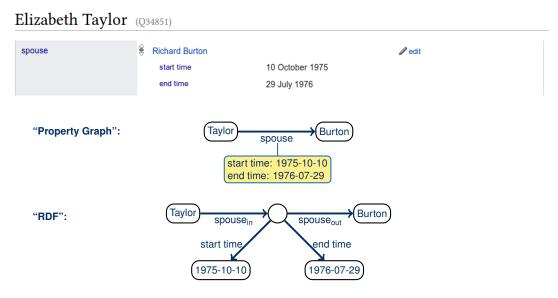
edit label

Links		
Wikidata p	age	
Official we	bsite	
Wikipedia	article	
Reasonato	r	

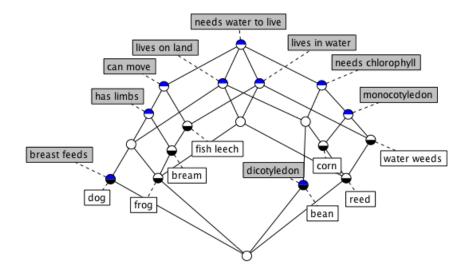
Identifiers		~
SFDb person ID	75200 🖻	>
Elonet person ID	224907 🖻	>
PORT person ID	7869 🖻	>
AllMovie artist	p70015 ⊵*	>

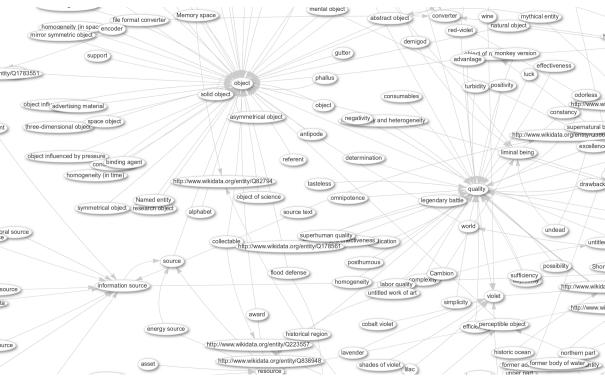
Fig.: Taylor standing in multiple relations; from https://tools.wmflabs.org/sqid/#/view?id=Q34851

Wikidata Statements in Terms of Graphs


Elizabeth Taylor (Q34851)

spouse	Richard Burton	🖉 edit
	start time	10 October 1975
	end time	29 July 1976


Wikidata Statements in Terms of Graphs



Wikidata Statements in Terms of Graphs

Formal Concept Analysis

One or two items for one bridge in two locations ? With @Jura1: we have a discussion on the french Project Hi all, chat about should we have one or two items about a bridge that has been moved but it's going in circle and other point of view could help (@Fralambert, El Caro: also take part in the discussion.).

One or two items for one bridge in two Egg yolk Hi, I'm trying to sort the entries on the egg yolk ... egg yolk (Q181409), yolk (Q16336079) and the egg yolk (Q1302994). locations ? If I understand correctly, there is one for yolk, one for egg With @Jura1: we have a discussion on the french Pr Hi all, yolk and one for chicken egg yolk ... but interwikis links are chat about should we have one or two items about a also big mess. Mikani (talk) 15:37, 9 August 2018 (UTC) that has been moved but it's going in circle and oth view could help (@Fralambert, El Caro: also take part in the discussion.).

AI

Possibilities?

Wikidata is the largest public knowledge graph ever created.

Now, finally, we can apply all our methods to real data!

- Logical reasoning!
- Data mining!
- Machine learning!
- . . .

Or can't we?

Mining and learning

There are many techniques for mining and learning from discrete and graph-based data:

- FCA
- Network analysis
- Knowledge graph embeddings
- Rule mining
- ...
- ... but none of them works on Wikidata as it is

Why?

Mining and learning

There are many techniques for mining and learning from discrete and graph-based data:

- FCA
- Network analysis
- Knowledge graph embeddings
- Rule mining
- ...
- ... but none of them works on Wikidata as it is

Why?

- Scalability: Wikidata is huge
- Complexity: Known methods require simpler data

Example: FCA

Required:

- formal context (Boolean matrix)
- of moderate size (in at least one of the two dimensions)

Example: FCA

Required:

- formal context (Boolean matrix)
- of moderate size (in at least one of the two dimensions)

 \rightarrow extraction via custom pre-processing

Example: Hanika, Marx, Stumme [ICFCA 2019] extract contexts with <100 attributes and up to 430K items (<0.8%) from Wikidata.

Example: Knowledge graph embeddings

Required:

- directed labelled graph of plain "triplets"
- of moderate size (more or less, depending on method)

Example: Knowledge graph embeddings

Required:

- directed labelled graph of plain "triplets"
- of moderate size (more or less, depending on method)

\rightarrow extraction via custom pre-processing

Example: A still often used "benchmark" for link prediction is FB15k, which is based on less than 0.035% of the Freebase KG (discontinued in 2014). Annotations of edges ("Compound Value Types" in Freebase) are not included.

Example: Machine Learning

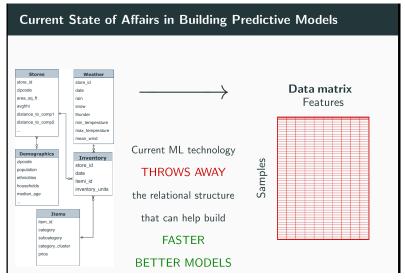


Fig.: Slide by Dan Olteanu: "Learning Models over Relational Databases " (ICDT/EDBT 2019)

"Isn't this custom pre-processing just a small syntactic adjustment, maybe with some application-specific sampling?"

"Isn't this custom pre-processing just a small syntactic adjustment, maybe with some application-specific sampling?"

No, much more interpretation is needed in this step!

London (Q84)

capital and largest city of the United Kingdom

London, UK | London, United Kingdom | London, England

located in the administrative territorial entity	England end time start time • 0 references	1 January 1707 ^{Gregorian} 927
	England end time start time • 0 references	1889 1 January 1707 ^{Gregorian}
	County of London start time end time • 0 references	1889 1 April 1965
	Greater London start time • 0 references	1 April 1965
	Kingdom of Wessex end time • 0 references	927

Some classes that Frankfurt am Main (Q1794) is (indirectly) an instance of:

• big city, independent city of Germany, financial centre, college town

- big city, independent city of Germany, financial centre, college town
- city, city/town, place with town rights and privileges, municipality, human settlement, artificial geographic entity, artificial physical object, artificial entity, physical object

- big city, independent city of Germany, financial centre, college town
- city, city/town, place with town rights and privileges, municipality, human settlement, artificial geographic entity, artificial physical object, artificial entity, physical object
- urban municipality of Germany, municipality of Germany, districts and some cities of Germany, administrative territorial entity of Germany, administrative territorial entity of a single country, administrative territorial entity of a specific level, fourth-level administrative country subdivision, local administrative unit in the NUTS system, LAU 2, human-geographic territorial entity

- big city, independent city of Germany, financial centre, college town
- city, city/town, place with town rights and privileges, municipality, human settlement, artificial geographic entity, artificial physical object, artificial entity, physical object
- urban municipality of Germany, municipality of Germany, districts and some cities of Germany, administrative territorial entity of Germany, administrative territorial entity of a single country, administrative territorial entity of a specific level, fourth-level administrative country subdivision, local administrative unit in the NUTS system, LAU 2, human-geographic territorial entity
- Urban area, geographic region, geographical object, geographic location, geographic entity, territorial entity, location, locality, spatial entity, spacio-temporal entity

- big city, independent city of Germany, financial centre, college town
- city, city/town, place with town rights and privileges, municipality, human settlement, artificial geographic entity, artificial physical object, artificial entity, physical object
- urban municipality of Germany, municipality of Germany, districts and some cities of Germany, administrative territorial entity of Germany, administrative territorial entity of a single country, administrative territorial entity of a specific level, fourth-level administrative country subdivision, local administrative unit in the NUTS system, LAU 2, human-geographic territorial entity
- Urban area, geographic region, geographical object, geographic location, geographic entity, territorial entity, location, locality, spatial entity, spacio-temporal entity
- community, social group, group of humans, group of living things, group of physical objects, group

- big city, independent city of Germany, financial centre, college town
- city, city/town, place with town rights and privileges, municipality, human settlement, artificial geographic entity, artificial physical object, artificial entity, physical object
- urban municipality of Germany, municipality of Germany, districts and some cities of Germany, administrative territorial entity of Germany, administrative territorial entity of a single country, administrative territorial entity of a specific level, fourth-level administrative country subdivision, local administrative unit in the NUTS system, LAU 2, human-geographic territorial entity
- Urban area, geographic region, geographical object, geographic location, geographic entity, territorial entity, location, locality, spatial entity, spacio-temporal entity
- community, social group, group of humans, group of living things, group of physical objects, group
- Iocal government, municipal corporation, government, executive branch, government organization, political organisation, organization, political entity, public body, political territorial entity
- public authority, organ, authority, legal person, juridical person, agent, individual, state power, political power, power (Q25107), power (Q18340964)

- big city, independent city of Germany, financial centre, college town
- city, city/town, place with town rights and privileges, municipality, human settlement, artificial geographic entity, artificial physical object, artificial entity, physical object
- urban municipality of Germany, municipality of Germany, districts and some cities of Germany, administrative territorial entity of Germany, administrative territorial entity of a single country, administrative territorial entity of a specific level, fourth-level administrative country subdivision, local administrative unit in the NUTS system, LAU 2, human-geographic territorial entity
- Urban area, geographic region, geographical object, geographic location, geographic entity, territorial entity, location, locality, spatial entity, spacio-temporal entity
- community, social group, group of humans, group of living things, group of physical objects, group
- local government, municipal corporation, government, executive branch, government organization, political organisation, organization, political entity, public body, political territorial entity
- public authority, organ, authority, legal person, juridical person, agent, individual, state power, political power, power (Q25107), power (Q18340964)
- system, unit, structure (Q6671777), structure (Q517966), concrete object, abstract object, object (Q488383), object (Q17553950), subject, entity

- big city, independent city of Germany, financial centre, college town
- city, city/town, place with town rights and privileges, municipality, human settlement, artificial geographic entity, artificial physical object, artificial entity, physical object
- urban municipality of Germany, municipality of Germany, districts and some cities of Germany, administrative territorial entity of Germany, administrative territorial entity of a single country, administrative territorial entity of a specific level, fourth-level administrative country subdivision, local administrative unit in the NUTS system, LAU 2, human-geographic territorial entity
- Urban area, geographic region, geographical object, geographic location, geographic entity, territorial entity, location, locality, spatial entity, spacio-temporal entity
- community, social group, group of humans, group of living things, group of physical objects, group
- Iocal government, municipal corporation, government, executive branch, government organization, political organisation, organization, political entity, public body, political territorial entity
- public authority, organ, authority, legal person, juridical person, agent, individual, state power, political power, power (Q25107), power (Q18340964)
- system, unit, structure (Q6671777), structure (Q517966), concrete object, abstract object, object (Q488383), object (Q17553950), subject, entity
- statistical territorial entity, unit of analysis, research object

Conceptual modelling in Wikidata

Conceptual models are an important part of Wikidata's content

However, Wikidata has no built-in ontology language:

- Schema information stored with special properties (e.g., P279 "subclass of")
- Classes (and metaclasses) are just regular items
- No clear distinction between instance and schema knowledge
- No fixed formal semantics

Conceptual modelling in Wikidata

Conceptual models are an important part of Wikidata's content

However, Wikidata has no built-in ontology language:

- Schema information stored with special properties (e.g., P279 "subclass of")
- Classes (and metaclasses) are just regular items
- No clear distinction between instance and schema knowledge
- No fixed formal semantics
- \rightsquigarrow interpretation is necessary to make sense of data
 - Domain-specific background knowledge can be required
 - Interpretation might depend on context

Implicit schema knowledge in Wikidata

Airbus A380 (Q5830)

double-deck aircraft made by Airbus Image: Constraint of the second second

Implicit schema knowledge in Wikidata

Intended meaning: "Every aircraft of this type has engines of that type."

In description logics: "A380 \sqsubseteq =4 poweredBy.Trent700"

Ontology-based views

Ontology-based views

How can we capture the background knowledge used to interpret KGs?

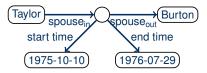
Ontology-based views

How can we capture the background knowledge used to interpret KGs?

Ontology-based view definitions

- Describe mappings/queries with logical axioms
- Extract data (for mining and learning) by reasoning
- Draw inferences about KG by inverting view

Example: Description logics have been used to define attributes for FCA [Rudolph, ICCS 2004]:


Attribute_{hasMother} $\equiv \exists mother. \top$

This view is invertible: if objects have Attribute_{hasMother}, they must be in class \exists mother. \top . Rule mining lets us learn ontologies [Borchmann, ICFCA 2013].

The limits of description logics

DLs are not ideal for interpreting KG data:

• No support for annotations – RDF-style pre-transformation of data needed:

• Can only express tree-like structures

Example: attribute "child of married parents" is not expressible.

• No closed-world reasoning

Example: attribute "currently married" (without end date) is not expressible.

• Very limited modelling of binary relations (needed for graph-like views)

Logics for annotations

Annotations as in Wikidata or Property Graph are not supported by standard relational first-order logic (and any of its fragments).

Idea: extend first-order logic with sort for annotation sets

Logics for annotations

Annotations as in Wikidata or Property Graph are not supported by standard relational first-order logic (and any of its fragments).

Idea: extend first-order logic with sort for annotation sets

MAPL: Multi-attributed predicate logic supports axioms with annotations [Marx, K, Thost; IJCAI 2017]:

- Annotated fact: spouse(taylor, burton)@{start : 1975, end : 1976}
- Sentence with object and set variables: $\forall x, y, Z$.spouse $(x, y) @Z \rightarrow$ spouse(y, x) @Z

Related approaches:

- Attributed description logics [K, Marx, Ozaki, Thost; ISWC 2017 & IJCAI 2018]
- Relational algebra with complex values; see [Abiteboul, Hull, Vianu; 1994]

Reasoning in attributed logics? [Marx, K, Thost; IJCAI 2017]

Unrestricted quantification over finite annotation sets is extremely powerful:

Theorem: Entailment in attributed first-order logic captures entailment in Weak Second-Order Logic (and in particular is undecidable).

The problem becomes simpler when restricting to rules with "safe" quantification over annotation sets \sim rule language MARPL ("Datalog with annotation sets"):

Theorem: Entailment in MARPL is ExpTime-complete in data complexity and in combined complexity.

ightarrow overall similar to DLs and Datalog, but greater expressivity with respect to data

Practical reasoning in attributed logics?

Status quo:

- There is no dedicated reasoner for any annotated logic
- Modern rule engines for known decidable fragments of first-order Horn logic rules can handle large inputs
- These fragments mostly have PTime data complexity (too weak for MARPL)

Practical reasoning in attributed logics?

Status quo:

- There is no dedicated reasoner for any annotated logic
- Modern rule engines for known decidable fragments of first-order Horn logic rules can handle large inputs
- These fragments mostly have PTime data complexity (too weak for MARPL)

A recent insight changes the picture:

Theorem [K, Marx, Rudolph; ICDT 2019]: Algorithms implemented by modern rule engines solve problems of non-elementary data complexity.

Practical reasoning in attributed logics?

Status quo:

- There is no dedicated reasoner for any annotated logic
- Modern rule engines for known decidable fragments of first-order Horn logic rules can handle large inputs
- These fragments mostly have PTime data complexity (too weak for MARPL)

A recent insight changes the picture:

Theorem [K, Marx, Rudolph; ICDT 2019]: Algorithms implemented by modern rule engines solve problems of non-elementary data complexity.

In particular, such rule engines can be used to solve ExpTime-complete problems [Carral, Dragoste, K; IJCAI 2019]:

- Expressive DL reasoning
- Fact entailment for guarded Horn logic rules

 \rightsquigarrow practical reasoning with annotations seems within reach

Markus Krötzsch

Conclusions

A research programme

Goal: Close the gap between large scale knowledge representation and intelligent data analysis

- (1) Model declarative conceptual views over knowledge graphs using a suitable ontology language
- (2) Design scalable reasoning algorithms for exchanging data through these views forwards and backwards
- (3) Integrate data mining and machine learning methods with this reasoning process for efficiency and explainability

Conclusions

Summary

- Knowledge Graphs are enriched graphs
- Wikidata: large dataset + conceptual world model
- Mining KGs: struggling with size, but mainly with structural complexity
- Ontology-based views: declarative, invertible data excerpts
- Attributed logics: towards ontology support for KGs

What next?

Integrate ontological reasoning, data mining, and learning in a clean and coherent way.

References

- [Abiteboul, Hull, Vianu; 1994] Serge Abiteboul, Richard Hull, Victor Vianu: Foundations of Databases. Addison Wesley, 1994.
- [Borchmann, ICFCA 2013] Daniel Borchmann: Towards an error-tolerant construction of *εL[⊥]*-ontologies from data using formal concept analysis. ICFCA 2013.
- [Carral, Dragoste, K; IJCAI 2019] David Carral, Irina Dragoste, Markus Krötzsch: Chasing Sets: How to Use Existential Rules for Expressive Reasoning. IJCAI 2019 (to appear).
- [Hanika, Marx, Stumme [ICFCA 2019]] Tom Hanika, Maximilian Marx, Gerd Stumme: Discovering implicational knowledge in Wikidata. ICFCA 2019.
- [K, Marx, Ozaki, Thost; ISWC 2017] Markus Krötzsch, Maximilian Marx, Ana Ozaki, Veronika Thost: Attributed Description Logics: Ontologies for Knowledge Graphs. ISWC 2017.
- [K, Marx, Rudolph; ICDT 2019] Markus Krötzsch, Maximilian Marx, Sebastian Rudolph: The power of the terminating chase. ICDT 2019.
- [Marx, K, Thost, IJCAI 2017] Maximilian Marx, Markus Krötzsch, Veronika Thost: Logic on MARS: Ontologies for Generalised Property Graphs. IJCAI 2017.
- [Rudolph, ICCS 2004] Sebastian Rudolph: Exploring relational structures via FLE. ICCS 2004.
- [Vrandečić & K; Comm. ACM 2014] Denny Vrandečić, Markus Krötzsch: Wikidata: A Free Collaborative Knowledgebase. Comm. ACM, 57:10, 2014.