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Review: Regular Path Queries

Idea: use regular expressions to navigate over paths

Let’s consider a simplified graph model, where a graph is given by:

• Set of nodes N (without additional labels)

• Set of edges E, labelled by a function λ : E → L, where L is a finite set of labels

Definition 16.1: A regular expression over a set of labels L is an expression of
the following form:

E ::= L | (E ◦ E) | (E + E) | E∗

A regular path query (RPQ) is an expression of the form E(s, t), where E is a reg-
ular expression and s and t are terms (constants or variables).
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Semantics of Regular Path Queries

As usual, a regular expression E matches a word w = ℓ1 · · · ℓn if any of the following
conditions is satisfied:
• E ∈ L is a label and w = E.

• E = (E1 ◦ E2) and there is i ∈ {0, . . . , n} such that E1 matches ℓ1 · · · ℓi and E2 matches
ℓi+1 · · · ℓn (the words matched by E1 and E2 can be empty if i = 0 or i = n, respectively).

• E = (E1 + E2) and w is matched by E1 or by E2

• E = E∗1 and w has the form w1w2 · · ·wm for m ≥ 0, where each word wi is matched by E1

Definition 16.2: Let a and b be constants and x and y be variables. An RPQ
E(a, b) is entailed by a graph G if there is a directed path from node a to node b
that is labelled by a word matched by E. The answers to RPQs E(x, y), E(x, b),
and E(a, y) are defined in the obvious way.
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Extending the Expressive Power of RPQs

Regular path queries can be used to express typical reachability queries, but are still
quite limited{ extensions

2-Way Regular Path Queries (2RPQs)

• For every label ℓ ∈ L, also introduce a converse label ℓ−

• Allow converse labels in regular expressions

• Matched paths can follow edges forwards or backwards

Conjunctive Regular Path Queries (CRPQs)

• Extend conjunctive queries with RPQs

• RPQs can be used like binary query atoms

• Obvious semantics

Conjunctive 2-Way Regular Path Queries (C2RPQs) combine both extensions
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C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)
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Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

• Transform regular expression into a finite automaton

• Starting from the first node, guess a matching path

• When moving along path, advance state of automaton

• Accept if the second node is reached in an accepting state

• Reject if path is longer than size of graph × size of automaton

Space requirements when assuming query (and automaton) fixed: pointer to current
node in graph, pointer to current state of automaton, counter for length of path
{ NL algorithm

Conversely, reachability in an unlabelled graph is hard for NL
{ RPQ matching is NL-complete (data complexity)

(Combined/query complexity is in P, as we will see below)
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Complexity of C2RPQs

We already know:

• CQ matching is in AC0 (data complexity) and NP-complete (query and combined
complexity)

• RPQ matching is NL-complete (data) and in P (query/combined)

• AC0
⊂ NL and NL ⊆ NP

{ C2RPQs are NP-hard (combined/query) and NL-hard (data)

It’s not hard to show that these bounds are tight:

Theorem 16.3: C2RPQ matching is NP-complete for combined and query com-
plexity, and NL-complete for data complexity.
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(C2)RPQs and Datalog

How do path queries relate to Datalog?

We already know:

• Datalog is ExpTime-complete (combined/query) and P-complete (data)

• C2RPQs are NP-complete (combined/query) and NL-complete (data)

{ maybe Datalog is more expressive that C2RPQs . . .

Indeed, we can express regular expressions in Datalog

For simplicity, assume that we have a binary EDB predicate pℓ for each label ℓ ∈ L
(other encodings would work just as well)
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2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query ⟨QE, PE⟩:

If E = ℓ ∈ L is a label, then PE = {QE(x, y)← pℓ(x, y)}

If E = ℓ− is the converse of a label ℓ ∈ L, then

PE = {QE(x, y)← pℓ(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}
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Reprise: Combined Complexity of 2RPQs

As a side effect, the previous translation shows that 2RPQs can be evaluated in P
combined complexity:

• Each (2-way) regular expression E leads to a Datalog query ⟨QE, PE⟩ of polynomial
size

• Each rule in PE has at most three variables
{ the grounding of PE for a graph with nodes N is of size |PE | × |N|3

• propositional logic rules can be evaluated in polynomial time

{ polynomial time decision procedure
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Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

• Use the encoding of CQs in Datalog as shown in the exercise

• Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary “labelled-edge” EDB predicates be expressed with
(C2)RPQs?

• This would imply P = NL (but not that NP = ExpTime!):
unlikely but not known to be false

• However, there are stronger direct arguments that show the limits of C2RPQs
(exercise)
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Linear Datalog and Binary Datalog

Expressing 2RPQs in Datalog requires only restricted forms of Datalog:

Definition 16.4: A Datalog program is linear if each of its rules has at most one
IDB atom in its body. A Datalog program is binary if all of its IDB predicates have
arity at most two.

The following complexity results are known:

Theorem 16.5: Query answering in linear Datalog is NL-complete for data com-
plexity, and PSpace-complete for combined and query complexity.
Combined complexity further drops to NP for binary Datalog.

{ complexity results that are more similar to (C2)RPQs . . .
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2RPQs and Linear Datalog

The Datalog translation of 2RPQs does not lead to linear Datalog, but we can fix this.

We transform a regular expression E to a linear Datalog query ⟨QE, Plin
E ⟩:

• Construct a non-deterministic automaton AE for E

• For every state q of AE, we use a binary IDB predicate Sq

• For the starting state q0 of AE, we add a rule Sq0 (x, x)←

• For every transition q
ℓ
→ q′ of AE, we add a rule

Sq′ (x, z)← Sq(x, y) ∧ pℓ(y, z)

• For every final state qf of AE, we add a rule

QE(x, y)← Sqf (x, y)

Two-way queries can be captured by allowing two-way transitions.
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Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog
Is the converse also true?

No. Counterexample:

Query(x, z)← pa(x, y) ∧ pb(y, z)

Query(x, z)← pa(x, x′) ∧ Query(x′, z′) ∧ pb(z′, z)

The linear Datalog program matches paths with labels from anbn

{ context-free, non-regular language
{ not expressible in (C2)RPQs

Intuition: linear Datalog generalises context-free languages
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Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

• Query containment

• Query equivalence

• Query emptiness

Which of these are decidable for (C2)RPQs?

Observation: query emptiness is trivial
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Containment for RPQs
Containment of Regular Path Queries corresponds to containment of regular
expressions{ known to be decidable in PSpace

Proof sketch for checking E1 ⊑ E2:

(1) Construct non-deterministic automata (NFAs), A1 and A2 for the regular expressions
E1 and E2, respectively

(2) Construct an automaton Ā2 that accepts the complement of A2.

(3) Construct the intersection A1 ∩ Ā2 of A1 and Ā2

(4) Check if A1 ∩ Ā2 accepts a word (if yes, then there is a counterexample that
disproves E1 ⊑ E2; if no, then the containment holds)

Complexity estimate:
A1 ∩ Ā2 is exponential (blow-up by powerset construction in step (2)) but step (4) is possi-
ble by checking reachability on the state graph
{ NL algorithm on an exponential state graph
{ NPSpace algorithm (construct the state graph on the fly)
{ PSpace algorithm (Savitch’s Theorem)
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Containment for (C)2RPQs

Things are more tricky when adding converses and conjunctions

Theorem 16.6:

• Containment of 2RPQs is PSpace-complete

• Containment of C2RPQs is ExpSpace-complete

The proofs are more involved.

Automata-theoretic constructions are used, but with more complicated automata models and for
somewhat different languages (there is no good “language of possible C2RPQ matches on a
graph”{ consider language of possible proofs instead)
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Query Optimisation for Path Queries

Decidable in PSpace (2RPQs) and ExpSpace (C2RPQs)

Should be compared to linear Datalog:

Theorem 16.7: Query containment for linear Datalog queries is undecidable.

Proof: see Lecture 13 (Post Correspondence Problem in Datalog – in fact, in linear
Datalog) □

Query containment of (C2)RPQs is seeing essentially no adoption in practice
{ maybe the complexities are too high . . .
{ or maybe path query optimisers are just too primitive . . .
{ or maybe (current) real-world queries do not look as if they would benefit from this effort
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Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data
{ can all NL-complete queries be captured by a C2RPQ?

No. For many reasons.

• C2RPQs have no disjunction ({ Unions of C2RPQs)

• C2RPQs have no negation

FO-queries with a binary transitive closure operator capture NL

Several (regular) extensions of path queries:

• Nested unary 2RPQs in regular expressions (“test operators”)

• Nested binary C2RPQs in regular expressions

• Other more expressive fragments of “regular Datalog”, e.g.,
Monadically Defined Queries
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Summary and Outlook

Graph databases as an important class of “noSQL” databases

Two main data models

• Resource Description Framework (RDF)

• Property Graph

Path queries as common foundation of all graph query languages

• higher data complexities than CQs/FO queries

• lower complexities than Datalog queries

• decidable query optimisation

Next topics:

• Logical dependencies

• Query answering under constraints
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