
DATABASE THEORY

Lecture 16: Path Queries

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 19th June 2023

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2023)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Regular Path Queries

Idea: use regular expressions to navigate over paths

Let’s consider a simplified graph model, where a graph is given by:

• Set of nodes N (without additional labels)

• Set of edges E, labelled by a function λ : E → L, where L is a finite set of labels

Definition 16.1: A regular expression over a set of labels L is an expression of
the following form:

E ::= L | (E ◦ E) | (E + E) | E∗

A regular path query (RPQ) is an expression of the form E(s, t), where E is a reg-
ular expression and s and t are terms (constants or variables).

Markus Krötzsch, 19th June 2023 Database Theory slide 2 of 20

Semantics of Regular Path Queries

As usual, a regular expression E matches a word w = ℓ1 · · · ℓn if any of the following
conditions is satisfied:
• E ∈ L is a label and w = E.

• E = (E1 ◦ E2) and there is i ∈ {0, . . . , n} such that E1 matches ℓ1 · · · ℓi and E2 matches
ℓi+1 · · · ℓn (the words matched by E1 and E2 can be empty if i = 0 or i = n, respectively).

• E = (E1 + E2) and w is matched by E1 or by E2

• E = E∗1 and w has the form w1w2 · · ·wm for m ≥ 0, where each word wi is matched by E1

Definition 16.2: Let a and b be constants and x and y be variables. An RPQ
E(a, b) is entailed by a graph G if there is a directed path from node a to node b
that is labelled by a word matched by E. The answers to RPQs E(x, y), E(x, b),
and E(a, y) are defined in the obvious way.

Markus Krötzsch, 19th June 2023 Database Theory slide 3 of 20

Extending the Expressive Power of RPQs

Regular path queries can be used to express typical reachability queries, but are still
quite limited{ extensions

2-Way Regular Path Queries (2RPQs)

• For every label ℓ ∈ L, also introduce a converse label ℓ−

• Allow converse labels in regular expressions

• Matched paths can follow edges forwards or backwards

Conjunctive Regular Path Queries (CRPQs)

• Extend conjunctive queries with RPQs

• RPQs can be used like binary query atoms

• Obvious semantics

Conjunctive 2-Way Regular Path Queries (C2RPQs) combine both extensions

Markus Krötzsch, 19th June 2023 Database Theory slide 4 of 20

C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)

Markus Krötzsch, 19th June 2023 Database Theory slide 5 of 20

C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)

Markus Krötzsch, 19th June 2023 Database Theory slide 5 of 20

C2RPQs: Examples

All ancestors of Alice:(
(father +mother) ◦ (father +mother)∗

)
(alice, y)

People with finite Erdös number:

(authorOf ◦ authorOf−)∗(x, paulErdös)

Pairs of stops connected by tram lines 3 and 8:

(nextStop3 ◦ nextStop3∗)(x, y) ∧ (nextStop8 ◦ nextStop8∗)(x, y)

Markus Krötzsch, 19th June 2023 Database Theory slide 5 of 20

Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

• Transform regular expression into a finite automaton

• Starting from the first node, guess a matching path

• When moving along path, advance state of automaton

• Accept if the second node is reached in an accepting state

• Reject if path is longer than size of graph × size of automaton

Space requirements when assuming query (and automaton) fixed: pointer to current
node in graph, pointer to current state of automaton, counter for length of path
{ NL algorithm

Conversely, reachability in an unlabelled graph is hard for NL
{ RPQ matching is NL-complete (data complexity)

(Combined/query complexity is in P, as we will see below)

Markus Krötzsch, 19th June 2023 Database Theory slide 6 of 20

Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

• Transform regular expression into a finite automaton

• Starting from the first node, guess a matching path

• When moving along path, advance state of automaton

• Accept if the second node is reached in an accepting state

• Reject if path is longer than size of graph × size of automaton

Space requirements when assuming query (and automaton) fixed: pointer to current
node in graph, pointer to current state of automaton, counter for length of path
{ NL algorithm

Conversely, reachability in an unlabelled graph is hard for NL
{ RPQ matching is NL-complete (data complexity)

(Combined/query complexity is in P, as we will see below)

Markus Krötzsch, 19th June 2023 Database Theory slide 6 of 20

Complexity of C2RPQs

We already know:

• CQ matching is in AC0 (data complexity) and NP-complete (query and combined
complexity)

• RPQ matching is NL-complete (data) and in P (query/combined)

• AC0
⊂ NL and NL ⊆ NP

{ C2RPQs are NP-hard (combined/query) and NL-hard (data)

It’s not hard to show that these bounds are tight:

Theorem 16.3: C2RPQ matching is NP-complete for combined and query com-
plexity, and NL-complete for data complexity.

Markus Krötzsch, 19th June 2023 Database Theory slide 7 of 20

Complexity of C2RPQs

We already know:

• CQ matching is in AC0 (data complexity) and NP-complete (query and combined
complexity)

• RPQ matching is NL-complete (data) and in P (query/combined)

• AC0
⊂ NL and NL ⊆ NP

{ C2RPQs are NP-hard (combined/query) and NL-hard (data)

It’s not hard to show that these bounds are tight:

Theorem 16.3: C2RPQ matching is NP-complete for combined and query com-
plexity, and NL-complete for data complexity.

Markus Krötzsch, 19th June 2023 Database Theory slide 7 of 20

(C2)RPQs and Datalog

How do path queries relate to Datalog?

We already know:

• Datalog is ExpTime-complete (combined/query) and P-complete (data)

• C2RPQs are NP-complete (combined/query) and NL-complete (data)

{ maybe Datalog is more expressive that C2RPQs . . .

Indeed, we can express regular expressions in Datalog

For simplicity, assume that we have a binary EDB predicate pℓ for each label ℓ ∈ L
(other encodings would work just as well)

Markus Krötzsch, 19th June 2023 Database Theory slide 8 of 20

(C2)RPQs and Datalog

How do path queries relate to Datalog?

We already know:

• Datalog is ExpTime-complete (combined/query) and P-complete (data)

• C2RPQs are NP-complete (combined/query) and NL-complete (data)

{ maybe Datalog is more expressive that C2RPQs . . .

Indeed, we can express regular expressions in Datalog

For simplicity, assume that we have a binary EDB predicate pℓ for each label ℓ ∈ L
(other encodings would work just as well)

Markus Krötzsch, 19th June 2023 Database Theory slide 8 of 20

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query ⟨QE, PE⟩:

If E = ℓ ∈ L is a label, then PE = {QE(x, y)← pℓ(x, y)}

If E = ℓ− is the converse of a label ℓ ∈ L, then

PE = {QE(x, y)← pℓ(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 19th June 2023 Database Theory slide 9 of 20

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query ⟨QE, PE⟩:

If E = ℓ ∈ L is a label, then PE = {QE(x, y)← pℓ(x, y)}

If E = ℓ− is the converse of a label ℓ ∈ L, then

PE = {QE(x, y)← pℓ(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 19th June 2023 Database Theory slide 9 of 20

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query ⟨QE, PE⟩:

If E = ℓ ∈ L is a label, then PE = {QE(x, y)← pℓ(x, y)}

If E = ℓ− is the converse of a label ℓ ∈ L, then

PE = {QE(x, y)← pℓ(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 19th June 2023 Database Theory slide 9 of 20

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query ⟨QE, PE⟩:

If E = ℓ ∈ L is a label, then PE = {QE(x, y)← pℓ(x, y)}

If E = ℓ− is the converse of a label ℓ ∈ L, then

PE = {QE(x, y)← pℓ(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 19th June 2023 Database Theory slide 9 of 20

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query ⟨QE, PE⟩:

If E = ℓ ∈ L is a label, then PE = {QE(x, y)← pℓ(x, y)}

If E = ℓ− is the converse of a label ℓ ∈ L, then

PE = {QE(x, y)← pℓ(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 19th June 2023 Database Theory slide 9 of 20

2-Way Regular Expressions in Datalog
We transform a regular expression E to a Datalog query ⟨QE, PE⟩:

If E = ℓ ∈ L is a label, then PE = {QE(x, y)← pℓ(x, y)}

If E = ℓ− is the converse of a label ℓ ∈ L, then

PE = {QE(x, y)← pℓ(y, x)}

If E = (E1 ◦ E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, z)← QE1 (x, y) ∧ QE2 (y, z)}

If E = (E1 + E2) then

PE = PE1 ∪ PE2 ∪ {QE(x, y)← QE1 (x, y), QE(x, y)← QE2 (x, y)}

If E = E∗1 then

PE = PE1 ∪ {QE(x, x)←, QE(x, z)← QE(x, y) ∧ QE1 (y, z)}

Markus Krötzsch, 19th June 2023 Database Theory slide 9 of 20

Reprise: Combined Complexity of 2RPQs

As a side effect, the previous translation shows that 2RPQs can be evaluated in P
combined complexity:

• Each (2-way) regular expression E leads to a Datalog query ⟨QE, PE⟩ of polynomial
size

• Each rule in PE has at most three variables
{ the grounding of PE for a graph with nodes N is of size |PE | × |N|3

• propositional logic rules can be evaluated in polynomial time

{ polynomial time decision procedure

Markus Krötzsch, 19th June 2023 Database Theory slide 10 of 20

Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

• Use the encoding of CQs in Datalog as shown in the exercise

• Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary “labelled-edge” EDB predicates be expressed with
(C2)RPQs?

• This would imply P = NL (but not that NP = ExpTime!):
unlikely but not known to be false

• However, there are stronger direct arguments that show the limits of C2RPQs
(exercise)

Markus Krötzsch, 19th June 2023 Database Theory slide 11 of 20

Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

• Use the encoding of CQs in Datalog as shown in the exercise

• Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary “labelled-edge” EDB predicates be expressed with
(C2)RPQs?

• This would imply P = NL (but not that NP = ExpTime!):
unlikely but not known to be false

• However, there are stronger direct arguments that show the limits of C2RPQs
(exercise)

Markus Krötzsch, 19th June 2023 Database Theory slide 11 of 20

Linear Datalog and Binary Datalog

Expressing 2RPQs in Datalog requires only restricted forms of Datalog:

Definition 16.4: A Datalog program is linear if each of its rules has at most one
IDB atom in its body. A Datalog program is binary if all of its IDB predicates have
arity at most two.

The following complexity results are known:

Theorem 16.5: Query answering in linear Datalog is NL-complete for data com-
plexity, and PSpace-complete for combined and query complexity.
Combined complexity further drops to NP for binary Datalog.

{ complexity results that are more similar to (C2)RPQs . . .

Markus Krötzsch, 19th June 2023 Database Theory slide 12 of 20

2RPQs and Linear Datalog

The Datalog translation of 2RPQs does not lead to linear Datalog, but we can fix this.

We transform a regular expression E to a linear Datalog query ⟨QE, Plin
E ⟩:

• Construct a non-deterministic automaton AE for E

• For every state q of AE, we use a binary IDB predicate Sq

• For the starting state q0 of AE, we add a rule Sq0 (x, x)←

• For every transition q
ℓ
→ q′ of AE, we add a rule

Sq′ (x, z)← Sq(x, y) ∧ pℓ(y, z)

• For every final state qf of AE, we add a rule

QE(x, y)← Sqf (x, y)

Two-way queries can be captured by allowing two-way transitions.

Markus Krötzsch, 19th June 2023 Database Theory slide 13 of 20

Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog
Is the converse also true?

No. Counterexample:

Query(x, z)← pa(x, y) ∧ pb(y, z)

Query(x, z)← pa(x, x′) ∧ Query(x′, z′) ∧ pb(z′, z)

The linear Datalog program matches paths with labels from anbn

{ context-free, non-regular language
{ not expressible in (C2)RPQs

Intuition: linear Datalog generalises context-free languages

Markus Krötzsch, 19th June 2023 Database Theory slide 14 of 20

Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog
Is the converse also true?

No. Counterexample:

Query(x, z)← pa(x, y) ∧ pb(y, z)

Query(x, z)← pa(x, x′) ∧ Query(x′, z′) ∧ pb(z′, z)

The linear Datalog program matches paths with labels from anbn

{ context-free, non-regular language
{ not expressible in (C2)RPQs

Intuition: linear Datalog generalises context-free languages

Markus Krötzsch, 19th June 2023 Database Theory slide 14 of 20

Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

• Query containment

• Query equivalence

• Query emptiness

Which of these are decidable for (C2)RPQs?

Observation: query emptiness is trivial

Markus Krötzsch, 19th June 2023 Database Theory slide 15 of 20

Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

• Query containment

• Query equivalence

• Query emptiness

Which of these are decidable for (C2)RPQs?

Observation: query emptiness is trivial

Markus Krötzsch, 19th June 2023 Database Theory slide 15 of 20

Containment for RPQs
Containment of Regular Path Queries corresponds to containment of regular
expressions{ known to be decidable in PSpace

Proof sketch for checking E1 ⊑ E2:

(1) Construct non-deterministic automata (NFAs), A1 and A2 for the regular expressions
E1 and E2, respectively

(2) Construct an automaton Ā2 that accepts the complement of A2.

(3) Construct the intersection A1 ∩ Ā2 of A1 and Ā2

(4) Check if A1 ∩ Ā2 accepts a word (if yes, then there is a counterexample that
disproves E1 ⊑ E2; if no, then the containment holds)

Complexity estimate:
A1 ∩ Ā2 is exponential (blow-up by powerset construction in step (2)) but step (4) is possi-
ble by checking reachability on the state graph
{ NL algorithm on an exponential state graph
{ NPSpace algorithm (construct the state graph on the fly)
{ PSpace algorithm (Savitch’s Theorem)

Markus Krötzsch, 19th June 2023 Database Theory slide 16 of 20

Containment for (C)2RPQs

Things are more tricky when adding converses and conjunctions

Theorem 16.6:

• Containment of 2RPQs is PSpace-complete

• Containment of C2RPQs is ExpSpace-complete

The proofs are more involved.

Automata-theoretic constructions are used, but with more complicated automata models and for
somewhat different languages (there is no good “language of possible C2RPQ matches on a
graph”{ consider language of possible proofs instead)

Markus Krötzsch, 19th June 2023 Database Theory slide 17 of 20

Query Optimisation for Path Queries

Decidable in PSpace (2RPQs) and ExpSpace (C2RPQs)

Should be compared to linear Datalog:

Theorem 16.7: Query containment for linear Datalog queries is undecidable.

Proof: see Lecture 13 (Post Correspondence Problem in Datalog – in fact, in linear
Datalog) □

Query containment of (C2)RPQs is seeing essentially no adoption in practice
{ maybe the complexities are too high . . .
{ or maybe path query optimisers are just too primitive . . .
{ or maybe (current) real-world queries do not look as if they would benefit from this effort

Markus Krötzsch, 19th June 2023 Database Theory slide 18 of 20

Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data
{ can all NL-complete queries be captured by a C2RPQ?

No. For many reasons.

• C2RPQs have no disjunction ({ Unions of C2RPQs)

• C2RPQs have no negation

FO-queries with a binary transitive closure operator capture NL

Several (regular) extensions of path queries:

• Nested unary 2RPQs in regular expressions (“test operators”)

• Nested binary C2RPQs in regular expressions

• Other more expressive fragments of “regular Datalog”, e.g.,
Monadically Defined Queries

Markus Krötzsch, 19th June 2023 Database Theory slide 19 of 20

Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data
{ can all NL-complete queries be captured by a C2RPQ?

No. For many reasons.

• C2RPQs have no disjunction ({ Unions of C2RPQs)

• C2RPQs have no negation

FO-queries with a binary transitive closure operator capture NL

Several (regular) extensions of path queries:

• Nested unary 2RPQs in regular expressions (“test operators”)

• Nested binary C2RPQs in regular expressions

• Other more expressive fragments of “regular Datalog”, e.g.,
Monadically Defined Queries

Markus Krötzsch, 19th June 2023 Database Theory slide 19 of 20

Summary and Outlook

Graph databases as an important class of “noSQL” databases

Two main data models

• Resource Description Framework (RDF)

• Property Graph

Path queries as common foundation of all graph query languages

• higher data complexities than CQs/FO queries

• lower complexities than Datalog queries

• decidable query optimisation

Next topics:

• Logical dependencies

• Query answering under constraints

Markus Krötzsch, 19th June 2023 Database Theory slide 20 of 20

