DATABASE THEORY

Lecture 16: Path Queries

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 19th June 2023

Review: Regular Path Queries

Idea: use regular expressions to navigate over paths
Let's consider a simplified graph model, where a graph is given by:

- Set of nodes N (without additional labels)
- Set of edges E, labelled by a function $\lambda: E \rightarrow L$, where L is a finite set of labels

Definition 16.1: A regular expression over a set of labels L is an expression of the following form:

$$
E::=L|(E \circ E)|(E+E) \mid E^{*}
$$

A regular path query (RPQ) is an expression of the form $E(s, t)$, where E is a regular expression and s and t are terms (constants or variables).

Semantics of Regular Path Queries

As usual, a regular expression E matches a word $w=\ell_{1} \cdots \ell_{n}$ if any of the following conditions is satisfied:

- $E \in L$ is a label and $w=E$.
- $E=\left(E_{1} \circ E_{2}\right)$ and there is $i \in\{0, \ldots, n\}$ such that E_{1} matches $\ell_{1} \cdots \ell_{i}$ and E_{2} matches $\ell_{i+1} \cdots \ell_{n}$ (the words matched by E_{1} and E_{2} can be empty if $i=0$ or $i=n$, respectively).
- $E=\left(E_{1}+E_{2}\right)$ and w is matched by E_{1} or by E_{2}
- $E=E_{1}^{*}$ and w has the form $w_{1} w_{2} \cdots w_{m}$ for $m \geq 0$, where each word w_{i} is matched by E_{1}

Definition 16.2: Let a and b be constants and x and y be variables. An RPQ $E(a, b)$ is entailed by a graph G if there is a directed path from node a to node b that is labelled by a word matched by E. The answers to RPQs $E(x, y), E(x, b)$, and $E(a, y)$ are defined in the obvious way.

Extending the Expressive Power of RPQs

Regular path queries can be used to express typical reachability queries, but are still quite limited \leadsto extensions

2-Way Regular Path Queries (2RPQs)

- For every label $\ell \in L$, also introduce a converse label ℓ^{-}
- Allow converse labels in regular expressions
- Matched paths can follow edges forwards or backwards

Conjunctive Regular Path Queries (CRPQs)

- Extend conjunctive queries with RPQs
- RPQs can be used like binary query atoms
- Obvious semantics

Conjunctive 2-Way Regular Path Queries (C2RPQs) combine both extensions

C2RPQs: Examples

All ancestors of Alice:
$\left((\right.$ father + mother $\left.) \circ(\text { father }+ \text { mother })^{*}\right)($ alice,$y)$

C2RPQs: Examples

All ancestors of Alice:
$\left((\right.$ father + mother $\left.) \circ(\text { father }+ \text { mother })^{*}\right)($ alice,$y)$
People with finite Erdös number:
(authorOf \circ authorOf $\left.{ }^{-}\right)^{*}(x$, paulErdös)

C2RPQs: Examples

All ancestors of Alice:

$$
\left((\text { father }+ \text { mother }) \circ(\text { father }+ \text { mother })^{*}\right)(\text { alice }, y)
$$

People with finite Erdös number:

$$
\left(\text { authorOf } \circ \text { authorOf }{ }^{-}\right)^{*}(x, \text { paulErdös })
$$

Pairs of stops connected by tram lines 3 and 8 :

$$
(\text { nextStop3 } \circ \text { nextStop3* })(x, y) \wedge(\text { nextStop8 } \circ \text { nextStop8* })(x, y)
$$

Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

- Transform regular expression into a finite automaton
- Starting from the first node, guess a matching path
- When moving along path, advance state of automaton
- Accept if the second node is reached in an accepting state
- Reject if path is longer than size of graph \times size of automaton

Complexity of RPQs

A nondeterministic algorithm for Boolean RPQs:

- Transform regular expression into a finite automaton
- Starting from the first node, guess a matching path
- When moving along path, advance state of automaton
- Accept if the second node is reached in an accepting state
- Reject if path is longer than size of graph \times size of automaton

Space requirements when assuming query (and automaton) fixed: pointer to current node in graph, pointer to current state of automaton, counter for length of path \leadsto NL algorithm

Conversely, reachability in an unlabelled graph is hard for NL
\leadsto RPQ matching is NL-complete (data complexity)
(Combined/query complexity is in P , as we will see below)

Complexity of C2RPQs

We already know:

- CQ matching is in AC^{0} (data complexity) and NP-complete (query and combined complexity)
- RPQ matching is NL-complete (data) and in P (query/combined)
- $\mathrm{AC}^{0} \subset \mathrm{NL}$ and $\mathrm{NL} \subseteq \mathrm{NP}$
\leadsto C2RPQs are NP-hard (combined/query) and NL-hard (data)

Complexity of C2RPQs

We already know:

- CQ matching is in AC^{0} (data complexity) and NP-complete (query and combined complexity)
- RPQ matching is NL-complete (data) and in P (query/combined)
- $\mathrm{AC}^{0} \subset \mathrm{NL}$ and $\mathrm{NL} \subseteq \mathrm{NP}$
\leadsto C2RPQs are NP-hard (combined/query) and NL-hard (data)
It's not hard to show that these bounds are tight:
Theorem 16.3: C2RPQ matching is NP-complete for combined and query complexity, and NL-complete for data complexity.

(C2)RPQs and Datalog

How do path queries relate to Datalog?
We already know:

- Datalog is ExpTime-complete (combined/query) and P-complete (data)
- C2RPQs are NP-complete (combined/query) and NL-complete (data)
\leadsto maybe Datalog is more expressive that C2RPQs ...

(C2)RPQs and Datalog

How do path queries relate to Datalog?

We already know:

- Datalog is ExpTime-complete (combined/query) and P-complete (data)
- C2RPQs are NP-complete (combined/query) and NL-complete (data)
\leadsto maybe Datalog is more expressive that C2RPQs ...

Indeed, we can express regular expressions in Datalog
For simplicity, assume that we have a binary EDB predicate p_{ℓ} for each label $\ell \in L$ (other encodings would work just as well)

2-Way Regular Expressions in Datalog

We transform a regular expression E to a Datalog query $\left\langle Q_{E}, P_{E}\right\rangle$:

2-Way Regular Expressions in Datalog

We transform a regular expression E to a Datalog query $\left\langle Q_{E}, P_{E}\right\rangle$:
If $E=\ell \in L$ is a label, then $P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(x, y)\right\}$

2-Way Regular Expressions in Datalog

We transform a regular expression E to a Datalog query $\left\langle Q_{E}, P_{E}\right\rangle$:
If $E=\ell \in L$ is a label, then $P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(x, y)\right\}$
If $E=\ell^{-}$is the converse of a label $\ell \in L$, then

$$
P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(y, x)\right\}
$$

2-Way Regular Expressions in Datalog

We transform a regular expression E to a Datalog query $\left\langle Q_{E}, P_{E}\right\rangle$:
If $E=\ell \in L$ is a label, then $P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(x, y)\right\}$
If $E=\ell^{-}$is the converse of a label $\ell \in L$, then

$$
P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(y, x)\right\}
$$

If $E=\left(E_{1} \circ E_{2}\right)$ then

$$
P_{E}=P_{E_{1}} \cup P_{E_{2}} \cup\left\{\mathrm{Q}_{E}(x, z) \leftarrow \mathrm{Q}_{E_{1}}(x, y) \wedge \mathrm{Q}_{E_{2}}(y, z)\right\}
$$

2-Way Regular Expressions in Datalog

We transform a regular expression E to a Datalog query $\left\langle Q_{E}, P_{E}\right\rangle$:
If $E=\ell \in L$ is a label, then $P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(x, y)\right\}$
If $E=\ell^{-}$is the converse of a label $\ell \in L$, then

$$
P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(y, x)\right\}
$$

If $E=\left(E_{1} \circ E_{2}\right)$ then

$$
P_{E}=P_{E_{1}} \cup P_{E_{2}} \cup\left\{\mathrm{Q}_{E}(x, z) \leftarrow \mathrm{Q}_{E_{1}}(x, y) \wedge \mathrm{Q}_{E_{2}}(y, z)\right\}
$$

If $E=\left(E_{1}+E_{2}\right)$ then

$$
P_{E}=P_{E_{1}} \cup P_{E_{2}} \cup\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{Q}_{E_{1}}(x, y), \mathrm{Q}_{E}(x, y) \leftarrow \mathrm{Q}_{E_{2}}(x, y)\right\}
$$

2-Way Regular Expressions in Datalog

We transform a regular expression E to a Datalog query $\left\langle Q_{E}, P_{E}\right\rangle$:
If $E=\ell \in L$ is a label, then $P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(x, y)\right\}$
If $E=\ell^{-}$is the converse of a label $\ell \in L$, then

$$
P_{E}=\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{p}_{\ell}(y, x)\right\}
$$

If $E=\left(E_{1} \circ E_{2}\right)$ then

$$
P_{E}=P_{E_{1}} \cup P_{E_{2}} \cup\left\{\mathrm{Q}_{E}(x, z) \leftarrow \mathrm{Q}_{E_{1}}(x, y) \wedge \mathrm{Q}_{E_{2}}(y, z)\right\}
$$

If $E=\left(E_{1}+E_{2}\right)$ then

$$
P_{E}=P_{E_{1}} \cup P_{E_{2}} \cup\left\{\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{Q}_{E_{1}}(x, y), \mathrm{Q}_{E}(x, y) \leftarrow \mathrm{Q}_{E_{2}}(x, y)\right\}
$$

If $E=E_{1}^{*}$ then

$$
P_{E}=P_{E_{1}} \cup\left\{\mathrm{Q}_{E}(x, x) \leftarrow, \mathrm{Q}_{E}(x, z) \leftarrow \mathrm{Q}_{E}(x, y) \wedge \mathrm{Q}_{E_{1}}(y, z)\right\}
$$

Reprise: Combined Complexity of 2RPQs

As a side effect, the previous translation shows that 2RPQs can be evaluated in P combined complexity:

- Each (2-way) regular expression E leads to a Datalog query $\left\langle Q_{E}, P_{E}\right\rangle$ of polynomial size
- Each rule in P_{E} has at most three variables
\leadsto the grounding of P_{E} for a graph with nodes N is of size $\left|P_{E}\right| \times|N|^{3}$
- propositional logic rules can be evaluated in polynomial time
\leadsto polynomial time decision procedure

Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

- Use the encoding of CQs in Datalog as shown in the exercise
- Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary "labelled-edge" EDB predicates be expressed with (C2)RPQs?

Expressing C2RPQs in Datalog

It is now easy to express C2RPQs in Datalog:

- Use the encoding of CQs in Datalog as shown in the exercise
- Express 2RPQ atoms in Datalog as just shown

Can every Datalog query over binary "labelled-edge" EDB predicates be expressed with (C2)RPQs?

- This would imply P = NL (but not that NP = ExpTime!): unlikely but not known to be false
- However, there are stronger direct arguments that show the limits of C2RPQs (exercise)

Linear Datalog and Binary Datalog

Expressing 2RPQs in Datalog requires only restricted forms of Datalog:
Definition 16.4: A Datalog program is linear if each of its rules has at most one IDB atom in its body. A Datalog program is binary if all of its IDB predicates have arity at most two.

The following complexity results are known:
Theorem 16.5: Query answering in linear Datalog is NL-complete for data complexity, and PSpace-complete for combined and query complexity. Combined complexity further drops to NP for binary Datalog.
\leadsto complexity results that are more similar to (C2)RPQs ...

2RPQs and Linear Datalog

The Datalog translation of 2RPQs does not lead to linear Datalog, but we can fix this.
We transform a regular expression E to a linear Datalog query $\left\langle\mathrm{Q}_{E}, P_{E}^{\text {lin }}\right\rangle$:

- Construct a non-deterministic automaton \mathcal{A}_{E} for E
- For every state q of \mathcal{A}_{E}, we use a binary IDB predicate S_{q}
- For the starting state q_{0} of \mathcal{A}_{E}, we add a rule $\mathrm{S}_{q_{0}}(x, x) \leftarrow$
- For every transition $q \xrightarrow{\ell} q^{\prime}$ of \mathcal{A}_{E}, we add a rule

$$
\mathrm{S}_{q^{\prime}}(x, z) \leftarrow \mathrm{S}_{q}(x, y) \wedge \mathrm{p}_{\ell}(y, z)
$$

- For every final state q_{f} of \mathcal{A}_{E}, we add a rule

$$
\mathrm{Q}_{E}(x, y) \leftarrow \mathrm{S}_{q f}(x, y)
$$

Two-way queries can be captured by allowing two-way transitions.

Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog Is the converse also true?

Linear Datalog vs. 2RPQs

So all 2RPQs can be expessed in linear Datalog Is the converse also true?

No. Counterexample:

$$
\begin{aligned}
& \text { Query }(x, z) \leftarrow \mathrm{p}_{a}(x, y) \wedge \mathrm{p}_{b}(y, z) \\
& \text { Query }(x, z) \leftarrow \mathrm{p}_{a}\left(x, x^{\prime}\right) \wedge \operatorname{Query}\left(x^{\prime}, z^{\prime}\right) \wedge \mathrm{p}_{b}\left(z^{\prime}, z\right)
\end{aligned}
$$

The linear Datalog program matches paths with labels from $a^{n} b^{n}$
\leadsto context-free, non-regular language
\leadsto not expressible in (C2)RPQs
Intuition: linear Datalog generalises context-free languages

Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

- Query containment
- Query equivalence
- Query emptiness

Which of these are decidable for (C2)RPQs?

Query Optimisation for C2RPQs

Recall the basic static optimisation problems of database theory:

- Query containment
- Query equivalence
- Query emptiness

Which of these are decidable for (C2)RPQs?

Observation: query emptiness is trivial

Containment for RPQs

Containment of Regular Path Queries corresponds to containment of regular expressions \leadsto known to be decidable in PSpace

Proof sketch for checking $E_{1} \sqsubseteq E_{2}$:
(1) Construct non-deterministic automata (NFAs), A_{1} and A_{2} for the regular expressions E_{1} and E_{2}, respectively
(2) Construct an automaton \bar{A}_{2} that accepts the complement of A_{2}.
(3) Construct the intersection $A_{1} \cap \bar{A}_{2}$ of A_{1} and \bar{A}_{2}
(4) Check if $A_{1} \cap \bar{A}_{2}$ accepts a word (if yes, then there is a counterexample that disproves $E_{1} \sqsubseteq E_{2}$; if no, then the containment holds)

Complexity estimate:
$A_{1} \cap \bar{A}_{2}$ is exponential (blow-up by powerset construction in step (2)) but step (4) is possible by checking reachability on the state graph
\sim NL algorithm on an exponential state graph
\leadsto NPSpace algorithm (construct the state graph on the fly)
\sim PSpace algorithm (Savitch's Theorem)

Containment for (C)2RPQs

Things are more tricky when adding converses and conjunctions

Theorem 16.6:

- Containment of 2RPQs is PSpace-complete
- Containment of C2RPQs is ExpSpace-complete

The proofs are more involved.
Automata-theoretic constructions are used, but with more complicated automata models and for somewhat different languages (there is no good "language of possible C2RPQ matches on a graph" \leadsto consider language of possible proofs instead)

Query Optimisation for Path Queries

Decidable in PSpace (2RPQs) and ExpSpace (C2RPQs)

Should be compared to linear Datalog:
Theorem 16.7: Query containment for linear Datalog queries is undecidable.
Proof: see Lecture 13 (Post Correspondence Problem in Datalog - in fact, in linear Datalog)

Query containment of (C2)RPQs is seeing essentially no adoption in practice \leadsto maybe the complexities are too high ...
\leadsto or maybe path query optimisers are just too primitive ...
\leadsto or maybe (current) real-world queries do not look as if they would benefit from this effort

Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data \leadsto can all NL-complete queries be captured by a C2RPQ?

Path Queries: Final Remarks on Expressivity

We have seen that C2RPQs are NL-complete for data
\leadsto can all NL-complete queries be captured by a C2RPQ?
No. For many reasons.

- C2RPQs have no disjunction (\sim Unions of C2RPQs)
- C2RPQs have no negation

FO-queries with a binary transitive closure operator capture NL
Several (regular) extensions of path queries:

- Nested unary 2RPQs in regular expressions ("test operators")
- Nested binary C2RPQs in regular expressions
- Other more expressive fragments of "regular Datalog", e.g., Monadically Defined Queries

Summary and Outlook

Graph databases as an important class of "noSQL" databases
Two main data models

- Resource Description Framework (RDF)
- Property Graph

Path queries as common foundation of all graph query languages

- higher data complexities than CQs/FO queries
- lower complexities than Datalog queries
- decidable query optimisation

Next topics:

- Logical dependencies
- Query answering under constraints

