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Abstract

Ontology-based data access (OBDA) augments classical query answering in databases
by including domain knowledge provided by an ontology. An ontology captures the
terminology of an application domain and describes domain knowledge in a machine-
processable way. Formal ontology languages additionally provide semantics to these
specifications. Systems for OBDA thus may apply logical reasoning to answer queries;
they use the ontological knowledge to infer new information, which is only implicitly
given in the data. Moreover, they usually employ the open-world assumption, which
means that knowledge not stated explicitly in the data or inferred is neither assumed to
be true nor false. Classical OBDA regards the knowledge however only w.r.t. a single
moment, which means that information about time is not used for reasoning and hence
lost; in particular, the queries generally cannot express temporal aspects.

We investigate temporal query languages that allow to access temporal data through
classical ontologies. In particular, we study the computational complexity of temporal
query answering regarding ontologies written in lightweight description logics, which
are known to allow for efficient reasoning in the atemporal setting and are successfully
applied in practice. Furthermore, we present a so-called rewritability result for ontology-
based temporal query answering, which suggests ways for implementation. Our results
may thus guide the choice of a query language for temporal OBDA in data-intensive
applications that require fast processing, such as context recognition.
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1 Introduction

Ontologies play an important role as a semantic layer for data access in various areas
such as the Semantic Web [BHL01], medicine [Rec+94; SCC97], and enterprise appli-
cations [Bus03; Ara+08; Kha+15]. They capture the terminology of an application
domain and describe domain knowledge in a machine-processable way. Formal ontology
languages additionally provide semantics to these specifications. In contrast to stan-
dard database systems, systems for ontology-based data access (OBDA) thus may apply
logical reasoning to answer queries; they use the ontological knowledge to infer new
information, which is only implicitly given in the data. Moreover, they usually employ
the open-world assumption, which means that knowledge not stated explicitly in the
data or inferred is neither assumed to be true nor false. This faithfully models the real
world and also differs from database query answering, which assumes knowledge not
present in the data to be false.

All these features make ontologies valuable tools for systems that integrate hetero-
geneous data sources and need to automatically interpret the data, to support data
analysis or to fully-automatedly recognize complex contexts; also multi-agent systems
profit from the semantic interoperability. This has been generally recognized and several
standardized ontologies have recently been published, especially for domains where het-
erogeneous data sources are usual or different agents have to communicate seamlessly,
such as for sensor networks [Com+12] and robotics and automation [Ont15]. Often, the
processed data is changing and thus temporal in that it is associated to specific points
in time, and this temporal dimension is critical for analysis or for describing and rec-
ognizing real-world contexts. Sensors, for example, produce streams of data. Classical
ontology-based data access regards the knowledge however only w.r.t. a single moment,
which means that information about time is not used for reasoning and thus lost; in
particular, the queries generally cannot express temporal aspects.

This work therefore investigates temporal query languages that allow to access tempo-
ral data through classical ontologies. In particular, we study the computational complex-
ity of temporal query answering regarding ontologies written in lightweight description
logics, which are known to allow for efficient reasoning in the atemporal setting and are
successfully applied in practice [Rec+94; SCC97; Kha+15]. Our results may thus guide
the choice of a query language for temporal OBDA in data-intensive applications that
require fast processing.

This chapter provides a rather informal introduction to the topic. In Section 1.1, we
generally describe OBDA. We then introduce description logics and temporal query an-
swering in Sections 1.2 and 1.3, respectively. In Section 1.4, we specify our contributions
and give an overview of the following chapters.

1



1 Introduction

Ontology
LooksAt v FocusesOn

Data Sources

Mapping Reasoning System

Query
FocusesOn(x1, x2) ∧ Component(x2)

Answers
x1 = bob
x2 = window1

Figure 1.1: Architecture of ontology-based data access. If the ontological axiom
LooksAt v FocusesOn (“every tuple in the relation LooksAt is also in the
relation FocusesOn”) is taken into account for answering the example query
over the data sources (see Figure 1.2), then a reasoning system outputs the
answers depicted.

1.1 Ontology-Based Data Access
Today, many applications need to process large amounts of heterogeneous data growing
over time—the famous “big data”. Data integration is critical for managing and ana-
lyzing such information and demands a common, well-defined vocabulary. Otherwise,
misinterpretation may lead to lacking or even wrong consequences.

Ontologies play a fundamental role in this context. In computer science, an ontology
can be described as in [Ont15, Introduction]:

“It formally specifies the key concepts, properties, relationships, and axioms
of a given domain. Unlike taxonomies, which provide only a set of vocabulary
and a single type of relationship between terms, an ontology provides a richer
set of relationships, constraints, and rules. In general, ontologies make the
relevant knowledge about a domain explicit in a computer-interpretable for-
mat, allowing software to reason over that knowledge to infer new informa-
tion.”

In summary, ontologies are formal domain models that provide semantic interoperability
and additionally allow for knowledge inference.

The general architecture of ontology-based data access is illustrated in Figure 1.1.
As it is common in data integration, the original data sources are mapped to a global
schema—here represented by the ontology—that integrates the sources and allows to
access the data using a shared vocabulary while the peculiarities of the sources stay

2



1.1 Ontology-Based Data Access

ID TYPE TIME
p01 sys 10331
p02 vid 11245

SENSOR TYPE USER ITEM TIME
s1 eye bob window1 11245
s3 eye ann book5 15798

ID PROC
window1 p02
window4 p02

Process Window

Observation

Process(x, y, t)→ Component(x)
Window(x, y)→ Component(x)

Process(x, y, t) ∧Window(z, x)→ PartOf(z, x)
Observation(x, foc, y, z, t)→ FocusesOn(y, z)
Observation(x, eye, y, z, t)→ LooksAt(y, z)

Process(x, vid, t)→ VideoPlayer(x)

Figure 1.2: Data sources and mapping for the example in Figure 1.1; the variables in
the mapping are universally quantified.

transparent [Len02]; for example, observations of different types of sensors monitoring
eye movement (eye) or human focus (foc) may be mapped to corresponding ontological
relations such as LooksAt and FocusesOn. Example sources and the so-called global-as-
view mapping (partly) are depicted in more detail in Figure 1.2. The two first mappings
map both relations Process and Window to the ontological concept Component and
hence show how distinct sources can be integrated easily. Note that the mappings can
be considered as ontological statements as well. Yet, an ontology may also contain
constraints to detect possible inconsistencies in the data and inference rules to derive
additional knowledge. For example, it may contain a rule as depicted in Figure 1.1 (in
description logic notation), stating that someone looking at something focuses on it; this
is useful if the system, for some reason, did not receive data from a sensor of type foc,
directly capturing the focus. Applications of ontologies for context recognition are also
described in [Dar+13; Häh+14]. If the data then is queried through a reasoning system
as depicted (i.e., instead of a traditional database system), the ontological knowledge is
taken into account by the logical reasoning applied during the answering process. This is
commonly referred to as ontology-based data access or ontology-based query answering1.

The global schema often only represents a view of the data, which means that the cor-
responding database only exists virtually and, in reality, the data is left in the original
sources (i.e., instead of materializing it according to the global schema). For answer-
ing queries over the global schema—also if a traditional database schema instead of
an ontology is regarded—, the queries then have to be reformulated in terms of the
source schemas. This is known as query rewriting and has been extensively studied for
conjunctive queries (CQs) [Len02]. A CQ is a conjunction of first-order atoms where
the variables may be existentially quantified and the remaining variables represent the
answers to the query. For example, the following CQ ContextFocus can be used to rec-
ognize a complex context, by retrieving all those components x1 and users x2 such that
x1 is a subcomponent of some component y1 which has a part y2 the user focuses on:

∃y1, y2.Component(x1) ∧ Component(y1) ∧ Component(y2) ∧
PartOf(x1, y1) ∧ PartOf(y2, y1) ∧ FocusesOn(x2, y2).

(1.1)

1In the following, we usually drop the prefix ontology-based and simply refer to “query answering”. If
an ontology is not considered, we use the notion “database query answering”.

3



1 Introduction

Regarding the sources from Figure 1.2, query rewriting then creates a disjunction of
conjunctive queries that together represent all possibilities of incorporating the mapping
information into the CQ ContextFocus:(
∃y1, y2,u1, . . . , u4, v1, . . . , v4.

P rocess(x1, u1, v1) ∧ Process(y1, u2, v2) ∧ Process(y2, u3, v3) ∧

Window(x1, y1) ∧Window(y2, y1) ∧Observation(u4, foc, x2, y2, v4)
)
∨(

∃y1, y2,u1, u2, v1, v2.

Window(x1, y1) ∧Window(y2, y1) ∧ Process(y2, u1, v1) ∧

Observation(u2, foc, x2, y2, v2)
)
∨

. . .

(1.2)

Note that the rewritten query, called rewriting, may contain CQs that will never retrieve
answers, such as the first one, where x1 is considered to be both a process and a window;
in practice such CQs could be dropped for optimization.

Both aspects of ontological modeling, the formality and the possibility for logical
inferencing, are long-standing areas of research in computer science. The importance
of formal modeling was recognized early and there are well-established techniques for
all kinds of use cases, such as entity-relationship modeling [Che76] for representing
database schemas and UML [OMG15] for hard and software artifacts. The search for
logics that provide sufficient expressive power and, at the same time, allow for efficient
inferencing—alike human reasoning—is performed in the field of artificial intelligence.
The usually required efficiency makes the design of such logics challenging and is the
reason for the restricted expressiveness of many formalisms. For that reason, the logics
are often tailored to certain use cases, and ever new use cases make it an ongoing
research.

Also in the area of databases, ontological axioms have been considered since the
early 1970s; for instance, global-as-view mappings and key constraints, which specify
columns in a relation that uniquely identify a tuple (see [AHV95] for a general overview
of database constraints). Many are standard in database management systems today.
However, observe that they primarily target technical issues, such as data coherence
and integration, rather than an extensive description of domain knowledge.

Particularly user-friendly approaches of ontological knowledge representation emerged
with semantic networks [Qui67] and frames [Min74], which allow for modeling in pat-
terns so as humans are thinking; for example, both discern concepts and relations be-
tween them, such as is-a and property relations. Reasoning could thus be described in
a declarative fashion. Yet, because of a lack of formal semantics, the actual “reasoning”
in systems was based on ad-hoc procedures. This deficiency lead to the development
of description logics in the mid-1980s, which follow a similar modeling paradigm but
provide formal semantics (see [Baa+07] for a more detailed description of this devel-
opment). Since then, description logics have been studied extensively, and they also
represent the logical background of the most prominent ontology language today, the
Web Ontology Language OWL, a W3C standard [DS04].

4



1.2 Lightweight Description Logics as Ontology Languages

1.2 Lightweight Description Logics as Ontology Languages
Description logics (DLs) are a family of logical formalisms that were originally designed
for terminological modeling and decidable reasoning, while featuring both sufficient ex-
pressivity and readability [Baa+07]. Over time, several further use cases have come
to the fore and new DLs tailored to those have been developed. Today, the family
comprises lightweight DLs, such as EL [BKM99] and many DL-Lite logics [Cal+07b;
Art+09], which allow for tractable reasoning (i.e., reasoning in polynomial time); the
prototypical DL ALC [SS91], which is minimal propositionally complete2; and very ex-
pressive DLs such as SROIQ [HKS06], which represents the basis of OWL 23. Note
that DL-Lite was originally proposed as a particular DL [Cal+04]; the term today
however usually refers to a family of DLs comprising logics that have been developed
subsequently and provide similar basic features.

Description logics generally lie in the two-variable fragment of first-order logic with
counting,4 but have a special, yet intuitive, syntax. A description logic allows to model
individual elements, which represent concrete objects, such as bob and window1; con-
cepts, representing classes of individuals, such as User and Component; and roles, rep-
resenting (binary) relations between individuals, such as FocusesOn. These semantic
entities are syntactically described in axioms using individual names, concept names,
and role names—which, respectively, correspond to constants, unary, and binary pred-
icates in first-order logic.5 Moreover, complex concept expressions can be constructed
using the Boolean operators complement (¬), intersection (u), and union (t); and role
restrictions. For instance, the expression ∃FocusesOn.Component describes the class of
all elements that focus on some component. Operators for constructing role expressions
are not so common. Nevertheless, the inverse role operator (·−) represents a character-
istic feature of DL-Lite. For example, applications for which there exists some element
that focuses on them can be captured as follows:

Application u ∃FocusesOn−.>

where the concept > describes the class of all elements. The different DLs are charac-
terized by the syntactic means they provide: the operators for specifying concepts and
roles, and the kinds of axioms they allow for.

DL theories are called knowledge bases (KBs) and separate the axioms into an ontol-
ogy and an ABox . While the ontology contains general domain knowledge, the ABox
contains data about concrete objects and thus represents a description of (an extract
of) the real world. Observe that the ABox can be seen as an instantiation of the global
schema described in the previous section (see Figure 1.1). That is, the DL abstracts
from the implementation aspect where the data is actually stored and does not consider
the sources to be different from the global view. DL axioms are expressions of two kinds:

2A propositional logic is complete if every Boolean function can be expressed in a term using proposi-
tions that represent the arguments of the function.

3The “2” reflects the update of OWL [OWL12].
4There are a few exceptions, but these are rarely used today, such as DLs that allow for specifying

transitive closures.
5The terms “concept” and “role” are generally used for both the syntactic entities, as abbreviations

for “concept expression” and “role expression”, and for the semantic entities.

5



1 Introduction

• Assertions, such as User(bob) (“Bob is a user”) and LooksAt(bob, window1) (“Bob
looks at an element named window1”), occur in ABoxes and describe facts about
concrete objects.

• Inclusions occur in ontologies and express is-a relations between concepts or roles;
for example:

VideoPlayer v Application u EnergyIntensive u ¬SystemCritical

LooksAt v FocusesOn

In natural language: “every video player is an energy-intensive, not system-critical
application”, and “every element that looks at something focuses on it”.

Reasoning over DL knowledge bases originally often concentrated on ontologies and
certain standard reasoning problems, such as the question whether a concept inclusion
holds in any interpretation. For example, EL has been applied in terminological reason-
ing tasks such as the latter for a long time. Only recently, the growing importance of
data in practice has lead to an increased interest in query answering. The latter usually
denotes the task of answering queries over KBs with the goal of retrieving ABox data,
and conjunctive queries currently represent one of the most important query languages
in this context; though, note that the standard reasoning problems can also be consid-
ered as queries. The DL-Lite logics have been tailored to conjunctive query answering.
This is reflected in the fact that, for many of them, conjunctive queries w.r.t. a KB can
be rewritten into first-order queries encoding both the original CQ and the ontological
knowledge in the way rewriting is described in the previous section. This turned out to
be very efficient since the first-order queries can be represented in SQL and then be eval-
uated over a standard database containing the ABox data [Cal+17]. For example, if the
inclusion LooksAt v FocusesOn is taken into account, then the CQ ContextFocus (1.1)
is rewritten into the following disjunction of CQs:(

∃y1y2.Component(x1) ∧ Component(y1) ∧ Component(y2) ∧

PartOf(x1, y1) ∧ PartOf(y2, y1) ∧ FocusesOn(x2, y2)
)
∨(

∃y1y2.Component(x1) ∧ Component(y1) ∧ Component(y2) ∧

PartOf(x1, y1) ∧ PartOf(y2, y1) ∧ LooksAt(x2, y2)
)
.

If this query then, in turn, is rewritten in terms of the data sources, then the observations
from sensors of type eye are also taken into account for answering the CQ ContextFocus.
This rewriting hence extends the standard database rewriting (1.2).

In fact, in several lightweight logics, ontology-based query answering can be rewritten
into existing formalisms—but not always into first-order logic. This makes them espe-
cially interesting for applications, since mature tools for answering the rewritings often
exist already. The practical importance of the lightweight logics is also reflected by the
fact that the OWL standard has been complemented by three so-called OWL 2 pro-
files [Mot+12], which are subsets of OWL 2. Two of them, OWL 2 EL and OWL 2 QL
are based on extensions of EL and a DL-Lite logic, respectively.

6



1.3 Ontology-Based Temporal Query Answering

Temporal Knowledge Base

Sequence of Fact Bases

A1

A2

An

Ontology O

Temporal Query Φ

Figure 1.3: Our setting for ontology-based temporal query answering: a temporal query
addressing a temporal knowledge base.

1.3 Ontology-Based Temporal Query Answering
The availability and importance of temporal data and ontologies in today’s applica-
tions motivate our work on querying temporal data through classical ontologies. We
investigate temporal query languages, which allow to refer to data associated to dif-
ferent moments in time, and regard ontology-based temporal query answering as rea-
soning problem. We focus on ontological axioms in lightweight logics, which allow for
polynomial-time reasoning in the atemporal setting. Specifically, we regard the DLs EL
and several DL-Lite fragments when studying complexity, but extend our results of the
last chapter to various other logics.

Observe that temporal extensions of lightweight DLs where temporal operators may
be applied to construct ontological concepts have turned out as being surprisingly com-
plex, even undecidable [Art+07]. Nevertheless, research on such formalisms has been
going on and identified “islands of tractability” and first-order rewritable formalisms, by
restricting the available temporal operators and their applicability [Art+15a; GJK16].
The setting we consider is “easier” since, although we consider temporal data and
queries, we do not allow the ontological axioms to contain temporal operators. In
particular, decidability of this kind of ontology-based temporal query answering follows
in most cases from results for more expressive formalisms [BGL12; BBL15b]. But it was
open if the rather high complexities would decrease with lightweight logics. We provide
results on the interaction of lightweight DLs and temporal logics and hence complement
both strands of research.

The setting we focus on is depicted in Figure 1.3. The temporal data is represented
through a sequence of logical fact bases, such as DL ABoxes, each of which contains
facts about concrete objects and is associated to a specific point in time. General
domain knowledge is described in an ontology and, in contrast to the facts, assumed
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to hold at all time points. Together, the data and ontology form a temporal knowledge
base. Note that we thus can represent a stream of data and, in line with this scenario,
consider the queries to be answered over the whole sequence viewed from the current
time point n (“now”). The temporal queries are formed by combining atemporal queries
using Boolean operators and operators of linear temporal logic (LTL), such as 3P (“at
some time in the past”) and 3F (“at some time in the future”). Large parts of this work
focus on temporal conjunctive queries (TCQs), where the atemporal queries are CQs.
For instance, a complex context where an energy-intensive application gets out of user
focus, which might require a reconfiguration of the system (e.g., by decreasing quality
parameters), can be encoded as a TCQ as follows, based on the CQ ContextFocus (1.1):

Application(x1) ∧ Running(x1) ∧ EnergyIntensive(x1) ∧ ¬SystemCritical(x1) ∧
3P (ContextFocus(x1, x2) ∧3F (ContextFocus(x3, x2) ∧ ¬3FContextFocus(x1, x2))) .

In natural language, the query describes a situation where, at some time in the past, the
user x2 focused on a component x1, which is an energy-intensive application, running
currently, and not system critical; and, at some time after that, the user has focused
on a component x3, and it is not the case that the user focus then or later was with x1
again.

Observe that names such as Running and FocusesOn are used to describe dynamic
knowledge, which may change over time. For describing knowledge that does not do so,
certain names are often considered as rigid [Art+07; BBL15b]; for example, this would
be adequate for the role name PartOf. We also consider rigid names. It may help to
find additional inferences, but usually makes reasoning more complex.

In description logics, the investigation of ontology-based query answering in a tem-
poral setting, targeting data retrieval, and focusing on decidable formalisms has started
only in the recent past. Theoretical studies on complexity and rewritability have con-
centrated on qualitative temporal logics, such as LTL [GK12; Kla13; KM14b; Art+15a;
BBL15b], and interval-based temporal logics [Art+14a; Art+15b]. Also our work has
helped to advance the understanding of interactions between temporal queries and DL
ontologies [BLT15; BT15b; BT15a]. This foundational work has recently lead to the
consideration of metric temporal description logics in [GJO16; Baa+17], where the op-
erators of LTL have been annotated with quantitative intervals, such as 3[0,5]

F (“at some
time within the next 5 time points”). This is an important feature to describe systems
with discrete state changes, and hence data streams.6

The practical relevance of ontology-based query answering over temporal data has,
in parallel, lead to significant implementation efforts. In the field of stream reason-
ing [CCG10; Ani+12; Kha+16; CMC16; Cal+17], the systems usually process a contin-
uous stream of time-stamped RDF triples [CWL14] as 〈(bob, LooksAt, window1), 11245〉,
for example, and often rely on DLs as ontology language (see [DDM16] for an introduc-
tion to the area and descriptions of further approaches). Although they offer expres-
sive temporal query languages to extract finite sets of triples from the streams (e.g.,
languages with metric and aggregation operators), most systems then apply classical,
atemporal techniques for reasoning and querying. Yet, especially recent approaches

6A detailed study of related work on temporal query answering in DLs is given at the end of Chapter 3,
in Section 3.4.
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also include the temporal dimension into reasoning [Ani+12; Kha+16]. The fact that,
however, the “systems are heterogeneous in terms of syntax, capabilities and evaluation
semantics” [Del+15, p. 353] has lead to a currently ongoing development of a unifying
syntax and semantics [Bec+15; Del+15; Del+16].

Note that temporal extensions have also been proposed for the Semantic Web stan-
dards RDF, OWL, and SPARQL [The13] (e.g., in [GHV07; Mot12]) and there are
several other areas where temporal query answering has been investigated regarding
various kinds of ontologies. In database theory, temporal extensions of Datalog queries
have been considered for a long time as so-called temporal deductive databases [BCW93]
(see [AHV95] or Example 8.5 for a description of Datalog); the topic also has been taken
up recently with a focus on rewritability [Kon+16]. Further, rule-based formalisms with
temporal features have been studied regarding event processing [PK09]. However, many
of these works allow the data to be augmented with temporal information of arbitrary
kind and granularity, which yields a scenario only coarsely related to our setting. Fur-
thermore, they do not focus on ontology-based data access through classical ontologies,
but concentrate on the design of proprietary ontology languages which include temporal
features.

Temporal query answering over standard databases represents another area of related
work [CT05]. Next to query languages, data management and implementation aspects
are in focus of the research there. Similar to our setting, where a finite sequence of
fact bases models the data of the past and present, abstract temporal databases are
represented as sequences of database instances over a given database schema. However,
although there are some works that apply the open-world assumption, the closed-world
assumption, considering the temporal databases to hold complete information about
truth, is the quasi standard there [CT05]. Nevertheless, we can rely on results from
that area when we consider algorithms and implementations of ontology-based tempo-
ral query answering (see Section 8.4). Note that, while there had been a gap between
the theory and practice of temporal database systems for a long time [CT05], the im-
portance of the temporal dimension is generally recognized today, and the possibility to
associate data with temporal information has recently been incorporated into the SQL
standard [KM12].

1.4 Contributions and Outline of the Thesis
The relevance and benefits of ontology-based data access have generally been recognized
and are reflected in the increasing number of implementations. Due to the amounts
of data to be processed and the efficiency requirements of applications, many of the
systems focus on ontologies in lightweight logics today. While some of them—to a
certain extent—even deal with temporal data already, research on the theoretical side is
lacking behind. Temporal query languages that allow to access temporal data through
classical ontologies in lightweight description logics have rarely been investigated yet.

The aim of this work is therefore to systematically analyze the interaction between
LTL and lightweight description logic axioms to obtain (worst-case) complexity results
for temporal query answering. To this end, we investigate the complexity of the corre-
sponding decision problems, satisfiability and entailment. Furthermore, we want to de-
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velop temporal query languages for which ontology-based query answering is rewritable
into existing formalisms. The concrete research questions we focus on can be grouped
into three areas:

LTL over lightweight description logic axioms What is the complexity of reasoning
regarding temporal queries combining lightweight DL axioms via LTL operators?
If necessary, can we find constraints for obtaining good results (i.e., matching
those for LTL)? (Chapter 4) [BT15c; BT15b]

Entailment of temporal conjunctive queries What is the complexity of temporal con-
junctive query entailment regarding ontologies in EL, Horn fragments of DL-Lite,
and more expressive DL-Lite logics? Are there logics for which we get tractable
or rewritability results? (Chapters 5, 6, and 7) [BT15c; BT15b; BT15a]

Rewritability of temporal query answering How can we combine LTL operators with
conjunctive queries to obtain rewritability results for temporal conjunctive query
answering in lightweight DLs? Is it possible to extend the results to other temporal
queries and logics? (Chapter 8) [BLT13a; BLT13b; BLT15; THÖ15]

Figures 4.1 and 9.1 present an overview of our complexity results. Our contributions
are detailed in Section 3.3, and a comparative summary is given in Chapter 9. In
particular, we defer the comparison of the results from the different chapters on temporal
conjunctive query entailment to this chapter. Most of the results were obtained together
with Stefan Borgwardt, and the results presented in Chapter 8 are joint work with
Marcel Lippmann.

We close the introduction with some general guidelines for reading. We assume the
reader to be familiar with first-order logic (FOL); in [Fit96], it is treated in detail. Basic
knowledge in complexity theory is similarly presupposed. In particular, we consider
finite state machines, Turing machines, and corresponding complexity classes without
further explanation. Good introductions to the area also covering these topics are
provided by [Pap94], the standard reference, and [AB09], a book containing also recent
results.

Chapter 2 covers basic definitions and results regarding DLs, LTL, and computational
complexity which we apply subsequently. These might be skipped by readers familiar
with the topic. Chapter 3 contains a more specific introduction to temporal query
answering. In particular, it introduces the query languages and problems investigated
in Chapters 4 to 6, describes the technical challenges we solve, outlines some of our
solutions, and gives an overview of related work. Apart from the dependencies on
these preliminaries, the subsequent technical chapters, Chapters 4 to 8, are mostly self-
contained. However, note that the methods applied in Chapters 4 to 7 are sometimes
similar and, in the presented order, increase in intricacy. Chapter 9 summarizes the
results, contains concluding remarks, and suggests directions of future work.
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2 Basic Definitions

In this chapter, we provide basic definitions that are relevant throughout the work.
The description logics we focus on and DL reasoning in the classical—in the sense of
atemporal—setting are described in Section 2.1. In Section 2.2, we introduce linear
temporal logic, the temporal component of the temporal queries we consider. In the
last section, Section 2.3, we recapitulate basics of complexity theory.

2.1 Description Logics
The most important basics on description logics have already been introduced in Chap-
ter 1. In this section, we provide formal definitions regarding the DL EL and several
members of the DL-Lite family. In the following, we use the term DL-Lite for those mem-
bers of the family this work focuses on; that is, the fragments DL-Litecore, DL-LiteHhorn,
DL-LiteHkrom, DL-LiteHbool, and all variants in between, which are specified in this section.
General syntax, semantics, and reasoning tasks are described first. Subsequently, we
introduce reasoning with conjunctive queries. Then, we focus on the so-called Horn DLs
among the DLs we consider, to review and prove certain properties they satisfy.

For a more detailed introduction to DLs, the interested reader is referred to the
Description Logic Handbook [Baa+07], which covers the basics and includes advanced
aspects of DL research.

2.1.1 Syntax, Semantics, and Standard Reasoning
As described in Chapter 1, description logics focus on concepts, which are interpreted as
sets; roles, which are interpreted as binary relations; and individual names, which are
interpreted as constants. Accordingly, DL signatures Σ = (NI,NC,NR) are based on three
kinds of non-logical symbols representing constants (i.e., zero-ary function symbols),
unary, and binary predicates, respectively: individual names NI, concept names NC, and
role names NR, all of which are non-empty, pairwise disjoint sets. The various DLs then
differ in the allowed logical symbols and in the way the axioms of the theories are built.

In the following, we introduce the syntax of the axioms in the description logic EL and
several members of the DL-Lite family and, based on the axioms, specify the notion of a
DL theory, the knowledge base. In the remainder of the section, we cover the semantics
and standard reasoning tasks.

Definition 2.1 (Syntax of Axioms in EL) Let Σ = (NI,NC,NR) be a DL signature.
In EL, the sets of roles over Σ and concepts over Σ are defined, respectively, by the

following grammars:

R ::= P C ::= > | A | ∃R.D | D u E
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2 Basic Definitions

where A ∈ NC, P ∈ NR, and D and E are concepts, in their turn; a concept of the form
A, >, ∃R.>, or ∃R.A is a basic concept.

In what follows, let A1, A2, A3 ∈ NC∪{>}, R ∈ NR, B be a basic concept, and C and D
be concepts. EL axioms are the following kinds of expressions: concept inclusions (CIs)
of the form C v D, and assertions of the form C(a) and R(a, b), where a, b ∈ NI. A CI
is in normal form if it has one of the following forms:

A1 uA2 v A3, A1 v ∃R.A2, B v A1. ♦

We sometimes use the abbreviation ∃R1 . . . R`.C for the concept ∃R1. . . . ∃R`.C. Note
that concept inclusions in EL or more expressive DLs are also called general concept
inclusions (GCI), which expresses the fact that the inclusion may contain arbitrary
concept expressions on the left-hand side—historically, first so-called primitive concept
definitions with only concept names on the left-hand side were considered [Baa+07].

The logics of the DL-Lite family all extend the base formalism DL-Litecore, in which
CIs with complex concept expressions on the left-hand side cannot be expressed. In this
work, we focus on several of the logics presented in [Art+09], which differ in the kind
of concept inclusions, the Boolean operators allowed in the concept expressions, and if
role inclusion axioms (also role hierarchies) are allowed. Similar to concept inclusion
axioms, the latter are of the form S v R and express that the role S is more specific
than the role R. DL-Lite fragments that allow for such inclusions are labeled with the
superscript H.

Definition 2.2 (Syntax of Axioms in DL-Lite) Let Σ = (NI,NC,NR) be a DL
signature. In DL-Lite, the sets of roles over Σ and basic concepts (also concepts) over
Σ are defined, respectively, by the following grammars:1

R ::= P | P− B ::= A | ∃R.>

where A ∈ NC, P ∈ NR, and ·− denotes the inverse role operator. N−R denotes the set of
roles.

DL-Lite axioms are the following kinds of expressions: concept inclusions (CIs) of the
form

B1 u · · · uBm v Bm+1 t · · · tBm+n (∗)

where B1, . . . , Bm+n are concepts;2 role inclusions (RIs) of the form S v R, where
R,S ∈ N−R ; and assertions of the form B(a) and P (a, b), where B is a basic concept,
P ∈ NR, and a, b ∈ NI.

For c ∈ {core, horn, krom, bool}, we denote by DL-Litec the logic that does not allow
for role inclusions and restricts concept inclusions of the form (∗) as follows:

• m,n are arbitrary if c = bool,

• m+ n ≤ 2 if c = krom,

• n ≤ 1 if c = horn,

1In the literature, a role is sometimes an expression that may be prefixed by negation [Cal+07b].
2Both sides of CIs may be empty.
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• m+ n ≤ 2 and n ≤ 1 if c = core.

If role inclusions are allowed in addition, this is indicated by the superscript H , and we
obtain the four DLs denoted by DL-LiteHc . ♦

In DL-Lite, the abbreviation ∃R is usually used to abbreviate concepts of the form ∃R.>,
where R is a role. As usual, we generally denote the empty conjunction (u) by > and the
empty disjunction (t) by ⊥. We may further use the abbreviations B1u · · · uBm v ¬B
for B1 u · · · uBm uB v ⊥,

d
B for the conjunction B1 u · · · uBm if B = {B1, . . . , Bm},

P−(a, b) := P (b, a), and (P−)− := P for P ∈ NR and a, b ∈ NI.
In some constructions (in Chapters 4 and 6), we also consider negated assertions of

the form ¬α, where α is an assertion; if this is the case, it is mentioned explicitly.

Definition 2.3 (Syntax of Knowledge Bases) Let DL be a description logic. An
ontology written inDL is a finite set of concept and (if allowed in DL) role inclusions, and
an ABox is a finite set of assertions of concept and role names. Together, an ontology O
and an ABox A form a knowledge base (KB) K := O ∪A, written K = 〈O,A〉. ♦

We sometimes also refer to the ABox as fact base or simply as the data.3 In this work,
we assume every knowledge base to be such that all concept and role names occurring in
the ABox also occur in the ontology. Given the (standard) semantics introduced below,
it can readily be checked that this assumption is without loss of generality

For a given KB K := O∪A, we denote by NI(K) and NI(A) the set of individual names
that occur in K and A, respectively (i.e., in EL and DL-Lite, we have NI(K) = NI(A));
by NC(O) and NR(O) the sets of, respectively, concept names and role names occurring
in K; by N−R (O) the set of roles occurring in K if it is in DL-Lite; and by S(O) the set
of all concepts that occur in O. Note that the latter set includes all sub-concepts of
complex concept expressions. A concept over O is a concept constructed (only) from
the concept and role names occurring in O; observe that it does not necessarily have
to be contained in S(O). Moreover, B(O) denotes the set of all basic concepts that can
be built from NC(O), >, and the roles occurring in O, and B¬(O) denotes the set B(O)
extended by negation, meaning B¬(O) := {B,¬B | B ∈ B(O)}. Note that, regarding
DL-Lite, S(O) and B(O) nearly coincide; yet, B(O) always contains > and the concept
∃P− for all P ∈ NR(O).

The semantics of DLs is commonly specified in a model-theoretic way, based on inter-
pretations. General logical notions like consistency and entailment can hence be defined
as usual.

Definition 2.4 (Semantics) An interpretation I = (∆I , ·I) for a description logic
signature Σ = (NI,NC,NR) consists of a non-empty set ∆I , the domain of I, and an
interpretation function ·I , which assigns to every A ∈ NC a set AI ⊆ ∆I , to every
P ∈ NR a binary relation P I ⊆ ∆I × ∆I , and to every a ∈ NI an element aI ∈ ∆I
such that, for all a, b ∈ NI with a 6= b, we have aI 6= bI (unique name assumption
(UNA)). This function is extended to all roles and concepts as described in the first
part of Figure 2.1.

3In correspondence with the notion of ABox, ontologies are often separated into TBoxes and RBoxes,
containing the concept and role inclusions, respectively.
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Name Syntax Semantics
inverse role R− {(y, x) ∈ ∆I ×∆I | (x, y) ∈ RI}
top concept > ∆I
bottom concept ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
exist. restriction ∃R.C {x ∈ ∆I | ∃y ∈ CI , (x, y) ∈ RI}
concept inclusion C v D CI ⊆ DI
role inclusion R v S RI ⊆ SI

concept assertion B(a) aI ∈ BI
role assertion R(a, b) (aI , bI) ∈ RI

Figure 2.1: Semantics of role expressions, concept expressions, and axioms for an inter-
pretation I = (∆I , ·I).

An interpretation I satisfies (or is a model of) an axiom α, written I |= α, if the
corresponding condition given in Figure 2.1 is satisfied. I satisfies (or is a model of) a
knowledge base K , written I |= K, if it satisfies all axioms contained in it.

A knowledge base K is consistent (or satisfiable) if it has a model, and it is inconsistent
(or unsatisfiable) otherwise. K entails an axiom α, written K |= α, if all models of K
also satisfy α. This terminology and notation is extended to (single) axioms, ontologies,
and ABoxes by regarding each as a (singleton) knowledge base. ♦

We denote the fact that an interpretation I does not satisfy a KB K by I 6|= K and,
similarly, non-entailment by K 6|= α. In accordance with Figure 2.1, the negated asser-
tions of the form ¬B(a) and ¬R(a, b), which we sometimes consider, are satisfied in an
interpretation I = (∆I , ·I) if, respectively, aI 6∈ BI and (aI , bI) 6∈ RI hold.

Regarding two domain elements d and e and an interpretation I such that (d, e) ∈ RI ,
d is an R-predecessor of e, and e an R-successor of d. Note that the terms “individual
elements”, “domain elements”, “elements”, and “individuals” are used interchangeably
for the elements of an interpretation domain. If the terms are prefixed by “named”, then
we refer to those elements of the domain that are used to interpret individual names.4
In what follows, the signature of an interpretation is generally not mentioned explicitly
if it is irrelevant or clear from the context.

In some constructions, we apply the DL ELO⊥, which extends EL by allowing ⊥ and
so-called nominals in concept expressions. ⊥ is interpreted as the empty set and can be
used in an ontology for expressing disjointness of concepts. Nominals are concepts of
the form {a}, based on some individual name a, and interpreted as singleton sets that
contain the corresponding named individual. Further, note that DL-LiteR, which is the
DL closest to the OWL 2 QL profile, extends DL-LiteHcore in that it allows to express
disjointness of roles.

4In the literature, the term “individuals” sometimes only refers to those elements of the domain that
are used to interpret individual names.
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Given the semantics, observe that allowing conjunction on the right-hand side of CIs
does not increase expressivity since any CI of the form C v DuE can be split into two
CIs C v D and C v E in a KB without affecting the semantics. For similar reasons, we
can assume all CIs to have maximally two conjuncts on the left-hand side and maximally
two disjuncts on the right-hand side.

Ontologies and knowledge bases on the whole are usually not only used for modeling
domain knowledge and querying it, but also for deriving logical consequences that are
not explicitly stated in the stored knowledge. This (typically automatic) process is
called reasoning and comprises several standard reasoning problems. Below, we list
those relevant for our work; for a larger overview, we refer to [Baa+07].

Definition 2.5 (Standard Reasoning Problems) Let K be a DL knowledge base,
and let C and D be concepts. The standard reasoning problems in DLs include the
following:

• Concept Subsumption: Does K |= C v D hold?

• Concept Satisfiability: Is there an interpretation I such that I |= K and CI 6= ∅?

• Consistency Checking: Is K consistent?

• Instance Checking: Does K |= C(a) hold? ♦

It is well-known that these reasoning tasks are reducible to each other in linear time in
any DL that allows for concept name assertions and CIs expressing disjointness, of the
form C uD v ⊥ (e.g., a concept C is not satisfiable w.r.t. a KB K if K |= C v ⊥; that
CI is equivalent to C u > v ⊥).

In contrast, conjunctive query answering and entailment are non-standard reasoning
problems. These problems are important for TCQ answering since TCQs are based on
conjunctive queries. We therefore introduce them next.

2.1.2 Conjunctive Queries
Conjunctive query answering is a core functionality of database systems and increasingly
studied in DLs recently. The goal is to provide ontology-based query answering on top
of databases. We in the following define conjunctive queries and the more general unions
of conjunctive queries, and introduce the reasoning problems relevant in this work.

Definition 2.6 (Syntax of Unions of Conjunctive Queries) Let Σ = (NI,NC,NR)
be a DL signature, NV be the set of variables, and NT := NI ∪ NV be the set of terms.

A conjunctive query (CQ) over Σ is of the form ϕ = ∃y1, . . . , ym.ψ, where y1, . . . ,
ym ∈ NV and ψ is a (possibly empty) finite conjunction of atoms as follows:

• A(t) (concept atom) with A ∈ NC and t ∈ NT,

• R(s, t) (role atom) with R ∈ NR and s, t ∈ NT.

The variables occurring in ϕ that are different from y1, . . . , ym are free variables.
A union of conjunctive queries (UCQ) is a disjunction of CQs. The free variables of

a UCQ are the union of all free variables of its disjuncts. ♦
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We denote the set of individuals occurring in a UCQ ϕ by NI(ϕ), the set of variables
occurring in ϕ by NV(ϕ), and the set of terms occurring in ϕ by NT(ϕ). At(ϕ) denotes
the set of atoms occurring in ϕ. In the context of DL-Lite, we may use an expression of
the form R−(s, t) to denote the role atom R(t, s), as with role assertions; further, note
that the definition of CQs does not allow basic concepts of the form ∃R(x), R ∈ N−R ,
to occur in CQs. We sometimes though regard such CQs, which is possible since such
atoms can obviously be replaced by atoms of the form R(x, y) if R ∈ NR and R(y, x)
otherwise, if the set of existentially quantified variables of ϕ is extended with a fresh
variable y, correspondingly. We may write

∧
B(x) for the conjunction B1(x)∧· · ·∧B`(x)

if B = {B1, . . . , B`}.
Since we focus on Boolean queries (i.e., queries without free variables), we define the

semantics only for those. As usual, this is done in a model-theoretic way, based on the
notion of homomorphisms [CM77].

Definition 2.7 (Semantics of Unions of Conjunctive Queries) Let I = (∆I , ·I)
be an interpretation and ϕ be a Boolean CQ. A mapping π : NT(ϕ) → ∆I is a homo-
morphism of ϕ into I if

• π(a) = aI for all a ∈ NI(ϕ),

• π(t) ∈ AI for all concept atoms A(t) in ϕ, and

• (π(s), π(t)) ∈ RI for all role atoms R(s, t) in ϕ.

I satisfies (or is a model of) ϕ, written I |= ϕ, if there is such a homomorphism. I
satisfies (or is a model of) a UCQ ψ, written I |= ψ, if it satisfies one of its disjuncts.
ψ is entailed by a KB K, written K |= ψ, if every model of K is also a model of ψ. ♦

Regarding UCQs, DL research primarily focuses on the following reasoning problems.

Definition 2.8 (Reasoning Problems for UCQs) For a given Boolean UCQ ϕ,
UCQ ψ, and KB K, there are the following reasoning problems:

• UCQ Entailment: Does K |= ϕ hold?

• UCQ Answering: Determine all assignments a (called certain answers) of the free
variables in the query to named individuals occurring in K such that K |= a(ψ).
♦

Our focus on Boolean CQs (and UCQs) affects the query answering problem in that we
consider a single such assignment at most; that is, the set of all answers is {()} if K |= ϕ
and ∅ otherwise.

To ease presentation, we sometimes refer to a CQ as a set, thereby meaning the set
of all of its atoms, or as a graph.

Definition 2.9 (Graph of a CQ) The graph Gϕ of a CQ ϕ is the graph Gϕ = (V,E)
where the set of nodes is defined as V := NT(ϕ), the edges are given by the role
atoms such that E := {(s, t) | R(s, t) ∈ ϕ}, and a labeling function `ϕ maps ev-
ery node (edge) to a set of concepts (roles) such that `ϕ(s) := {A | A(s) ∈ ϕ}
(`ϕ((s, t)) := {R | R(s, t) ∈ ϕ}).
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A CQ ϕ is connected if Gϕ is connected. Terms s and t are connected in a CQ if it
contains role atoms R1(s, u1), R2(u2, u3),. . . , R`(u`, t), where R1, . . . , R` are roles and
u1, . . . , u` ∈ NT, and directly connected if they occur together in a role atom.

A set of CQs ϕ1, . . . , ϕ` is a partition of ϕ if the graphs Gϕ1 , . . . ,Gϕ` represent a par-
tition of Gϕ and, for all i ∈ [1, `] and elements x in the domain of `ϕi , `ϕ(x) = `ϕi(x).♦

Note that the latter condition is necessary because the graph representation does not
capture the concept atoms.

In general, the task of checking conjunctive query entailment is rather complex. For
several description logics, the so-called Horn DLs, there are however practical algo-
rithms. These are often based on canonical interpretations.

2.1.3 Canonical Interpretations for Horn Description Logics
In this section, we focus on the Horn DLs we introduced in Section 2.1.1, EL and
DL-LiteHhorn. In a nutshell, Horn DLs do not allow to express disjunction on the right-
hand side of CIs (i.e., neither directly in the syntax, nor indirectly through the seman-
tics), such that the CIs can be represented as first-order Horn clauses. Reasoning in
these DLs is easier than in general since it can be done using deterministic algorithms,
which are often based on canonical interpretations. In what follows, we recall the well-
known construction of these interpretations for knowledge bases in EL and DL-LiteHhorn
together with important properties of them and prove additional such properties.

In a nutshell, the canonical interpretation of a knowledge base K captures exactly the
information described by K. Since this is the knowledge to be satisfied in every model
of K, the canonical interpretation can be used for checking the consistency of K and for
answering CQs w.r.t. K—by checking whether the canonical interpretation is a model
of K and if it satisfies a CQ, respectively. We provide different definitions depending
on the logic to facilitate later proofs. For EL, we directly consider the knowledge
entailed from K, as it is done in [LTW09; KRH07], for example. Regarding DL-Lite,
we explicitly construct the interpretation similar to [Cal+07b; BAC10], by applying the
standard chase procedure for obtaining models of knowledge bases [DNR08]. We use
this definition in order to be able to refer to the results of [BAC10], which hold for
the non-standard setting with negative assertions in ABoxes, which we focus on. Note
that [BAC10] extend the original definition of [Cal+07b] regarding DL-LiteH to the
logic DL-LiteHhorn, and we further extend it. In particular, our canonical interpretation
contains (unnamed) prototypical R-successors with R ∈ N−R for all elements required
to satisfy ∃R, by the knowledge base. In contrast, [Cal+07b; BAC10] only consider
such prototypical successors if the knowledge base (i.e., the corresponding ABox) does
not already identify a named individual to be such a successor. Unlike us, [Cal+07b;
BAC10] neither consider arbitrary basic concept assertions, but only concept names.

The prototypical domain elements are of the form u% (u for “unnamed”), where % is
a path % := aR1C1 . . . R`C` over symbols occurring in the knowledge base with a being
an individual name, R1, . . . , R` being roles, and C1, . . . , C` being concepts from S(O).
We assume that the knowledge base does not already contain symbols of the form of
these elements. |%| := ` denotes the length of a path as %. Observe that such a path also
specifies the interpretation of the symbols contained in it in that it describes the exis-
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tence of domain elements a, uaR1C1 , . . . , uaR1C1...R`C` , which are related via R1, . . . , R`,
respectively; and each element uaR1C1...RmCm for m ≤ ` satisfies Cm. Furthermore, u% is
only contained in the domain of the canonical interpretation if relations as described by
% have to be present in every model of the knowledge base. Note that DL-Lite ontologies
can only enforce unnamed elements of the form uaR1>...R`> to exist, because they do
not allow for qualified existential restriction on the right-hand side of CIs. We therefore
usually write uaR1...R` in that context, to simplify notation.

Definition 2.10 (Canonical Interpretation in EL) Let K = 〈O,A〉 be an EL
knowledge base. We first define the set

∆IKu :=
∞⋃
j=0

∆j
u

where

∆0
u := {uaRC | a ∈ NI(K), C ∈ S(O), K |= ∃R.C(a)},

∆j+1
u := {u%R1C1R2C2 | ∃u%R1C1 ∈ ∆j

u,O |= C1 v ∃R2.C2}.

The canonical interpretation IK for K is defined as follows, for all a ∈ NI(A), A ∈ NC,
and R ∈ NR:

∆IK := NI(A) ∪∆IKu ,

aIK := a,

AIK := {a ∈ NI(A) | K |= A(a)} ∪ {u%RC ∈ ∆IKu | O |= C v A},
RIK := {(a, b) | R(a, b) ∈ A} ∪ {(a, uaRC) ∈ NI(A)×∆IKu } ∪

{(u%, u%RC) ∈ ∆IKu ×∆IKu }.

The finite canonical interpretation IfK is defined correspondingly, but based on elements
of the form uC for all C ∈ S(O) instead of on different elements of the form u%C .
Analogously, these elements are collected in the set ∆IfKu . ♦

For simplicity, we assume in the definition regarding DL-Lite that, if the RI S v R
is contained in an ontology O, then we also have ∃S v ∃R ∈ O and ∃S− v ∃R− ∈ O;
and that O contains all trivial axioms of the form B v B for B ∈ B(O).

Definition 2.11 (Canonical Interpretation in DL-LiteHhorn) Let K = 〈O,A〉 be a
DL-LiteHhorn knowledge base. First, for all A ∈ NC and P ∈ NR, we define:

A0 := {a | A(a) ∈ A},
P 0 := {(a, b) | P (a, b) ∈ A} ∪

{(a, uaP ) | ∃P (a) ∈ A} ∪ {(uaP− , a) | ∃P−(a) ∈ A}.

Then, iterate over all i ≥ 0: for all X ∈ NC ∪ NR define Xi+1 := Xi; apply one of
the following rules for all A ∈ NC, R,S ∈ N−R , and B,B1, B2 ∈ B(O); and increment i;
(d, e) ∈ (P−)i for P ∈ NR denotes the fact that (e, d) ∈ P i, and d ∈ (∃R)i denotes the
existence of an element e such that (d, e) ∈ Ri:
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• If B1 uB2 v A ∈ O, A ∈ NC, and e ∈ Bi
1 ∩Bi

2, then add e to Ai+1.

• If B v ∃R ∈ O and e ∈ Bi:
– if e ∈ NI(A), then add (e, ueR) to Ri+1;
– if e = u%, then add (e, u%R) to Ri+1.

• If ∃R v A ∈ O, (d, e) ∈ Ri, then add d to Ai+1.

• If S v R ∈ O and (d, e) ∈ Si, then add (d, e) to Ri+1.

The set ∆IKu collects the above introduced unnamed individuals.
The canonical interpretation IK for K is then defined as follows, for all a ∈ NI(A),

A ∈ NC, and P ∈ NR:

∆IK := NI(A) ∪∆IKu , aIK := a,

AIK :=
∞⋃
i=0

Ai, P IK :=
∞⋃
i=0

P i. ♦

Note that the above assumptions about additional axioms in the ontology ensure that,
whenever there is a named element a ∈ (∃R)i for some i ≥ 0, then a has an R-successor
of the form uaR in the canonical interpretation, and similar for the unnamed elements.

In the remainder of this section, we recall and prove results about how the canonical
interpretation may simplify reasoning. To this end, we assume K = 〈O,A〉 to be a
consistent knowledge base in EL or DL-Lite, depending on the context. In the latter
case, A may particularly include negated assertions.

Regarding EL, we refer to the results from [LTW09], where the canonical interpreta-
tion is however defined slightly differently, based on the finite one. More precisely, the
possible paths over the domain elements of the latter that start at the named individ-
uals represent the domain elements of the former interpretation. It is easy to see that
this approach yields an interpretation corresponding to the one from Definition 2.10.
Regarding DL-Lite, note that the two above mentioned differences, w.r.t. basic con-
cept assertions and the additional successor individuals we consider, do not have special
effects on reasoning. This is why we below refer to the results of [BAC10] without
providing detailed proofs.

An important property of the canonical interpretation IK, which can be checked
easily, is that it is a model of K. If K was inconsistent, then this would obviously not be
the case. The converse of this statement is however harder to show—for DL-Lite; EL
KBs cannot be inconsistent. The proof proposed by [Cal+07b; BAC10] is three-fold:

• First, it is shown that IK is a model of all positive inclusions in O, which are CIs
whose right-hand side is not ⊥; all other CIs are called negative inclusions.

• For checking satisfiability of DL-LiteHhorn KBs, negative inclusions are critical: if a
negative inclusion in the ontology is violated by assertions of the ABox, then the
knowledge base is inconsistent and hence unsatisfiable. In particular, an interac-
tion of positive and negative inclusions may lead to such an inconsistency. This is
why a special closure of the negative inclusions contained in O is regarded, which
represents all negative inclusions implied by the ontology.
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The second step then consists of showing that K is consistent iff the assertions of
the ABox do not contradict this closure.

• Third and last, it is shown that the latter is the case iff IK is a model of K.

These observations show that neither basic concept assertions nor “unnecessary” pro-
totypical successors have special effects on the outcomes of the proof in [BAC10]. We
hence can similarly state the result.

Lemma 2.12 ([BAC10, Lem. 3, Thm. 4],[LTW09, Prop. 1]) IK |= K and IfK |= K.

A result equally important for our work is about queries.

Lemma 2.13 ([BAC10, Thm. 9],[LTW09, Prop. 4]) For every Boolean UCQ ϕ,
we have K |= ϕ iff IK |= ϕ.

In the following Lemmas 2.14 and 2.15, we describe the concepts satisfied by the
domain elements of the canonical model and the subset of prototypical elements, re-
spectively. Note that the following Lemma 2.14 is restricted to DL-Lite.

Lemma 2.14 Regarding Definition 2.11, all e ∈ ∆IK, and all B ∈ B(O), we have
e ∈ BIK iff O |=

d
B v B, where B is defined as follows, based on the minimal number

i for which there is a symbol X such that e ∈ Xi:

B := {A ∈ NC(O) | e ∈ Ai} ∪ {∃R | R ∈ N−R (O), (e, d) ∈ Ri}.

Proof. (⇐) For all C ∈ B, we know that e ∈ CIK , by the definitions of B and IK.
Hence, Lemma 2.12 yields the claim.

(⇒) Let j be the minimal index for which e ∈ Bj , which means that j ≥ i. We show
the claim by induction on j. If j = i, then B ∈ B, and hence O |=

d
B v B trivially

holds.
Regarding j > i, we assume that the claim holds for all C ∈ B(O) for which e ∈ Cj−1.

We consider the rule in Definition 2.11 that causes e to be contained in Bj .

• If it is because of a CI
d
B′ v B ∈ O, then we have e ∈ Cj−1 for all C ∈ B′. Hence,

the induction hypothesis together with the semantics yields O |=
d
B v

d
B′.

Because of the considered CI, this leads to O |=
d
B v B.

For the other kinds of CIs, the proof works correspondingly.

• If it is because of the last rule, some S v R ∈ O, and (e, d) ∈ Sj−1 ((d, e) ∈ Sj−1),
then B must be of the form B = ∃R(−). Further, (e, d) ∈ Sj−1 ((d, e) ∈ Sj−1) im-
plies e ∈ (∃S(−))j−1, for which the induction hypotheses yields O |=

d
B v ∃S(−).

By our assumption (see the part above Definition 2.11), we have ∃S v ∃R ∈ O
(∃S− v ∃R− ∈ O) and thus get O |=

d
B v ∃R(−).

The next lemma describes the concepts the new domain elements in ∆IKu satisfy in
a straightforward way and hence shows that an element of the form u%RC ∈ ∆IKu can
indeed serve as a prototypical R-successor. Regarding DL-Lite, the lemma directly
follows from Definition 2.11 and Lemma 2.14. For EL, it is easy to prove by induction
on the structure of concepts.
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Lemma 2.15 For all u%RC ∈ ∆IKu and D ∈ S(O), we have u%RC ∈ DIK iff

• O |= C v D, if K is in EL, and

• O |= ∃R− v D, if K is in DL-LiteHhorn.

Lastly, we consider so-called simulations, which in [Baa03] are described as binary
relations between nodes of two so-called EL description graphs that respect the labels
and edges of those graphs. Such an EL description graph is obtained for an interpreta-
tion I by regarding I as a graph such that the domain elements are the nodes, labeled
by the concept names the elements satisfy; and the (labeled) edges are given by the
roles connecting the elements in I. We define the notion of simulation directly w.r.t.
two interpretations.

Definition 2.16 A relation σ ⊆ ∆I×∆J is a simulation (of I by J ), written σ : I → J ,
iff the following hold for all (d, e) ∈ σ:

• d ∈ AI implies e ∈ AJ for all A ∈ NC, and

• (d, d′) ∈ RI implies that there is an element e′ ∈ ∆J such that (d′, e′) ∈ σ and
(e, e′) ∈ RJ for all R ∈ NR. ♦

It is easy to inductively construct a simulation of the finite canonical interpretation of
a KB K by any other model of K.

Lemma 2.17 For every model J of an EL knowledge base K, there is a simulation σ
of IfK by J such that (a, aJ ) ∈ σ for all a ∈ NI(K).

2.2 Propositional Linear Temporal Logic
Propositional linear temporal logic (LTL5), also known as propositional temporal logic,
extends propositional logic with modal operators to represent past and future moments
in formulas. Accordingly, the signatures are as in propositional logic, sets of proposi-
tional variables.

Definition 2.18 (Syntax of Propositional LTL) Let P = {p1, . . . , p`} be a finite
propositional logic signature. The set of propositional LTL formulas over P is defined
by the following grammar:

ϕ ::= p | ¬ϕ1 | ϕ1 ∧ ϕ2 | #Fϕ1 | #Pϕ1 | ϕ1 U ϕ2 | ϕ1 S ϕ2

where p ∈ P , and ϕ1 and ϕ2 are formulas, in their turn. ♦

Observe that LTL allows for Boolean negation and conjunction. The operators #F

and #P are called “next” and “previous”, respectively. The formula ϕ1 U ϕ2 stands for
“ϕ1 until ϕ2”, and ϕ1 S ϕ2 represents its dual, read “ϕ1 since ϕ2”. We may use #i

F to
denote a sequence of i #F -operators, and similar for the previous operator. We assume

5For simplicity, we often drop the prefix “propositional” and simply refer to linear temporal logic (LTL)
throughout the work.
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Operator Definition Name
ϕ1 ∨ ϕ2 ¬(¬ϕ1 ∧ ¬ϕ2) disjunction
ϕ1 → ϕ2 ¬(ϕ1 ∧ ¬ϕ2) implication
3Fϕ true U ϕ eventually (some time in the future)
2Fϕ ¬3F¬ϕ always in the future
3Pϕ true S ϕ historically (some time in the past)
2Pϕ ¬3P¬ϕ always in the past

Figure 2.2: Definitions of derived operators for propositional LTL.

true to denote an arbitrary but fixed propositional tautology (e.g., p ∨ ¬p, where p is
a propositional variable) and false to denote its negation. As usual, further derived
operators can be defined as in Figure 2.2. We further use ϕ1 ↔ ϕ2 as an abbreviation
for (ϕ1 → ϕ2) ∧ (ϕ1 ← ϕ2).

The operators #F and U are called the future operators, and #P and S are the past
operators. Together, they represent the temporal operators. In accordance with that, a
propositional LTL formula is called a future formula if it contains no past operators and
a past formula if it contains no future operators. An LTL formula is called separated if
no future operators occur in the scope of past operators and vice versa. A subformula
of a separated LTL formula ϕ is a top-level future (past) formula of ϕ if it is of one of
the forms in 2.1 (2.2) and occurs in ϕ at least once in the scope of no other temporal
operator:

#F ϕ1,¬(#Fϕ1), ϕ1 U ϕ2,¬(ϕ1 U ϕ2) (2.1)
#P ϕ1,¬(#Pϕ1), ϕ1 S ϕ2,¬(ϕ1 S ϕ2) (2.2)

The set of all subformulas of an LTL formula ϕ is denoted by S(ϕ).6 The set Clo(F)
denotes the closure under negation of

⋃
ϕ∈F S(ϕ).

In propositional LTL, the flow of time is considered to be bounded with respect to
the past, discrete, and, as the name suggests, linear. It is represented by the sequence
of natural numbers, such that every point in time (also time point or moment) is rep-
resented by one number. An LTL interpretation then is a corresponding structure: a
sequence of propositional interpretations which, respectively, determine the propositions
that are true at the corresponding points in time.

Definition 2.19 (Semantics of Propositional LTL) Let P = {p1, . . . , p`} be a finite
propositional logic signature. A propositional LTL structure for P is an infinite sequence
W = (wi)i≥0 of worlds wi ⊆ P .

A propositional LTL structure W = (wi)i≥0 satisfies a propositional LTL formula ϕ
at (time point) i ≥ 0, written W, i |= ϕ, if the corresponding condition of Figure 2.3 is
satisfied. The fact that W, i |= ϕ does not hold is denoted by W, i 6|= ϕ.

If W, 0 |= ϕ, then W is a model of ϕ.
A propositional LTL-formula ϕ is satisfiable if it has a model. Two propositional LTL

formulas ϕ1 and ϕ2 are equivalent, written ϕ1 ≡ ϕ2, if they have the same models. ♦

6Recall that the same notation is used to denote the set of subconcepts of a concept.
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Formula ϕ Condition for W, i |= ϕ

p p ∈ wi
¬ϕ1 W, i 6|= ϕ1
ϕ1 ∧ ϕ2 W, i |= ϕ1 and W, i |= ϕ2
#Fϕ1 W, i+ 1 |= ϕ1
#Pϕ1 i > 0 and W, i− 1 |= ϕ1
ϕ1 U ϕ2 there is a k ≥ i, such that W, k |= ϕ2

and, for all j, i ≤ j < k, we have W, j |= ϕ1
ϕ1 S ϕ2 there is a k, 0 ≤ k ≤ i, such that W, k |= ϕ2

and, for all j, k < j ≤ i, we have W, j |= ϕ1

Figure 2.3: Semantics of propositional LTL formulas for an interpretation W = (wi)i≥0
for a signature P, assuming p ∈ P .

The empty conjunction and disjunction are interpreted as true and false, respectively.
Again, the signature is in the following generally not mentioned explicitly if it is irrele-
vant or clear from the context.

Above, the operators U and S are defined in their non-strict version. The semantics
of the strict operators U< and S< differs in that the parameters j and k in Figure 2.19
must not equal i. This means that W, i |= ϕ2, which implies W, i |= ϕ1 U ϕ2, does not
imply W, i |= ϕ1 U< ϕ2; and similar for the since operator. However, in the presence
of the #F -operator, U and U< can be expressed in terms of each other. Specifically,
the formula ϕ1 U ϕ2 is equivalent to ϕ2 ∨ (ϕ1 U< ϕ2), and ϕ1 U< ϕ2 is equivalent to
ϕ1 ∧#F (ϕ1 U ϕ2); and similar for S and S<.

Further, note that the above definition of propositional LTL extends the usual defini-
tion of that logic, which only considers the temporal operators #F and U [Pnu77]. For
that reason, this extended logic is often referred to as Past-LTL. An important result
for this logic, the so-called separation theorem [Gab87, Thm. 2.4], is given below.

Lemma 2.20 ([Gab87, Thm. 2.4]) Every propositional LTL formula ϕ is equivalent
to a propositional LTL formula that is separated.

Note that [Gab87] actually consider a slightly different temporal logic allowing only
S< and U< as temporal operators. However, it is well-known that #F and #P can
be simulated in this setting: #Fϕ ≡ false U< ϕ and #Pϕ ≡ false S< ϕ. Moreover, the
non-strict versions of the operators can be expressed in terms of the strict ones and the
other way around while retaining separation, as shown above. Thus, Lemma 2.20 holds
also for the logic we focus on. The size of the resulting separated LTL formula then
however may be non-elementary in the size of the original formula (i.e., specifically, the
number of stacked exponents is determined by the number of alternations between past
operators and future operators) [Gab87]. But we use this result in a context where the
size of the formula is irrelevant.

We close this section on LTL by describing the procedure for deciding LTL satis-
fiability originally proposed in [SC85, Sec. 4] in Algorithm 2.1, which we extend in
Chapters 4, 5, and 6 to obtain our results. In particular, [SC85] propose a nonde-
terministic algorithm which runs in an amount of space polynomially bounded by the
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Algorithm 2.1: Procedure for Deciding LTL Satisfiability
Input: LTL formula ϕ
Output: true if ϕ is satisfiable, otherwise false

1 i := 0
2 s := Guess a number ≤ 2|ϕ| and > 0
3 p := Guess a number ≤ 4|ϕ|

4 Fnext := ∅, Fs := ∅, FU := ∅
5 Fpres := Guess a subset of Clo({ϕ})
6 if not CONSISTENT(Fpres) or not INITIAL(Fpres) or ϕ 6∈ Fpres then
7 return false

8 while i ≤ s+ p do
9 if i > 0 then Fpres := Fnext

10 Fnext := Guess a set of subformulas of ϕ
11 if not CONSISTENT(Fnext) or not TCONSISTENT(Fpres, Fnext) then
12 return false

13 if i = s then
14 Fs := Fpres
15 FU := All formulas of the form ϕ1 U ϕ2 ∈ Fs

16 if i ≥ s then
17 FU := All formulas of the form ϕ1 U ϕ2 ∈ FU such that ϕ2 6∈ Fpres
18 i := i+ 1
19 if FU = ∅ and TCONSISTENT(Fpres, Fs) then
20 return true
21 return false
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formula ϕ considered; we consider |ϕ| to denote the number of symbols occurring in ϕ.
The idea for constructing an LTL structure W satisfying ϕ is to iteratively guess subsets
of Clo({ϕ}) that represent the subformulas satisfied in W at each point in time. More
precisely, every such set induces a unique world containing exactly the propositional
variables that are true in the guessed set. In what follows, we describe that procedure,
given as Algorithm 2.1, in more detail. We thereby rely on the subprocedures below.

• CONSISTENT: Given a set F of LTL formulas, it checks the Boolean consistency of
the latter by returning true iff the following hold for all ϕ ∈ Clo(F):

– ϕ = ϕ1 ∧ ϕ2 ∈ F iff ϕ1, ϕ2 ∈ F ,
– ϕ = ¬ϕ1 ∈ F iff ϕ1 6∈ F .

• INITIAL: Given a set F of LTL formulas, it checks if F can describe the formulas
satisfied at time point 0 in an LTL structure by returning true iff the following
hold for all ϕ ∈ Clo(F):

– ϕ = ϕ1 S ϕ2 ∈ F iff ϕ2 ∈ F
– ϕ = #Pϕ1 6∈ F .

• TCONSISTENT: Given two sets Fpres and Fnext of LTL formulas, it checks if they
can be satisfied in an LTL structure at consecutive time points by returning true
iff the following hold for all ϕ ∈ Clo(F):

– ϕ = #Fϕ1 ∈ Fpres iff ϕ1 ∈ Fnext,
– ϕ = #Pϕ1 ∈ Fnext iff ϕ1 ∈ Fpres,
– ϕ = ϕ1 U ϕ2 ∈ Fpres iff ϕ2 ∈ Fpres or (ϕ1 ∈ Fpres and ϕ1 U ϕ2 ∈ Fnext),
– ϕ = ϕ1 S ϕ2 ∈ Fnext iff ϕ2 ∈ Fnext or (ϕ1 ∈ Fnext and ϕ1 S ϕ2 ∈ Fpres).

The procedure is based on the fact that, if ϕ is satisfiable, then there must be a
periodic model of ϕ with a period that starts at a time point at most exponential in the
size of ϕ and is of length at most exponential in the size of ϕ [SC85, Theorem 4.7]. This
means that the algorithm can iterate over all time points until the end of the period
using a counter i that can be represented in polynomial space. The start s and length p
of the period are guessed in the beginning.7This approach works specifically because
the algorithm does not store all the sets of subformulas guessed during the iteration.
Instead, it focuses on only four such sets Fpres, Fnext, Fs, and FU , which are updated
during processing and occupy only a polynomial amount of memory. Fpres specifies W
w.r.t. the present time point i, Fnext describes the world for the next time point, Fs the
one for time point s, and FU is used as auxiliary set. Fpres is guessed in the beginning
and it is checked if this set can describe the formulas satisfied at time point 0 in an LTL
structure that is a model of ϕ. Subsequently, the counter is continuously incremented
and, until it reaches the beginning of the period s, in each step: Fpres and Fnext are
updated, which means that a set of subformulas of ϕ is guessed for the latter; further,
the Boolean consistency of the new set, and its consistency with the set for the present
time point (according to the temporal operators) are checked. Regarding the latter,

7For simplicity, we additionally require s > 0 in Algorithm 2.1; this is clearly without loss of generality.
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note that the satisfiability test for subformulas of the form ϕ1 U ϕ2 may be deferred
to the next iteration step if ϕ1 ∈ Fpres. At the beginning of the period, the current
set Fpres is stored in Fs and, until the end of the period, the algorithm continues the
iteration as before. In addition, it however has to consider the U -subformulas deferred
at time point s to make sure that they are satisfied within the period. If it has reached
the end of the period, it checks if the latter is the case and if Fs, guessed for describing
W at the beginning of the period, can indeed fulfill that function.

Note that [SC85] do not regard the #P -operator, which is considered by us. However,
we can obviously assume that the sets of subformulas that are guessed also include
subformulas that include this operator and adapt the tests correspondingly (see the
above specifications of INITIAL and TCONSISTENT). In particular, this does not affect
the space requirements of the algorithm because the period that has to be guessed
is still exponential in the size of the considered formula. Furthermore, we present the
algorithm adapted to our setting, where satisfiability is to be decided w.r.t. time point 0.
The original algorithm checks satisfiability at a time point given as argument.

We recapitulate the correctness and space complexity of the procedure.

Lemma 2.21 ([SC85, Thm. 4.1 and 4.7]) Algorithm 2.1 nondeterministically de-
cides the satisfiability of a given LTL formula ϕ by using an amount of space that is
polynomially bounded in |ϕ|.

2.3 Computational Complexity
Computational complexity theory studies the inherent difficulty of computational prob-
lems and classifies them accordingly. Though large parts of this work rely on results
from this field of computer science, a general introduction to it is beyond the scope
of this work; we refer the reader to [AB09] for a detailed overview. This section is
dedicated to basics that are important for this work.

In particular, we study the complexity of decision problems, which are problems that
can be answered by either “yes” or “no”, such as the question if 〈O,A〉 |= ϕ holds for
an ontology O, an ABox A, and a CQ ϕ. In that context, mathematical models of
computation (e.g., Turing machines (TMs)) serve as a means to quantify the amount
of resources (i.e., usually time and space, representing storage) needed to solve the
problems, in dependence of the size of the input problem. Together, the considered
kind of problem and model of computation, the resources in focus, and the specific
bounds placed on the resources characterize a complexity class.

Orthogonally to the complexity classes, we discern combined complexity and data
complexity, depending on whether the problem size is determined by all of the input or
only the data (i.e., in the example, the assertions in A). In this context, we assume
the size of an ontology O, written |O|, to be the number of symbols that is required
to write O down in the alphabet provided by its signature together with the necessary
auxiliary symbols; the size of an ABox (query) is defined correspondingly.8 For the above
example, the size of the input would then be |O|+ |A|+ |ϕ| and |A| regarding combined

8Although we sometimes regard CQs ϕ as sets of atoms (see Section 2.1.2), |ϕ| denotes the number
of symbols that is required to write down ϕ as described throughout the thesis (i.e., instead of the
number of atoms in the CQ).
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and data complexity, respectively. Note that data complexity is of special interest if
the size of the data is considerably bigger than the rest of the input. In that case,
the complexity may drop considerably if input different from the data is disregarded.
For instance, the CQ entailment problem in DL-Litecore depends polynomially on both
the theory and the query, but only in a logarithmic factor on the data, considering
(deterministic) TMs and computation time. Hence, if the size of both the ontology and
the query is negligible, a classification as in LogTime w.r.t. data complexity better
describes the dependence of the computation time on the input than a classification of
in P w.r.t. combined complexity.

We primarily consider Turing machines, which are the classical computation model
since they capture the intuitive notion of an algorithm. TMs can be further specified
as being, for example, deterministic, non-deterministic, or alternating; however, though
some more details on the latter kind are given below, we again refer to [AB09] for for-
mal definitions of the machines and the associated complexity classes. In this work, we
consider classes between LogTime and 2-ExpTime. Regarding a specific bound, the
nondeterministic version of a class—prefixed by the letter N—subsumes the determin-
istic version, the space classes subsume those associated to time, and are subsumed by
exponentially larger time classes. For example, regarding the polynomial bound, the
following inclusions hold:

P ⊆ NP ⊆ PSpace ⊆ NPSpace ⊆ ExpTime.

Recall that the LTL satisfiability problem is in PSpace [SC85, Thm. 4.1] (see Algo-
rithm 2.1). The equality PSpace = NPSpace was shown by Savitch [Sav70, Thm. 1]
and rather important for our PSpace results. In most of the other cases, the exact
relationships between the classes are however still unknown. Note that the problems
contained in P are also called tractable because they are assumed to be efficiently solv-
able in practice.

Since some of the problems studied in this work are of very low data complexity, we
consider Boolean circuits, a second, but less common, computation model.9 Circuits
model hardware and roughly formalize the familiar “silicon chip”. Circuit complexity
classes therefore characterize problems that can be efficiently solved on highly parallel
computers [AB09, Thm. 6.27]. In what follows, we give a rather informal overview of
this computation model. A Boolean circuit is a directed acyclic graph with n ∈ N input
nodes (i.e., vertices with no incoming edges) and one output node (i.e., a vertex with
no outgoing edges). All vertices that are no input nodes are gates labeled by one of
AND, OR, and NOT. Size (i.e., the number of gates, representing processors) and depth
of a circuit (i.e., the length of the longest directed path from an input to the output
node) represent the space and time bounds, respectively. In this work, we regard the
class NC1, which captures all problems computable by circuits of size polynomial in n
and depth O(log n), where n represents the size of the problem. Note that the rather
prominent class AC0 is defined correspondingly, except that the depth must be constant
(O(log0 n)) and the gates may have unbounded fan-in (i.e., the OR and AND gates can
be applied to more than two bits).

9Turing machine classes below LogTime are not commonly used.
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2 Basic Definitions

To obtain a worst-case complexity C for a problem P , we first require it to be hard for
the complexity class (under a given type of reduction). This is the case if any problem
in C can be solved by reducing it to P , and the reduction is “significantly easier” than
solving the problem directly. Moreover, P is complete for the class (for that type of
reduction) if it is hard for that class and contained in it. For instance, [SC85, Thm. 4.1]
actually establish PSpace-completeness of the LTL satisfiability problem. In this work,
we regard reductions in P if not stated otherwise.

For obtaining completeness results, comparisons between complexity classes for dif-
ferent kinds of computation models may thus be useful. However, unlike TMs where
one machine is in focus, circuits are non-uniform models of computation, which means
that instances of the same problem that are of different size are processed by different
circuits. For that reason, a problem is associated with a set (also family) of circuits,
each of which is dedicated to a problem instance of specific size n ∈ N. The classes thus
may contain problems that cannot be decided algorithmically and, hence, are not con-
tained in any TM class (e.g., any problem can be decided by a circuit family where each
circuit is of size O(n ∗ 2n), by encoding the decision for every input). For this reason, a
specific uniformity condition is often imposed on the circuit families; such a condition
restricts the class to problems whose associated circuits (i.e., a description of them) can
be computed by a particular TM, given the size of the input. We apply hardness results
for uniform circuit complexity classes to obtain hardness results for TM complexity
classes and rely on the result that LogTime-uniform NC1 equals ALogTime [BIS90,
Lem. 7.2], the class of problems solvable in logarithmic time with an alternating TM.
Observe that, to obtain such a result, the reduction must be chosen according to the
uniformity of the class it is used to show hardness for (e.g., to show that a problem is
hard for LogTime-uniform NC1, we can use a LogTime-uniform AC0 reduction;10 in
contrast, a nonuniform AC0 reduction would not fit).

The uniform version of AC0 is of special importance because it also equals FO, the
class of problems that can be described in first-order logic [BIS90, Thm. 9.1]. FO is a
descriptive complexity class; such a class is characterized by the logic needed to express
the languages (i.e., the problems) in them.

First-Order Rewritability

We specify the notion of first-order (FO) rewritability in a rather general way.

Definition 2.22 (first-order rewritable) A decision problem is first-order rewritable
if there exists a first-order formula ϕ such that, for every instance P of the problem, we
can effectively construct a first-order structure IP that is solely based on the problem
input and such that ϕ is satisfied in IP iff the answer to P is “yes”. ♦

For query answering problems regarding DL-Lite, research often targets containment in
AC0 if the focus is on data complexity. That is, the FO formula then must not depend
on the data and is considered to be efficiently encodable and evaluable over it, by using

10Note that AC0 is a true subset of NC1 since unbounded (but polynomial in n) fan-in can be simu-
lated using a tree of ORs/ANDs of depth O(log n)[AB09, p. 118]; and the problem of deciding if a
given word is in the language PARITY := {x : x has an odd number of 1s} is not in AC0 [FSS84,
Lemma 4.2, Theorem 4.3] but in NC1 (see Example 6.26 in [AB09]).
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standard database management systems. This is particularly the case because the shape
of the ABoxes A containing the data allows to define FO structures DB(A) of the form
of finite databases that, at the same time, represent minimal models of the respective
ABoxes.

Definition 2.23 (DB(A)) For a given DL-Lite ABox A, the first-order structure
DB(A) = (NI(A), ·DB) over the individual domain NI(A) contains the following rela-
tions for all B ∈ B(A) and R ∈ NR(A):11

BDB := {(a) | B(a) ∈ A},
RDB := {(a, b) | R(a, b) ∈ A}. ♦

The semantics of the satisfaction relation |= is specified as usual:

DB(A) |= B(a) iff (a) ∈ BDB,
DB(A) |= R(a, b) iff (a, b) ∈ RDB.

Note that, if we use this structure with FO formulas encoding ontological knowledge
(i.e., the problem input in ontology-based decision problems) as described above, then
we assume that the database contains corresponding relations for all basic concepts
and role names occurring in the ontology. Furthermore, observe that every real rela-
tional database that contains only unary and binary relations can be regarded as such
a structure.

With this definition of the database we follow the approach of [Cal+05]. Instead
of basic concepts, [Cal+07b; BAC10] consider only concept names as relations. Note
that this makes no difference in our context, so that we can rely on results of [BAC10],
assuming their FO rewritings to be adapted correspondingly. In particular, we apply
the FO rewritings of KB inconsistency and UCQ answering proposed in that paper (see
esp. Theorems 5 and 6 and Lemmas 10–12 in [BAC10]).

Lemma 2.24 ([BAC10])For a KB K = 〈O,A〉 in DL-LiteHhorn and Boolean UCQ ϕ,
we have the following:

• K is inconsistent iff DB(A) |= qunsat(O).

• 〈O,A〉 |= ϕ iff DB(A) |= PerfectRef(ϕ,O).

We conclude this section by specifying alternating TMs, which occur in both hardness
and containment proofs in this work.

Alternating Turing Machines

Alternating Turing machines extend nondeterministic Turing machines by labeling all
states as either existential or universal. The former correspond to states in nondeter-
ministic machines. If the machine is in a universal state, then all transitions that apply
have to lead to an accepting state for the current run to be successful.12

11Note that, in later chapters, where we refer to this definition, we allow assertions of basic concepts to
occur in ABoxes.

12The notions configuration, transition, and run are defined similarly as with nondeterministic TMs;
note however that a run of an alternating TM is a tree.
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Definition 2.25 An alternating Turing machine (ATM) M = (Q,Σ,Γ, q0,∆) is speci-
fied as follows:

• Q = Q∃ ∪ Q∀ is a finite set of states partitioned into existential states Q∃ and
universal states Q∀;

• Σ is the input alphabet;

• Γ is the set of working symbols containing a blank symbol B and all symbols from Σ;

• q0 ∈ Q∃ ∪Q∀ is the initial state;

• ∆ denotes the transition relation, for which we have

∆ ⊆ Q× Γ×Q× Γ \ {B} × {L,R,N}.

A step of M consists of reading one symbol, writing a symbol, moving the head left or
right one tape cell, and entering a new state, in accordance with the transition relation.

A configuration of M is an element of Γ∗QΓ∗. A configuration α′ is a successor
of a configuration α, written α ` α′, if α′ follows from α in one step according to the
transitions in ∆. The reflexive transitive closure of ` is denoted by `∗. A configuration α
is accepting (vs. rejecting) iff

• α is a universal configuration and all its successor configurations are accepting, or

• α is an existential configuration and at least one of its successor configurations is
accepting;

α is a halting configuration if it has no successor configurations.
A computation of M on a word w ∈ Σ∗ is a sequence α0 ` α1 ` · · · ` αn of successive

configurations starting with α0 = q0w, the initial configuration.
M accepts (vs. rejects) a word w ∈ Σ∗ iff the configuration q0w is accepting. M

accepts w in time t if M accepts w and there is no computation with more than t steps.
M accepts w in space s if M accepts w and all configurations α reachable from q0w
take at most s space; that is, |α| ≤ s. ♦

Note that a configuration without successor is accepting iff it is universal. We write
∆(q, σ) to denote the set {(p, %,M) | (q, σ, p, %,M) ∈ ∆}.
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3 Introduction to Temporal Query Answering

In this chapter, we introduce the query languages and the problems Chapters 4 to 7
focus on in detail, outline some of our solutions, and give a general overview of related
work on temporal query answering in DLs. In particular, we focus on a generic DL DL
and (atemporal) query language QL, instantiated later in this chapter; regard temporal
QL queries (TQs) (or temporal queries, if QL is irrelevant or clear from the context);
and introduce the reasoning problems of TQ satisfiability and TQ entailment w.r.t. a
temporal knowledge base written in DL; note that TQ answering w.r.t. temporal knowl-
edge bases—not necessarily formulated in a description logic—is studied in Chapter 8.
The temporal queries are basically formulas of propositional LTL, but the propositions
are replaced by QL queries; and the semantics is suitably lifted from propositional
worlds to DL interpretations. That is, both the QL queries and the axioms from the
temporal knowledge base are interpreted in DL interpretations, and the semantics is
based on infinite sequences of such interpretations over the same non-empty domain,
called DL-LTL structures.

In Section 3.1, we specify the syntax and semantics of the queries and define the prob-
lems. A general approach for obtaining containment results for them which has been
proposed in the literature [BGL12; BBL13] is detailed thereafter in Section 3.2 since we
apply it throughout this work. In Section 3.3, we then describe why this approach does
not directly yield useful containment results for temporal query answering in lightweight
description logics and specify problems to solve, our approach, and questions we investi-
gate in the following chapters. In the remainder of the chapter, Section 3.4, we describe
related work.

3.1 Temporal Queries
In this section, we specify the temporal query answering setting described in Chapter 1.
In particular, the specification is similarly generic, we focus on temporal knowledge bases
in a description logic DL (i.e., instead of in an arbitrary logic, which is considered in
Chapter 8). In particular, we assume that a subset of the concept and role names is
designated as being rigid (vs. flexible).1 As outlined in Section 1.3, the intuition is that
the interpretation of rigid names does not change over time. Specifically, the individual
names are implicitly assumed to be rigid (i.e., in a DL-LTL structure, an individual
name is interpreted by the same domain element at all time points). If a concept
(axiom) contains only rigid symbols, then we may call it a rigid concept (axiom). We
denote by NRC ⊆ NC the rigid concept names, by NRR ⊆ NR the rigid role names, and
assume a DL signature to be of the form Σ = (NI,NC,NRC,NR,NRR), in the following.

1In the literature, rigid and flexible symbols are also called global and local, respectively [Art+07].
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Definition 3.1 (DL-LTL structure) An infinite sequence I = (Ii)i≥0 of interpre-
tations Ii = (∆, ·Ii) for a description logic signature Σ = (NI,NC,NRC,NR,NRR) is a
DL-LTL structure if it respects rigid names; that is:

XIi = XIj for all X ∈ NI ∪ NRC ∪ NRR and i, j ≥ 0. ♦

As mentioned above, the interpretations in a DL-LTL structure share one domain (con-
stant domain assumption). Further, note that we often do not explicitly mention the
signature if it is irrelevant or clear from the context.

We may also use this terminology in other settings in that we consider interpretations
I1, . . . , I` to respect rigid names if they agree on the interpretation of all rigid symbols.

Note that we employ a semantics that is nowadays standard in the field, as remarked
in [Art+07, p. 1]:

“it is generally agreed that the semantics of combined temporal description
logics should be based on the Cartesian products of the flow of time (. . . ) and
the domains of the DL interpretations. (. . . ) This semantics corresponds
to the semantics of first-order temporal logics (. . . ). In fact, the translation
of standard DLs into first-order logic can be extended to a translation of
temporalised DLs into first-order temporal logics.”

Yet, observe that the usual approach of reducing reasoning in the setting with constant
domains to reasoning with expanding, decreasing, or varying domains as, for example,
detailed in [LWZ08, Sec. 3] does not work for lightweight DLs. In particular, the exact
relations between the settings are not clear. Note that we discuss alternative temporal
semantics w.r.t. applications at the end of Section 8.2.

Definition 3.2 (Syntax of Temporal Knowledge Bases) A temporal knowledge
base (TKB) K = 〈O, (Ai)0≤i≤n〉 consists of an ontology O written in DL and a non-
empty, finite sequence of ABoxes of length n+ 1, where the ABoxes contain only asser-
tions of concept and role names. ♦

As with atemporal KBs, we assume all concept and role names occurring in some ABox
of a TKB to also occur in its ontology.

We use the notation NRC(O) for the set of all rigid concept names that occur in
an ontology O, and BR(O) and B¬R(O) for the restriction of B(O) and, respectively,
B¬(O) to rigid concepts. NI(K) denotes the set of all individual names occurring in the
TKB K, and B(A) and NR(A) designate the basic concepts and role names in the ABox
sequence A. For simplicity, we sometimes omit the brackets around the ABox sequence.

Definition 3.3 (Semantics of Temporal Knowledge Bases) A DL-LTL structure
I = (Ii)i≥0 over a domain ∆ is a model of a TKB K = 〈O, (Ai)0≤i≤n〉, written I |= K,
if the following hold:

• Ii |= O for all i ≥ 0,

• Ii |= Ai for all i ∈ [0, n].

A TKB is consistent (or satisfiable) if it has a model, and it is inconsistent (or unsatis-
fiable) otherwise. ♦
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We denote the fact that I |= K does not hold by I 6|= K.
As outlined above, TQs combine QL queries via LTL operators.

Definition 3.4 (Syntax of Temporal Queries) Let Σ = (NI,NC,NRC,NR,NRR) be a
DL signature. The set of temporal QL queries (TQs) over Σ is defined by the following
grammar:

Φ ::= ϕ | ¬Φ1 | Φ1 ∧ Φ2 | #FΦ1 | #PΦ1 | Φ1 U Φ2 | Φ1 S Φ2

where ϕ is a QL query over Σ, and Φ1 and Φ2 are TQs, in their turn.
A TQ Φ is a QL query literal if it is of the form (¬)ϕ with ϕ being a QL query. It is

positive if Φ = ϕ and otherwise negative. ♦

We denote the set of individual names occurring in a TQ Φ by NI(Φ). A TQ Φ contains
a symbol X if X occurs in Φ, and Φ contains a QL query ϕ if ϕ occurs in Φ at least
once not as part of another QL query occurring in Φ.

Observe that the definition of TQs based on QL queries is analogous to the definition
of propositional LTL formulas based on propositions (see Definition 2.18). We hence can
analogously use abbreviations true2 and false and may apply derived operators corre-
sponding to those in Figure 2.2. The empty conjunction and disjunction are interpreted
as true and false, respectively.

The semantics of TQs is based on those of QL queries, which we assume to be based
on interpretations and to be defined already. More precisely, we denote the fact that an
interpretation I satisfies a QL query ϕ by I |= ϕ.

Definition 3.5 (Semantics of Temporal Queries) For a given DL-LTL structure
I = (Ii)i≥0, an i ≥ 0, and a TQ Φ, the satisfaction relation I, i |= Φ is defined by
induction on the structure of Φ: for a QL query ϕ, I, i |= ϕ holds if Ii |= ϕ; for other
kinds of TQs, the corresponding condition of Figure 2.3 has to be satisfied. I is a model
of Φ w.r.t. a TKB K if I |= K and I, n |= Φ; and I is a model of Φ if it is a model of Φ
w.r.t. 〈∅, ∅〉.

A Boolean TQ Φ is satisfiable (w.r.t. a TKB K) if it has a model (w.r.t. K); and
Φ is entailed by a TKB K, written K |= Φ, if every model of K is also a model of Φ
w.r.t. K. ♦

We denote the fact that I, i |= Φ and K |= Φ do not hold by I, i 6|= Φ and K 6|= Φ.
Observe that a model of a TQ must satisfy the query at the current time point n,

which differs from the corresponding definition for propositional LTL if n > 0. Moreover,
for reasoning, we often consider TQs in the context of a TKB.

Definition 3.6 (Reasoning Problems for TQs) For a given Boolean TQ Φ and a
TKB K, there are the following reasoning problems:

• TQ Satisfiability: Is Φ satisfiable w.r.t. K?

• TQ Entailment: Does K |= Φ hold? ♦

We often solve the entailment problem by reducing it to the satisfiability problem: If
¬Φ is satisfiable, then Φ is not entailed.

2For instance, true may denote a fixed TQ ϕ ∨ ¬ϕ, where ϕ is an arbitrary QL query.
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According to [BBL15b], the entailment problem of a TQ Φ w.r.t. a TKB 〈O, (Ai)0≤i≤n〉
can be solved by considering an extension of Φ w.r.t. 〈O, ∅〉—regarding the trivial se-
quence of ABoxes.3 Note that this sometimes eases analysis but is not useful if data
complexity is considered, because the data is incorporated into the query.

Lemma 3.7 ([BBL15b, Lem. 6.1]) Let QL be such that every assertion represents a
QL query. For every TKB K = 〈O, (Ai)0≤i≤n〉 and Boolean TQ Φ, there is a Boolean
TQ Φ′ of size polynomial in the size of Φ and K such that K |= Φ iff 〈O, ∅〉 |= Φ′.

We often regard TQs Φ that do not contain temporal operators; for example, UCQs
or conjunctions of CQ literals in case the QL queries are conjunctive queries. It can be
readily checked that the satisfaction of Φ by a DL-LTL structure I = (Ii)i≥0 at time
point i then only depends on the interpretation Ii, according to the definition and the
conditions in Figure 2.3. For simplicity, we then often write Ii |= Φ instead of I, i |= Φ.
In this context, it is also sufficient to consider classical knowledge bases 〈O,A〉, which
can be regarded as TKBs with a single ABox.

Observe that TQs can be related to propositional LTL formulas in an intuitive way,
by abstracting from the QL queries and considering propositions instead. This allows
us to analyze the temporal structure of the TQ separately from the DL part.

Definition 3.8 (Propositional Abstraction) Let Φ be a TQ and PΦ be a finite set
of propositional variables such that there is a bijection ·pa mapping the QL queries
contained in Φ to elements of PΦ.4 The propositional abstraction Φpa of Φ w.r.t. ·pa is
the propositional LTL formula obtained from Φ by replacing every QL query ϕ in Φ
by ϕpa.

The propositional abstraction Ipa of a DL-LTL structure I = (Ii)i≥0 w.r.t. ·pa is the
propositional LTL structure Ipa = (wi)i≥0 where, for all i ≥ 0,

wi := {ϕpa | ϕ is contained in Φ, Ii |= ϕ}. ♦

This abstraction obviously retains the semantics. That is, for a DL-LTL structure I
that is a model of a TKB K and a bijection ·pa as in Definition 3.8, we have: I is a
model of a TQ Φ w.r.t. K iff Ipa is a model of Φpa.

In the remainder of the section, we present the two instantiations of TQs this work
focuses on: temporalized DL axioms (investigated in Chapter 4) and temporal conjunc-
tive queries (investigated in Chapters 5 to 7). Notes that, in Chapter 8, we consider
various other instantiations.

Temporalized Description Logic Axioms
As it has been done for TDL-Lite [Art+07], DL-Lite logics that allow for temporal
operators in concept expressions; ALC [BGL12]; and SHOQ [Lip14]; we combine the
operators of LTL with DL axioms into the temporal query language DL-LTL.5 That

3The temporal query language considered in [BBL15b] is that of temporal conjunctive queries, but the
result is independent of the QL queries and hence extends to our setting.

4Note that such a set PΦ and bijection ·pa obviously exist for every TQ Φ.
5Note that the queries in the related works do not contain past operators.
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3.1 Temporal Queries

is, DL axioms are considered to be the QL queries. We specifically regard lightweight
DLs DL and investigate the satisfiability problem.

In particular, we disregard TKBs by assuming them to be empty—which means that
we always have n = 0. Observe that DL-LTL then represents a kind of temporal DL,
and TQs are also called DL-LTL formulas. Nevertheless, there are close connections to
the general setting.

Example 3.9 The question if an DL TKB 〈O, (Ai)0≤i≤n〉 is consistent can also be
decided by asking if the following DL-LTL formula is satisfiable (see also Lemma 3.7):

2F (
∧
O) ∧

∧
0≤i≤n,
α∈Ai

#i
Fα.

♦

Observe that the formula in the example is of special shape because it does not contain
arbitrary combinations of CIs, but only a conjunction prefixed by 2F . This is known
as DL-LTL with global CIs (vs. local CIs) and investigated separately in this work.

Lastly, note that we generally use the notion DL literals for the literals mentioned in
Definition 3.4 if QL is the language of DL axioms.

Temporal Conjunctive Queries
Temporal conjunctive queries (TCQs) are a temporal query language introduced in
[BBL13]. They represent TQs where QL is the query language of conjunctive queries.
[BBL13; BBL15b; BBL15a] investigate the TCQ entailment problem w.r.t. temporal
knowledge bases in ALC and other expressive DLs, such as SHOQ. Below, we describe
how TCQ answering can be reduced to TCQ entailment. We investigate that problem
regarding lightweight DLs.

We next introduce additional syntax, describe the relation between TCQ entailment
and TCQ answering, and provide technical assumptions we make about TCQs through-
out this thesis. For a TCQ Φ, we denote the set of variables occurring in Φ by NV(Φ);
and the set of free variables of Φ, which is the union of the free variables of all CQs
contained in Φ, by NFV(Φ). A TCQ Φ is a Boolean TCQ if NFV(Φ) = ∅.

For determining complexity, we have to focus on a decision problem. The focus of
research therefore is usually on query entailment instead of on query answering.

Definition 3.10 (TCQ Answering)For a given TCQ Φ, the problem of TCQ An-
swering is defined as follows: Determine all assignments a (called certain answers) of
the free variables of Φ to named individuals occurring in K such that K |= a(Φ). ♦

As it is the case for UCQs, the set of certain answers to a Boolean TCQ is {()} (“true”)
if K |= Φ and ∅ (“false”) otherwise. Query answering for Boolean TCQs thus represents
the decision problem of query entailment. This is why we focus on Boolean TCQs in
Chapters 5–7. Although answering non-Boolean queries is not necessarily efficient in
practice, the problem of answering a TCQ Φ w.r.t. a TKB K can easily be reduced
to TCQ entailment, by considering exponentially many entailment problems for the
|NI(K)||NFV(Φ)| possible certain answers that are to be considered.

The technical assumptions we make about TCQs are as follows. We assume without
loss of generality that the CQs contained in a Boolean TCQ Φ use disjoint variables
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and denote by QΦ the set of exactly those CQs.6 We further assume that TCQs contain
only individual names that occur in the ABoxes, and only concept and role names that
occur in the ontology; this is clearly without loss of generality, especially because of the
assumption that all concept and role names occurring in a TKB occur in its ontology.
For simplicity, we assume all Boolean CQs contained in TCQs to be connected in the
following; note that this assumption thus also applies to all (U)CQs we regard since
they are also TCQs. To see that this is without loss of generality, consider a Boolean
TCQ Φ containing a CQ ϕ that is not connected. In that case, ϕ can be replaced by
a conjunction ϕ1 ∧ · · · ∧ ϕ` of CQs ϕ1, . . . , ϕ` that represent a partition of ϕ. This
conjunction is of linear size in the size of ϕ and the resulting TCQ has exactly the same
models as Φ. More precisely, every homomorphism of ϕ into an interpretation I is also a
homomorphism of, respectively, ϕ1, . . . , ϕ` into I if it is restricted to the corresponding
terms. And, because of the disjointness of NT(ϕ1), . . . ,NT(ϕ`), given by the definition
of a partition, every collection of homomorphisms of ϕ1, . . . , ϕ` into an interpretation I
can be unified to a homomorphism of ϕ into I.

3.2 A General Approach for Solving Satisfiability
In this section, we describe a general approach for solving the satisfiability problem for
TQs which has been proposed in [BGL12; BBL15b] for DL-LTL formulas and TCQs.
We use this procedure to obtain several upper bounds. Recall that the TQ entailment
problem, which we investigate in the context of TCQs, can be reduced to the satisfiability
problem.

In a nutshell, the given satisfiability problem is reduced to two separate satisfiability
problems—one in LTL and one in DL. In what follows, we assume Φ to be a TQ, Φpa

to be its propositional abstraction, and the corresponding bijection ·pa to map the QL
queries ϕ1, . . . , ϕm contained in Φ to propositions p1, . . . , pm such that pi = ϕpa

i for
i ∈ [1,m]; we sometimes call ϕi induced by pi. For a better understanding, we first
disregard the TKB.

The goal is thus to find a model of Φ. For the LTL part, we therefore look for a
model W of Φpa. However, the DL part can obviously not be ignored entirely since
not every model of Φpa is the propositional abstraction of a DL-LTL structure (e.g.,
the propositional abstraction of the EL-LTL formula Φ = A v B ∧ A(a) ∧ ¬B(a) is
clearly satisfiable while Φ is not). We therefore collect the worlds occurring in W in a
(non-empty) set W ⊆ 2{p1,...,pm} to later be able to check the DL part. This is captured
by an LTL formula Φpa

W as follows:

Φpa
W := Φpa ∧2F

 ∨
W∈W

 ∧
p∈W

p ∧
∧
p∈W

¬p

 ; (3.1)

we use W := {p1, . . . , pm} \W to denote the complement of a set W ⊆ {p1, . . . , pm}.
Observe that the satisfiability of Φ implies the satisfiability of Φpa

W for some W. This
allows to proceed as follows: choose a set W, test whether Φpa

W is satisfiable, and then
6If the variables were not disjoint, we could simply rename them. Note that this assumption also

applies to Boolean UCQs.
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check whether the model W can indeed be the propositional abstraction of a DL-LTL
structure.

To check the latter, we consider the conjunction
∧
pj∈W ϕj for every W ∈ W . However,

the rigid names additionally make it necessary that these conjunctions are considered
together and that we also consider the queries ϕj for which pj ∈ W (e.g., the proposi-
tional abstraction of Φ = A(a)∧#F¬A(a) is satisfiable while Φ is not if A ∈ NRC, since
every DL-LTL structure respects rigid names). To not mix up the flexible names X oc-
curring in different elements of W, we introduce copies X(i) of them for all i ∈ [1, |W|];
X(i) is called the i-th copy of X. In χW , we then use queries ϕ(i)

j for all j ∈ [1,m],
which are obtained from the corresponding queries ϕj by replacing every occurrence of
a flexible name by its i-th copy:

χW :=
k∧
i=1

( ∧
pj∈Wi

ϕ
(i)
j ∧

∧
pj∈Wi

¬ϕ(i)
j

)
. (3.2)

[BGL12] apply this formula for characterizing the satisfiability problem in ALC-LTL
(see the claim in the proof of Lemma 4.3), and it can be easily shown that this result
holds for TQs in general: The TQ Φ is satisfiable iff there is a set W ⊆ 2{p1,...,pm} such
that Φpa

W and χW are both satisfiable.
Regarding TCQs, [BBL15b] extend this approach to the setting with a TKB. We

describe this procedure next, and consider a TKB K = 〈O, (Ai)0≤i≤n〉. As before, the
task is to find a model of Φ and split into an LTL and a DL satisfiability problem.
For the former, we similarly consider the set W = {W1, . . . ,Wk} ⊆ 2{p1,...,pm} and
LTL formula Φpa

W . Yet, the two differences are now that the satisfiability is regarded
at n—in line with the satisfiability problem for TQs w.r.t. a TKB which may contain
data—and that, in addition to W, we consider a second link to the DL part: a mapping
ι : [0, n] → [1, k] that maps time points to indexes from W. This mapping points out
the first n + 1 worlds, which have to be considered w.r.t. the respective ABoxes. The
notion of t-satisfiability summarizes the LTL part.

Definition 3.11 (t-satisfiable) The LTL formula Φpa is t-satisfiable w.r.t. W and ι if
there is an LTL structure W = (wi)i≥0 such that the following hold:

• wi ∈ W for all i ≥ 0,

• W, n |= Φpa,

• wi = Wι(i) for all i ∈ [0, n]. ♦

Note that the first condition captures the second conjunct of (3.1).
For the DL part, we can similarly consider the satisfiability of a TQ of the form

(3.2) w.r.t. a TKB where the ontology contains copies of the CIs in O and the ABoxes
are empty, if the TQ is extended such that it encodes the ABox assertions (see also
Lemma 3.7). Observe, however, that this satisfiability test does not suit data complexity
investigations, because the size of both the TQ and the ontology then depends on the
data given. For that reason, [BBL15b] provide the following definition of r-satisfiability
(r for “rigid”) to summarize the DL part.
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Definition 3.12 (r-satisfiable) The set W is r-satisfiable w.r.t. ι and K iff there are
interpretations J1, . . . ,Jk, I0, . . . , In as follows:

• the interpretations share the same domain and respect rigid names,

• the interpretations are models of O,

• Ji is a model of χi :=
∧
pj∈Wi

ϕj ∧
∧
pj∈Wi

¬ϕj for all i ∈ [1, k],

• Ii is a model of Ai and χι(i) for all i ∈ [0, n]. ♦

This definition explicitly asks for a shared domain and the consideration of rigid names.
In addition, it states k + n+ 1 TQ satisfiability problems: for the TQs χi w.r.t. 〈O, ∅〉
where i ∈ [1, k], and for the TQs χι(i) w.r.t. 〈O,Ai〉 where i ∈ [0, n]. Observe that these
TQs do not contain temporal operators at all and that the TKBs are KBs as well.

The satisfiability of Φ w.r.t. K can then be decided by combining the two parts.

Lemma 3.13 ([BBL15b, Lem. 4.7]) A TQ Φ has a model w.r.t. a TKB K iff there
are a set W = {W1, . . . ,Wk} ⊆ 2{p1,...,pm} and a mapping ι : [0, n]→ [1, k] such that

• Φpa is t-satisfiable w.r.t. W and ι, and

• W is r-satisfiable w.r.t. ι and K.

The original proof of Lemma 3.13 in [BBL15b] considers TCQs and the DL SHQ, but
it is actually independent of both the DL and QL queries under consideration and
hence also applies in our setting. In fact, regarding the empty TKB 〈∅, ∅〉, the lemma is
equivalent to the result from [BGL12] stated above. Specifically, the (trivial) mapping
ι : [0, 0]→ [1, k] can be considered to be such that ι(0) points to the index i ∈ [1, k] that
exists due to the t-satisfiability requirement that w0 ∈ W , such that we have w0 = Wi.

We lastly consider an alternative characterization of r-satisfiability. As outlined above,
the latter can be decided using a TQ similar to (3.2) and an ontology OW,ι. To this end,
we consider copies α(i) of ontology axioms α obtained from the axioms in O by replacing
every occurrence of a flexible name by its i-th copy. In addition to the k worlds—or
time points—already discerned, the first n + 1 time points have to be distinguished.
This is basically because a set of assertions from some of the ABoxes may contradict a
QL query not induced by some world, and because a QL query induced by a world may
be contradicted by an assertion in one of the ABoxes (i.e., based on the assertion, the
ontology may imply something contrary to what is stated in the QL query). Lemma 3.14
captures this approach.

Lemma 3.14 ([BBL15b, Lem. 4.14]) Let QL be such that every assertion in DL is
a QL query. The set W is r-satisfiable w.r.t. ι and K iff the conjunction χW,ι of QL
query literals has a model w.r.t. 〈OW,ι,A〉 where

χW,ι :=
∧

1≤i≤k
χ(i) ∧

∧
0≤i≤n

χ
(k+i+1)
ι(i) , χ(i) :=

∧
pj∈Wi

ϕ
(i)
j ∧

∧
pj∈Wi

¬ϕ(i)
j ,

OW,ι := {α(i) | α ∈ O, 1 ≤ i ≤ k + n+ 1}, A :=
⋃

0≤i≤n,
α∈Ai

{α(k+i+1)}.

38



3.3 Problem Analysis and Technical Contributions

The original proof again targets TCQs but similarly applies in our more general setting.
To sum up, the TQ satisfiability problem (w.r.t. a TKB) is reduced to two separate

ones in [BGL12; BBL15b]: one in LTL and one or several “atemporal” ones in DL—
assuming that the set W and mapping ι, which link the two parts, are given. The
intuition is that W contains exactly the worlds occurring in the LTL model W and that
ι designates the worlds of the first n + 1 time points. Each world induces a set of QL
query literals. The DL part then checks whether these sets are consistent (w.r.t. certain
classical KBs), to ensure that a DL-LTL structure satisfying the QL queries (and the
TKB) according to W can indeed exist.

3.3 Problem Analysis and Technical Contributions
In this work, we focus on the temporal query languages and reasoning problems intro-
duced in this chapter. We consider various different settings:

• We investigate the combined complexity of satisfiability in DL-LTL, both com-
bined and data complexity of TCQ entailment, and rewritability of temporal query
answering for various query languages QL.

• In all three parts, we consider EL and different DL-Lite fragments as instantiations
of DL. In the last chapter, we also regard various other lightweight logics.

• We consider different settings w.r.t. the rigid symbols and distinguish if no rigid
names, only rigid concept names, or both rigid concept and role names are allowed.

For solving satisfiability and entailment, we generally apply the approach presented in
the previous section (see Lemma 3.13). That is, for deciding the DL-LTL and the TCQ
satisfiability problem, we focus on the following three problems of

(i) obtaining W and ι,

(ii) solving the LTL satisfiability test (t-satisfiability), and

(iii) solving the DL satisfiability test(s) (r-satisfiability).

Regarding the choice of methods to obtain W and ι for (i), we have that each can be
obtained by enumeration, guessing, or direct construction, depending on the complexity
class we target. The size of W is exponential in that of the considered query Φ, and the
size of the mapping ι is linear in n, but there are exponentially many possible such map-
pings. Note that, in the special case where we have the trivial ABox sequence (∅)0≤i≤n,
a mapping ι can always be obtained easily if there is a set W that satisfies all but the
last conditions of t-satisfiability and r-satisfiability, respectively. To see this, observe
that W must not be empty, and that the last condition in Definition 3.12 requires the
world Wι(0), an element of W, to be consistent w.r.t. the knowledge base 〈O, ∅〉, which
is true for every world in W if W satisfies the other conditions in that definition. Given
that the other conditions are met, the last condition in Definition 3.11 can thus easily
be satisfied by defining ι : [0, 0] → [1, k] such that it maps 0 to the index of the world
from W that exists because of the first condition. We state that as a fact for future
reference.
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Fact 3.15 For a TQ Φ, TKB 〈O, (∅)0≤i≤n〉, and set W that satisfies all but the last
conditions in Definitions 3.12 and 3.11, there exists a mapping ι : [0, n] → [1, k] such
that the remaining conditions are also satisfied.

Problem (ii) is generally independent of the query language QL and DL DL. More-
over, it can be solved in exponential time w.r.t. combined complexity and in polynomial
time w.r.t. data complexity, by using a reduction to the emptiness of a Büchi automa-
ton [BBL15b, Lem. 4.12].

Regarding Problem (iii), we have two characterizations of r-satisfiability, Defini-
tion 3.12 and Lemma 3.14. The critical point with the former is the requirement that
the interpretations J1, . . . ,Jk, I0, . . . , In share a common domain, because the satisfia-
bility tests for different interpretations cannot be done independently of each other, if
rigid symbols are considered. Observe that J1, . . . ,Jk characterize the satisfiability of
the conjunctions χi w.r.t. 〈O, ∅〉, i ∈ [1, k], respectively. Moreover, the functions of the
common domain are mainly two, which gets more evident if the additionally required
respect of rigid symbols is considered:

(F1) Synchronize the interpretation of rigid symbols regarding the named individuals.

(F2) Guarantee that the satisfiability of the conjunctions χi, i ∈ [1, k], which is repre-
sented by the respective interpretations Ji, is not contradicted by the interpreta-
tion of the rigid names in the other interpretations.

Problem (iii) thus depends on QL and DL, and especially on which symbols are allowed
to be rigid. This can be similarly seen by considering Lemma 3.14. If rigid names
are not considered, then the k conjunctions χ(i) with i ∈ [1, k] in the conjunction χW,ι

do not share any symbols. That is, their satisfiability can be tested independently of
each other. This is important considering the fact that the size of χW,ι depends on the
exponential number k.

Lemma 3.16 ([BGL12, Lem. 5.1]) Let χ1, . . . , χ` be conjunctions of QL query liter-
als, O1, . . . ,O` be ontologies, and A1, . . . ,A` be ABoxes such that elements with different
index i ∈ [1, `] do not share concept and role names. Then the conjunction χ1 ∧ · · · ∧χ`
is satisfiable w.r.t. the KB 〈

⋃
1≤i≤`Oi,

⋃
1≤i≤`Ai〉 iff, for each i ∈ [1, `], χi is satisfiable

w.r.t. 〈Oi,Ai〉.

Note that [BGL12, Lem. 5.1] refers to the language QL of ALC axioms, but the result
obviously also holds in our more abstract setting.

Rigid names, on the other hand, generally require the consideration of the whole
conjunction. We thus get only rather high upper bounds from Lemma 3.14.

Lemma 3.17 If the satisfiability problem for conjunctions of QL query literals w.r.t. a
DL KB is contained in NP, then the satisfiability problem for temporal QL queries w.r.t.
a DL TKB is contained in NExpTime (NP), and the entailment problem is contained
in co-NExpTime (co-NP), w.r.t. combined (data) complexity.

Proof. We focus on the satisfiability problem and regard the conditions in Lemma 3.13.
Given the above observations, (i) both the set W ⊆ 2{p1,...,pm} of worlds and the map-
ping ι : [0, n] → [1, k] can be nondeterministically guessed in exponential (polynomial)

40



3.3 Problem Analysis and Technical Contributions

time, and (ii) t-satisfiability can be decided in exponential (polynomial) time in the
input (data). Regarding (iii) r-satisfiability, we have that χW,ι is of size exponential in
|Φ| because of the first k conjuncts. The size of each of the other n conjuncts is log(n)
times (i.e., for the representation of the index) the sum of a number linear in |Φ|, for
the conjuncts χ(k+i+1), i ∈ [0, n]. The size of OW,ι is exponential in |Φ|, and linear in
|O| and n. The size of A is log(n) times the sum of all |Ai|, i ∈ [1, n], and thus polyno-
mial in the data. Given the assumption (and the fact that |Φ| and |O| are constants),
the satisfiability of the conjunction in Lemma 3.14 can be tested in nondeterministic
exponential (polynomial) time. TQ satisfiability is thus contained in NExpTime (NP),
and entailment in co-NExpTime (co-NP).

The above observations show that, in many cases, we cannot directly follow the ap-
proach of [BGL12; BBL15b] because we target considerably lower complexity results.
While the size of ι is only an obstacle for designing algorithms of sublinear complexity,
the exponential size ofW makes it impossible to guess (and store) this set by using only
a polynomial amount of space. And known results only allow to solve Problems (ii) and
(iii) in exponential time. The trivial approach of Lemma 3.13 does hence neither provide
an upper bound of PSpace w.r.t. combined complexity, the lower bound we have from
LTL satisfiability, nor tractable data complexity, if rigid symbols are considered. Yet,
for EL and the Horn fragments of DL-Lite, we usually have such reasoning complexities.
Indeed, we obtain such PSpace and tractability results, even in some settings with rigid
symbols. More specifically, our contributions are as follows:

• We propose a new, general procedure for solving the TQ satisfiability problem
in polynomial space w.r.t. combined complexity based on adapting the algorithm
originally proposed for solving the LTL satisfiability problem, which is specified in
Algorithm 2.1. Recall that the latter algorithm iteratively constructs a model for a
given LTL formula ϕ: it considers a sequence of exponentially many time points i,
iteratively regards each of them, guesses a world wi, and describes polynomial-
space tests ensuring the adequacy of wi (i.e., regarding the worlds guessed in
previous steps) and relying on a polynomial amount of information that is kept
and updated during the iteration. We extend that algorithm to iteratively con-
struct a model for a given TQ w.r.t. a TKB. That is, Problems (i) and (ii) are
solved in general for Φpa, independently of QL and DL; specifically, we use the
world wi guessed in the original algorithm7 to determine the element W ofW that
represents the QL queries satisfied at i, and ι.8 But our procedure still has to be
tailored to the specific problem under consideration (e.g., TCQ entailment in EL)
regarding Problem (iii). Our approach is sketched in Algorithm 3.1. The high-
lighted parts represent the critical extensions of Algorithm 2.1 (i.e., extensions
that may influence correctness or complexity); the functions which target the
r-satisfiability testing are specified later in this work for each considered problem
individually.

7Recall that wi is determined by Fpres.
8To determine ι in this way, we have to ensure that the first n time points are considered. This can

be done by guessing the start s of the period such that it is large enough. We also have to require
that Φpa ∈ Fpres when i = n instead of when i = 0.
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Algorithm 3.1: Procedure for Deciding TQ Satisfiability
Input: TQ Φ, TKB K 〈O, (Ai)0≤i≤n〉
Output: true if Φ is satisfiable w.r.t. K, otherwise false

1 d := GUESSDATA(Φ,K)
2 i := 0
3 s := Guess a number ≤ 2|Φpa|, > 0, and such that s ≥ n
4 p := Guess a number ≤ 4|Φpa|

5 Fnext := ∅, Fs := ∅, FU := ∅
6 Fpres := Guess a subset of Clo({Φpa})
7 if not CONSISTENT(Fpres) or not INITIAL(Fpres) then
8 return false

9 while i ≤ s+ p do
10 Update Fpres and Fnext, and proceed as in Algorithm 2.1 for input Φpa,

Lines 9 to 17

11 if i = n and Φpa 6∈ Fpres then return false
12 W := Fpres ∩ {p1, . . . , pm}
13 if i > n then Ai := ∅

14 if not TESTRSAT(Φ,O,Ai, d, i, s, p,W ) then
15 return false

16 i := i+ 1
17 Continue as in Algorithm 2.1, Line 19

In particular, this r-satisfiability testing has to be done as follows for obtaining a
concrete, polynomial-space algorithm:

– It can rely on a polynomial amount of additional data d which is guessed in
the beginning and kept during the iteration.

– It must be done in tests that require only polynomial space and, during the
iteration, may consider only one world W—different from the test described
in Lemma 3.14, which considers the exponential set W as a whole.

Corollaries 4.5, 4.22, 5.16, and 6.19 are obtained based on this new approach.

• The characterizations of r-satisfiability by such a polynomial amount of informa-
tion and conditions that can be tested by using only polynomial space presents
another main contribution of our work. This is because we also target low com-
plexities w.r.t. rigid symbols, regarding satisfiability in EL-LTL with global GCIs
(Section 4.4.2), and TCQ entailment in EL (Section 5.1) and Horn fragments of
DL-Lite (Section 6.1). The common idea of our characterizations is to adapt Def-
inition 3.12: we look for similar interpretations but consider their domains to be
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disjoint w.r.t. the unnamed individuals; and we use the additional data and test
conditions to achieve the effects of the shared domain (Functions (F1) and (F2)).

• For obtaining tractable data complexity regarding TCQ entailment in EL and
Horn fragments of DL-Lite, we also integrate the tests described in Lemma 3.13
into the construction of W and ι. The main achievement represents the algorithm
we propose for DL-Lite; there, we include rigid symbols and target the sublinear
ALogTime complexity. These results are stated in Theorems 5.19 and 6.37.

• The remaining containment results are rather straightforward consequences of
Lemma 3.13 and the above observation that, if rigid symbols are disregarded, the
r-satisfiability test can be split into exponentially many satisfiability tests, each
regarding only polynomially large conjunction of QL query literals: Corollaries 4.6,
5.17, and 5.20, and Theorems 7.6 and 7.8.

• Another major contribution are the various hardness results, where we apply the
few means these lightweight DLs offer for showing hardness for co-NP, NExpTime,
co-NExpTime, and 2-ExpTime in the presence of rigid symbols: Theorems 4.8,
5.18, 5.21, 7.7, and 7.9.

• For TCQ entailment in DL-Lite logics between DL-Litekrom and DL-LiteHbool, we es-
tablish close relationships to TCQ entailment in more expressive DLs: Lemmas 7.2
and 7.11.

• In Chapter 8, we lastly obtain a generic rewritability result for answering TQs
without negation, which applies to various concrete query languages QL and
lightweight logics—as ontology languages—that have been proposed in the lit-
erature.

Note that the following chapters refer to the preliminaries but are self-contained
otherwise. This is why explanations in different chapters may overlap due to the above
described similarity of the approaches.

We below provide an overview of the assumptions we make throughout Chapters 4
to 7—recall that all of them are without loss of generality:

• Individual names are always rigid.

• Concept and role names occurring in an ABox of a (T)KB also occur in its ontology.

• Individual names occurring in a TCQ also occur in the ABoxes of the (T)KB
regarded.

• CQs are connected.

• CQs contained in a TCQ are Boolean and do not share variables; this also applies
to multiple occurrences of one CQ.

Especially note that, if we refer to settings without rigid symbols or with only rigid
concept names, this does not include the individual names.
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Lastly, observe that a rigid concept name A can easily be represented using a flexible
concept name A′ and a rigid role name RA: by replacing every occurrence of A by A′

and considering the global CIs A′ v ∃RA.> and ∃RA.> v A′. That is, in DL-LTL,
the latter are prefixed by 2F and added as conjuncts to the formula and, regarding
TCQs, they are added to the ontology. In the context of Chapters 4 to 7, where all
the considered DLs allow to express such CIs and global CIs can be expressed in both
settings we investigate, DL-LTL satisfiability and TCQ entailment w.r.t. a TKB (with
non-empty ontology), the following fact thus holds.

Fact 3.18 TQ satisfiability in the presence of rigid concept names can be linearly re-
duced to TQ satisfiability in the presence of rigid role names.

That is, hardness results for the case NRC 6= ∅ also apply to the case where NRR 6= ∅, and
we can disregard the case where NRC = ∅ but NRR 6= ∅. Note that we in the following
proceed in this way, without explicitly referring to Fact 3.18.

3.4 Related Work
In this section, we review related work on temporal ontology-based data access that
is closest to our work, where the ontologies are written in DLs. In general, there are
various ways to represent time in DL modeling; for example, by considering time points
as concrete datatypes [BH91; Lut01] or formalisms inspired by action logics [AF98;
Har+13]. Good overviews of different such approaches are provided in [AF00; AF05].

We focus on temporal description logics that are combinations of standard temporal
logics with DLs and focus on two-dimensional semantics, which is nowadays the general
approach and common understanding of the notion (see Definition 3.1 and the part
below); though, there is no formal definition.9 Such combinations still offer a wealth of
degrees of freedom:

• base DL;

• temporal logic (e.g., LTL or CTL, which is shortly covered later in this section);

• application of temporal logic operators: for temporalizing concepts or roles (i.e.,
if the operators are allowed within concept or role expressions); axioms, such as
in DL-LTL; or queries, such as in TQs;

• semantics (e.g., standard first-order semantics or epistemic semantics, which sep-
arate the temporal and DL dimension (see [Cal+07a], for example)).

Note that the choice of temporal logic fixes the notion of time considered (e.g., if it
is based on points or intervals) and that the semantics also specifies details such as
if the notion of time is based on the naturals, integers, or reals; and bounded to the
past or future. However, we do not further consider specifics such as the latter since
their relevance is minor w.r.t. the results we review. Moreover, the approaches in the
literature differ w.r.t. the problem and kind of complexity they focus on.

9Note that temporal description logics represent special kinds of extensions of DLs with modal log-
ics [Kur+03].
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Earlier works investigate temporal versions of standard reasoning problems w.r.t. com-
bined complexity and target applications such as terminologies with temporal aspects
or temporal conceptual modeling. In contrast, most recent investigations focus on query
answering with the goal of retrieving (temporal) data and also consider data complexity.
In the following, we cover both directions.

Regarding the problems studied, we apply the terminology of the atemporal setting
(e.g., the satisfiability problem of a concept w.r.t. a TKB is defined in correspondence
with Definition 2.5). Moreover, we also consider TKBs where the concepts and roles
in the ontology are temporalized, thus extending the TKBs from Definition 3.2. To
avoid confusion, we may further slightly adapt the original names of the logics since
there is no common naming scheme. Generally, we prefix DLs with the letter T if the
logic allows for temporalizing concepts—we mention the temporal logic used—and add
a corresponding superscript if only a subset of the temporal logic operators is allowed;
the suffix -LTL denotes the fact that axioms may be temporalized with LTL operators.

3.4.1 Reasoning with Temporalized Concepts and Axioms
The first combination of a DL and a point-based temporal logic, based on a two-
dimensional semantics, has been proposed in [Sch93]. Subsequent studies then have
focused on classifying different combinations of LTL and (extensions of) ALC regarding
expressivity and complexity, with results mostly in the range of ExpSpace, if rigid roles
are disregarded. Since a detailed discussion of these results is beyond the scope of this
work, we refer to [Kur+03; AF05] for details; the Description Logic Handbook [Baa+07]
also provides a summary of main results. An important outcome of that research is how-
ever the observation that rigid roles or several other constraints on roles (e.g., temporal
operators) generally lead to undecidability. Because decidability represents one major
feature of DLs, research since then has been dedicated to the study of decidable tem-
poral DLs, which we review in the following. Decidable temporal DLs are generally
obtained by either restricting the expressivity of the temporal features (e.g., restricting
the operators or rigid symbols allowed) or the DL (e.g., by focusing on lightweight DLs).
Most recent studies often consider restrictions on both sides since they target tractable
logics.

[LWZ08] show that, without rigid symbols, neither temporalizing ALC concepts nor
GCIs leads to an increase in complexity over the ExpTime complexity of satisfiability in
ALC. Note however that rigid concept names A with the former kind of temporalization
can be modeled with GCIs of the form A v 2FA. While the temporal and description
logic part thus cannot interact critically in these formalisms, the combination of the
two allows intricate interactions and leads to ExpSpace-completeness. In a nutshell,
this is the case because the LTL part, which generally leads to a model (i.e., a DL-LTL
structure) that is periodic with a period of exponential length, here does not have this
property any more; formulas as the following example from [LWZ08, p. 8] have only
models whose interpretations all must be distinct:

2F (¬(> v ¬A) ∧ (A v #F2F¬A)).

Temporalized DL axioms (see Section 3.1) have originally also been proposed re-
garding ALC [BGL12]. The satisfiability problem in ALC-LTL similarly has the same
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complexity as in the atemporal case, but rigid concepts and roles lead to NExpTime
and 2-ExpTime-completeness, respectively, and thus to a considerable increase in com-
plexity. In the same paper, it is however also shown that this increase can be overcome,
at least for rigid concepts, if GCIs are only allowed to occur globally in the formulas.
[Lip14] extends the former results to SHOQ-LTL, which implies that they hold for all
such temporal DLs based on a DL between ALC and SHOQ.

Tractable DLs in combination with LTL are investigated in [Art+07; Art+14b].
[Art+14b] investigate the KB consistency problem for several temporal extensions of
different DL-Lite logics that allow for temporalizing concepts with subsets of LTL oper-
ators, including rigid roles. The positive results include containment in NLogSpace or
P and are obtained by reduction to fragments of propositional temporal logic, but they
only hold for formalisms strongly constrained on the temporal side. In most cases, more
variety in that direction leads to NP-completeness and, if more expressive role expres-
sions are allowed (e.g., arbitrary RIs), even to undecidability. Regarding both DL-Lite
and EL, [Art+07] integrate temporalized concepts, axioms, and rigid roles. They show
that the satisfiability of formulas in this setting for the resulting logics TDL-Litebool-
LTL and TDL-Lite#F

horn-LTL is ExpSpace-complete, whereas it is PSpace-complete in
TDL-Lite#F

krom-LTL; TDL-Litebool denotes the temporal extension of DL-Litebool where
the concepts in CIs may be formed by applying full LTL to basic concepts while, in
the latter two formalisms, only #F may be applied. The logics thus allow to describe
necessary future consequences in the ontology; for example, the fact that an application
that is out of user focus during two consecutive observations should be in the energy
saver mode at the next observation moment, can be expressed as follows:

Application u OutOfFocus u#FOutOfFocus v #F #F EnergySaverMode.

Note that, in all these formalisms, rigid concept names A can be modeled by adding
conjuncts of the form 2F (A v #FA) to the formula. The results of [Art+07] are
interesting because, in the atemporal case, complexity results for DL-Litekrom are usually
worse than corresponding ones for DL-Litehorn [Art+09]. In a nutshell, TDL-Lite#F

horn CIs
are critical because they allow to encode a standard counter—over time—that discerns
exponentially many time points per individual (e.g., similar to the counter in the proof
of Theorem 7.9); in addition, the outer LTL allows to specify conditions that hold for
all individuals per time point; and additional restrictions on selected individuals, which
are based on former time points, may constrain the latter conditions further. Note that
this interaction does not depend on rigid roles. The other results are again based on
translations into fragments of first-order temporal logic. For T EL3F , a logic allowing
for temporalized concepts that are standard EL concepts augmented with the operator
3F , subsumption is shown to be undecidable in the presence of rigid roles; the point
is that 3F in concept expressions in combination with the EL features allows to model
disjunction and hence to reduce to an undecidable temporal version of ALC. For that
reason, the complexity of the EL-LTL satisfiability problem was an interesting open
question since the logic represents another temporalization of the popular DL EL and
there was no hardness result apart from the PSpace complexity of LTL. We address
EL-LTL in [BT15b], where we investigate complexity w.r.t. different selections of rigid
symbols and show that EL-LTL can be allocated in between DL-Lite-LTL and ALC-
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LTL/SHOQ-LTL. These results together with new ones on DL-Lite-LTL and other such
temporal lightweight DLs are detailed in Chapter 4.

There are some recent works that temporalize concepts with temporal logic operators
different from the LTL ones. [GJL12; GJS14; GJS15] consider computation tree logic
(CTL) [CE81] for temporalizing concepts and investigate subsumption. CTL extends
LTL in that the time is not considered to be linear regarding future, but branching.
Since it allows to quantify over these branches both existentially and universally, it
allows to model alternative future behavior. For example, the fact that a dishwasher
that is currently filled by someone may be switched on in the next observation moment
can be expressed with the following CI:

Dishwasher u ∃FilledBy.> v E #F SwitchedOn

where E denotes the existential path quantifier. The latter expresses that the statement
following it represents a possible future, while other future states may exist though.
[GJL12] show that, if CTL is applied to ALC, then the complexity does not increase
over the atemporal case and propose a tractable temporal DL based on EL, which is
however very restricted. Moreover, the results are very negative—nonelementary or
undecidable—if rigid roles are allowed, even for EL [GJS14]. For that reason, follow-up
investigations [GJS15] consider restricted ontologies (e.g., acyclic ones) and, indeed, ob-
tain better results. Nevertheless, containment in PSpace, for instance, is only achieved
by either strongly restricting the allowed temporal operators or disregarding the ontol-
ogy entirely.

A new direction of research has recently been pursued in [GJO16; Baa+17], investi-
gating metric versions of LTL for temporalizing ALC concepts (and GCIs) and regarding
satisfiability (of the resulting ontological formulas). One such logic allows, for example,
to annotate U with an interval based on concrete values, representing time points. Yet,
the complexities are rather high, often in the range of ExpSpace and 2-ExpSpace.
While the papers present important foundational work on metric temporal DLs, the
authors themselves state that the need for similar studies regarding lightweight DLs,
query answering, and data complexity to analyze the applicability for practical temporal
OBDA.

Observe that the above described results also apply to instance query answering (i.e.,
the problem of instance checking), as it is the case in the atemporal setting. The works
do however not investigate data complexity, which is relevant in practice. The more
recent studies described next address this issue.

3.4.2 Querying for Temporal Data
Query answering with the goal of retrieving data is in focus of recent research in DLs,
in general, and this is reflected in the latest explorations on reasoning about temporal
knowledge. The different works are primarily discerned regarding the ontology con-
sidered, depending on whether it is also temporal or written in a classical DL. The
former approaches offer more expressivity but, on the other hand, tend to lead to higher
reasoning complexities. For this reason, they are usually studied w.r.t. lightweight DLs.
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[Art+15a] investigate different temporal extensions of the DL-Lite logics described
in Section 2.1.10 The goal of the work are first-order rewritability results regarding
the temporal query answering problem (see Definition 2.22). The queries are arbitrary
combinations of temporalized concept and role atoms using the operators of first-order
temporal logic and thus very expressive, which is why epistemic semantics are employed
(i.e., it is well known that queries with negation are not tractable, even in the atemporal
setting [Gut+15]). However, the investigations then mainly consider a very restricted
setting where roles are disregarded and the ABoxes contain a single individual name
only (the name itself may occur multiple times in an ABox). Though, these results can,
amongst others, be applied to show first-order rewritability of instance query answering
in TDL-Lite#F

core and TDL-Lite2F
core. In particular, [Art+15a] define specific temporal

canonical interpretations for TKBs in these logics, which can be used to construct the
rewritings.

Also for TKBs where the ontology is written in T EL#∗ (i.e., the logic allows for
both #F and #P ), there are canonical models, which can be used to show that the
satisfiability problem is tractable w.r.t. data complexity if rigid roles are disallowed
[GJK16]. The latter paper also identifies a certain periodicity of the ontology to ensure
decidability and proposes several acyclicity notions for ontologies in temporal EL that
yield tractable combined and data complexity.

Research in the second direction—temporal query answering regarding classical onto-
logies—has been first considered in a general way in [GK12] regarding expressive op-
erators on both the temporal and the DL side (i.e., first-order formulas). Temporal
conjunctive queries have first been studied in [BBL13], focusing on the complexity of
the entailment problem. That paper and follow-up investigations [BBL15b; BBL15a]
focus on ALC and extensions such as SHOQ—under open world semantics—, which is
reflected in the rather high complexity results. Yet, for many of the considered DLs the
data complexity is in co-NP, as in the atemporal case, even in the presence of rigid
concept names. Observe that the exact complexity w.r.t. rigid roles is still open, but
containment in ExpTime is known. The combined complexity is generally as in the
atemporal case if rigid symbols are not considered, but w.r.t. rigid symbols increases up
to 2-ExpTime.

Together with [Kla13; KM14b] we regard TCQ answering and entailment w.r.t. the
most prominent lightweight description logics [BLT15; BT15b; BT15a]. Our complexity
results on TCQ entailment [BT15b; BT15a] are detailed in Chapters 5, 6, and 7 regard-
ing EL, DL-Litecore to DL-LiteHhorn, and extensions of DL-LiteHhorn, respectively; note
that especially w.r.t. combined complexity, the latter logics have however turned out to
be not very “lightweight” any more. In Chapter 8, we describe the initial parts of the
work in [BLT15], by generalizing TCQs and proposing a practical approach for temporal
query answering; for details about algorithms, especially including rigid concept names,
we refer to the paper. In a nutshell, the feasibility of rewriting is achieved by dropping
the negation operator. [Kla13; KM14b] also describe an approach for implementa-
tion w.r.t. DL-Litecore, but achieve the first-order rewritability by considering epistemic
semantics. Note that there are also some works on non-standard reasoning problems re-

10Note that [Art+15a] actually study fragments that are slightly more expressive than those described
in Section 2.1 (e.g., they consider more expressive RIs that may even model rigid roles).
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garding TCQs that are different from query answering and entailment [KM13; KM14a].
There, the focus is on ABox abduction, which roughly is the question of how the given
ABox sequence can be extended so that a specific TCQ is entailed.

Observe that, although the above described queries considered in [Art+15a] are very
expressive, they do not subsume TCQs. TCQs allow to existentially quantify variables
occurring in conjunctions of atoms, whereas the other queries can only express tree-
shaped CQs, via concept expressions.

A similar observation can be made regarding the logics where the axioms are tempor-
alized. While formulas containing only temporalized assertions can be directly regarded
as TCQs, the latter cannot express local CIs. On the other hand, CQs that are not
tree-shaped (e.g., see the introductory example CQ (1.1)) cannot be modeled through
concepts in logics such as ALC-LTL.

There are also some recent proposals of interval temporal description logics that allow
for tractable query answering [Art+14a; Art+15b]. Specifically, they combine fragments
of the Halpern-Shoham interval logic [HS91a] with DL-Lite. Note that this setting is
rather different from the one we consider. Nevertheless, these approaches follow an
interesting direction of research, given that, for example, the possibility to associate
data with intervals has been recently incorporated into the SQL standard [KM12].
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In this chapter, we focus on an abstract lightweight DL DL, regard a formula Φ in DL-
LTL, and investigate the combined complexity of the satisfiability problem in various
settings. DL-LTL formulas allow to temporalize ontological axioms and hence, for
example, to express rules about temporal knowledge. The following EL-LTL formula
describes that it always must hold that, if all occupants in a room are sleeping at two
consecutive observation moments, then all lights and screens are switched off at the
second time of observation:

2F

(
(RoomOccupant v Sleeping) ∧#F (RoomOccupant v Sleeping)→

#F (Light v ∃HasState.SwitchedOff) ∧ #F (Screen v ∃HasState.SwitchedOff)
)
.

Recall that EL-LTL formulas can also contain assertions, next to CIs; for instance, the
fact that Ann is sleeping at two consecutive observation moments should always imply
that her devices are not fully powered at the second time of observation:

2F

(
Sleeping(ann) ∧#FSleeping(ann)→

#F ¬∃HasDevice.∃HasState.FullPowerMode(ann)
)
.

In line with the examples where DL = EL we specify DL by requiring it to satisfy the
following properties:

(P1) It allows for conjunction, >, and either ⊥ or qualified existential restriction.

(P2) Satisfiability of conjunctions of DL literals can be decided in NP.

Note that DL-Litehorn is expressive enough to satisfy the first property. In Section 4.1,
we show that DL-LiteHbool is “lightweight” enough to satisfy the second one and that EL
also represents an instance of DL. We then prove in Section 4.2 that satisfiability in
DL-LTL is in PSpace and hence not harder than satisfiability in LTL, if rigid symbols
are disregarded. The rather negative result that rigid symbols lead to NExpTime-
completeness is shown in Section 4.3 based on the NExpTime-hardness proof of ALC-
LTL [BGL12, Lem. 6.2]; note that satisfiability in ALC-LTL is however 2-ExpTime-hard
if rigid roles are considered. Since complexities of this magnitude nevertheless seem to
be out of the scope of usual applications of the lightweight DLs, we in the remainder
of the chapter consider restricted formulas, with global CIs. Indeed, for the concrete
temporal DLs EL-LTL and DL-LiteHhorn-LTL, the satisfiability problem then also is in
PSpace in the presence of rigid symbols.

Our containment proofs basically follow Lemma 3.13. The goal is thus to find a
corresponding setW of LTL worlds within specific time and space constraints, although
the size of this set is exponential in that of Φ. Note that ι is irrelevant by Fact 3.15.
Throughout the chapter, we use the notation of Section 3.2.
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4.1 Satisfiability of Conjunctions of DL Literals
Since conjunctions of DL literals do not contain temporal operators, we do neither
have to focus on a specific time point nor to consider an entire DL-LTL structure.
Satisfiability can be decided by regarding a single interpretation (i.e., the remaining
parts of the structure are irrelevant and can be chosen arbitrarily, which also means
that rigid names have no effects).

For EL, we can therefore use a reduction to the knowledge base consistency problem
in the DL ELO⊥, by creating EL axioms capturing the semantics of the respective
literals.

Lemma 4.1 Satisfiability of conjunctions of EL literals can be decided in P.

Proof. The proof is by reduction to the consistency problem in the DL ELO⊥. That
is, for a given conjunction Ψ of EL literals, we construct an ELO⊥ knowledge base
K = 〈O,A〉 that is consistent iff Ψ is satisfiable.

The initial sets O and A contain all GCIs and, respectively, assertions that occur
non-negated in Ψ. For each negative literal ¬α occurring in Φ, K is then extended
according to the kind of ¬α as follows:

• Negated concept assertion ¬C(a): the axioms C(a) and C uC v ⊥, where C is a
fresh concept name, are added to K.

• Negated role assertion ¬R(a, b): the axiom {a} u ∃R.{b} v ⊥ is added to O.

• Negated GCI ¬(C v D): the axioms C(a), D(a), and D u D v ⊥, where a is a
fresh individual name and D is a fresh concept name, are added to K.

It is easy to see that K is consistent iff Ψ is satisfiable. Since consistency of ELO⊥ KBs
is decidable in polynomial time [BBL05, Thm. 4], the claim thus holds.

Regarding DL-Lite, the proof is even more easy. This is because the complexity of KB
consistency is given in [Art+09] for KBs where the ABoxes may contain negated asser-
tions, as in our setting (see Section 2.1.1). A KB is thus obtained from a conjunction of
DL-Lite literals by replacing each negated CI ¬(B1u. . .uBm v Bm+1t. . .tBm+n) simi-
lar as above by CIs Bm+1uB v ⊥, . . . , Bm+nuB v ⊥, and assertions B1(a), . . . , Bm(a),
B(a), where B and a are fresh symbols. From the results in [Art+09, Thm. 8.2] we then
get the following.

Lemma 4.2 Satisfiability of conjunctions of DL-Lite literals can be decided

• in P in DL-LiteHhorn and

• in NP in DL-LiteHbool.

4.2 Without Rigid Names
For the case without rigid names, PSpace-hardness of satisfiability directly follows from
PSpace-completeness of the satisfiability problem in propositional LTL. Containment
in PSpace is however no direct consequence of known results and shown in this section;
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though, note that there is such a result for the temporal DL TDL-Lite#F
krom [Art+07] (see

Section 3.4 for a description of that formalism). Specifically, we show it for DL-LTL
where DL is a DL for which the satisfiability problem of conjunctions of DL literals can
be decided in NP. As described in Section 3.3, the direct application of the approach
applied in the related work [BGL12; BBL15b], captured in Lemma 3.13, yields only
a nondeterministic exponential time procedure, because of the exponential size of the
set W.

The idea of our Algorithm 3.1 is to integrate the LTL and the DL satisfiability testing:
we test the satisfiability of the LTL formula Φpa as it is done in Algorithm 2.1 and
ensure in parallel that the guessed worlds are such that the respective conjunctions of
DL literals from Definition 3.12 are satisfiable. Since we disregard both rigid names and
the TKB, the DL part can be solved in this way, by checking the satisfiability of the k
conjunctions in χi separately, in exponentially many (possibly nondeterministic) tests,
each requiring only polynomial time. We then can consider W to consist of all worlds
guessed, although we never had to construct it in total.
Definition 4.3 Given a DL-LTL formula Φ and disregarding rigid symbols, satisfia-
bility can be decided using Algorithm 3.1 by taking 〈∅, ∅〉 as input TKB, assuming
GUESSDATA to do nothing, and defining TESTRSAT(Φ,O,Ai, d, i, s, p,W ) to return true
iff the below conjunction of DL axioms is satisfiable:∧

pj∈W
ϕj ∧

∧
pj∈W

¬ϕj .
♦

Observe that, in this special case without rigid symbols and TKB, we do not need
additional data and have n = 0. The latter means that our additional adaptations
regarding n in Algorithm 3.1 do not have any effect w.r.t. Algorithm 2.1.
Lemma 4.4 The nondeterministic algorithm described in Definition 4.3 decides satis-
fiability in DL-LTL by using only polynomial space if NRC = ∅ and NRR = ∅.

Proof. We defineW as the union of all sets W encountered while running the algorithm.
Then, the correctness follows from Lemma 3.13, Fact 3.15, the correctness of the LTL

algorithm (see Lemma 2.21), Definition 3.12 regarding the empty TKB and no rigid sym-
bols (i.e., the k conjunctions χi do not share concept or role names), Lemma 3.16, and
the fact that our adaptation leads to a negative result iff one of the latter conjunctions
is not satisfiable.

The space complexity is a consequence of Lemma 2.21, the fact that the size of the
conjunction considered in the r-satisfiability test is linear in that of Φ, and (P2).

The complexity of satisfiability in DL-LTL is then obtained by combining Lemma 4.4
and the well-known result of Savitch [Sav70, Thm. 1].
Corollary 4.5 Satisfiability in DL-LTL is in PSpace if NRC = ∅ and NRR = ∅.

4.3 With Rigid Names
In this section, we show that rigid concept symbols change the picture. In a nutshell,
this is the case because, now, interactions are possible: we cannot only use the LTL
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features to discern exponentially many time points and to nondeterministically choose
a specific axiom at each of them, but we can also apply the DL part to correspondingly
discern exponentially many (rigid) concepts, instantiated by different individuals, and
thus “save” the LTL choices invariant to time, at the respective of those individuals—
via rigid names. If the axioms chosen are associated with specific individuals in this
way, then the DL part may additionally constrain the choice. We prove that it needs a
NExpTime Turing machine to decide satisfiability in this setting.

The corresponding containment result directly follows from Lemma 3.17 for DL-LTL
because of (P2). Lemmas 4.1 and 4.2 thus let us state the following more specific result.

Corollary 4.6 Satisfiability in EL-LTL and DL-Lite [ |H]
[horn|bool]-LTL is in NExpTime,

even if NRR 6= ∅.

NExpTime-hardness can be shown already for the case with rigid concept names, by
reducing the 2n+1-bounded domino problem.

Definition 4.7 A domino system is a triple D = (T,H, V ), where T is a finite set of
domino types and H,V ⊆ T × T are the horizontal and vertical matching conditions.
Let T be a domino system and I = t0, . . . , tn−1 ∈ Tn be an initial condition, which is a
sequence of domino types of length n > 0. A mapping τ : [0, 2n+1−1]× [0, 2n+1−1]→ T
is a 2n+1-bounded solution of D respecting the initial condition I iff the following hold
for all x, y < 2n+1:

• if τ(x, y) = t and τ((x+ 1) mod 2n+1, y) = t′, then (t, t′) ∈ H;

• if τ(x, y) = t and τ(x, (y + 1) mod 2n+1) = t′, then (t, t′) ∈ V ;

• τ(i, 0) = ti for i < n. ♦

The complexity we target is established in [BGG97, Thm. 6.1.2], where it is shown
that there is a domino system D = (T,H, V ) such that, given an initial condition
I = t0, . . . , tn−1 ∈ Tn, the problem of deciding if D has a 2n+1-bounded solution re-
specting I is NExpTime-hard.

For the reduction, we apply the features outlined above. The exponentially many
different time points, each associated with a specific rigid concept and individual in-
stantiating it, represent the positions in the plane of the domino. To tile the plane, we
represent the domino types as flexible concepts and require a specific named individual
to always satisfy one of them, by nondeterministically choosing the corresponding asser-
tion. The ontology is used to transfer that domino choice to the entire domain (i.e., by
using local GCIs of the form > v . . . ) and to save it via a rigid concept at the individual
associated to the current time point. The rigid concepts ensure that all positions and
the chosen types are instantiated in every world, which allows us to enforce the matching
conditions.

Theorem 4.8 Satisfiability in DL-LTL is NExpTime-hard if NRC 6= ∅, even if NRR = ∅.

Proof. Our proof consists of two steps: we first reduce the 2n+1-bounded domino prob-
lem for a given domino D with initial condition I to checking the satisfiability of a DL-
LTL formula ΦD,I applying ⊥, and then dispose of the ⊥ constructor by using qualified
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existential restriction. We thus cover both kinds of DLs DL we consider (see (P1), in
the beginning of the chapter). For the reduction, we adapt the NExpTime-hardness
proof for ALC-LTL w.r.t. rigid concepts [BGL12, Lem. 6.2]; we point out the differences
to that reduction at the end of the proof. We assume a domino system D = (T,H, V )
with initial condition I to be given and construct a DL-LTL formula ΦD,I such that
ΦD,I is satisfiable iff D has a 2n+1-bounded solution respecting I. Subsequently, we first
list and describe the symbols we use and then specify ΦD,I .

We discern global1 concept names that are flexible and either satisfied by all domain
elements or by none of them; local concept names are rigid and used to identify specific
individuals. Global names are used to transfer values such as domino types from a
named individual a to all other elements, and local names are used to save these values
at some of these elements. Altogether, we use the following symbols:

• an individual name a;

• flexible (global) concept names Z0, . . . , Z2n+1, Zh0 . . . , Zh2n+1, Zv0 , . . . , Zv2n+1, to
realize three binary counters modulo 22n+2 (Z, Zh, and Zv) over the positions in
the plane, by iterating over time;

• rigid (local) concept names X0, . . . , Xn and Y0, . . . , Yn, to similarly realize two
binary counters modulo 2n+1, where the X-counter describes the horizontal and
the Y -counter the vertical position in the plane;

• flexible (global) concept names Gt, Ght , Gvt , and a rigid (local) concept name Lt
for all t ∈ T , to describe the tiling;

• rigid (local) concept names X0, . . . , Xn, Y 0, . . . , Y n, and flexible (global) concept
names Z0, . . . , Z2n+1, Zh0 , . . . , Z

h
2n+1, and Zv0, . . . , Z

v
2n+1 representing the comple-

ments of the above counters;

• auxiliary flexible concept names N , Eh0 , . . . , Eh
2n+1, Ev0 , . . . , Ev

2n+1.

The first n + 1 bits of the Z, Zh and Zv-counters are used to represent the 2n+1 x-
coordinates, and the second n + 1 bits are used to represent the y-coordinates of the
plane. We count with the Z-counter up to 22n+2 by iterating over time and use the
time points to realize all positions (x, y) ∈ [0, 2n+1 − 1] × [0, 2n+1 − 1]. Specifically,
we enforce a to satisfy the concepts from the corresponding subset of {Z0, . . . , Z2n+1}
for every value of the Z-counter.2 By modeling the concept names Zi as global, we
ensure that the value of the counter is always transferred to all domain elements. For
every position represented by the Z-counter, the Zh and Zv-counters represent the
top and right neighbor position, respectively. Note however that, regarding a specific
world, these three counters only allow us to enforce that the position they currently
represent—regarding the Z-counter, we call it the current position—is instantiated, by
all individuals.

To be able to address arbitrary positions independently of the current time point,
we use the rigid concept names X0, . . . , Xn and Y0, . . . , Yn. In particular, we ensure

1Not to be confused with rigid or always (in time).
2For simplicity, we refer to a instead of to “the domain element representing a”.
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that there is always (at least) one individual whose X and Y -values match the value
of the global Z-counter, such that every position (x, y) ∈ [0, 2n+1 − 1]× [0, 2n+1 − 1] is
represented by at least one individual in every world.

To tile the plane, we ensure that a satisfies exactly one current global domino type
Gt in every world, which represents the type t chosen for the current position. The local
concept Lt is used to represent this choice independently of time, similar to the use of
the X/Y -counter w.r.t. the positions represented by the Z-counter. Specifically, we do
not only ensure that there is an individual whose X and Y -values match the value of
the global Z-counter, but it also must satisfy Lt if Gt is the current global type. In
this way, we ensure that all positions and the chosen types are instantiated in every
world, which allows us to enforce the matching conditions. For the latter, we explicitly
represent the types chosen for the two important neighbor positions as global types Ght
and Gvt and ensure that they match the local types of the respective positions.

We now formalize these descriptions and the initial condition and construct the DL-
LTL formula ΦD,I as a conjunction of the DL-LTL formulas listed in the following.
• Every value of the Z-counter is realized in some world by a, which means that a

satisfies the concepts from the corresponding subset of {Z0, . . . , Z2n+1}:

2F

∧
0≤i≤2n+1

(( ∧
0≤j<i

Zj(a)
)
↔
(
Zi(a)↔ #F¬Zi(a)

))
.

This formula requires the i-th bit of the Z-counter to be flipped from one world
to the next iff all preceding bits are true. Thus, the value of the Z-counter in the
next world is equal to the value in the current world incremented by one.

• In every world, the Zh and Zv-counter are synchronized with the Z-counter and
also realized by a. This is described similar to the Z-counter in two steps. (i)
The x-coordinate represented by the Zh-counter equals the one represented by
the Z-counter plus 1:

2F

∧
0≤i≤n

(( ∧
0≤j<i

Zj(a)
)
↔
(
Zi(a)↔ ¬Zhi (a)

))
.

(ii) The y-coordinates represented by the two counters are the same:

2F

∧
n+1≤i≤2n+1

(
Zi(a)↔ Zhi (a)

)
.

The Zv-counter is modeled correspondingly:

2F

∧
n+1≤i≤2n+1

(( ∧
n+1≤j<i

Zj(a)
)
↔
(
Zi(a)↔ ¬Zvi (a)

))
,

2F

∧
0≤i≤n

(
Zi(a)↔ Zvi (a)

)
.

• Regarding a, the interpretation of the concept name Zi as the complement of Zi
is enforced as follows; corresponding conjuncts are used to model Zhi and Z

v
i , the

complements of Zhi and Zvi , respectively:

2F

∧
0≤i≤2n+1

(
Zi(a)↔ ¬Zi(a)

)
.
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• The values of the three global counters Z, Zh, and Zv (and their complements)
are shared by all individuals in every world. Again, the global formulas for Zh
and Zv, and also those for the three complements, are analogous to the ones for
the Z counter:

2F

∧
0≤i≤2n+1

((> v Zi) ∨ (Zi v ⊥)) .

• In every world, also one combination of the X and the Y -counter is realized by
(at least) one individual. To ensure that all combinations are covered, we consider
the one matching the global Z-counter (in this world) and, to make sure that they
are realized, we require the concept N to be instantiated in every world. N is
then used to model the former:

2F

(
¬(N v ⊥) ∧

∧
0≤i≤n

(N u Zi v Xi) ∧
∧

n+1≤i≤2n+1
(N u Zi v Yi−(n+1)) ∧

∧
0≤i≤n

(N uXi v Zi) ∧
∧

n+1≤i≤2n+1
(N u Yi−(n+1) v Zi)

)
.

(4.1)

In the same way, we enforce the correct interpretation of the complements of the
local counters. That is, we use a formula as the above one where Zi, Xi, and
Yi−(n+1) are replaced by Zi, Xi, and Y i−(n+1), respectively.

Altogether, the above descriptions ensure that every position of the plane is realized
in every world by some individual. Note that we need this to enforce the matching
conditions given in D with the help of global CIs, since they address different positions
at the same time. Next, we describe the admissible tilings.

• Every world gets exactly one (global) domino type that represents the choice for
the current position and is shared by all individuals:

2F

( ∨
t∈T

(
(> v Gt) ∧

∧
t′∈T\{t}

(Gt′ v ⊥)
))
. (4.2)

Again, we similarly consider the global domino types Ght and Gvt representing the
choices for the current right and, respectively, top neighbor position (represented
by Zh and Zv).

• Given the domino types chosen for the neighbor positions, the horizontal and
vertical matching condition can be enforced easily:

2F

( ∨
(t,t′)∈H

(
Gt(a) ∧Ght′(a)

)
∧

∨
(t,t′)∈V

(
Gt(a) ∧Gvt′(a)

))
.

• To synchronize the domino types Gt, Ght , and Gvt w.r.t. the different worlds (e.g.,
type t ∈ T represented by Ght in the current world equals that represented by Gt
in the world where the Z-counter is equal to the current Zh-counter), we use the
local (rigid) domino types Lt. First, we ensure that the local type satisfied by
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4 LTL over Lightweight Description Logic Axioms

the individual representing the current position equals the current global type Gt
with CIs as follows for all t ∈ T :

2F

∧
t∈T

(
(N uGt v Lt) ∧ (N u Lt v Gt)

)
.

Note that, because of the second of the above CIs and the fact that every world has
exactly one global domino type Gt, satisfied by all individuals (see (4.2)), every
individual satisfying N in some world also has exactly one local domino type: the
global type of that world, in which it represents the current position (see (4.1),
which also ensures that such an individual exists for every world).
To synchronize the choices of domino types, especially those represented by Gt, Ght
and Gvt , we employ the auxiliary concept names Ehi and Evi :

2F

∧
0≤i≤n

(
(Zhi uXi v Ehi ) ∧ (Zhi uXi v Ehi )

)
∧

2F

∧
n+1≤i≤2n+1

(
(Zhi u Yi−(n+1) v Ehi ) ∧ (Zhi u Y i−(n+1) v Ehi )

)
.

The CIs for Evi are analogous, using the Zvi and Z
v
i -counters. In this way, the

interpretation of Eh0 u · · · u Eh2n+1 must include all those domain elements that
satisfy the one combination of X and Y -values which matches the current Zh-
counter. This particularly includes the individual instantiating N that is forced
to exist in the corresponding world by (4.1). Moreover, it allows us to ensure
that the global domino type Ght matches the local domino type Lt at all domain
elements satisfying Eh0 u· · ·uEh2n+1; analogous arguments and CIs apply regarding
the vertical direction:

2F

(
(Eh0 u . . . u Eh2n+1 uGht v Lt) ∧ (Eh0 u . . . u Eh2n+1 u Lt v Ght )

)
.

The initial condition I = t0, . . . , tn−1 is described as follows, for all i ∈ [0, n− 1]:

2F

(
(CxZ = i) u Zn+1 u · · · u Z2n+1 v Gti

)
where, for all bj ∈ {0, 1} and j ∈ [0, n],(

CxZ =
∑

0≤j≤n
2j ∗ bj

)
:=

l

0≤j≤n
bj=0

Zj u
l

0≤j≤n
bj=1

Zj .

This conjunction identifies a particular x-position in the Z-counter. If the y-coordinate
represented by the Z-counter is 0 additionally, as enforced above, then the corresponding
domino type of the initial condition is enforced. This finishes the definition of the
DL-LTL formula ΦD,I , which consists of the conjuncts specified and mentioned above.
Observe that the size of ΦD,I is polynomial in n. Moreover, it can be checked that ΦD,I
is satisfiable w.r.t. 〈OD,I , ∅〉 iff D has a 2n+1-bounded solution respecting I.

We lastly describe how the bottom constructor can be eliminated. We apply an idea
of [BBL05] (see the proof of Theorem 7), use a fresh rigid concept name L and a flexible
role name R, and require the following formula to be satisfied:

ΦL := ¬L(a) ∧2F (∃R.L v L).

By replacing the negated CI ¬(N v ⊥) in ΦD,I by > v ∃R.N , we ensure that
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4.3 With Rigid Names

• in all the exponentially many worlds, a has an R-successor that satisfies N and,
because of (4.1), represents the position associated to the corresponding world;
and

• a as well as the above mentioned individuals do not satisfy L in any world, since
L is rigid.

We hence can use L instead of ⊥ without changing the semantics everywhere else in the
formula ΦD,I . The reason for this is that it suffices to enforce the CIs with ⊥ on the
right-hand side to hold regarding individuals representing the 22n+2 relevant positions,
instead of for all domain elements. We denote by Φ′D,I the formula resulting from these
replacements and get that Φ′D,I ∧ ΦL is satisfiable iff D has a 2n+1-bounded solution
respecting I.

Given the above observations, it is easy to see that the polynomial size and cor-
rectness are retained. This finishes the reduction, and NExpTime-hardness follows
from (P1) and the NExpTime-hardness of the 2n+1-bounded domino problem [BGG97,
Thm. 6.1.2].

We point out main differences to the proof for ALC-LTL, which similarly reduces the
domino problem. The disjunction allowed in ALC CIs allows to enforce the matching
conditions by using only a single global type Gt, while we additionally need Ght and Gvt
together with a complex synchronization with the help of the auxiliary concepts. More
specifically, ALC-LTL allows to require that the current global type and the local types
of the elements representing the important neighbor positions fulfill some condition of
H and V (for details, we refer to the original proof). In contrast, we have to ensure
the matching using the nondeterminism of LTL and hence the DL-LTL formula and
the individual a. Another difference is the presence of the concept names explicitly
representing the complements of the various counters (e.g., Xi). In ALC, this can be
directly expressed using negation.
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4 LTL over Lightweight Description Logic Axioms

4.4 Global GCIs in EL-LTL
In this section, we focus on EL, consider a setting where the GCIs are global, and show
that the satisfiability problem then, also in the presence of rigid names, is in PSpace.3
The restriction to global GCIs has similarly been shown to yield a better complexity for
ALC-LTL in the case with rigid concept names, ExpTime instead of the NExpTime-
completeness in the case without restrictions [BGL12, Thm. 6.5]. We hence show the
impact to be considerably greater if EL is considered. An EL-LTL formula with global
GCIs is generally of the following form

Φ := (2ΨO) ∧Ψ (4.3)

where O is an EL ontology, ΨO is the conjunction of the GCIs contained in it, and Ψ
is an EL-LTL formula that contains no GCIs and in which all concept assertions are
assertions of basic concepts; without loss of generality, we assume the GCIs to be in
normal form and all concept and role names occurring in the formula to also occur in
O. The generalized TQ answering setting we introduced in Chapter 3 moreover allows
us to regard the ontological part of the formula to be the global ontology in the TKB
so that we can assume Φ to contain only EL assertions in the following.

For deciding satisfiability of Φ, we again rely on Lemma 3.13; a set W ⊆ 2{p1,...,pm} is
thus critical. This set is of exponential size, captures the LTL part of the satisfiability
problem in an abstract way, and also describes the axioms to be considered for satisfia-
bility testing in EL. Specifically, each element of W induces a set of (negated) axioms
and, because of the rigid symbols, these sets cannot be considered separately.

In what follows, we first propose rigid canonical interpretations of polynomial size
to summarize consequences of rigid knowledge in these sets of EL axioms. Then, we
propose a new characterization of r-satisfiability of W in terms of those interpretations
where we consider the elements of W separately. Hence, it can be applied in our over-
all approach of Algorithm 3.1 for deciding satisfiability of Φ by using only polynomial
space.

4.4.1 Rigid Canonical Interpretations
To explicitly represent knowledge that follows from rigid information in axioms and
hence is invariant to time, we define rigid canonical interpretations. These interpreta-
tions are iteratively constructed based on the rigid knowledge in the finite canonical
interpretations (see Definition 2.10) and similarly to the latter. For that, we introduce
new unnamed elements that serve as prototypical successors, in the same way the un-
named elements in the canonical interpretations do; in contrast, the latter elements do
not play that role any more.

Definition 4.9 The rigid canonical interpretation I ′K for a KB K = 〈O,A〉 written
in EL is based on the finite canonical interpretation IfK and the set ∆I′Ku of unnamed
individuals, defined as follows:

∆I′Ku := {u′A | A ∈ NC(O) ∪ {>}}.
3Note that the notion “global” here has a semantics different from the one of the global concepts

considered in the previous section.
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4.4 Global GCIs in EL-LTL

• The domain is:

∆I′K := ∆IfK ∪∆I′Ku .

• For all a ∈ NI and A ∈ NRC:

aI
′
K := a,

AI
′
K := AI

f
K ∪ {u′A1 ∈ ∆I′Ku | O |= A1 v A}.

• For all i ≥ 0, let interpretations I ′K,i be defined as I ′K is defined up to this point.
Further, they are specified iteratively as follows, for all A ∈ NC \ NRC, R ∈ NRR,
and S ∈ NR \ NRR:

AI
′
K,0 := {u′A1 ∈ ∆I′Ku | O |= A1 v A},

RI
′
K,0 := RI

f
K ∪ {(u′A1 , u

′
A2) ∈ ∆I′Ku ×∆I′Ku | O |= A1 v ∃R.A2},

SI
′
K,0 := {(u′A1 , u

′
A2) ∈ ∆I′Ku ×∆I′Ku | O |= A1 v ∃S.A2},

AI
′
K,i+1 := {e ∈ BI′K,i | B ∈ B(O),O |= B v A},

RI
′
K,i+1 := RI

′
K,i ∪ {(e, u′A1) ∈ BI′K,i ×∆I′Ku | B ∈ B(O), O |= B v ∃R.A1},

SI
′
K,i+1 := SI

′
K,i ∪ {(e, u′A1) ∈ BI′K,i ×∆I′Ku | B ∈ B(O), O |= B v ∃S.A1}.

• The definition of I ′K is finished based on these interpretations:

AI
′
K :=

⋃
i≥0

AI
′
K,i , RI

′
K :=

⋃
i≥0

RI
′
K,i , SI

′
K :=

⋃
i≥0

SI
′
K,i .

♦

Since the domain of the rigid canonical interpretation is of polynomial size, it is easy
to see that the above iteration converges after polynomially many iterations. Thus the
interpretation is constructed in polynomial time.

We now prove two auxiliary lemmas to characterize I ′K regarding its domain elements.
First, we show that the constituent interpretations of I ′K all agree regarding the “new”
unnamed domain elements.

Lemma 4.10 Let K = 〈O,A〉 be a consistent knowledge base in EL. For all u′A ∈ ∆I′Ku ,
B ∈ B(O), and i ≥ 0, we have u′A ∈ BI

′
K,i iff O |= A v B.

Proof. The proof is by induction on i and starts with i = 0.

• Let B ∈ NC. The claim holds directly by the definition of BI′K,0 .

• Let B = ∃R.A1. (⇒) Given u′A ∈ (∃R.A1)I′K,0 , the interpretation of roles in I ′K,0
and the fact that u′A 6∈ ∆IfK yield that there must be an element u′A2 ∈ ∆I′Ku such
that (u′A, u′A2) ∈ RI′K,0 and u′A2 ∈ A

I′K,01 and, specifically, that O |= A v ∃R.A2.
From that, we get O |= A2 v A1 by the definition of AI′K,01 , and this yields
O |= A v ∃R.A1. (⇐) If O |= A v ∃R.A1, then we have (u′A, u′A1) ∈ RI′K,0 and
u′A1 ∈ A

I′K,01 by the definition of I ′K,0. This means u′A ∈ (∃R.A1)I′K,0 .
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4 LTL over Lightweight Description Logic Axioms

In the induction step, we regard i > 0.

• Let B ∈ NC. u′A ∈ BI
′
K,i is equivalent to the existence of a concept C ∈ B(O) such

that O |= C v B and u′A ∈ CI
′
K,i−1 , which is equivalent to O |= A v C by the

induction hypothesis. We hence get the equivalence to O |= A v B.

• Let B = ∃R.A1. u′A ∈ BI
′
K,i means that an element u′A2 ∈ ∆I′Ku exists such that

(i) (u′A, u′A2) ∈ RI′K,i and (ii) u′A2 ∈ A
I′K,i1 hold. By the interpretation of symbols

in Definition 4.9, (i) is equivalent to the existence of a j < i and a C ∈ B(O) such
that u′A ∈ CI

′
K,j and O |= C v ∃R.A2 and (ii) is equivalent to the existence of

a concept D ∈ B(O) such that u′A2 ∈ D
I′K,i−1 and O |= D v A1. The induction

hypothesis then, respectively, yields equivalences to O |= A v C and O |= A2 v D,
and we get O |= A v ∃R.A1, altogether.

The second auxiliary lemma describes I ′K regarding the domain elements of IfK.
Lemma 4.11 Let K = 〈O,A〉 be a consistent KB in EL, e ∈ ∆IfK, and B ∈ B(O). If
e ∈ BI′K, then there is a rigid concept C over O such that e ∈ CIfK and O |= C v B.

Proof. We assume e ∈ BI′K . For the case that B ∈ NRC, Definition 4.9 yields e ∈ BIfK .
O |= B v B holds trivially. For the remaining cases, the proof is by induction over
the construction of I ′K, showing that, for all i ≥ 0, e ∈ BI′K,i implies the existence of a
concept C as above. For the base case, let i = 0.

• Let B ∈ NC \ NRC. This case cannot apply since BI′K,0 ∩∆IfK is empty.

• Let B = ∃R.A. Given the assumption, there is an element d ∈ ∆I′K such that
(e, d) ∈ RI′K,0 and d ∈ AI′K,0 . Because of e ∈ ∆IfK , we must have R ∈ NRR and
(e, d) ∈ RIfK by the definition of I ′K,0. But then d ∈ ∆IfK similarly implies A ∈ NRC
and d ∈ AIfK . Thus, we can set C := ∃R.A.

For the induction step, we assume e ∈ BI′K,i+1 \BI′K,i .

• Let B ∈ NC \NRC. The assumption and the definition of BI′K,i+1 imply that there
is a concept B1 ∈ B(O) such that e ∈ BI′K,i1 and O |= B1 v B. By the induction
hypothesis, there is a rigid concept C over O such that e ∈ CIfK and O |= C v B1.
But then we also have O |= D v B, as required.

• Let B = ∃R.A1. We can consider an element d ∈ ∆I′K such that (e, d) ∈ RI′K,i+1

and d ∈ AI′K,i+11 by assumption.
If d ∈ ∆IfK , then we must have R ∈ NRR, (e, d) ∈ RI′K,0 and (e, d) ∈ RIfK . By the
assumption that e ∈ BI′K,i+1 \ BI′K,i , we then get that d ∈ AI′K,i+11 \ AI′K,i1 . From
the previous case and the base cases for concept names B ∈ NRC, we know that
there is a rigid concept D over O such that d ∈ DIfK and O |= D v A1. But then
C := ∃R.D is as required since e ∈ (∃R.D)IfK and O |= ∃R.D v ∃R.A1.
If d = u′A2 ∈ ∆I′Ku , then Lemma 4.10 yields that O |= A2 v A1 and u′A2 ∈ A

I′K,01 .
Since e ∈ BI′K,i+1 \BI′K,i , we know that there is a B1 ∈ B(O) such that e ∈ BI′K,i1
and O |= B1 v ∃R.A2. By the induction hypothesis, there is a rigid concept
over O which we choose to be C such that e ∈ CIfK and O |= C v B1. Thus, we
conclude that O |= C v ∃R.A1, as required.
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4.4.2 Characterizing r-Satisfiability
In this section, we regard a setW ⊆ 2{p1,...,pm} as in Lemma 3.13, which consists of worlds
W1, . . . ,Wk, and relates the LTL and the EL part of the satisfiability problem. We
characterize the r-satisfiability of W as outlined in Section 3.3. Different from existing
characterizations (see Section 3.2), we consider the exponentially many conjunctions
from Definition 3.12 that are based on the worlds in W individually, so that we can
apply the characterization in Algorithm 3.1: the idea is to specify a polynomial amount
of additional data and conditions such that the former captures sufficient information
about the rigid knowledge in the axioms induced by W1, . . . ,Wk and is included into
the conditions; the latter only regard the satisfiability of a single conjunction χi w.r.t.
O for i ∈ [1, k] at a time, can be tested using only polynomial space, and together
characterize the satisfiability of the conjunctions in interpretations sharing a common
domain (Function (F2)).

To synchronize the interpretations regarding the named individuals (Function (F1)),
one part of the additional data are (negated) assertions of the relevant rigid names on
all individual names occurring in Φ.

Definition 4.12 (ABox Type) An ABox type for Φ is a set

AR ⊆ {A(a),¬A(a) | a ∈ NI(Φ), A ∈ NRC(O)} ∪
{R(a, b),¬R(a, b) | a, b ∈ NI(Φ), R ∈ NRR(O)}

with the property that α ∈ AR iff ¬α /∈ AR. ♦

Regarding Function (F2), we collect the (negated) axioms to be satisfied in ABoxes for
all i ∈ [1, k]:

AQi := {ϕj | pj ∈Wi} ∪ {¬ϕj | pj ∈Wi}.

The conditions to be satisfied for r-satisfiability can then be captured by the property
of r-completeness.

Definition 4.13 (r-complete) A tuple (AR,A∃R) consisting of an ABox type AR for
Φ and a set

A∃R ⊆ {∃R.A(a) | a ∈ NI(Φ), R ∈ NRR(O), A ∈ NC(O) ∪ {>}}

is r-complete (w.r.t. W and Φ) if the following hold for all i ∈ [1, k]:

(C1) KiR := 〈O,AR ∪ A∃R ∪ AQi〉 is consistent.

(C2) For all a ∈ NI(Φ), R ∈ NRR(O), and A ∈ NC(O) ∪ {>}, a ∈ (∃R.A)I′i implies
∃R.A(a) ∈ A∃R, where I ′i := I ′[KiR]+ , and [KiR]+ is obtained from KiR by dropping
all negated assertions. ♦

The idea is that AR fixes the interpretation of the rigid names on the named individuals
and that A∃R specifies what kind of successors need to be present at every time point,
regarding all rigid roles. Recall that we originally consider the TKB to be empty when
regarding satisfiability in EL-LTL, and in the setting with global GCIs only modify
this assumption w.r.t. the ontology. Since W is required to be non-empty, we thus can
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disregard the empty ABox A0 from the TKB in our characterization by Fact 3.15. We
specifically can show that the existence of an r-complete tuple w.r.t. W characterizes
the r-satisfiability of this set.
Lemma 4.14 W is r-satisfiable w.r.t. Φ iff there is an r-complete tuple w.r.t. W and Φ.

The proof of this result is split over the subsequent sections.

If W is r-satisfiable, then there is an r-complete tuple w.r.t. W and Φ

Let J1, . . . ,Jk be the interpretations that exist according to the r-satisfiability of W.
We construct ABoxes AR and A∃R as follows:

AR := {A(a) | A ∈ NRC(O), a ∈ NI(Φ), J1 |= A(a)} ∪
{¬A(a) | A ∈ NRC(O), a ∈ NI(Φ), J1 6|= A(a)} ∪
{R(a, b) | R ∈ NRR(O), a, b ∈ NI(Φ), J1 |= R(a, b)} ∪
{¬R(a, b) | R ∈ NRR(O), a, b ∈ NI(Φ), J1 6|= R(a, b)},

A∃R := {∃R.A(a) | R ∈ NRR(O), A ∈ NC(O) ∪ {>}, a ∈ NI(Φ),
C a rigid concept over O, a ∈ CJ1 , O |= C v ∃R.A}.

In what follows, we focus on Definition 4.13 and show that the tuple (AR,A∃R) is
r-complete. The set AR is obviously an ABox type and, since the interpretations
J1, . . . ,Jk agree on the interpretation of all rigid names by assumption, each of them is
a model of AR. Furthermore, these interpretations satisfy O and hence also A∃R. This
implies that, for all i ∈ [1, k], KiR = 〈O,AR ∪ A∃R ∪ AQi〉 is consistent.

Regarding the other condition of r-completeness, we assume that a ∈ (∃R.A)I′i holds
for some a ∈ NI(Φ), R ∈ NRR(O), A ∈ NC(O) ∪ {>}, and i ∈ [1, k], and show that we
then have ∃R.A ∈ A∃R. By Lemma 4.11, there is a rigid concept C over O such that
a ∈ CIi and O |= C v ∃R.A, where Ii := I[KiR]+ is the finite canonical interpretation
for [KiR]+. From Lemma 2.17, we then get that a ∈ CJi , and thus a ∈ CJ1 since Ji
and J1 agree on the interpretation of the rigid names.

It remains to prove the other direction of Lemma 4.14.

If there is an r-complete tuple w.r.t. W and Φ, then W is r-satisfiable w.r.t. Φ

We focus on an r-complete tuple (AR,A∃R) and in the following first provide auxiliary
definitions, then define interpretations J1, . . . ,Jk, and lastly show that these interpreta-
tions satisfy the requirements stated in Definition 3.12. The idea of our construction of
the interpretations J1, . . . ,Jk is roughly to integrate the finite canonical interpretations
of the KBs in Condition (C1) of Definition 4.13. This can be done by using the cor-
responding rigid canonical interpretations to include consequences of rigid information
from the KBs, which are invariant to time. For all i ∈ [1, k], consider the following
definitions.
• Let Ii := I[KiR]+ be the finite canonical interpretation of the KB [KiR]+ obtained

from KiR by removing all negated assertions from AR and AQi ; and let I ′i := I ′[KiR]+
be the corresponding rigid canonical interpretation.
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We show that Ii is a model of KiR, though. Since Ii satisfies [KiR]+ by Lemma 2.12,
we can focus on the negated assertions in AR and AQi . Given that KiR is consistent
by Condition (C1), we know that [KiR]+ 6|= α holds for all negated assertions
¬α ∈ AR∪A∃R. By Definition 2.10, it then follows that Ii |= ¬A(a), which implies
the following.

Fact 4.15 Ii is a model of KiR.

• We write ∆Iiu to distinguish the unnamed domain elements unique to the canonical
interpretation Ii and uiA instead of uA for the elements in this set.
Thus, the domain of Ii is composed of the pairwise disjoint sets NI(Φ) and ∆Iiu .

Fact 4.16 The set NI(Φ) and all sets ∆Iiu with i ∈ [1, k] are pairwise disjoint.

We now construct the interpretations J1, . . . ,Jk as required to show the r-satisfiability
of W by joining the domains of the interpretations Ii and ensuring that they interpret
all rigid names in the same way. The common domain ∆ is specified as follows:

∆ := NI(Φ) ∪
k⋃
i=1

∆Iiu .

Ji is defined below, for all i ∈ [1, k]:

• For all a ∈ NI(Φ): aJi := a.

• For all rigid concept names A: AJi :=
⋃k
j=1A

Ij .

• For all flexible concept names A: AJi := AIi ∪
⋃k
j=1

(
∆Iju ∩AI

′
j

)
.

• For all rigid role names R:

RJi :=
k⋃
j=1

RIj ∪
k⋃
j=1

k⋃
`=1
{(e, u`A) | e ∈ ∆Iju ∩ (∃R.A)I′j}.

• For all flexible role names R:

RJi := RIi ∪
k⋃
j=1
{(e, uiA) | e ∈ ∆Iju ∩ (∃R.A)I′j}.

We thus have constructed interpretations J1, . . . ,Jk that share one domain, respect
rigid names, and satisfy the UNA for all relevant individual names. It remains to show
that each Ji is a model of O and χi. To this end, we first characterize it in terms of the
canonical interpretations it is based upon.

Lemma 4.17 For all i, j ∈ [1, k] and concepts B ∈ S(O), the following hold:

a) For all a ∈ NI(Φ), we have a ∈ BJi iff a ∈ BIi.
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b) For all e ∈ ∆Iju , we have e ∈ BJi iff
• i = j and e ∈ BIi, or
• e ∈ BI′j .

Proof. Regarding b), observe first that e ∈ BI′i implies e ∈ BIi by Lemma 4.11 and
the fact that Ii is a model of O. This means that, if i = j, then the two items are
equivalent to the first item. On the other hand, if i 6= j, then only the second item in b)
has to be considered. We prove a) and b) simultaneously by induction on the structure
of B and start with the base cases. The claims obviously hold for B = > and, for a
flexible concept name B, they follow directly from the definition of Ji and Fact 4.16.

Let B ∈ NRC(O). For a), we have a ∈ BJi iff there is some j ∈ [1, k] such that a ∈ BIj
by the definition of Ji. Since both Ii and Ij are models of the ABox type AR, this is
equivalent to a ∈ BIi .

For b) and i = j, Fact 4.16 and the definition of Ji yield the claim. For i 6= j, we
additionally observe that BI′j ∩∆Ij = BIj holds by Definition 4.9.

Regarding the induction steps, we skip the case for B = A1uA2 since it can be easily
treated based on the semantics and assume B = ∃R.A.

(⇐) For both a) and b), this direction is a direct consequence of the observations
that RIi ⊆ RJi and AIi ⊆ AJi ; regarding the last item, we additionally mention that
e ∈ (∃R.A)I′j implies (e, uiA) ∈ RJi and uiA ∈ AJi by the definition of Ji and, w.r.t. the
latter, Definitions 2.10 and 4.9.

(⇒) We begin with the proof of a). If R is rigid, then the definition of Ji implies that
there is an element e ∈ ∆Ij , j ∈ [1, k], such that (a, e) ∈ RIj and e ∈ AJi .

• If e ∈ NI(Φ), then we have R(a, e) ∈ Aj ∪ AR by Definition 2.10. Since KjR is
consistent and AR is an ABox type, this yields that R(a, e) ∈ AR and leads to
(a, e) ∈ RIi by Lemma 2.12. a ∈ (∃R.A)Ii is obtained by the induction hypothesis
w.r.t. e.

• If i = j and e ∈ ∆Iiu , then the induction hypothesis yields e ∈ AIi , which leads to
a ∈ (∃R.A)Ii .

• It remains to consider the case that i 6= j and e ∈ ∆Iju . Then, we have (a, e) ∈ RI′j
by Definition 4.9. From the induction hypothesis, we obtain e ∈ AI′j , and hence
a ∈ (∃R.A)I′j . Thus, we have ∃R.A(a) ∈ A∃R, and hence a ∈ (∃R.A)Ii since Ii is
a model of A∃R.

If R is flexible, then there is an element e ∈ ∆Ii such that (a, e) ∈ RIi and e ∈ AJi
by the definition of Ji and Fact 4.16. By applying the induction hypothesis to e (and
i = j), we obtain that e ∈ AIi and thus a ∈ (∃R.A)Ii .

For b), we begin with the case that R is rigid. By the definition of Ji, either (i)
there is an element d such that (e, d) ∈ RIj and d ∈ AJi ∩∆Iju (see Definition 2.10 and
Fact 4.16), or (ii) e ∈ (∃R.A)I′j , (e, u`A) ∈ RJi , and u`A ∈ AJi for some ` ∈ [1, k] (again
by Fact 4.16). By the initial observation, we thus only have to consider (i). By the
induction hypothesis, we have either (i’) i = j and d ∈ AIi or (ii’) d ∈ AI′j . In the first
case, we can infer that e ∈ (∃R.A)Ii and, in the second case, we have (e, d) ∈ RI′j since
R is rigid, and thus e ∈ (∃R.A)I′j .
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If R is flexible, then either (i) there is an element d such that (e, d) ∈ RIi and
d ∈ AJi ∩∆Iiu (see Definition 2.10 and Fact 4.16), or (ii) e ∈ (∃R.A)I′j , (e, uiA) ∈ RJi ,
and uiA ∈ AJi . Again, Case (ii) is trivial. In Case (i), we have i = j, and thus by the
induction hypothesis get that d ∈ AIi . Thus, we get e ∈ (∃R.A)Ii .

Based on this lemma, we show that the interpretations Ji are in fact as intended.

Lemma 4.18 For all i ∈ [1, k], Ji is a model O.

Proof. We consider a GCI B v C ∈ O and arbitrary interpretation Ji with i ∈ [1, k].
Let first e ∈ ∆Ii ∩BJi . By Lemma 4.17, we have e ∈ BIi , and hence get e ∈ CIi since
Ii satisfies O. By again applying Lemma 4.17, we obtain e ∈ CJi .

It remains to consider e ∈ ∆Iju ∩ BJi for i 6= j. By Lemma 4.17, we get e ∈ BI
′
j .

Next, we show that e ∈ CI′j then holds, which leads to e ∈ CJi , again by Lemma 4.17.
Since e ∈ BI

′
j , there is an ` ≥ 0 such that e ∈ BI

′
j,` , where I ′j,` := I ′[KjR]+,` is as in

Definition 4.9.

• Let C = >. In this case, e ∈ CI′j holds trivially by the semantics.

• Let C ∈ NC \ NRC. e ∈ BI′j,` and the GCI yield e ∈ CI′j,`+1 and CI
′
j,`+1 ⊆ CI

′
j by

the definitions of I ′j,`+1 and I ′j .

• C ∈ NRC. e ∈ BI′j implies e ∈ BIj by Lemma 4.11 and the fact that Ij is a model
of O. We also have BIj ⊆ CIj by Lemma 2.12, CIj ⊆ CI

′
j,0 by the kind of e and

the definition of I ′j,0, and CI
′
j,0 ⊆ CI′j by Definition 4.9. We thus have e ∈ CI′j .

• Let C = ∃R.A. e ∈ BI′j,` and the GCI yield (e, u′A) ∈ RI′j,`+1 , which is a subset of
RI
′
j by the definition of I ′j,`+1. Since we also have u′A ∈ AI

′
j,0 , which is a subset of

AI
′
j , we obtain e ∈ (∃R.A)I′j .

It remains to show that all literals in χi are satisfied by Ji, which are the (negated)
assertions AQi .

Lemma 4.19 For all i ∈ [1, k], Ji is a model of χi.

Proof. For the positive assertions in AQi , we know that Ii satisfies AQi , by Defini-
tion 4.13 and Lemma 2.12. Since we have AIi ⊆ AJi and RIi ⊆ RJi for all A ∈ NC(O)
and R ∈ NR(O), these assertions from AQi are also satisfied in Ji.

We regard a negated concept assertion ¬A(a) ∈ AQi . Since Ii |= AQi , we have
a /∈ AIi , and thus a /∈ AJi follows from Lemma 4.17.

For a negated assertion ¬R(a, b) ∈ AQi withR ∈ NR\NRR, we similarly get (a, b) /∈ RIi ,
and thus (a, b) /∈ RJi follows from the definition of Ji.

Regarding a negated assertion ¬R(a, b) ∈ AQi with R ∈ NRR, we get ¬R(a, b) ∈ AR
from the consistency of KiR and the fact that AR is an ABox type. Thus, Fact 4.15
implies (a, b) /∈ RIj for all j ∈ [1, k], and we get (a, b) /∈ RJi , again by the definition
of Ji.

This concludes the proof of Lemma 4.14.
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4.4.3 Containment
We finally show that the satisfiability problem in EL-LTL with global GCIs is in PSpace,
even if rigid symbols are considered. The characterization of r-satisfiability from the pre-
vious section allows us to integrate corresponding tests with the t-satisfiability testing as
described in Algorithm 3.1. Recall that the latter is based upon the polynomial-space
algorithm originally proposed for deciding satisfiability in LTL (see Algorithm 2.1).
In what follows, we specify our approach and show that the (nondeterministic) r-
satisfiability tests can be done by using only polynomial space, which yields that it
is as required.
Definition 4.20 Given a formula

∧
ΦO ∧Φ in EL-LTL with global GCIs, satisfiability

can be decided by running Algorithm 3.1 with input Φ and 〈O, ∅〉:

• GUESSDATA: It guesses and returns a tuple (AR,A∃R) consisting of an ABox type
AR for

∧
ΦO ∧ Φ and a set

A∃R ⊆ {∃R.A(a) | a ∈ NI(Φ), R ∈ NRR(O), A ∈ NC(O) ∪ {>}}.

• TESTRSAT: Given Φ,O,Ai, d (i.e., the tuple guessed), i, s, p, and W , it defines

AQi := {ϕj | pj ∈W} ∪ {¬ϕj | pj ∈W}

and returns true iff the two conditions in Definition 4.13 are satisfied. ♦

Observe that, since we have n = 0, our algorithm adapts Algorithm 2.1 only in the
guessing and r-satisfiability testing.
Lemma 4.21 The nondeterministic algorithm described in Definition 4.20 decides sat-
isfiability in EL-LTL with global GCIs by using only polynomial space (in the size of the
given formula).

Proof. Let the set W be defined as union of all sets W encountered while running the
algorithm. Then, the correctness follows from Lemma 3.13; Fact 3.15; the correctness of
the LTL algorithm (see Lemma 2.21) regarding the satisfiability of Φpa; the observation
that we only extend the latter by the guessing, which does not influence correctness, and
the r-satisfiability testing; and Lemma 4.14 together with the fact that our adaptation
leads to a negative result iff one of the conditions of r-completeness is not satisfied.

The space complexity is a consequence of Lemma 2.21 about Algorithm 2.1, the fact
that we only extend the latter by the guessing and the r-satisfiability parts, and the
following observations about them.

• The nondeterministic guessing of the polynomially large sets AR and A∃R can be
done using only polynomial space.

• The KB considered in the conditions checked can be seen as a conjunction of EL
literals (of size polynomial in that of Φ and O). Thus, its consistency can be
decided in deterministic polynomial time by Lemma 4.1.

• The size of the rigid canonical interpretation considered in Condition (C2) is
polynomial in the size of O (see Definition 4.9). Regarding one such interpretation,
that condition can hence be checked in polynomial time.
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Global GCIs
DL (i) (ii) (iii) (i) (ii) (iii)

TDL-Lite#F
krom

a PSpace PSpace PSpace PSpace PSpace PSpace
TDL-Lite#F

horn
a ExpSpace ExpSpace ExpSpace ExpSpace ExpSpace ExpSpace

TDL-Litebool
a ExpSpace ExpSpace ExpSpace ExpSpace ExpSpace ExpSpace

EL PSpace NExpTime NExpTime PSpace PSpace PSpace
≥ [SC85], ≤ Co. 4.5 ≥ Th. 4.8 ≤ Co. 4.6 ≤ Co. 4.22

DL-Lite [ |H]
horn PSpace NExpTime NExpTime PSpace PSpace PSpace

≥ [SC85], ≤ Co. 4.5 ≥ Th. 4.8 ≤ Co. 4.6 ≤ Co. 6.19

DL-Lite [ |H]
bool PSpace NExpTime NExpTime PSpace ≤NExpTime ≤NExpTime

≥ [SC85], ≤ Co. 4.5 ≥ Th. 4.8 ≤ Co. 4.6

ALCb ExpTime NExpTime 2-ExpTime ExpTime ExpTime 2-ExpTime
SHOQcb ExpTime NExpTime 2-ExpTime ExpTime ≤NExpTime 2-ExpTime

Figure 4.1: The complexity of satisfiability in DL-LTL for different DLs DL considering
(i) no rigid symbols, (ii) rigid concept names, and (iii) rigid role names.d
Our results are highlighted. All complexities except those marked with ≤
are tight; ≥ hardness, ≤ containment.

a[Art+07]
b[BGL12]
c[Lip14]
dThe temporal DLs from the related works are described in Section 3.4.

The complexity of satisfiability in EL-LTL with global GCIs and in the presence of
rigid symbols is then obtained by combining Lemma 4.21 and the well-known result of
Savitch [Sav70, Thm. 1].

Corollary 4.22 Satisfiability in EL-LTL with global GCIs is in PSpace, even in case
that NRR 6= ∅.

4.5 Summary
In this chapter, we have investigated the complexity of satisfiability in several temporal
lightweight DLs allowing for temporalizing DL axioms. We specifically covered EL-LTL
as well as all logics between DL-Litehorn-LTL and DL-LiteHbool-LTL, and different settings
regarding the rigid symbols allowed. Although results for TDL-Litebool-LTL [Art+07]
and ALC-LTL [BGL12] have been obtained before, even decidability was still open for
the logics including role hierarchies. We have shown decidability, PSpace containment
for the case without rigid symbols, and that the interaction of the LTL and DL features
strongly increases with rigid symbols—although we considered very small DLs.

Figure 4.1 shows the results in comparison to formalisms that similarly allow for tem-
poralizing DL axioms using LTL. Compared to TDL-Lite#F

krom-LTL—which subsumes
DL-Litekrom-LTL—, there is a considerable increase in complexity if rigid symbols are
considered, already w.r.t. concept names. Note that we also have this NExpTime-
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4 LTL over Lightweight Description Logic Axioms

completeness for SHOQ-LTL, which offers much more expressivity, if inverse roles are
disregarded. On the other hand, the restriction to global GCIs and basic concept as-
sertions has turned out as surprisingly beneficial for EL-LTL, given the corresponding
results for ALC-LTL. The 2-ExpTime complexity regarding SHOQ-LTL with global
GCIs follows from the case without restrictions and the result for ALC-LTL with global
GCIs. Note that the results for global GCIs regarding the Horn fragment of DL-Lite
follow from those for TCQs, presented in Chapter 6; that is, DL-LTL formulas with
global GCIs can be seen as TCQs if the GCIs are taken as the global ontology. For the
logics in the Bool fragment of DL-Lite, we have not shown tight complexity bounds.
We do not estimate them to be NExpTime-complete since we need more expressivity
in all the NExpTime-hardness proofs in this work.

Furthermore, it should be noted that EL-LTL represents a temporal version of one of
the DLs that are most important in practice and for which there are many ontologies
around, which basically are global GCIs. Our results show, what was unknown given
only the results for DL-Lite-LTL or ALC-LTL: formulas combining EL basic concept
and role assertions via LTL operators can be considered w.r.t. EL ontologies “for free”—
compared to formulas in LTL. This proposes two alternatives for practically applying
temporalized DL axioms: to disallow rigid symbols or to consider the CIs as being
global.
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In this chapter, we regard a Boolean TCQ Φ and a TKB K = 〈O, (Ai)0≤i≤n〉 in EL
and investigate the combined and data complexity of the TCQ entailment problem. We
show that, leaving rigid symbols aside, neither combined nor data complexity increase
compared to the respective baselines, the combined complexity of satisfiability in LTL
and the data complexity of CQ answering in EL. The former even holds if rigid concept
names are considered. Regarding data complexity, tractability is however lost if rigid
names are taken into account. Moreover, the co-NExpTime combined complexity we
show for the case with rigid roles does not seem to be attractive for most applications
of EL.

The considerable influence of rigid symbols is due to the main expressive feature of
EL, qualified existential restriction (in combination with conjunction)—this gets evident
when we consider DL-LiteHhorn in Chapter 6, which only allows existential restrictions to
be unqualified. For example, EL ontologies may contain GCIs as the following, stating
that every element which has a system-critical part that is defect has a critical defect:

∃HasPart.Defect u SystemCritical v CriticalDefect.

Hence, if the role HasPart is rigid and used to connect components, then the states of
the latter, at any time point i, depend not only on the states of all their subcomponents
at i but at arbitrary points in time. Observe also that (T)CQs as the following similarly
allow to query for such knowledge, but the answers then cannot be taken into account
during inferencing:

∃y.HasPart(x, y) ∧ Defect(y) ∧ SystemCritical(y).

TCQ satisfiability—and hence entailment—can be decided by solving two satisfiability
problems, according to Lemma 3.13: one in LTL and one in DL; the latter is captured by
the notion of r-satisfiability. Our results are based on this approach. The set W of LTL
worlds which is to be found, connects the two problems, and plays an important role
in both is however of exponential size. In Section 5.1, we therefore first propose a new
characterization of r-satisfiability in the presence of rigid concept names that is tailored
to TCQs and EL and, different from existing characterizations (see Section 3.2), is not
inherently of exponential complexity. We then apply this approach in the subsequent
Section 5.2 on combined complexity for obtaining the PSpace result. Data complexity
is investigated in Section 5.3.

Throughout the chapter, we use the notation of Section 3.2. For simplicity, we further
assume K to be of the form K = 〈O, ∅〉 where we target combined complexity (i.e.,
in Sections 5.1 and 5.2), which can be done according to Lemma 3.7. Observe that
entailment is then decided by focusing on time point zero. With this assumption in
place, we however have to drop the assumption that all individual names contained in Φ
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5 Temporal Query Entailment in EL

also occur in the ABoxes; in fact, Φ is then the only place where individual names may
occur.

We close the introduction with an auxiliary result on the satisfiability of conjunctions
of CQ literals. The latter represents an integral problem in the existing characterizations
of r-satisfiability, which we apply for containment results.

Satisfiability of Conjunctions of CQ literals

We show that, for a Boolean TCQ that is a conjunction of CQ literals, the satisfiability
w.r.t. a classical KB can be decided in P w.r.t. combined complexity. The proof is by re-
duction to UCQ non-entailment through an instantiation of the positive literals, similar
to the proof of the corresponding Theorem 4.1 in [BBL15b]—that theorem considers the
DL SHQ and targets another complexity class—, and a careful analysis of a procedure
to solve that problem in NP, which has been proposed in [Ros07].

Lemma 5.1 For a knowledge base K and a Boolean conjunction Ψ of CQ literals, the
decision if Ψ has a model w.r.t. K can be reduced to several deterministic polynomial time
tests w.r.t. combined complexity, the number of which is polynomial in the number of
conjuncts of Ψ and exponential in the maximal number of terms occurring in a negative
CQ literal in Ψ.

Proof. Let K = 〈O,A〉. As it is done in the proof of the corresponding Theorem 4.1
in [BBL15b], we first reduce the problem of deciding whether Ψ has a model w.r.t. K
to a UCQ non-entailment problem. Let

Ψ = ϕ1 ∧ · · · ∧ ϕ` ∧ ¬ψ1 ∧ . . . ∧ ¬ψm

where ϕ1, . . . , ϕ`, ψ1, . . . , ψm are Boolean CQs. Then, the positive CQ literals ϕ1, . . . , ϕ`
are instantiated by omitting the existential quantifiers and replacing the variables by
fresh individual names. The resulting set A′ of assertions is then regarded as an addi-
tional ABox restricting possible models of K.

It is easy to see that Ψ is satisfiable w.r.t. K iff there is an interpretation I ′ such that
I ′ |= 〈O,A ∪A′〉 and I ′ |= ¬ψ1 ∧ . . . ∧ ¬ψm. This is the complement of the entailment
problem 〈O,A ∪A′〉 |= ψ1 ∨ . . . ∨ ψm.

In [Ros07, Thm. 2], it is shown that the latter problem is NP-complete w.r.t. combined
complexity, which seems to contradict our above claim. The proof is based on an
algorithm (computeQueryEntailment) that decides UCQ entailment. In particular, it
is remarked in [Ros07] that the nondeterminism is caused only by the first step of the
algorithm, while all other steps run in deterministic polynomial time in their input. This
first step (sub-procedure unify) nondeterministically chooses one CQ ψi with i ∈ [1,m]
and one substitution to unify some of the terms in ψi. But this means that we can instead
consider all (exponentially many) possible unifiers, for each ψi with i ∈ [1,m], and
execute the remaining deterministic steps of the algorithm computeQueryEntailment,
for each of them, in polynomial time. In analogy to computeQueryEntailment, the
entailment holds iff one of these runs succeeds.

Consequently, also the complement problem, satisfiability of Boolean UCQs, can be
decided deterministically by applying exponentially many (in the size of the largest
negated conjunct in Ψ) polynomial time tests.
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5.1 Characterizing r-Satisfiablility Without Rigid Roles
In this section, we regard a set W ⊆ 2{p1,...,pm} that consists of worlds W1, . . . ,Wk

and connects the LTL part of the TCQ satisfiability problem, looking for a model of
the LTL formula Φpa, to the EL part, according to Lemma 3.13. The EL part is
captured by the notion of r-satisfiability of W, for which we in the following propose a
new characterization. Our approach is outlined in Section 3.3. The idea is to specify
a polynomial amount of additional data that allows us to split the tests proposed in
Definition 3.12 into separate and independent consistency tests that focus on single
elements of W, may take this data into account, and require only polynomial space.
We thus proceed similar as for EL-LTL with global GCIs (see Section 4.4.2); but the
conditions we develop for capturing the satisfiability of the conjunctions of CQ literals
in the presence of rigid knowledge present a major difference.

The focus is on the set W fixed above; we can disregard the mapping ι and the last
condition in Definition 3.12 by Fact 3.15. Note that, for now, we assume the entire
set W to be given. We however never consider it as a whole, but regard its elements
W1, . . . ,Wk independently of each other. In what follows, we first describe the form of
the additional data and then present the conditions to be tested.

Recall that the goal of including the additional data is to simulate the effects of the
shared domain, Functions (F1) and (F2). To synchronize the interpretations regarding
the named individuals (Function (F1)), the additional data contains an ABox type
similar to the one for EL-LTL with global GCIs (see Definition 4.12). But we disregard
rigid roles here.

Definition 5.2 (ABox Type) An ABox type for O is a set

AR ⊆ {A(a),¬A(a) | a ∈ NI(Φ), A ∈ NRC(O)}

with the property that A(a) ∈ AR iff ¬A(a) /∈ AR. ♦

Regarding Function (F2), first note that positive CQ literals in some χi with i ∈ [1, k],
cannot be contradicted by some Jj with i 6= j if Ji, the model of χi, and Jj both
satisfy a common ABox type (e.g., if we regard an ontology O = {A v ¬B} with
A ∈ NRC and assume that Ji satisfies a CQ ∃y.B(a) ∧ A(y), Jj |= A(a) would be
contradictory; but the latter cannot hold if the interpretations satisfy O, and a common
ABox type or, alternatively, share one domain and respect rigid names). Since the latter
is ensured in our tests, it remains to consider the negative CQ literals occurring in some
χi, i ∈ [1, k]. Observe that, apart from the agreement on the named individuals, we
assume the domains of J1, . . . ,Jk to be disjoint (on the unnamed part). Given NRR = ∅
and the connectedness of CQs, this leads to the fact that such literals can only be
contradicted via rigid names by single elements which satisfy those names; and ϕ then
must be tree-shaped1.

Definition 5.3 (Tree-Shaped) A CQ ϕ is tree-shaped if it does not contain individual
names and Gϕ is a tree. If ϕ 6= ∅, then the tree has a unique root, the root (variable)
of ϕ.

1The definition of Con(ϕ) is similar to the notion of “rolled-up” queries used by [Ros07].
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For a tree-shaped CQ ϕ with root variable x, we set Con(ϕ) := Con′(ϕ, x), where

Con′(ϕ, y) :=
l

A(y)∈ϕ
A u

l

R(y,z)∈ϕ
∃R.Con′(ϕ, z).

♦

In what follows, we assume that all concepts of the form Con(ϕ) for all tree-shaped
CQs ϕ ∈ QΦ also occur in O.

In view of this definition, we can fully characterize the satisfaction of (tree-shaped)
CQs in QΦ based on rigid concept names in the anonymous part of an interpretation.
Specifically, we use sets of rigid concept names as witnesses.

Definition 5.4 (Witness) A set B ⊆ NRC(O) is a witness of a concept C w.r.t. O ifd
B v C or if there are roles R1, . . . , R` ∈ NR and concepts C1, . . . , C` ∈ S(O) such that
O |=

d
B v ∃R1.C1, O |= Ci v ∃Ri+1.Ci+1 for all i ∈ [1, `− 1], and O |= C` v C. B is

a witness of a tree-shaped CQ ϕ w.r.t. O if it is a witness of Con(ϕ) w.r.t. O.
Let further I be the canonical interpretation for a knowledge base 〈O,A〉, where A is

an arbitrary ABox. Then, B is a witness of an element u%R1C1...R`C` ∈ ∆Iu w.r.t. 〈O,A〉
if O |=

d
B v ∃R1.C1, O |= Ci v ∃Ri+1.Ci+1 for all i ∈ [1, ` − 1], and u% ∈ (

d
B)I

or % ∈ NI(A) ∩ (
d
B)I . The set of all witnesses of an unnamed element e w.r.t. O is

denoted by WO(e). For all e ∈ ∆I \∆Iu , we define WO(e) = ∅. ♦

We sometimes say that an individual satisfies a witness B if it satisfies
d
B. It is easy

to see that, if a model of O contains an element that satisfies a witness of a CQ ϕ, then
this model satisfies ϕ.

Lemma 5.5 Let I be a model of O and B be a witness of a tree-shaped CQ ϕ w.r.t. O.
Then, I |= ∃x.B(x) implies that I |= ϕ.

Based on the above observations, we collect CQs that may occur negated in some
χi, i ∈ [1, k], in the additional data to be able to ensure that none of their witnesses
is satisfied in any of J1, . . . ,Jk. Observe that the additional data thus consists of a
number of assertions and queries that is polynomial in the size of Φ. The conditions we
then test are captured by a property of r-completeness similar to the one for EL-LTL
with global GCIs (see Definition 4.13).

To simplify the presentation of that property, we also represent the CQs to be satisfied
as ABoxes. For all i ∈ [1, k], let Qi := {ϕj | pj ∈ Wi}, and let AQi denote the ABox
obtained from Qi by instantiating all variables x with fresh individual names ax. We
collect all these new individual names in the set Naux

I . Observe that, because of our
assumption that the CQs in Φ have no variables in common, each ax ∈ Naux

I can be
unambiguously associated to a CQ containing x.

Definition 5.6 (r-complete) A tuple (AR, Q
¬
R) consisting of an ABox type AR for O

and a set Q¬R ⊆ QΦ is r-complete (w.r.t. W and O) if the following hold for all i ∈ [1, k]:

(C1) KiR := 〈O,AR ∪ AQi〉 is consistent.

(C2) For all pj ∈Wi, we have KiR 6|= ϕj .

(C3) For all tree-shaped CQs ϕ ∈ Q¬R and all witnesses B of ϕ w.r.t. O, we have
KiR 6|= ∃x.B(x).
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(C4) For all W ∈ W and pj ∈W , we have ϕj ∈ Q¬R. ♦

The first two conditions together ensure that, for all considered worlds Wi with i ∈ [1, k],
exactly the queries specified by Wi can be satisfied w.r.t. O if the assertions in AR are
taken into account. Condition (C3) additionally ensures that the queries induced by
the propositions in W i are not entailed based on the rigid names, by requiring that the
canonical model of KiR does not satisfy any of the witnesses of the tree-shaped queries
in Q¬R (see Lemma 2.13). In line with Conditions (C1)–(C3), the last condition makes
sure that only queries from Q¬R may be induced by elements of W for all W ∈ W .

The existence of an r-complete tuple w.r.t. W fully characterizes the r-satisfiability
of W.

Lemma 5.7 W is r-satisfiable w.r.t. 〈O, ∅〉 iff there is an r-complete tuple w.r.t. W
and O.

Recall that the mapping ι is irrelevant in view of the TKB we consider by Fact 3.15. The
proof of the lemma is split over the following two subsections. Subsequently, we describe
how this lemma can be used to decide the entailment problem using only polynomial
space.

If W is r-satisfiable, then there is an r-complete tuple w.r.t. W and O

Given the r-satisfiability ofW, there are interpretations J1, . . . ,Jk over a shared domain
∆ as specified in Definition 3.12. We hence can define a tuple (AR, Q

¬
R) as follows:

AR := {A(a) | a ∈ NI(Φ), A ∈ NRC(O), aJ1 ∈ AJ1} ∪
{¬A(a) | a ∈ NI(Φ), A ∈ NRC(O), aJ1 /∈ AJ1},

Q¬R := {ϕj ∈ QΦ | pj /∈
⋂
W}.

The proof that (AR, Q
¬
R) is r-complete is straightforward, by regarding the conditions

in Definition 5.6. According to Definition 5.2, AR is an ABox type for O, and Q¬R ⊆ QΦ
holds obviously.

Condition (C1) is satisfied since each Ji, i ∈ [1, k], can be extended to a model J ′i of
KiR by appropriately defining the interpretations of the new individual names ax that
are introduced by AQi . More precisely, we have Ji |= ϕj for all pj ∈Wi by assumption
(see Definition 3.12); let π be the corresponding homomorphism. For each variable x
occurring in ϕj , we can then copy the element d := π(x) ∈ ∆, add the new individual
e to the domain of J ′i , set aJ ′ix := e, and interpret ax as d is interpreted. Observe that
we have to copy the element to overcome possible violations of the UNA, since ax is an
individual name. To see that the resulting interpretation is well-defined, we refer to the
construction of Naux

I (see the part above Definition 5.6).
Condition (C2) is shown by contradiction. Assume that there are an i ∈ [1, k] and

a pj ∈ Wi such that KiR |= ϕj . Given the proof for Condition (C1), we get J ′i |= ϕj ,
which leads to Ji |= ϕj because ϕj does not contain any of the new individual names.
But this contradicts the assumption that Ji |= χi.

Condition (C3) is also proven by contradiction. We assume that there are an i ∈ [1, k],
a tree-shaped CQ ϕj ∈ Q¬R, and a witness B of ϕj such that KiR |= ∃x.B(x) which, as
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above, yields Ji |= ∃x.B(x). However, by the above definition of Q¬R, there must be
an i′ ∈ [1, k] such that pj /∈ Wi′ , and thus Ji′ 6|= ϕj . Lemma 5.5 then yields that
Ji′ 6|= ∃x.B(x) which, given B ⊆ NRC(O), contradicts the assumption that Ji and Ji′
share one domain and respect the rigid names.

Condition (C4) is trivially satisfied.

If there is an r-complete tuple w.r.t. W, then W is r-satisfiable.

The proof of the converse direction is more involved. We assume (AR, Q
¬
R) to be the

r-complete tuple given and, as before, follow the lines of Definition 3.12. The goal is
thus to show that we can construct interpretations J1, . . . ,Jk as required. Recall that
we do not need to specifically define an interpretation I0 for time point 0 since, for any
ι given, Jι(0) is a model of A0 = ∅ and χι(0) (see Fact 3.15). In a nutshell, we integrate
the canonical interpretations of the KBs in Condition (C1) of Definition 5.6 to construct
the interpretations J1, . . . ,Jk.

In what follows, we first provide auxiliary definitions, then define J1, . . . ,Jk, and
subsequently prove that the interpretations are as required. Note that, in the remain-
der of the proof, we generally do not reference Definition 5.6 explicitly if we refer to
Conditions (C1)–(C4).

For all i ∈ [1, k], consider the following definitions and observations.

• Let Ii := I[KiR]+ be the canonical interpretation of the KB [KiR]+ obtained from
KiR by removing the negated assertions from AR.
We can establish the following fact in the way Fact 4.15 is obtained for EL-LTL.

Fact 5.8 Ii is a model of KiR.

• We define ∆Iia := Naux
I ∩ ∆Ii to distinguish the elements contained in Naux

I and
similarly write ∆Iiu for the set containing the unnamed domain elements unique to
the canonical interpretation Ii. Moreover, we write ei instead of e for the elements
in these sets.
Thus, the domain of Ii is composed of the pairwise disjoint sets NI(Φ), ∆Iia ,
and ∆Iiu .

Fact 5.9 The set NI(Φ), all sets ∆Iia with i ∈ [1, k], and all sets ∆Iiu with i ∈ [1, k]
are pairwise disjoint.

We next construct the interpretations J1, . . . ,Jk as required for the r-satisfiability
ofW; that is, all share one domain, they respect rigid names, and each Ji with i ∈ [1, k]
is a model of O and χi =

∧
pj∈Wi

ϕj ∧
∧
pj∈Wi

¬ϕj . To this end, we join the interpreta-
tions Ii. The idea is that, for all i ∈ [1, k], Ii represents the (flexible) parts specific to
Ji and, for the interpretation of the rigid symbols in Ji, all Ij with j ∈ [1, k] are consid-
ered. Of course, the interpretation of the flexible symbols then cannot be solely based
on Ii but has to be adjusted. In this way, we ensure that all of J1, . . . ,Jk interpret the
rigid concept names in the same way.
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The common domain ∆ is defined as follows:

∆ := NI(Φ) ∪
k⋃
i=1

(∆Iia ∪∆Iiu ).

Ji is specified below, for i ∈ [1, k]:

• For all a ∈ NI(Φ): aJi := a.

• For all rigid concept names A: AJi :=
k⋃
j=1

AIj .

• For all flexible concept names A:

AJi := AIi ∪
k⋃
j=1

⋃
B⊆NRC(O),
O|=

d
BvA

(l
B
)Ij ∪ k⋃

j=1
{e ∈ AIj ∩∆Iju | WO(e) 6= ∅}.

• For all (flexible) role names R:

RJi := RIi ∪
k⋃
j=1
{(d, e) ∈ RIj ∩

(
∆Ij ×∆Iju

)
| d 6∈ NI(Φ),WO(e) 6= ∅}.

We thus have constructed interpretations J1, . . . ,Jk that share the same domain and
respect the rigid concept names since, for all A ∈ NRC and i ∈ [1, k], the definition
of AJi is independent of i. Most parts of the specification should be straightforward.
Note that the cases referring to witnesses would not have to explicitly mention ∆Iju (see
Definition 5.4), but we include this information to ease both understanding and the
proofs. For simplifying the proofs, we also exclude the named individuals in the very
last case, though such tuples are obviously included in the interpretation in Ji because
of NI(Φ) ⊆ ∆Ii , Fact 5.9, and the fact that RIi ⊆ RJi .

Before proving that J1, . . . ,Jk fulfill all requirements for the r-satisfiability of W,
we next establish some auxiliary results. Specifically, we show connections between
J1, . . . ,Jk and the canonical interpretations, which help to clarify the picture of the
former. First, we establish a basic connection between the interpretations Ji and Ii
concerning the interpretation of role names.

Lemma 5.10 For all i ∈ [1, k], elements d, e ∈ ∆Ii, and role names R ∈ NR, we have:

(d, e) ∈ RJi iff (d, e) ∈ RIi .

Proof. (⇐) This direction follows directly from the definition of RJi .
(⇒) The definition of Ji implies that there is a j ∈ [1, k] such that (d, e) ∈ RIj . We

thus only have to regard the case that j 6= i and can assume that e has a witness w.r.t. O.
Since e ∈ ∆Ii , Fact 5.9 however implies that e ∈ NI(Φ). Hence, j 6= i is impossible since
named domain elements have no witnesses according to Definition 5.4.
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There is a similar connection between the interpretations of concepts in Ji and Ij .

Lemma 5.11 For all concepts C ∈ S(O) and i, j ∈ [1, k], the following hold.

a) For all e ∈ ∆Ii, we have e ∈ CJi iff e ∈ CIi.

b) For all e ∈ ∆Ija ∪∆Iju such that j 6= i and WO(e) = ∅, we have e ∈ CJi iff there
is a set B ⊆ NRC(O) such that e ∈ (

d
B)Ij and O |=

d
B v C.

c) For all e ∈ ∆Iju such that WO(e) 6= ∅, we have e ∈ CJi iff e ∈ CIj .

Proof. The items are proven simultaneously by induction over the structure of C. We
start with the base cases.

• Let C ∈ NC. (⇐) For all items, this direction is a direct consequence of the
definition of Ji. (⇒) We again consider the definition of CJi .
We first consider e ∈ NI(Φ) to partially prove a). For C ∈ NRC, the fact that
each Ij with j ∈ [1, k] is a model of the ABox type AR implies e ∈ CIi . For flexible
concept names C, Fact 5.9 yields two options: either e ∈ CIi , or e ∈ (

d
B)Ij for

some j ∈ [1, k] and B ⊆ NRC(O) such that O |=
d
B v C. Since both Ii and Ij

are models of AR, the latter yields e ∈ (
d
B)Ii which, given Ii |= O, implies that

e ∈ CIi .
Regarding the other elements e in a), b), and c), which means that e 6∈ NI(Φ),
Fact 5.9 implies for C ∈ NRC that e ∈ CJi iff e ∈ CIj . For C ∈ NC \NRC and (⇒),
we additionally have to remark that each Ij with j ∈ [1, k] is a model of O to get
e ∈ CIj .

• Let C = >. Both e ∈ CJi and e ∈ CIi (e ∈ CIj ) must hold by Definition 2.4, for
a) (for b) and c)).

We continue with the induction step.

• Let C = C1 uC2. For a) (c)), the induction hypothesis directly yields the equiva-
lence between e ∈ CJi1 ∩ C

Ji
2 and e ∈ CIi1 ∩ C

Ii
2 (e ∈ CIj1 ∩ C

Ij
2 ).

We consider b). (⇒) By the induction hypothesis e ∈ (C1 u C2)Ji implies that
there are sets B1,B2 ⊆ NRC(O) such that e ∈ (

d
B1 u

d
B2)Ij , O |=

d
B1 v C1,

and O |=
d
B2 v C2. But then it also holds that O |=

d
B1u

d
B2 v C1uC2, and

thus e ∈ (C1 uC2)Ij because Ij |= O. (⇐) If e ∈ (
d
B)Ij and O |=

d
B v C1 uC2

for some B ⊆ NRC(O), then we also have O |=
d
B v C1 and O |=

d
B v C2.

Together with the induction hypothesis, this leads to e ∈ (C1 u C2)Ji .

• Let C = ∃R.C1. Regarding a), the definition of RJi yields that, for a given tuple
(e, d) ∈ RJi , we have d ∈ ∆Ii . For such an element, the induction hypotheses
implies that d ∈ CJi1 is equivalent to d ∈ CIi1 . Lemma 5.10 additionally yields
that (e, d) ∈ RJi is equivalent to (e, d) ∈ RIi . The claim thus holds.
Similarly, regarding c), the definition of RJi yields that, for a tuple (e, d) ∈ RJi ,
we have d ∈ ∆Iju and, especially, WO(d) 6= ∅. On the other hand, for a tuple
(e, d) ∈ RIj where e ∈ ∆Iju and WO(e) 6= ∅, Definitions 2.10 and 5.4 together
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imply that also d ∈ ∆Iju and WO(d) 6= ∅. For both directions, we thus can focus
on this type of successor and apply the induction hypotheses, which yields that
d ∈ CJi1 is equivalent to d ∈ CIj1 . Moreover, WO(d) 6= ∅ implies that (e, d) ∈ RJi
is equivalent to (e, d) ∈ RIj . The claim thus also holds.
We consider b). (⇒) Since i 6= j, e ∈ (∃R.C1)Ji by the definition of RJi implies
that there is an element uj%RD ∈ CJi1 ∩ ∆Iju such that either e = uj% or e = %
and e ∈ ∆Ija , and WO(uj%RD) 6= ∅. We can thus apply the induction hypotheses
to obtain uj%RD ∈ C

Ij
1 , and Lemma 2.15 then yields that O |= D v C1. Since

WO(e) = ∅, Definition 5.4 additionally yields that there is a set B ⊆ NRC(O) such
that e ∈ (

d
B)Ij and O |=

d
B v ∃R.D, and thus O |=

d
B v ∃R.C1.

(⇐) If there is a set B ⊆ NRC(O) such that e ∈ (
d
B)Ij and O |=

d
B v ∃R.C1,

then Definition 2.10 implies that there is an element uj%RC1 ∈ ∆Iju such that
(e, uj%RC1) ∈ RIj and again either e = uj% or e = % and e ∈ ∆Ija . Defini-
tion 5.4 additionally yields that WO(uj%RC1) 6= ∅. Thus, the definition of Ji yields
(e, uj%RC1) ∈ RJi .

We finally show that Ji is in fact as intended.

Lemma 5.12 For all i ∈ [1, k], Ji is a model of O.

Proof. Consider a GCI C v D ∈ O and an element e ∈ CJi ∩ ∆Ij . According to
Lemma 5.11, there are two options: (i) If a) or c) applies, then we have e ∈ CIj . (ii)
Otherwise, there is a set B ⊆ NRC(O) such that e ∈ (

d
B)Ij and O |=

d
B v C . For

both options, we then obtain e ∈ DIj since C v D ∈ O and Ij |= O. This leads to
e ∈ DJi , again by Lemma 5.11.

The next lemma provides the missing piece to our proof that W is r-satisfiable (see
Definition 3.12) and shows that, for all i ∈ [1, k], the interpretations Ji satisfy the
corresponding conjunction χi of CQ literals. Regarding the positive literals, the proof is
easy given that the ABox AQi contains an instantiation of all these CQs, AQi is satisfied
by Ii, and that Ji strongly depends on Ii. The proof for the negative literals ¬ϕ is based
on the interpretation of roles in Ji. In Ji, domain elements of different interpretations Ij
and I` with j, ` ∈ [1, k] are related sparsely (i.e., at least one of two such elements must
be a named individual). Given that we assume CQs to be connected, we specifically have
that, if Ji satisfies ϕ, one must apply: either the corresponding homomorphism includes
only domain elements of Ii and ϕ is satisfied in Ii, or it contains no domain element of
Ii (i.e., it especially contains no named individual), only elements of a single Ij with
j ∈ [1, k], and a witness of ϕ is satisfied in Ij . Based on the assumed r-completeness of
(AR, Q

¬
R), we therefore can show that Ji |= ¬ϕ by contradiction.

Lemma 5.13 For all i ∈ [1, k], Ji is a model of χi.

Proof. We show that Ji is a model of every CQ literal in χi. Let ϕ first be a positive
such literal. Since AQi contains an instantiation of ϕ and Ii |= AQi by Condition (C1)
and Fact 5.82, we know that there is a homomorphism π of ϕ into Ii that maps all

2Note that, in the remaining parts of the proof, we do not always explicitly refer to Fact 5.8 to justify
the argument that Ii |= KiR.
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variables in ϕ to elements of ∆Iia ; that is, π maps each such variable x to ax. By the
fact that ∆Iia ⊆ ∆, since such elements do not have witnesses, and by Lemmas 5.10
and 5.11a) and b), π then is also a homomorphism of ϕ into Ji.

Let now ¬ϕ be a negative literal in χi. We proceed by contradiction and assume π
to be a homomorphism of ϕ into Ji. In particular, we can then assume that there is a
single index j ∈ [1, k] such that π maps all terms of ϕ to elements of ∆Ij . To see this,
note that ϕ is connected and that, for a role R ∈ NR, a tuple (d, e) ∈ RJi exists only if
the elements belong to the same domain ∆Ij by the definition of RJi and Fact 5.9.

If π maps all terms to elements of ∆Ii , then Lemmas 5.10 and 5.11 yield that π is
also a homomorphism of ϕ into Ii. This contradicts the fact that Ii |= ¬ϕ. The latter
holds by Lemma 2.13 because the given r-complete tuple satisfies Condition (C2), which
yields KiR 6|= ϕ and hence [KiR]+ 6|= ϕ; recall that [KiR]+ is the KB for which Ii is the
canonical interpretation.

Otherwise, we have j 6= i and, given that NI(Φ) ⊆ ∆Ii , can assume π to map at least
one term to an element of ∆Ij \NI(Φ). We can make two further observations about ϕ,
due to the assumption that it is connected and the interpretation of roles in Ji, which
yields that elements from ∆Ij \NI(Φ) can only be related to unnamed elements. First, no
term of ϕ can be mapped to an element of NI(Φ), which means that ϕ does not contain
individual names (see Definition 2.7). Second, for all role atoms R(y, z) ∈ ϕ, we have
WO(π(z)) 6= ∅ and either (i) π(y) ∈ ∆Ija ∪ ∆Iju and WO(π(y)) = ∅ or (ii) π(y) ∈ ∆Iju
and WO(π(y)) 6= ∅. Hence, there is at most one variable in ϕ which π maps to an
element e such that WO(e) = ∅. Thus, ϕ contains only role connections starting from
this variable, and role connections between two variables (mapped by π to elements
having witnesses) exist only via a single role and in one direction. This means that ϕ is
tree-shaped.

We now show that there is a witness B of ϕ w.r.t. O such that (
d
B)Ij is not empty.

Let x be the root variable of ϕ. Then, Definition 5.3 and our assumption that π is a
homomorphism of ϕ into Ji, yield that π(x) ∈ Con(ϕ)Ji .

• If WO(π(x)) = ∅, then Lemma 5.11 yields that there is a witness B of Con(ϕ)
w.r.t. O such that π(x) ∈ (

d
B)Ij which is also a witness of ϕ by Definition 5.4.3

• If WO(π(x)) 6= ∅, then π(x) is of the form uj%RC ∈ ∆Iju , and Lemma 5.11 yields
that π(x) ∈ Con(ϕ)Ij . From Lemma 2.15, we then get that O |= C v Con(ϕ).
Thus, Definition 5.4 implies that the witness of uj%RC , which is instantiated in Ij ,
is also a witness of Con(ϕ) and hence of ϕ.

However, by Condition (C4) we know that ϕ ∈ Q¬R. Hence, by Condition (C3), we have
[KjR]+ 6|= ∃x.B(x), and thus Ij |= ¬∃x.B(x) by Lemma 2.13. This contradicts the fact
that (

d
B)Ij is not empty.

This finishes the proof of Lemma 5.7.

3Recall that we assume that Con(ϕ) occurs in O.
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5.2 Combined Complexity
In this section, we establish the combined complexity of TCQ entailment, based on
procedures that solve the satisfiability problem as outlined in Section 3.3. The results
of the previous section reveal that the amount of information critical for testing the DL
part of that problem is polynomial (in the size of Φ) if rigid role names are not considered.
This allows us to integrate the LTL with the DL test in a nondeterministic algorithm
using only polynomial space, based upon Algorithm 3.1. Regarding the remaining case
with rigid role names, we however illustrate subsequently that the LTL and DL features
may interact in a way that requires reasoning to consider an exponential amount of
information. Specifically, we prove that entailment is co-NExpTime-complete.

5.2.1 With(out) Rigid Concept Names
In this section, we show that TCQ entailment is in PSpace w.r.t. combined complexity,
which matches the hardness given by satisfiability in LTL. The key insight given by the
previous section refers to the DL part of the TCQ satisfiability problem: the exponen-
tially large set W does not have to be stored for testing the conditions characterizing
its r-satisfiability if rigid roles are not present. This observation allows us to specify a
nondeterministic procedure for deciding satisfiability—and thus also entailment—that
only uses space of size polynomial in the input. The idea is described in Algorithm 3.1:
we first guess an ABox type AR and a set Q¬R ⊆ QΦ and then test the satisfiability of the
LTL formula Φpa as it is done in Algorithm 2.1, but ensure additionally that the guessed
worlds satisfy the conditions characterizing r-satisfiability. This approach is in line with
Lemma 3.13; specifically, it integrates the r-satisfiability with the t-satisfiability test.
Recall that we can disregard ι since its construction is trivial (i.e., we can use the first
guessed world Wi ∈ W and define ι(0) = i).

In our algorithm, we refer to the functions KBCONSISTENT and CQNOTENTAILED that
decide knowledge base consistency and CQ non-entailment, respectively. We can assume
KBCONSISTENT to run in polynomial time in the size of both the input KB [Bra04,
Thm. 5] and the nondeterministic algorithm CQNOTENTAILED to run in polynomial time
in the size of the input KB and given query [Ros07, Thm. 2]. Furthermore, we consider
an enumerator WITNESSENUM which, given a CQ ϕ and an ontology O, enumerates all
witnesses for ϕ w.r.t. O (see Definition 5.4) as follows:4

• Construct a graph containing a node for each concept in S(O), and an edge labeled
by a role R from C to D iff O |= C v ∃R.D.

• Mark all nodes C = Con(ϕ) with ϕ ∈ QΦ; recall that we assume all those concepts
to be contained in O.

• Enumerate all B ⊆ NRC(O) and return those for which there are a role R and con-
cept C such that O |=

d
B v ∃R.C from which a marked concept D is reachable.

It is easy to see that this approach is both sound and complete. The graph can be
constructed by quadratically many P-tests [Bra04, Thm. 5], the marking can be done in

4This idea is also implicitly used in the form of the reachability relation ; in [BBL05; KKS12].
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polynomial time (see Definition 5.3), and the subsequent reachability test only requires
polynomial space. The latter is due to the facts that there are polynomially many
possibilities for the concept ∃R.C, which can be enumerated, in the last item and that
the reachability problem is in NLogSpace (e.g., see [AB09, p. 74]).

Based on the above procedures, we define our algorithm as follows.

Definition 5.14 Given a TCQ Φ and TKB K = 〈O, ∅〉 satisfiability of Φ w.r.t. K can
be decided by running Algorithm 3.1:

• GUESSDATA: It guesses and returns a tuple (AR, Q
¬
R) consisting of an ABox type AR

for O and a set Q¬R ⊆ QΦ.

• TESTRSAT: Given Φ,O,Ai, d (i.e., the tuple guessed), i, s, p, and W , it defines
AQW := {ϕj | pj ∈ W} and KR := 〈O,AR ∪ AQW 〉, and returns true iff the
following conditions are satisfied:

(C1) Check if KBCONSISTENT(KR) returns true.
(C2) For each pj ∈W : Check if CQNOTENTAILED(ϕj , [KR]+) returns true.
(C3) For each tree-shaped CQ ϕ ∈ Q¬R and B in WITNESSENUM(ϕ,O):

Check if CQNOTENTAILED(∃x.B(x),KR) returns true.
(C4) For each pj ∈W : Check if ϕj ∈ Q¬R. ♦

Observe that we have n = 0, so that our additional requirement that s > n in Al-
gorithm 3.1 does not have any effects, compared to Algorithm 2.1. The next lemma
summarizes the goal of our extensions.

Lemma 5.15 The nondeterministic algorithm described in Definition 5.14 decides TCQ
satisfiability in EL w.r.t. a TKB 〈O, ∅〉 and uses only polynomial space (in the size of
all the input) if NRR = ∅.

Proof. For proving correctness, we consider the conditions in Lemma 3.13.

• Let the set W be defined as the set of all worlds W encountered during a run of
the procedure. The mapping ι and the conditions referring to it can be ignored
by Fact 3.15.

• Regarding t-satisfiability (see Definition 3.11), it is easy to see that the above
definition of W fulfills the first condition. Since Algorithm 2.1 is correct by
Lemma 2.21, we run it with Φpa as input, and our extensions neither change
this algorithm nor do they ever return true on their own (i.e., independently of
Algorithm 2.1), it is sound w.r.t. the second condition as well; and it is complete
if our extensions never return false if an r-satisfiable set W exists.

• It thus remains to show that W is r-satisfiable iff the extensions do not return
false on their own. By Lemma 5.7, we can consider Conditions (C1)–(C4) from
Definition 5.6. For most of the cases, it is easy to see that the checks in Defini-
tion 5.14 are equivalent to the conditions. We only consider the second test in
more detail since it does not directly correspond to Condition (C2). However, we
can show that KR 6|= ϕj iff [KR]+ 6|= ϕj : (⇐) Given [KR]+ 6|= ϕj , Lemma 2.13 leads
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to I[KR]+ 6|= ϕj and Fact 5.8 to [KR] 6|= ϕj . (⇒) Every model of KR is also a model
of [KR]+, especially the one that does not satisfy ϕj . Hence, it suffices to check
the non-entailment [KR]+ 6|= ϕj .

We analyze the complexity. The nondeterministic guessing of the polynomially large
sets AR and Q¬R can be clearly done using only polynomial space. Regarding the parts of
Algorithm 2.1, we refer to Lemma 2.21. Given the observation that we only adapt that
algorithm w.r.t. the r-satisfiability testing, it only remains to consider the corresponding
tests. The above descriptions of the applied subprocedures show that running all of
them requires only polynomial space w.r.t. combined complexity; we apply them only
for inputs of size polynomial in Φ and K. Since all other checks described for testing the
conditions can be done in polynomial time, our nondeterministic algorithm altogether
uses only polynomial space.

We thus can conclude this section with a positive result, which holds w.r.t. arbitrary
TKBs by Lemma 3.7 and in the presence of rigid concept names. Further, note that
the nondeterminism is not relevant regarding PSpace complexity according to the well-
known result of Savitch [Sav70, Thm. 1].

Corollary 5.16 TCQ entailment in EL is in PSpace regarding combined complexity
if NRR = ∅, even if NRC 6= ∅.

Altogether, we have shown that important and powerful features of LTL, (i) the pos-
sibility to discern exponentially many different time points and (ii) the nondeterminism
provided by operators such as disjunction or negation, do not interact with the EL on-
tology in a way that is critical for the combined complexity of TCQ entailment, even
if rigid concept names are considered. As it is the case for LTL, reasoning can still be
done with a PSpace Turing machine.

5.2.2 With Rigid Role Names
In this section, we show that rigid role names may cause dangerous interactions between
the LTL and the EL part that cannot be captured by PSpace Turing machines any more:
the LTL features can discern exponentially many time points and nondeterministically
choose specific assertions at each of them, and the EL part can correspondingly discern
exponentially many (rigid) concepts instantiated by different individuals that are related
invariant to time. For that reason, the LTL choices can be transferred selectively (i.e.,
addressing only some of the individuals) along these relations via the ontology and
“saved” at those individuals—again via rigid names. We in the following show that
such complex interactions lead to NExpTime-hardness of TCQ satisfiability; the proof
is similar to the one for EL-LTL for the case with rigid concept names in Section 4.8.
The corresponding containment result directly follows from Lemmas 3.17 and 5.1.

Corollary 5.17 TCQ entailment in EL is in co-NExpTime in combined complexity,
even if NRR 6= ∅.

We prove co-NExpTime-hardness of entailment in the presence of rigid role names
by reducing the 2n+1-bounded domino problem to TCQ satisfiability. The idea is based
on the features outlined above. The exponentially many different time points, each
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associated with a specific rigid concept and individual instantiating it, represent the po-
sitions in the plane of the domino. We ensure that these individuals are, by a rigid role
R, related to a common successor, a named individual used for synchronization. To tile
the plane, we represent the domino types as flexible concepts and enforce the named
individual to always satisfy one of them, by nondeterministically choosing the corre-
sponding assertion. The ontology is used to transfer that choice to the R-predecessor
that represents the position corresponding to the current time point and to save it at
that individual via a rigid concept. In this way, we ensure that all positions and the
chosen types are instantiated in every world, which allows us to enforce the matching
conditions.

The basic idea of the reduction is thus the same as in the NExpTime-hardness proof
for satisfiability in EL-LTL regarding rigid concept names; note that the latter, in turn,
is based on a reduction in [BGL12]. In those proofs, the synchronization of the domain
individuals with the named individual is achieved via local GCIs and disjunction in the
GCIs, respectively, allowed in the respective context. In contrast, we here need the rigid
role to synchronize (a large enough subset of) the domain individuals with the named
individual, which is done by using the latter as a common role successor of the former.
Note that we cannot simply used global GCIs of the form > v . . . instead since, then,
all individuals would have to always satisfy all domino types.

Theorem 5.18 TCQ entailment in EL is co-NExpTime-hard in combined complexity
if NRR 6= ∅.

Proof. For the proof, we reduce the 2n+1-bounded domino problem, for a domino
system D with initial condition I, to checking the satisfiability of a TCQ ΦD,I w.r.t. an
EL TKB 〈OD,I , ∅〉, both containing rigid role names. Since the reduction of the domino
system is very similar to the above mentioned reduction to satisfiability in EL-LTL (see
Theorem 4.8), we only point out the differences to that proof. In particular, we here
apply exactly the same symbols and consider only one rigid role R in addition.

The rigid role is necessary here to transfer specific flexible concepts that are chosen
nondeterministically through assertions on a named individual a to the entire domain;
we cannot use local GCIs as allowed in EL-LTL. However, as outlined above, it is
actually enough to transfer the concepts to all R-predecessors of a if we require them
to correspondingly represent the domino plane; in the proof for EL-LTL, the plane is
represented by arbitrary elements. In particular, the (flexible) global5 concepts, whose
interpretation is either empty or > and which are applied for synchronization in the
other proof, have a slightly different interpretation here: their value is shared by a and
all its R-predecessors.

Observe that we focus on the first part of the reduction and thus on an EL⊥-LTL
formula; recall that ⊥ is only eliminated in the very last step of the proof. We next
regard all conjuncts of the target formula created in the proof for EL⊥-LTL (i.e., these
conjuncts are EL⊥-LTL formulas) and in the following specify corresponding conjuncts
(i.e., TCQs) and GCIs, such that ΦD,I consists of a conjunction of these TCQs and OD,I
of the GCIs:

5Not to be confused with rigid or always (in time).
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• All global GCIs (i.e., conjuncts that are GCIs prefixed by 2F ) that do not contain
⊥ can be directly considered as GCIs in OD,I .

• All EL⊥-LTL formulas that contain no GCIs (and hence are EL assertions com-
bined by LTL operators) can be directly considered as TCQs and conjuncts of ΦD,I .

• To represent the exponentially many positions, an auxiliary concept N ∈ NC is
required to be instantiated by an R-predecessor of a in every world:

2∃x.R(x, a) ∧N(x).

• To express that a concept C is global (e.g., the three counters and their comple-
ments), which means that it is shared by a and all its R-predecessors, we can use
an EL GCI: ∃R.C v C. However, different from the other proof, where concepts C
and their complements C are modeled using mutually exclusive assertions on a,
and globality of the two concepts then automatically means that no element sat-
isfies both of these concepts, we here have to explicitly require the latter for all
the predecessors, because globality “only” expresses the transfer of concepts from
a to its R-predecessors:

¬∃x.C(x) ∧ C(x).

• The fact that every world is associated to exactly one global domino type Gt ∈ NC,
which represents the chosen domino type t for the position the (current) world
corresponds to, can be expressed similarly to the global concepts by considering
the GCI ∃R.Gt v Gt for all t ∈ T and the following TCQ:

2
∨
t∈T

(
Gt(a) ∧

∧
t′∈T\{t}

¬∃x.Gt′(x)
)

where T is the set of domino types in D. The choices for the dominos of the
neighbor positions can be modeled analogously.

The polynomial size of the TCQ ΦD,I and ontology OD,I then directly follows from
the size of the EL⊥-LTL formula in the other reduction and the described modifications.
The correctness of the reduction can readily be checked similarly.

5.3 Data Complexity
Regarding data complexity, we show that TCQ entailment in EL is in P—the best
result possible since CQ entailment is P-hard [Cal+06, Thm. 7]—if rigid symbols are
not considered. Subsequently, we however show that the possibility of having assertions
in arbitrary ABoxes in the TKB (and a fixed TCQ) leads to co-NP-hardness in the
presence of rigid names. Nevertheless, containment in co-NP is given also for the case
with rigid role names, which is shown at the end of the section.
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5.3.1 Without Rigid Names
Also w.r.t. data complexity, deciding satisfiability and entailment is special if rigid
symbols are disregarded, because the knowledge (to be) considered w.r.t. different time
points is independent of each other. Regarding Lemma 3.13, observe that all possible sets
W, which are independent of the data, can be enumerated in time constant in the data.
While the exponential number of possible mappings ι however represents an obstacle,
at first glance, both the t-satisfiability and the r-satisfiability test themselves are not
complex. The idea is therefore to integrate all the mappings that pass the r-satisfiability
test while testing (i.e., without constructing them one after the other) and to consider
this integrated representation, which is of polynomial size, in the t-satisfiability test.
Altogether, this can be done in polynomial time in the data.

Theorem 5.19 TCQ entailment in EL is in P in data complexity if NRC = NRR = ∅.

Proof. We follow the basic approach of Lemma 3.13 and regard the satisfiability prob-
lem.

• To check the r-satisfiability of a set W = {W1, . . . ,Wk} ⊆ 2{p1,...,pm} as proposed
in Lemma 3.14, it suffices to check satisfiability of the conjunctions χ

(i)
i with

i ∈ [1, k] w.r.t. 〈Oi, ∅〉 (χ(k+i+1)
ι(i) w.r.t. 〈Ok+i+1,Ai〉, where i ∈ [0, n]) individually

by Lemma 3.16, since the conjunctions χi do not share concept or role names.
In particular, we can then define W as the set of all sets Wi with i ∈ [1, k] for
which χi is satisfiable w.r.t. O. This can be done in constant time w.r.t. the size
of the input ABoxes.
The mapping ι cannot be constructed in polynomial time, and neither be obtained
by (nondeterministically) guessing one possible ι or enumerating the exponentially
many possible mappings. For that reason, we first check for each Wj ∈ W and
input ABox Ai whether χj is satisfiable w.r.t. 〈O,Ai〉. We collect all indices j
that pass this test into the set ι′(i). In this way, we obtain all possible worlds,
for each of the input ABoxes. Each of the conjunctions χj is of constant size and
the number |W| of conjunctions to be considered per ABox is also constant. By
Lemma 5.1, these tests can thus be done in polynomial time in the size of the
input ABoxes. Each set ι′(i) is of constant size.
Note that r-satisfiability is thus given by the definition of W and ι′, which means
that such sets with |W| ≥ 1 and |ι′(i)| ≥ 1 for all i ∈ [0, n] exist.

• Lastly, t-satisfiability (see Definition 3.11) can be decided by an automaton sim-
ilar to the one described in the proof of [BBL15b, Lem. 4.12] in P w.r.t. data
complexity. SinceW is defined to be maximal above, we can also use it for testing
t-satisfiability. To be able to apply ι′(i) (i.e., instead of only a single possible
mapping ι), we adapt the condition “wi = Wι(i)” in Definition 3.11 to “wi = Wj

for some j ∈ ι′(i)”. The result remains valid since the automaton used in the proof
of that result in [BBL15b] can be adapted to check whether the first n + 1 en-
countered worlds fall into the pre-specified sets of (constantly many) worlds ι′(i),
instead of equality with a single pre-specified world ι(i).
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This approach is sound since, if both the above polynomial-time tests succeed, then we
can simply choose one ι among the many possible identified by ι′ to fulfill the conditions
of Lemma 3.13. And it is complete since the existence of some W and ι implies that
the above defined set W is not empty and that we have ι(i) ∈ ι′(i) for every i ∈ [0, n].
Hence, all the above tests succeed. This proves that our deterministic definitions of
the maximal possible W and ι′ suffice to satisfy Lemma 3.13, which means that we can
decide TCQ satisfiability (and entailment) in P.

5.3.2 With Rigid Names
If rigid symbols are considered, then assertions occurring in arbitrary ABoxes may
constrain the satisfaction of CQs from Φ in models of the ontology, by implying rigid
knowledge. We show that, although both the TCQ and the ontology are fixed regarding
data complexity, this nondeterminism has to be taken into account on LTL level (e.g., an
approach as in the previous section, where the mapping ι′ is defined separately for each
time point, does not work any more) and leads to co-NP-hardness of TCQ entailment.
The corresponding containment result directly follows from Lemmas 3.17 and 5.1. That
is, the possibility of nondeterministic guessing allows to decide satisfiability in polyno-
mial time w.r.t. data complexity, even in the presence of rigid symbols in general. This
is mainly due to the fact that the TCQ is considered as fixed, which means that the
generally exponentially many possible worlds on the LTL level are not critical for time
complexity.

Corollary 5.20 TCQ entailment in EL is in co-NP w.r.t. data complexity, even if
NRR 6= ∅.

We prove co-NP-hardness of entailment in the presence of rigid concept names by
reducing the 3-SAT problem to TCQ satisfiability. Specifically, we consider one named
individual c and one named individual for the positive and, respectively, negative form
of each variable. The idea is to describe each clause in three consecutive ABoxes, one
for each literal, in each of which the corresponding individual is related to c via a role
S. The TCQ is used to enforce c to satisfy a concept T at one of these three time
points—intuitively, the corresponding literal is selected to be true—and the ontology to
“save” this selection using the GCI ∃S.T v A at the individual representing the literal
via a rigid concept name A—representing the variable assignment. In the TCQ we then
additionally ensure that the two individuals representing a variable and its negation,
respectively, never satisfy A at the same time. An example is illustrated in Figure 5.1.

Theorem 5.21 TCQ entailment in EL is co-NP-hard in data complexity if NRC 6= ∅,
even if NRR = ∅.

Proof. We show NP-hardness of TCQ satisfiability by reduction of the 3-SAT problem,
which is known to be NP-complete [Kar72, Main Thm.]. We assume a propositional
3-CNF formula

ϕ =
∧

0≤i<`
li,1 ∨ li,2 ∨ li,3
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t 0 1 2 3 · · ·

· · ·Aϕt

Cc c c T c C

ax1 ax3 A a¬x4 A

a¬x1 a¬x3 ax4

S S S

R R R

Figure 5.1: The content of the ABoxes encoding a 3-CNF formula (x1 ∨x3 ∨¬x4)∧ . . . ;
names in gray describe a possible extension to a model of Φ w.r.t. Kϕ.

with ` ≥ 1 to be given, x1, . . . , xm to be all the propositional variables occurring in ϕ,
Litϕ to be the set of all literals over these variables, and ¬l to denote the complement
of a literal l.

We construct a TCQ Φ and a TKB Kϕ = 〈O, (Aϕt )0≤t<3`〉 such that ϕ is satisfiable
iff Φ is satisfiable w.r.t. Kϕ. For that, we use the following symbols:

• an auxiliary individual name c to represent the clauses,

• individual names al for all literals l ∈ Litϕ,

• a rigid concept name A to represent a truth value assignment by marking true
literals,

• a flexible concept name C to signal at t the beginning of the encoding of clause t
3 ,

• a flexible concept name T to identify which literal of a clause is satisfied,

• a role name S to relate a clause with its literals,

• a role name R to link each al to a¬l to ensure that the truth assignment is consis-
tent.

We use three ABoxes to model each clause of ϕ: one to represent the beginning of
the encoding of a new clause and the first literal, and the following two for the other
literals. The ABoxes Aϕt with t ∈ [0, 3` − 1] are defined as follows, for all i ∈ [0, ` − 1]
and j ∈ [1, 3]:

Aϕ3i := {C(c)},
Aϕ3i+j−1 := {R(ali,j , a¬li,j ), S(ali,j , c)}.
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Note that the size of all ABoxes Aϕj together is linear in the size of ϕ, in line with the
data complexity assumptions. Also in accordance with the latter, Φ and O are defined
independently of the concrete input problem ϕ:

Φ := 2
((
C(c)→

(
T (c) ∨#FT (c) ∨#F #F T (c)

))
∧ ¬∃x, y.R(x, y) ∧A(x) ∧A(y)

)
,

O := {∃S.T v A}.

The TCQ Φ requires that, whenever C(c) is satisfied, then this world or one of the
two consecutive ones does satisfy T (c). Intuitively, this represents a truth assignment
for the literal l associated with that moment, and the ontology is used to save that
assignment at the individual al via A, such that every world satisfies A(al). Additionally,
Φ ensures that individuals linked by R cannot both satisfy the rigid concept name A at
the same time. Note that our reduction requires several features: quantified existential
restriction, a rigid concept, and the Boolean negation and the temporal operators in the
TCQ. In what follows, we show that there is an assignment v : {x1, . . . , xm} → {0, 1}
that satisfies ϕ iff Φ is satisfiable w.r.t. Kϕ.

(⇒) Let v be such an assignment. We define the model I = (It)t≥0 of Φ w.r.t. Kϕ with
domain ∆ := {c, ax1 , . . . , axm , a¬x1 , . . . , a¬xm}, where all individual names occuring in
the ABoxes are interpreted as themselves as follows:

AIt := {al | l ∈ Lit, v(l) = 1},
T It := {c | 0 ≤ i < `, 1 ≤ j ≤ 3, t = 3i+ j − 1, v(li,j) = 1},

CIt := {d | t < 3`, C(d) ∈ Aψt },
RIt := {(d, e) | t < 3`, R(d, e) ∈ Aϕt },
SIt := {(d, e) | t < 3`, S(d, e) ∈ Aϕt }.

We obviously have It |= Aϕt for all 0 ≤ t < 3`. Consider now the only GCI ∃S.T v A ∈ O.
By the definition of SIt based on the ABox Aϕt , the left-hand side concept can only be
satisfied by an individual of the form al. If al ∈ (∃S.T )It , then we have l = li,j for
t = i+ 3j − 1 and c ∈ T It by the definition of T It ; and also v(l) = 1. But then we also
have al ∈ AIt , which shows that I is a model of Kϕ.

Since v satisfies each clause of ϕ, it is clear that I satisfies the following implication
at every time point by its definition, given the ABox definitions based on ϕ:

C(c)→
(
T (c) ∨#FT (c) ∨#F #F T (c)

)
.

Moreover, whenever (d, e) ∈ RIt , then we must have d = al and e = a¬l for some l ∈ Lit.
By the definition of AIt , we then cannot have both d ∈ AIt and e ∈ AIt . This shows
that I satisfies the entire TCQ Φ.

(⇐) Let I = (It)t≥0 be a model of Φ w.r.t. Kϕ that interprets all individual names
as themselves. We define v(xk) := 1 if axk ∈ AI0 , and v(xk) := 0 otherwise.

Consider now an arbitrary clause li,1∨ li,2∨ li,3 of ϕ. Since C(c) ∈ Aϕ3i, I |= Φ implies
that there is an index j ∈ [1, 3] such that c ∈ T I3i+j−1 . By the definition of Aϕ3i+j−1,
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we also have (ali,j , c) ∈ SI3i+j−1 , and thus ali,j ∈ AI3i+j−1 = AI0 follows from the GCI
∃S.T v A.

If li,j is a variable, then we directly get v(li,j) = 1 by the definition of v, which shows
that the clause is satisfied by v. Otherwise, we have li,j = ¬xk for some k ∈ [1,m]. By
the definition of Aϕ3i+j−1, we know that (axk , a¬xk) ∈ RI3i+j−1 . Since I satisfies Φ and
a¬xk ∈ AI0 , it cannot be the case that axk ∈ AI0 . This means that v(xk) = 0, and thus
we also get v(li,j) = 1.

We have thus completely classified TCQ entailment in EL regarding different set-
tings with rigid symbols. In summary, we have shown that the main features of EL,
conjunction and qualified existential restriction, do not lead to critical interaction with
LTL if rigid symbols are disregarded. Otherwise, this only holds for the case with rigid
concept names under combined complexity assumptions. EL TKBs and LTL in queries
can thus, respectively, be used with LTL satisfiability checking and CQ answering in
EL “for free”, if the focus is on data complexity. Regarding the latter, we have further
proven co-NP-completeness if rigid symbols are included and thus that tractability
is lost. Rigid roles lead also to a considerable increase in combined complexity, to
co-NExpTime-completeness. As we show in the next chapter, which focuses on other
Horn DLs, both these critical increases are due to the qualified existential restriction
of EL.
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In this chapter, we regard a Boolean TCQ Φ and a TKB K = 〈O, (Ai)0≤i≤n〉 in
DL-LiteHhorn and investigate the combined and data complexity of the TCQ entail-
ment problem. We specifically show that the former equals that of satisfiability in
LTL and that the latter—ALogTime-completeness—only slightly increases compared
to the baseline, the data complexity of CQ answering, which is in AC0. In particular,
these results are tight for all logics between DL-Litecore and DL-LiteHhorn, even if rigid
symbols are considered. Note that the complexities and the fact that they do not de-
pend on the kind of rigid symbols considered are different from what we have shown for
EL in Chapter 5. Although we here use ideas similarly applied in the previous chapter,
the general consideration of rigid symbols, the features allowed in DL-Lite, and the
complexities we target require us to considerably extend these approaches.

The main expressive features of DL-LiteHhorn are inverse roles, conjunction, and role
inclusions (see the examples in Section 1.2). Different from EL, DL-Lite ontologies only
allow for unqualified existential restrictions. This often makes reasoning less complex,
especially w.r.t. data complexity—as it is reflected in our results. Nevertheless, qualified
existential restrictions as ∃HasState.SwitchedOff on the right-hand side of CIs can be
simulated by using a concept ∃HasOffState1 instead and axioms as follows:

HasOffState v HasState

∃HasOffState− v SwitchedOff

Also in this chapter, our results are obtained by investigating procedures based on
Lemma 3.13 solving TCQ satisfiability and focusing on satisfiability problems in LTL
and DLs. The challenge thereby is to construct a corresponding set W of LTL worlds
and mapping ι within specific time and space constraints. Recall that, regarding the
sublinear data complexity we target here, not only the size of this exponentially large
set but also the linear size of the mapping represents an obstacle.

In Section 6.1, we first propose a new characterization of r-satisfiability—the DL part
of the TCQ satisfiability problem—in the presence of rigid names that is tailored to
TCQs and DL-LiteHhorn and, different from existing characterizations (see Section 3.2),
does not consider the set as W a whole. We then apply this approach in Section 6.2
on combined complexity for obtaining the PSpace result. Subsequently, we refine it in
Section 6.3 in a way that allows for defining FO rewritings of r-satisfiability. Based on
those, the data complexity result is obtained in Section 6.4.

Throughout the chapter, we use the notation of Section 3.2. For ease of presenta-
tion, we furthermore allow basic concepts to occur in ABoxes in TKBs, without loss of
generality.

1Recall that unqualified existential restrictions in DL-Lite are usually given in this form, which is
equivalent to ∃HasOffState.>.
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6.1 Characterizing r-Satisfiablility
In this section, we propose a new characterization of r-satisfiability for a set W as in
Lemma 3.13 which is tailored to the context of DL-LiteHhorn. As outlined in Section 3.3,
the idea is to specify a polynomial amount of additional data that allows us to split
the test proposed in Definition 3.12 into separate and independent consistency tests—of
low complexity—focusing on single elements of W, which may take this data into ac-
count. Given in this form, the additional data can then be guessed in a nondeterministic
procedure deciding r-satisfiability.

Note that both the goal and basic approach are similar in the characterizations we
developed for EL in Sections 4.4.2 and 5.1. But there are two main differences, especially
to the latter one, which also targets TCQ entailment. Regarding DL-LiteHhorn, we also
consider rigid roles, which requires us to considerably extend the additional data and
conditions to be tested. Second, we apply the characterization also for investigating
data complexity and hence cannot simplify the problem by neglecting the ABoxes in
the TKB.2

In addition to the set W ⊆ 2{p1,...,pm} that consists of worlds W1, . . . ,Wk, we regard
a mapping ι : [0, n] → [1, k]. Observe that, for now, we assume both to be given. We
however never considerW as a whole, but regard its elements W1, . . . ,Wk independently
of each other.

In what follows, we first introduce notions to describe the additional data and to
specify the conditions, then present the characterization itself, and lastly prove its cor-
rectness.

6.1.1 ABox Types, Consequences, and Witness Queries
As described in Section 3.3, the goal of including the additional data is to simulate the
effects of the shared domain of the exponentially many interpretations in Definition 3.12
(Functions (F1) and (F2)) so that we can focus on single interpretations.

Regarding Function (F1), our tests use an ABox type for DL-Lite, a set of (negated)
assertions that is to be satisfied by all of the interpretations.

Definition 6.1 (ABox Type) An ABox type for K is a set

AR ⊆ {B(a),¬B(a) | a ∈ NI(K), B ∈ BR(O)} ∪
{R(a, b),¬R(a, b) | a, b ∈ NI(K), R ∈ N−RR(O)}

with the property that α ∈ AR iff ¬α /∈ AR. ♦

Note that this definition extends Definition 5.2, specifying the notion for TCQs and EL,
by additionally considering the individuals in the ABoxes and rigid roles.

2According to Lemma 3.7, the data given in the ABoxes can be encoded into the TCQ, and the
ABoxes can then be considered to be empty. This approach does however not suit data complexity
investigations since the TCQ then cannot be assumed to be independent of the data any more. That
is, if something has to be decided w.r.t. the query (e.g., for the contained CQs) in order to answer
it, then data complexity cannot be considered, but the usually higher combined complexity has to
be applied instead.
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Regarding Function (F2), first observe that the satisfiability of CQs occurring only
in positive literals in the conjunctions χi with i ∈ [1, k] cannot be contradicted by some
interpretation—we focus on all Jj and Ij with j 6= i—if both the model Ji of the CQ
and the other interpretation satisfy a common ABox type and the ontology O. Since
this is ensured in our tests, it remains to consider the negative CQ literals. It is easy
to see that, if rigid roles are left apart, the satisfiability of such literals can only be
contradicted (based on rigid symbols) by an interpretation satisfying O and a common
ABox type through single domain elements, because we assume the CQs to be connected;
note that this is the same w.r.t. EL, where we disregard rigid roles entirely. Regarding
rigid roles, we additionally have to consider structures formed by related individuals in
a specific interpretation if they are invariant to time. In particular, we have to consider
those that exist because we require the interpretations J1, . . . ,Jk, I0, . . . , In to satisfy
certain ABox assertions and CQs contained in Φ. Since ABox types capture the rigid
structures formed by the former, it remains to regard the CQs satisfied by some of the
interpretations. Targeting such CQs, we define the consequences of a CQ, a set of (also
negated) assertions which we then require to be satisfied by all of the interpretations.

In the following, for a CQ or set of CQs Q, AQ denotes the ABox obtained from Q
by instantiating all variables x in the CQs with fresh individual names of the form ax.

Definition 6.2 (Consequences) The set CO(ϕ) of consequences of a CQ ϕ is defined
as

CO(ϕ) := {C(a) | C ∈ B¬R(O), a ∈ NI(Aϕ), O |=
l

B(Aϕ, a) v C} ∪

{R(a, b) | R ∈ N−RR(O), S(a, b) ∈ Aϕ, O |= S v R};

where B(A, a) := {A ∈ NC | A(a) ∈ A} ∪ {∃R | R ∈ N−R , R(a, b) ∈ A}. ♦

Note that we cannot exactly capture (this part of) the shared domain by simply re-
quiring such assertions to be satisfied by all interpretations J1, . . . ,Jk, I0, . . . , In; in
particular, we cannot enforce the latter to instantiate the structures with the same kind
of individuals (i.e., w.r.t. the new individual names ax), where “kind” refers to the con-
cepts and roles the individual instantiates. Nevertheless, in the context of DL-LiteHhorn,
the ontology cannot express meaningful information regarding role successors either,
since the logic does not allow to express qualified existential restriction. This means
that the kind of related individuals cannot be a reason for contradictions caused by the
ontology. And we later show that, if information on some Jj or Ij is relevant to test
the satisfiability of a conjunction χi with i ∈ [1, k], then it suffices to know about the
existence of such rigid structures. This specifically means that TCQs and TKBs can
enforce relations between structures existing at different time points only via named
individuals (e.g., by requiring certain assertions or CQs to be satisfied).

The notion of consequences allows us to describe the time-invariant effects of satisfied
CQs, but captures only extracts of the domain. The named individuals are covered
already via ABox types and consequences.3 We therefore additionally describe critical
consequences of arbitrary, unnamed domain parts. Specifically, we characterize the

3Note that we actually still disregard one aspect of the relevant time-invariant information on named
individuals, the case that a flexible relation implies several rigid ones to the same unnamed successor.
This is covered in the next section.
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satisfaction of CQs—those in the negative literals—independent of time in terms of other
CQs, so-called witness queries. These are CQs without variables and, more importantly,
of tree-shape. Observe that CQs of this shape sufficiently capture the unnamed part for
the purpose of r-satisfiability, where we look for interpretations J1, . . . ,Jk, I0, . . . , In
that do (not) satisfy certain axioms and CQs. The resulting relations in the unnamed
domain parts can be seen as trees since we consider a DL-LiteHhorn ontology. If we
disregard the named individuals, it is thus safe to focus on CQs of this shape.

We start defining what we consider as tree-shaped CQs. Note that the graphs of the
CQs are generally not directed (trees), namely because DL-LiteHhorn allows for inverse
roles. We therefore consider functions similar to the tree witnesses defined in [Kon+10].
These functions describe bijections between the variables of a CQ ϕ and the nodes of a
tree (i.e., the tree is similar to Gϕ but directed) so that an atom R(x, y) ∈ ϕ implies that
the tree contains an edge between the corresponding nodes. We extend the functions to
incorporate not only all atoms R(x, y) ∈ ϕ but explicitly consider roles S for which the
ontology entails an RI S v R.

Definition 6.3 (Tree-Shaped) Let ϕ be a CQ with NI(ϕ) = ∅ and x ∈ NV(ϕ).
A tree witness for ϕ (w.r.t. x and O) is a function fx : NV(ϕ) → (N−R × 2N−R )∗ such

that

• fx(x) = ε;

• for all % · (S,R) ∈ range(f) and R ∈ R, we have O |= S v R; and

• for each R(y, z) ∈ ϕ, we have
– fx(z) = fx(y) · (S1,R) and some S ∈ R such that O |= S v R, or
– fx(y) = fx(z) · (S1,R) and some S ∈ R such that O |= S v R−.

If a tree witness for ϕ exists, then we call ϕ tree-shaped.
For a tree-shaped CQ ϕ and a tree witness fx for ϕ, the set ConO(ϕ, fx) is defined as

the set of all sets B ⊆ B(O) such that

• for each A(y) ∈ ϕ with fx(y) = ε, we have O |=
d
B v A;

• for each (S,R) ∈ range(fx), we have O |=
d
B v ∃S;

• for each A(y) ∈ ϕ with fx(y) = % · (S,R), we have O |= ∃S− v A; and

• for each % · (S1,R1) · (S2,R2) ∈ range(fx), we have O |= ∃S−1 v ∃S2. ♦

Regarding tree witnesses, recall that we assume CQs to be connected. The last condition
in the definition thus leads to the fact that the sets R ⊆ 2N−R are never empty.

Intuitively, the set ConO(ϕ, fx) contains all sets B of basic concepts that, if satisfied
in an interpretation I by one of its domain elements, imply the satisfaction of ϕ. Note
that the last two conditions for the sets B do not refer to these sets specifically; they
ensure that the sets describe the whole query. Observe that the set ConO(ϕ, fx) is empty
if they are not fulfilled w.r.t. the considered tree witness fx. For simplicity, we may omit
the variable x if we regard a tree witness fx where x is irrelevant or clear from context
and denote it by f, instead.
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Tree witnesses can be used to describe CQs that may be satisfied by unnamed elements
in models of O, but their definition still focuses on a specific time point (i.e., it does not
distinguish rigid and flexible symbols). Next, we consider the time-invariant setting.
We specify witness queries for a tree-shaped CQ: CQs that contain only rigid symbols
and, if satisfied in a model of O, imply the satisfaction of the latter query at arbitrary
time points. They are based on witnesses: sets of rigid basic concepts that, if satisfied
in a model of O, imply the satisfaction of a single basic concept at arbitrary time
points; alternatively, they can characterize the existence of a specific element in canonical
interpretations.

Definition 6.4 (Witness) A set B ⊆ BR(O) is a witness of a basic concept B ∈ B(O)
w.r.t. O if there are R0, . . . , R` ∈ N−R such that O |=

d
B v ∃R0, O |= ∃R−i−1 v ∃Ri for

all i ∈ [1, `], and O |= ∃R−` v B.
Let further I be the canonical interpretation for a knowledge base 〈O,A〉, where A

is an arbitrary ABox. Then, B is a witness of an element u%R0...R` ∈ ∆Iu w.r.t. 〈O,A〉 if
O |=

d
B v ∃R0 and u% ∈ (

d
B)I or % ∈ NI(A) ∩ (

d
B)I .

The set of all witnesses of a basic concept or unnamed element X w.r.t. O is denoted
by WO(X). For all e ∈ ∆I \∆Iu , we define WO(e) = ∅. ♦

Note that this definition corresponds to the one for EL. Here, we however have to
consider inverse roles and explicitly require the concepts Ci from Definition 5.4 to be of
the form ∃R−i . Furthermore, it is not sufficient to focus on sets of concepts to describe
the satisfaction of tree-shaped CQs through rigid symbols in the unnamed domain parts
of interpretations since we consider rigid roles.

We therefore characterize the satisfaction of a tree-shaped CQ ϕ by witness queries,
of which we have two kinds. If they are satisfied in a model of O through some homo-
morphism, tree witness queries imply the satisfaction of ϕ based on that homomorphism
(i.e., at arbitrary time points). The other, simpler kind only implies the satisfaction of ϕ
in general.

Definition 6.5 (Witness Query) Let f be a tree witness for a (tree-shaped) CQ ϕ
w.r.t. O, and let ψ be a CQ containing only variables of the form x%, where % ∈ range(f).

An element % ∈ range(f) is rigidly witnessed in ψ (w.r.t. f) if % 6= ε and one of the
following holds:

• % = σ · (S,R) and there is a set B∃S ⊆ BR(O) such that O |=
d
B∃S v ∃S and

B∃S(xσ) ⊆ ψ.4

• % = σ · (S,R) and σ is rigidly witnessed in ψ.

Given a set B ∈ ConO(ϕ, f) with subset B|R := B ∩ BR(O), ψ is a tree witness query
for ϕ (w.r.t. O, B, and f) if it is minimal (w.r.t. set inclusion regarding the set of atoms)
among all CQs satisfying the following conditions:

• B|R(xε) ⊆ ψ;

• for each A(y) ∈ ϕ with f(y) = ε, we have (i) O |=
d
B|R v A, or (ii) A ∈ NRC and

A(xε) ∈ ψ;
4Note that σ = ε is possible.
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• for each A(y) ∈ ϕ with f(y) = % · (S,R), we have (i) f(y) is rigidly witnessed in ψ,
or (ii) there is a set BA ⊆ BR(O) with O |=

d
BA v A and BA(xf(y)) ⊆ ψ;

• for each % · (S,R) ∈ range(f), we have (i) % · (S,R) is rigidly witnessed in ψ, or
(ii) R ⊆ NRR and R(x%, x%·(S,R)) ∈ ψ for all R ∈ R.

Further, ψ is a witness query for ϕ (w.r.t. O) if

• either ψ is a tree witness query for ϕ w.r.t. O, or

• ψ = ∃x.B(x) for some B ⊆ BR(O) such that there are an R ∈ N−R (O) and tree wit-
ness f for ϕ w.r.t. O such that B is a witness of ∃R w.r.t. O and {∃R} ∈ ConO(ϕ, f).
♦

For technical reasons, we in the following assume that xε occurs in every tree witness
query. This is without loss of generality and can be achieved, for instance, by considering
a fresh concept name that subsumes >. We next prove that the satisfaction of a witness
query for a CQ ϕ implies the satisfaction of ϕ.

Lemma 6.6 Given an interpretation I that is a model of O and a witness query ψ for
a CQ ϕ, we have that I |= ψ implies I |= ϕ.

Proof. We assume π to be the homomorphism of ψ into I (*) and, in line with Defini-
tion 6.5, consider two cases.

(I) Let ψ be a tree witness query w.r.t. a set B and tree witness f; note that we have
B ∈ ConO(ϕ, f). The goal is to define a homomorphism π′ of ϕ into I. We define π′
based on an auxiliary mapping τ : range(f) → ∆I as follows: π′(y) := τ(f(y)), for all
y ∈ NV(ϕ). Next, we 1) specify τ and then 2) show that π′ is indeed a homomorphism
of ϕ into I.

1) For all % ∈ range(f) that are not rigidly witnessed in ψ, we define τ(%) := π(x%).
This especially applies to ε. Note that xε and all x% must occur in ψ, by our assumption
on xε and Definition 6.5; for the latter, this follows from (ii) in the last condition in the
definition of tree witness query where we have R 6= ∅ by Definition 6.3.

For the remaining elements in range(f), the definition can thus be given by induction
over the structure of f. Since they are rigidly witnessed, which is never the case for ε, we
can consider them to be of the form % · (S,R) ∈ range(f); % = ε is possible. In particular,
our definition will be such that (τ(%), τ(% · (S,R))) ∈ SI . In the base case, we assume
% · (S,R) to be directly rigidly witnessed, which means that no prefix of % is rigidly
witnessed. Then, τ(%) is defined—as π(x%)—, and there is a set B∃S ⊆ BR(O) such that
O |=

d
B∃S v ∃S and B∃S(x%) ⊆ ψ. The latter and (*) yield π(x%) ∈ (

d
B∃S)I , and

I |= O then implies π(x%) ∈ (∃S)I . Hence, there must exist an element e ∈ ∆I such
that (τ(%), e) ∈ SI , and we can set τ(% · (S,R)) := e.

For the induction step, we consider elements of the form % · (S1,R1) · (S2,R2), as-
sume % · (S1,R1) to be rigidly witnessed, and τ(% · (S1,R1)) to be defined; note that
x%·(S1,R1)·(S2,R2) does not necessarily occur in ψ. The (last condition in the) defini-
tion of ConO(ϕ, f) (see Definition 6.3), then yields that O |= ∃S−1 v ∃S2. We have
τ(% · (S1,R1)) ∈ (∃S−1 )I by our definition of τ and hence get τ(% · (S1,R1)) ∈ (∃S2)I ,
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because I |= O. So there is an S2-successor e of τ(% · (S1,R1)) in I, and we can set
τ(% · (S1,R1) · (S2,R2)) := e.

2) We consider the definition of a tree witness query and first regard an atom A(y) ∈ ϕ.

• If f(y) = ε, then either (i) A ∈ NRC and A(xε) ∈ ψ, or (ii) O |=
d
B|R v A.

From (*) and, for (ii), I |= O, we get π(xε) ∈ AI , in both cases. Given that our
definition is such that π′(y) = τ(ε) = π(xε), this means π′(y) ∈ AI .

• If f(y) is of the form % · (S1,R1) · (S2,R2), then either (i) f(y) is rigidly witnessed
in ψ, or (ii) there is a set

d
BA ⊆ BR(O) such that O |= BA v A and BA(xf(y)) ⊆ ψ.

Regarding (i), we have τ(f(y)) ∈ (∃S−2 )I and hence π′(y) ∈ (∃S−2 )I , both by our
construction. From the third condition in the definition of ConO(ϕ, f) and I |= O,
we then get π′(y) ∈ AI .

We regard a role atom R(y, z) ∈ ϕ. According to Definition 6.3, we have one of the
following:

• f(z) = f(y) · (S1,R1) and there is an S ∈ R2 such that O |= S v R: Similar
as above we then either have that (i) f(y) · (S1,R1) is rigidly witnessed in ψ, or
(ii) S(xf(y), xf(z)) ∈ ψ. For (i), observe that our definition of π′ is (then) such that
(π′(y), π′(z)) ∈ SI1 . Given S1 v S, by Definition 6.3, and I |= O, we thus get
(π′(y), π′(z)) ∈ RI . Regarding (ii), (*) yields that (π(xf(y)), π(xf(z))) ∈ SI . The
fact that π′ is defined such that (π′(y), π′(z)) = (π(xf(y)), π(xf(z))) and I |= O
then directly imply (π′(y), π′(z)) ∈ RI .

• f(y) = f(z) · (S1,R1) and some S ∈ R2 such that O |= S v R−: this case follows
by dual arguments, exchanging f(y) and f(z), and replacing R by R−.

This shows that π′ is a homomorphism of ϕ into I.

(II) Regarding the second case of Definition 6.5, we assume ψ to be of the form
ψ = ∃x.B(x) for some B ⊆ BR(O) such that there are an R ∈ N−R (O) and a tree
witness f for ψ w.r.t. O such that B is a witness of ∃R w.r.t. O and {∃R} ∈ ConO(ψ, f).
Given the assumptions that I |= ψ and I |= O, there must then be an element e that
satisfies ∃R in I by Definition 6.4. We proceed in two parts 1) and 2) as above.

1) We define π′ based on a mapping τ analogously to the previous case, but begin by
setting τ(ε) := e. The rest of τ is defined by induction similar to the above induction,
by treating ε as if it was directly rigidly witnessed. Then, the only difference is that, in
the base case, we cannot assume the element considered to be of the form % · (S,R) and
an instance of the concept ∃S− in I, but have to regard ε. But since π′(ε) satisfies ∃R
by definition, {∃R} ∈ ConO(ψ, f), and I |= O, we obtain the required S-successors by
the second condition in the definition of ConO(ϕ, f).

2) Since all elements can be treated as rigidly witnessed this Part 2) is a special case
of the above Part 2), except for the case of a concept atom A(y) ∈ ϕ with f(y) = ε. But
then we know that π′(y) ∈ (∃R)I , and hence π′(y) ∈ AI by the first condition in the
definition of ConO(ϕ, f).
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The lemma shows that we have to especially focus on the satisfaction of witnesses
of a CQ if we do not want the CQ to be satisfied at an arbitrary time point through
unnamed domain parts.

Altogether, the definitions provided in this section enable us to characterize the Func-
tions (F1) and (F2) of the shared domain from Definition 3.12 in an alternative way
and hence to look for the interpretations J1, . . . ,Jk, I0, . . . , In separately. In order to
ensure a certain agreement between them on the interpretation of the rigid symbols, we
next collect all the data important for the time-invariant setting in r-complete tuples.

6.1.2 r-Complete Tuples
In this section, we specify the additional data in the form of tuples and propose the
property of r-completeness for characterizing r-satisfiablility. Recall the goal: indepen-
dent and separate consistency tests for each W ∈ W and each Wι(i) with i ∈ [0, n],
including the corresponding ABox Ai, that may take the additional data into account
and altogether decide if W is r-satisfiable w.r.t. ι and O.

The additional data is a tuple of the form (AR, QR, Q
¬
R, RF), where

• AR is an ABox type for K,

• QR, Q
¬
R ⊆ QΦ, and

• RF ⊆ {∃S(b) | S ∈ NR(O) \ NRR, b ∈ NI(K) ∪ Naux
I }

where the set Naux
I ⊆ NI contains an individual name ax for each variable x occurring in

a CQ in QR. Note that, because of our assumption that the CQs in Φ have no variables
in common, each ax ∈ Naux

I can be unambiguously associated to a CQ containing x.
As outlined above, the idea is to fix the interpretation of the named individuals via
AR, to consider the consequences of the CQs satisfied at some time point and collected
in QR, and to regard the witness queries of the CQs not satisfied at some time point
and collected in Q¬R. Observe that QR and Q¬R may overlap. The set RF is necessary
to capture possible effects of RIs of O, as it is sketched in the following example. The
additional data thus consists of a number of assertions and queries that is polynomial
in the size of Φ.

Example 6.7 At n = 1, the TCQ

Φ := (#PA(a)) ∧ ¬ (∃x.R1(a, x) ∧R2(a, x))

is not satisfiable w.r.t. the TKB K 〈O, (∅, ∅)〉, where O contains the CIs A v ∃S, S v R1,
and S v R2, and R1 and R2 are the only rigid symbols.

This is because every model I = I0, I1, . . . of K and Φ has to be such that all of
I0, I1, . . . satisfy O, I0 |= A(a), and I1 6|= ∃x.R1(a, x) ∧ R2(a, x) (see Definitions 3.3
and 3.5). Then, there must be an element e such that the tuple (a, e) is contained in
SI0 , RI01 , and RI02 . The fact that I respects the rigid names then yields that, for all
i ≥ 0, the tuple has to be contained in RIi1 and RIi2 . Hence, I1 |= ∃x.R1(a, x)∧R2(a, x).

ABox types and consequences however cannot capture such a scenario where K and
Φ imply that a named individual has a flexible role successor and that relation implies
several rigid relations, since the latter then target the same unnamed successor element.
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That is, while the TCQ has no model, there may be interpretations as in Definition 3.12
except that they do not share one domain, but do satisfy a common ABox type and
consequences of ϕ1 and ϕ2.

Consider W1 = {p1}, W2 = ∅, a mapping ι = {0 7→ 1, 1 7→ 2}, and arbitrary
interpretations J1, I2, I0, I1 as in Definition 3.12 except that they do not share one
domain. We assume ϕ1 = A(a). Definition 3.12 requires ϕ1 (because W1 = {p1}) to be
satisfied by J1 and I0.

Obviously, there is an ABox type AR = {∃R1(a), ∃R2(a)} for K, and we have the
consequences CO(ϕ1) = {∃R1(a), ∃R2(a)}. Regarding W2, we do not have to consider
consequences. Observe that we can still find interpretations J1, I2, I0, I1 as above that
additionally satisfy AR and the set of consequences. ♦

To simplify the presentation of the consistency tests, we define, for all i ∈ [1, k], the
sets Qi := {ϕj | pj ∈ Wi} and An+i := ∅ and extend ι such that ι(n+ i) := i. Further,
we represent most of the data to be considered for a given tuple (AR, QR, Q

¬
R, RF) in the

form of ABoxes as follows:

• AQR :=
⋃
ϕ∈QR

CO(ϕ).
We assume that the instantiation of the variables is done using the corresponding
individual names from Naux

I .

• AQi constitutes the ABox obtained from Qi by instantiating all variables with the
corresponding names from Naux

I .

• ARF :=
⋃
∃S(b)∈RF

A∃S(b), where A∃S(b) is constructed as follows:
1. For every domain element ub% of the canonical interpretation I〈O,{∃S(b)}〉 with
|%| ≤ max{|NV(ϕ)| | ϕ ∈ QΦ}, introduce a new individual name ab%.
These new individual names are collected in the set Ntree

I .
2. For every a%S ∈ Ntree

I , add the following assertions to the set A∃S(b), which is
assumed to be empty initially:

– for every B ∈ BR(O) with O |= ∃S− v B, the concept assertion B(a%S);
– for every R ∈ N−RR(O) with O |= S v R, the role assertion R(a%, a%S) if
% 6∈ NI(K), otherwise R(%, a%S).

Observe that these consequences only have to be considered up to a depth which
ensures that possible and relevant matches (i.e., those that include the named
individual b) of relevant CQs (those in QΦ) depending on the existence of some
S-successor of b can be fully characterized. Note that the ABox ARF defined in
this way is of exponential size. But we show in Sections 6.2 and 6.4 that this does
not affect our complexity results

Observe that, for i, j ∈ [1, k], the ABoxes AQR , AQi , and ARF may share some individual
names from NI(K) and Naux

I , whereas different ABoxes AQi and AQj do not share any
individual names from Naux

I since we assume the CQs to use disjoint variables.
The conditions we then test regarding a given tuple (AR, QR, Q

¬
R, RF) are captured

by the property of r-completeness (see also the corresponding Definitions 4.13 and 5.6
for EL).
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Definition 6.8 (r-complete) A tuple (AR, QR, Q
¬
R, RF) as specified above is r-complete

(w.r.t. W and ι) if the following hold for all i ∈ [0, n+ k]:
(C1) KiR := 〈O,AR ∪ AQR ∪ AQι(i) ∪ ARF ∪ Ai〉 is consistent.

(C2) For all pj ∈Wι(i), we have KiR 6|= ϕj .

(C3) For all W ∈ W and pj ∈W , we have ϕj ∈ QR.

(C4) For all W ∈ W and pj ∈W , we have ϕj ∈ Q¬R.

(C5) For all CQs ϕ ∈ Q¬R and witness queries ψ for ϕ w.r.t. O, we have KiR 6|= ψ.5

(C6) For all S ∈ NR(O) \ NRR and b ∈ NI(K) ∪ Naux
I , we have ∃S(b) ∈ RF iff there is an

index j ∈ [0, n+ k] such that 〈O,AR ∪ AQR ∪ AQι(j) ∪ Aj〉 |= ∃S(b). ♦
The first two conditions together ensure that, for all considered worlds Wi (Wι(i)) with
i ∈ [1, k] (i ∈ [0, n]), exactly the queries specified by the world can be satisfied w.r.t. O
if the assertions in Ki+nR (KiR) are taken into account. In line with the above described
intention, the third (fourth) condition then makes sure that only the queries from QR
(Q¬R) can occur in some W ∈ W (in some W where W ∈ W). Condition (C5) ensures
that the queries induced by some such set W are not entailed based on the rigid names,
by requiring that the canonical models of all KiR do not satisfy any of the witnesses of
the tree-shaped queries in Q¬R (see Lemma 2.13). And the last condition ensures that
RF is minimal; that is, the rigid consequences of ∃S(b) are only considered if they are
implied by an adapted KB KiR, excluding ARF .

We next show that the existence of an r-complete tuple w.r.t. W fully characterizes
the r-satisfiability of W.
Lemma 6.9 W is r-satisfiable w.r.t. ι and K iff there is an r-complete tuple w.r.t. W
and ι.

The proof of the lemma is split over the following two subsections.

If W is r-satisfiable w.r.t. ι and K, then there is an r-complete tuple
w.r.t. W and ι.
Let J1, . . . ,Jk, I0, . . . , In be the interpretations over a domain ∆ that exist according to
the r-satisfiability ofW (see Definition 3.12 ). We assume w.l.o.g. that ∆ contains NI(K)
and that all individual names are interpreted as themselves in all these interpretations.

We first define the tuple (AR, QR, Q
¬
R, RF) as follows:

AR := {B(a) | a ∈ NI(K), B ∈ BR(O), aJ1 ∈ BJ1} ∪
{¬B(a) | a ∈ NI(K), B ∈ BR(O), aJ1 /∈ BJ1} ∪
{R(a, b) | a, b ∈ NI(K), R ∈ NRR(O), (a, b) ∈ RJ1} ∪
{¬R(a, b) | a, b ∈ NI(K), R ∈ NRR(O), (a, b) 6∈ RJ1};

QR := {αj ∈ QΦ |W ∈ W , pj ∈W};
Q¬R := {αj ∈ QΦ |W ∈ W , pj 6∈W};

5Observe that the condition is only relevant for tree-shaped CQs since there are no witness queries for
CQs that are not of tree shape.
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RF := {∃S(b) | S ∈ NR(O) \ NRR, b ∈ NI(K) ∪ Naux
I , i ∈ [0, n+ k],

〈O,AR ∪ AQR ∪ AQι(i) ∪ Ai〉 |= ∃S(b)}.

We prove that the tuple is r-complete by showing that it satisfies all the conditions
in Definition 6.8. It is easy to see that AR is an ABox type for O, that QR satis-
fies Condition (C3), and that Q¬R complies with Condition (C4). Moreover, the rather
straightforward definition of the tuple seems to make it easy to show that each of the
knowledge bases KiR has a model (Condition (C1)) which neither satisfies a CQ from
QΦ \Qι(i) (Condition (C2)) nor a witness of the queries in Q¬R (Condition (C5)), based
on the given interpretations; but special attention needs to be given to the UNA and
Condition (C6). The crucial point is that the given interpretations may satisfy CQs
in a conjunction χι(i) (χι(i)) by a homomorphism that can however not be applied to
satisfy an ABox AQi (AQι(i)), because π maps different variables to the same domain
element, which are represented as named individuals from Naux

I in the ABox; the same
applies to the ABox ARF w.r.t. the elements from Naux

I and Ntree
I . Regarding Condi-

tion (C6), observe that the “if” direction does not directly yield that each of the given
interpretations satisfies the assertions in ARF .

The idea is therefore to extend the given interpretations Ji (Ii) in two steps. First, we
construct models I ′i+n (I ′i) of 〈O,AR∪AQR∪AQι(i+n)∪Ai+n〉 (〈O,AR∪AQR∪AQι(i)∪Ai〉)
that interpret the elements of Naux

I and Ntree
I by using duplicates of elements from ∆. In

order to overcome the issue regarding Condition (C6), we ensure that these interpreta-
tions still share one domain and also interpret the rigid symbols in the same way. This
allows us to then adapt these interpretations in a second step regarding the elements
from Ntree

I in order to get models of the respective knowledge bases Ki+nR (KiR), which
include ARF .

For this extension, we consider different canonical interpretations for all CQs ϕ ∈ QR
satisfied in one of the given interpretations: IKRF

, the one of Kϕ := 〈O,ARF〉; IKϕ , the
one of Kϕ := 〈O,Aϕ〉; and IR

Kϕ , which collects the rigid consequences of IKϕ and is
inductively defined according to Definition 2.11 with the adaptation that all symbols
X ∈ NC ∪ NR are initially interpreted as follows:

X0 :=
{
XIKϕ if X ∈ NRC ∪ NRR,

∅ otherwise.

Being defined in this way, IR
Kϕ behaves exactly as IKϕ w.r.t. the rigid names, but the

interpretations of the flexible names only contain those tuples that are implied by the
rigid information. Note that the domain of IR

Kϕ is part of the one of IKϕ since all
elements u% that would be created by the iteration in Definition 2.11 for IR

Kϕ are also
created by the one for IKϕ and are hence contained in the initial interpretation above.
We consider the interpretations IR

Kϕ to make sure that all interpretations we construct
also satisfy AQR in consideration of the UNA (together with O), even if they do not
satisfy an ABox Aϕ.
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Observe that Kϕ is consistent since ϕ ∈ QR implies that there is an interpretation
Ii or Ji that satisfies ϕ and O and is thus a model of Kϕ.6 This also leads to the
fact that all the given interpretations satisfy the rigid consequences of Aϕ w.r.t. O (i.e.,
particularly CO(ϕ), see Definition 6.2) because, by assumption, they share one domain
and respect the rigid names. We can state properties of all ϕj ∈ QR that are crucial for
our construction:

• IKϕj can be homomorphically embedded into each Ji (Ii) for which we have
pj ∈ Wι(n+i) (pj ∈ Wι(i)) since there must be a homomorphism of ϕj into Ji (Ii)
and this entails the existence of domain elements that satisfy at least the symbols
satisfied by the elements of IKϕj .

• IR
Kϕj

can be homomorphically embedded into each Ji (Ii), because there must be
some ` ∈ [1, k] such that J` satisfies ϕj (and O), and the rigid consequences of ϕj ,
represented by IR

Kϕj
, are satisfied in all the given interpretations.

These facts imply that we can, as the first step, extend all given interpretations Ji with
i ∈ [1, k] (Ii, i ∈ [0, n]) to models I ′n+i (I ′i) of AQR and AQι(n+i) (AQι(i)) because they
already contain elements that behave in the same way—at least, regarding the symbols
that need to be satisfied to obtain such models:

• The common domain ∆ is extended by the union of the domains of all IKϕ with
ϕ ∈ QR (which are also the domains of IR

Kϕ). Note that these domains may overlap
in NI and Naux

I .

• The individual names from Naux
I are interpreted as themselves.

• For each j ∈ [1,m] and pj ∈ Wι(i), all symbols are, on the domain of IKϕj ,
interpreted exactly as in IKϕj . Note that there are no role connections between
the old and the new domains except between NI(K) and the elements of Naux

I (*).

• If pj ∈ Wι(i) (pj ∈ Wi), then all symbols are, on the domain of IKϕj , interpreted
exactly as in IR

Kϕj
.

Recall that ∆ is not yet complete; it is still to be extended by the domain of IKRF
.

Though, this definition meets our requirement that I ′i |= 〈O,AR ∪ AQR ∪ AQι(i) ∪ Ai〉
and is such that I ′i |= χι(i) for all i ∈ [0, n + k], which can be seen given the following
observations:

• I ′i satisfies O and AR. This is because, given (*), the interpretation of symbols
on the unnamed elements in the original domain ∆ does not change (i.e., the
interpretation of basic concepts on these elements neither changes); further, the
new domain elements do not exhibit new behavior that was not already present
in Ii (Ji); and the latter also implies that the interpretation of basic concepts on
the elements of NI does not change.

6If two variables are mapped by the homomorphism to the same domain element, we obtain a model
respecting the UNA by creating a copy of this element that satisfies exactly the same concept names
and participates in the same role connections as the original element.
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6.1 Characterizing r-Satisfiablility

• If i ≤ n, then I ′i satisfies Ai because Ii |= Ai by the same reasons as in the
previous item. Otherwise, Ai is trivially satisfied.

• I ′i is a model of AQR since that ABox consists exactly of the ABoxes CO(ϕ) with
ϕ ∈ QR and those are satisfied by the new domain elements because IR

Kϕ is part
of I ′i and IR

Kϕ |= CO(ϕ).

• Similarly, I ′i satisfies AQι(i) since that ABox consist exactly of the ABoxes Aϕj
with pj ∈Wι(i), satisfied by IKϕj , which is part of I ′i.

• For each pj ∈Wι(i), we get I ′i 6|= ϕj since any homomorphism of ϕj into I ′i would
allow us to also find one into Ii or, if i > n, Ji−n which contradicts the respective
assumptions that Ii |= χι(i) and Ji−n |= χι(i). Hence, we know that I ′i |= χι(i).

We come to the second part. Since the interpretations are models of the respective
knowledge bases 〈O,AR ∪ AQR ∪ AQι(n+i) ∪ An+i〉 with i ∈ [0, n+ k], we get that every
assertion ∃S(b) ∈ RF is satisfied in one of them by the above definition of RF. That in-
terpretation thus also satisfies the rigid consequences described in ARF since it is a model
of O. But then this holds for all the interpretations because they interpret the rigid
symbols on the named elements in the common domain (i.e., those in ∆∩NI(K)∩Naux

I ) in
the same way and satisfy AR and AQR , which contain all the relevant rigid information.
We can thus extend the domain ∆ by the domain of IKRF

and all interpretations I ′n+i
with i ∈ [1, k] (Ii with i ∈ [0, n]) as follows. The names from Ntree

I are interpreted by
themselves and, regarding the other names, these elements ab% ∈ Ntree

I are interpreted
as the elements that already exist since they describe the consequences of assertions
in RF; note that we may again have to copy elements if the UNA would be violated
otherwise. Note that this extension does not introduce new role connections between
the old and the new domains except between NI(K) and the elements of Naux

I and Ntree
I ,

similar to (*). We therefore can argue similarly as above that the final interpretations I ′i
are models as required for Condition (C1).

In what follows, we use these constructed interpretations to show that the tuple
(AR, QR, Q

¬
R, RF), in addition to the above covered Conditions (C1), (C3), (C4), and

(C6), also satisfies Conditions (C2) and (C5). This means it is r-complete.
Regarding Condition (C2), we assume that there are an i ∈ [0, n+k] and a pj ∈Wι(i)

such that KiR |= ϕj , which yields I ′i |= ϕj . This directly contradicts the above shown
fact that I ′i |= χι(i).

The proof for Condition (C5) is also by contradiction. We assume that there are an
index i ∈ [0, n+ k], a tree-shaped CQ ϕj ∈ Q¬R, and a witness query ψ for ϕj w.r.t. KiR
such that KiR |= ψ, and thus also I ′i |= ψ holds. However, ϕj ∈ Q¬R yields that there is
a W` ∈ W with ` ∈ [1, k] such that pj 6∈ W`, and thus I ′n+` 6|= ϕj . By Lemma 6.6, we
know that I ′n+` 6|= ψ. But this contradicts the facts that ψ contains only rigid names
and that I ′n+` and I ′i respect the rigid names. This concludes the proof of the first
direction of Lemma 6.9.

103



6 Temporal Query Entailment in DL-LiteHhorn

If there is an r-complete tuple w.r.t. W and ι, then W is r-satisfiable
w.r.t. ι and K.
The proof of the converse direction is more involved; the general approach is again the
same as for EL. We assume an r-complete tuple (AR, QR, Q

¬
R, RF) to be given and, as

before, follow the lines of Definition 3.12. The goal is thus to show that we can con-
struct interpretations J1, . . . ,Jk, I0, . . . , In that share one domain and satisfy the other
requirements of the definition. The idea is to integrate the canonical interpretations of
the KBs in Condition (C1) of Definition 6.8 to construct these interpretations.

In what follows, we first provide auxiliary definitions, then define the interpretations,
and lastly prove that they are as required. Note that, in the remainder of the proof, we
generally do not reference Definition 6.8 explicitly if we refer to Conditions (C1)–(C6).

For all i ∈ [0, n+ k], consider the following definitions.

• Ii := IKiR denotes the canonical interpretation of the KB KiR.

• We define ∆Iia := Naux
I ∩∆Ii to distinguish the elements in the domain of Ii that

are contained in Naux
I , and similarly write ∆Iit and ∆Iiu for the sets containing

the elements from Ntree
I and, respectively, the unnamed domain elements that are

unique to the canonical interpretation Ii.

• We also write aix for every element ax ∈ ∆Iia , aib% for every ab% ∈ ∆Iit , and ui% for
every u% ∈ ∆Iiu . Further, for any element e ∈ NI(K) ∪ Naux

I ∪ Ntree
I , we may use

ei to denote the corresponding element in NI(K) ∪ ∆Iia ∪ ∆Iit ; note that we thus
consider ai := a for all a ∈ NI(K).

Hence, the domain of Ii is composed of the pairwise disjoint sets NI(K), ∆Iia , ∆Iit ,
and ∆Iiu . We state this fact for future reference.

Fact 6.10 The set NI(K), all ∆Iia with i ∈ [0, n+ k], all ∆Iit with i ∈ [0, n+ k], and all
∆Iiu with i ∈ [0, n+ k] are pairwise disjoint.

Next, we construct the interpretations J0, . . . ,Jn+k as required for the r-satisfiability
of W; where J0, . . . ,Jn represent I0, . . . , In of Definition 3.12 and Jn+1, . . . ,Jn+k rep-
resent J1, . . . ,Jk. To this end, we join the canonical interpretations Ii. The idea is that,
for all i ∈ [0, n+ k], Ii represents the parts specific to Ji and, for the interpretation of
the rigid symbols in Ji, all Ij with j ∈ [0, n + k] are considered. The interpretation of
the flexible symbols then can obviously not be solely based on Ii but has to be adjusted.
In this way, we ensure that all of J0, . . . ,Jn+k interpret the rigid concept names in the
same way.

The common domain ∆ is defined as follows:

∆ := NI(K) ∪
n+k⋃
i=0

∆Iia ∪∆Iit ∪∆Iiu .

Ji is specified below, for all i ∈ [0, n+ k]:

• For all a ∈ NI(K): aJi := a.

• For all rigid concept names A: AJi :=
⋃n+k
j=0 A

Ij .
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6.1 Characterizing r-Satisfiablility

• For all flexible concept names A:

AJi := AIi ∪
n+k⋃
j=0

⋃
B⊆BR(O),
O|=

d
BvA

(
l
B)Ij ∪

n+k⋃
j=0
{uj%R ∈ ∆Iju | O |= ∃R− v A,WO(uj%R) 6= ∅}.

• For all rigid role names R: RJi :=
⋃n+k
j=0 R

Ij .

• For all flexible role names R:

RJi := RIi ∪
n+k⋃
j=0

⋃
S∈N−RR(O)
O|=SvR

SIj ∪
n+k⋃
j=0
{(d, e) ∈ RIj | ∃X ∈ {d, e},WO(X) 6= ∅}.

We thus have constructed interpretations J1, . . . ,Jk that share the same domain and
respect the rigid names since, for all X ∈ NRC ∪ NRR and i ∈ [0, n + k], the definition
of XJi is independent of i. Most parts of the specification are straightforward.

We next show connections between J0, . . . ,Jn+k and the canonical interpretations,
which also help to clarify the picture of the former. In the remainder of this section, we
then prove that the interpretations fulfill the other requirements for the r-satisfiability
of W.

Lemma 6.11 For all i ∈ [0, n+ k], elements d, e ∈ ∆Ii, and role names R ∈ NR:

(d, e) ∈ RJi iff (d, e) ∈ RIi .

Proof. (⇐) This direction follows directly from the definition of RJi .
(⇒) We focus on the definition of RJi . If R is flexible, we need to consider two

cases; in both, we assume i 6= j: (i) (d, e) ∈ SIj for some rigid subrole S of R, and
(ii) (d, e) ∈ RIj and either d or e has a witness w.r.t. O. Given d, e ∈ ∆Ii , Fact 6.10
however implies d, e ∈ NI(K) in both cases. Hence, (ii) is impossible since named
domain elements cannot have witnesses according to Definition 6.4. Regarding (i), we
get S(d, e) ∈ AR since S ∈ NRR, that AR is an ABox type, and Ij |= AR. Then, Ii |= AR
implies (d, e) ∈ SIi , and Ii |= O yields (d, e) ∈ RIi since we assume O |= S v R.

If R is rigid, we consider the case that (d, e) ∈ RIj for some j 6= i and get d, e ∈ NI(K),
as above. Since R ∈ NRR, AR is an ABox type, and Ij |= AR, we must have R(d, e) ∈ AR.
Ii |= AR then leads to (d, e) ∈ RIi .

The following observation is a direct consequence of the fact that the interpretation
of roles in Ji is based on the canonical interpretations, which are models of O, and
Fact 6.10.

Lemma 6.12 For all i, j ∈ [0, n+ k], elements d ∈ ∆ and e ∈ ∆Iju , and roles R ∈ N−R ,
we have:

If (d, e) ∈ RJi then (d, e) ∈ RIj .
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There are similar connections between the interpretations of concepts in Ji and Ij .

Lemma 6.13 For all i, j ∈ [0, n+ k] and basic concepts B ∈ B(O), the following hold.

a) For all e ∈ NI(K), we have e ∈ BJi iff e ∈ BIi.

b) If B is rigid, then, for every e ∈ ∆Ija ∪∆Ijt ∪∆Iju , we have e ∈ BJi iff e ∈ BIj .

c) If B is flexible, then, for every e ∈ ∆Ija ∪∆Ijt ∪∆Iju , we have e ∈ BJi iff
• i = j and e ∈ BIi, or
• there is a B ⊆ BR(O) with e ∈ (

d
B)Ij and O |=

d
B v B, or

• e ∈ BIj ∩∆Iju and WO(e) 6= ∅.

Proof. For a), we first assume B to be rigid. (⇐) e ∈ BIi clearly implies e ∈ BJi since
XIi ⊆ XJi for X ∈ NRC ∪NRR. (⇒) By the definition of the rigid names in Ji, e ∈ BJi
yields that there is a j ∈ [0, n+ k] such that e ∈ BIj . Since Ij and Ii are both models
of the ABox type AR, we get B(e) ∈ AR and e ∈ BIi .

RegardingB being flexible, the definition of Ji on this kind of names yields two options
equivalent to e ∈ BJi : (i) e ∈ BIi or (ii) there are a B ⊆ BR(O) with O |=

d
B v B

and a j ∈ [0, n + k] such that e ∈ (
d
B)Ij . For B being of the form ∃R with R ∈ N−R ,

this choice is a consequence of the following observations, assuming (i) does not apply:

• If there is an S ∈ N−RR such that O |= S v R and e ∈ (∃S)Ij , O |=
d
{∃S} v ∃R

holds as well. Hence, we can set B := {∃S}.

• Otherwise we can assume that there is an element ujeS ∈ ∆ such that (e, ujeS) ∈ RIj
because of Fact 6.10 and Definition 6.4, which yields that the elements in NI(K)∪∆Ija
do not have witnesses; by Definition 2.11, we especially have O |= S v R. Given
WO(e) = ∅, (e, ujeS) ∈ RIj implies that WO(ujeS) 6= ∅, meaning that there is a
witness B ⊆ BR(O) such that e ∈ (

d
B)Ij and O |=

d
B v ∃S. Additionally,

O |= ∃S v ∃R implies O |=
d
B v ∃R.

Regarding now the two options, we get that (ii) implies (i) since e ∈ (
d
B)Ij yields

B′(e) ∈ AR for all B′ ∈ B, which together with Ii |= AR implies e ∈ (
d
B)Ii . Hence,

Ii |= O leads to e ∈ BIi . This concludes the proof of a).
b) is a direct consequence Fact 6.10 and the definition of Ji.
For c) and the case that B ∈ NC, the equivalence with one of the three cases is covered

by the definition of Ji if, for the last case, Lemma 2.15 is taken into account.
It remains to consider B to be of the form ∃R with R ∈ N−R . For the case that

i = j, the claim can be restricted to the first of the three items since the other two
are subsumed by it; for the second item, this holds because Ii |= O. Then, it is a
direct consequence of Fact 6.10 and the definition of Ji, because the interpretation of
the elements from ∆Iia ∪ ∆Iit ∪ ∆Iiu in Ji is not influenced by any Ij with j 6= i. We
consider the case i 6= j.

• Regarding e ∈ Naux
I ∪ Ntree

I , we only have to consider the second item. (⇒) The
definition of RJi yields two options: (i) there is an S ∈ N−RR such that e ∈ (∃S)Ji
and O |= S v R, or (ii) there is an R-successor d of e in Ij , and either e or d
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has a witness w.r.t. O. For (i), we set B := {∃S}. For (ii), Definition 6.4 yields
WO(e) = ∅ and thus that d is of the form ujeS with S ∈ N−R (O) since WO(d) 6= ∅.
The latter implies that there is a B ⊆ BR(O) with e ∈ (

d
B)Ij and O |=

d
B v ∃S.

Taking O |= S v R into account, which follows from Definition 2.11 because of
the shape of d, we then get O |=

d
B v ∃R. (⇐) Given e ∈ (∃R)Ij , there is

an element of the form ujeR ∈ ∆Iju such that (e, ujeR) ∈ RIj by Definition 2.11.
Since Definition 6.4 implies that B is a witness of ujeR, the definition of Ji yields
(e, ujeR) ∈ RJi ; that is, e ∈ (∃R)Ji .

• Let e ∈ ∆Iju . (⇒) Again, there are two options, by the definition of Ji: (i) there is
an S ∈ N−RR such that e ∈ (∃S)Ij and O |= S v R, or (ii) there is an R-successor d
of e in Ij , and either e or d has a witness w.r.t. O. For (i), we can set B := {∃S},
as in the previous item. For (ii), observe that we have e ∈ (∃R)Ij . If WO(d) is
undefined or empty, then the third item of c) holds directly. Otherwise, we assume
WO(d) 6= ∅ and hence get d ∈ ∆Iju by Definition 6.4. By Definition 2.11, we then
have either (i’) e = uj% and d = uj%R, or (ii’) d = uj% and e = uj%R− . For (i’),
Definition 6.4 yields either WO(e) 6= ∅ (i.e., the third item holds) or that there is
a B ⊆ BR(O) such that e ∈ (

d
B)Ij and O |=

d
B v ∃R (the second item).

For (ii’), we immediately get that the witness of d is also a witness of e, again by
Definition 6.4. (⇐) Let e = uj%. We start with the second item. If there is a set
B ∈ BR(O) with e ∈ (

d
B)Ij and O |=

d
B v ∃R, then Definition 2.11 implies

that the element uj%R ∈ ∆Iju exists and that (e, uj%R) ∈ RIj . Since B is further a
witness of uj%R by Definition 6.4, we get (e, uj%R) ∈ RJi , and hence e ∈ (∃R)Ji by
the definition of Ji. Regarding item three, and thus e ∈ (∃R)Ij , we similarly get
that (e, uj%R) ∈ RIj by Definition 2.11. Then, WO(e) 6= ∅ yields e ∈ (∃R)Ji , as in
the previous case.

We finally show that Ji is in fact as intended. The proof of the next lemma is standard
given Lemmas 6.11 and 6.13.

Lemma 6.14 For all i ∈ [0, n+ k], Ji is a model of (O,Ai).

Proof. For every assertion α ∈ Ai, Lemma 2.12 yields Ii |= α, and thus Lemmas 6.11
and 6.13a) yield Ji |= α.

We consider a CI B1u · · ·uBm v B ∈ O and element e such that e ∈ BJi1 ∩ · · ·∩BJim ;
note that B1, . . . , Bm are basic concepts and B is either a basic concept or ⊥. For the
case that e ∈ NI(K), Lemma 6.13a) yields e ∈ BIi1 ∩ · · · ∩ BIim . Since Ii |= O, this
implies that e ∈ BIi , which is impossible if B = ⊥. Otherwise, we get e ∈ BJi , again
by Lemma 6.13a).

Let now e ∈ ∆Ija ∪ ∆Ijt ∪ ∆Iju for some j ∈ [0, n + k]. If i = j, then we get the
same conclusion as in the previous case since, given that Ij |= O, items two and three
collapse to the first item. More precisely, we can argument analogously by referring to
Lemma 6.13b) and c) instead of Lemma 6.13a). Regarding i 6= j, Lemma 6.13 implies
that, for each B` with ` ∈ [1,m], we have either that (i) there is a B` ⊆ BR(O) such that
e ∈ (

d
B`)Ij and O |=

d
B` v B` or that (ii) e ∈ BIj` ∩∆Iju and WO(e) 6= ∅. Ij |= O,

following from Lemma 2.12, thus leads to e ∈ BIj` for (i) and to e ∈ BIj for both cases.
If B = ⊥, this is again impossible. If B is rigid, then Lemma 6.13b) yields e ∈ BJi , as

107



6 Temporal Query Entailment in DL-LiteHhorn

required. If B is flexible and Case (ii) applies to at least one B` with ` ∈ [1,m], then
the third item of Lemma 6.13c) yields the claim. Otherwise, it is easy to see that we
can define B :=

⋃m
`=1 B` and have e ∈ (

d
B)Ij , O |= B v B1u· · ·uBm, and O |= B v B.

Hence, the second item of Lemma 6.13c) applies, and we also get e ∈ BJi .
It remains to consider role inclusions of the form S v R. We consider a tuple

(d, e) ∈ SJi and focus on the definition of Ji regarding roles, in the following. That
is, there is a j ∈ [0, n + k] such that (d, e) ∈ SIj . Since Ij |= O, we get (d, e) ∈ RIj .
For the case that R is rigid, we immediately get (d, e) ∈ RJi . For the case that R is
flexible, we assume (d, e) /∈ RJi , by contradiction. Then, we must have that i 6= j, that
R has no rigid subrole S′ such that (d, e) ∈ S′Ij , and that neither d nor e have a witness
w.r.t. O. The second of these observations implies that S is neither rigid and has no
rigid subrole S′ such that (d, e) ∈ (S′)Ij , because S would also be a rigid subrole of R.
But this means (d, e) /∈ SIj , which contradicts our assumption.

We now provide the final missing piece to show r-satisfiability of W and prove that,
for all i ∈ [0, n + k], the interpretation Ji satisfies the corresponding conjunction χi
of CQ literals. Regarding the positive literals, this is easy given that the ABox AQι(i)
contains an instantiation of all these CQs and is satisfied by Ii. The proof for the
negative literals ¬ϕ is based on the interpretation of roles in Ji, where domain elements
of different interpretations Ij and I` with j, ` ∈ [0, n+ k] are only related sparsely (i.e.,
at least one of two such elements must be a named individual). Given that we assume
CQs to be connected, we specifically have that, if Ji satisfies ϕ, one must apply: (I) the
corresponding homomorphism includes only unnamed domain elements of a single Ij
with j ∈ [0, n + k], and a witness query of ϕ is satisfied in Ij , which follows from the
structure of the unnamed domain parts, or (II) it includes named elements, and either
it maps directly into Ii or we can construct such a homomorphism; the latter holds
because the given homomorphism contains named domain elements from some Ij with
j ∈ [0, n + k] and j 6= i, and corresponding rigid knowledge on the named individuals
must be contained in the additional ABoxes and thus also be satisfied in Ii. Based on
the assumed r-completeness, we therefore can show Ji |= ¬ϕ by contradiction.

Lemma 6.15 For all i ∈ [0, n+ k], Ji is a model of χi.

Proof. We show that Ji is a model of every CQ literal in χi. Let ϕ first be a positive
such literal; note that the proof of this case is analogous to the proof for EL (see
Lemma 5.13). Since AQi contains an instantiation of ϕ and Ii |= AQi by Lemma 2.127

we know that there is a homomorphism π of ϕ into Ii that maps all variables in ϕ to
elements of ∆Iia ; that is, π maps each such variable x to ax. By the fact that ∆Iia ⊆ ∆
and Lemmas 6.11 and 6.13, π is then also a homomorphism of ϕ into Ji.

Let now ¬ϕ be a negative literal in χi. We proceed by contradiction and assume π
to be a homomorphism of ϕ into Ji. First, observe the following:

• Condition (C4) implies ϕ ∈ Q¬R, and hence Condition (C5) yields that none of the
witnesses of ϕ is satisfied in any of the canonical interpretations.

• Condition (C2) implies KiR 6|= ϕ, and thus Lemma 2.13 yields that Ii |= ¬ϕ.
7Note that, in the remaining parts of the proof, we do not always explicitly refer to Lemma 2.12 to

justify the argument that Ii |= KiR for all i ∈ [0, n+ k].
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We derive contradictions to these observations by distinguishing two cases (I) and (II)
outlined above.

(I) Let first π be such that it maps no terms into NI(K) ∪
⋃n+k
j=0 ∆Ija ∪∆Ijt . Because

of the UNA, we thus have NI(ϕ) ∩ NI(K) = ∅, which yields that NI(ϕ) = ∅ since ϕ does
not contain any names from Naux

I or Ntree
I . Moreover, we can then assume that there is

a single index j ∈ [0, n+ k] such that π maps all terms of ϕ to elements of ∆Iju , by the
definition of ∆. To see this, note that ϕ is connected and that, for a role R ∈ N−R , a
tuple (d, e) ∈ RJi without named individuals exists only if the elements belong to the
same domain ∆Ij by the definition of RJi and Fact 6.10.

Given the above observation that Ii |= ¬ϕ, we then directly get a contradiction
for the case that j = i by Lemmas 6.11 and 6.13, which together imply that π is a
homomorphism of ϕ into Ii.

For the case j 6= i, we show that there is a witness query ψ for ϕ such that Ij |= ψ,
which implies Ij |= ϕ by Lemma 6.6. Since Ij |= ¬ϕ is a consequence of the above
observation that ϕ ∈ Q¬R, Condition (C5), and Lemma 2.13, we get a contradiction. In
the remains of Part (I), we construct this witness query. We start defining a tree witness f
for ϕ, then consider an element of ConO(ϕ, f) as required according to Definition 6.5 for
both kinds of witness queries, and lastly define ψ.

By the fact that ϕ is connected, by Lemma 6.12, and by considering how the elements
in ∆Iju are related by roles within Ij (see Definition 2.11), it is easy to see that there is a
variable x ∈ NV(ϕ), for which π(x) = uj% is such that the length of % is minimal compared
to the paths of all elements of range(π); further, all other π(y) for y ∈ NV(ϕ) must then
be of the form uj%σ with %σ ∈ (N−R )∗. We define f as a tree witness fx w.r.t. x and via
a mapping f ′ : range(π) → (N−R × 2N−R )∗, by setting f(y) := f ′(π(y)) for all y ∈ NV(ϕ).
Regarding f ′, we set f ′(uj%) := ε and proceed by induction over the structure of ∆Iju .
So we consider an element uj%σS1 ∈ range(π) such that f ′(uj%σ) has already been defined.
We set f ′(uj%σS1) := f ′(uj%σ) · (S1,R), where R is a minimal set satisfying the following
conditions for all role atoms R(y, z) ∈ ϕ with π(y) = uj%σ and π(z) = uj%σS1 :

• If there is an S ∈ N−RR(O) such that O |= S v R and (π(y), π(z)) ∈ SJi , then
S ∈ R.

• Otherwise, we have R ∈ R.

Regarding the second requirement of Definition 6.3, observe the following. From the
assumption that (π(y), π(z)) ∈ RJi and, if the first item applies, (π(y), π(z)) ∈ SJi ,
we get (π(y), π(z)) ∈ RIj and, respectively, (π(y), π(z)) ∈ SIj by Lemma 6.12. Defini-
tion 2.11 then implies O |= S1 v R and O |= S1 v S, respectively. Hence, f is indeed a
tree witness for x in ϕ.

Next, we construct an element of ConO(ϕ, f). Note that the last two properties in the
definition of ConO(ϕ, f) do not depend on the particular choice of that set, but only on
f (see Definition 6.3). We first show that they are fulfilled and, to this end, consider all
atoms on variables y with f(y) 6= ε. Let A(y) ∈ ϕ and f(y) = σ · (S,R), which implies
π(y) ∈ AJi and that π(y) is of the form uj%σ|1S ; σ |1 denotes the sequence of roles obtained
from σ by projecting each pair in σ onto its first component. Then, all options we get by
applying Lemma 6.13 yield uj%σ|1S ∈ A

Ij , since Ij |= O. Hence, O |= ∃S− v A follows
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by Lemma 2.15. Second, we consider an element σ · (S1,R1) · (S2,R2) ∈ range(f). By
Definition 2.11, we know that (uj%σ|1S1 , u

j
%σ|1S1S2) ∈ SIj2 , and hence get uj%σ|1S1 ∈ (∃S2)Ij .

Again by Lemma 2.15, we obtain O |= ∃S−1 v ∃S2.
For the actual construction of the element of ConO(ϕ, f) and the corresponding witness

query, we distinguish two cases focusing on the two kinds of witness queries, respectively
(see Definition 6.5).

• IfWO(uj%) = ∅, then we construct a tree witness query. We continue the construc-
tion of a set B ∈ ConO(ϕ, f) and thereby ensure that the first two conditions in
the definition of ConO(ϕ, f) are satisfied. Let % be of the form %0S0. For each
atom α := A(y) (α := R(y, z)) in ϕ such that π(y) = uj% (i.e., f(y) = ε), we regard
the basic concept Bα := A (Bα := ∃S1, assuming π(z) = uj%S1). We then define
a set Bα ⊆ B as follows: If there is a set B′α ⊆ BR such that O |= ∃S−0 v

d
B′α

and O |=
d
B′α v Bα, then Bα := B′α and, otherwise, Bα := {Bα}. Note that

the first case always applies if α is a concept atom A(y), by Lemma 6.13, because
uj% ∈ AJi , WO(uj%) = ∅, and A = BA(y). By setting B :=

⋃
α∈ϕ Bα, we thus get

O |=
d
B v A (O |=

d
B v ∃S1).

We then also have uj% ∈ (
d
B)Ij since uj% ∈ (

d
Bα)Ij holds for all α ∈ ϕ. This

can be seen by considering the definition of Bα. Regarding the first case, the
latter follows from % = %0S0 and ∃S−0 v

d
Bα by Lemma 2.15. Regarding the

second case, we can consider some α := R(y, z) and Bα := {∃S1}, which yields
that π(z) = uj%S1 ∈ ∆Iju and thus (uj%, uj%S1) ∈ S

Ij
1 by Definition 2.11. This

means uj% ∈ (
d
{∃S1})Ij . It can then readily be checked that B ∈ ConO(ϕ, f). In

particular, observe that there is such a role atom R(y, z) ∈ ϕ where f(z) = (S1,R),
for each (S1,R) ∈ range(f). This is because the latter implies that ϕ contains a
variable z such that π(z) = uj%S1 by the definition of f, we assume π(y) = uj%,
ϕ including y and z is connected, and, by Lemma 6.12, uj%S1 and uj% are equally
connected in Ij ; but this is only possible if they are related by a role. Recall that,
if we consider f(z) = σ · (S1,R) as in the latter sentence, we can assume π(z) to
be of the form uj%σ|1S1 by our definition of f.
Based on B, we now define a tree witness query ψ (see Definition 6.5) as required.
To this end, we maintain the invariant that Ij |= ψ during the construction, via the
homomorphism that maps all variables xσ with σ ∈ range(f) to uj%σ|1 . We proceed
by induction over range(f). The start is by including into ψ all atoms from B|R(xε).
Hence, both the first condition of Definition 6.5 and our invariant are satisfied
since we showed uj% ∈ (

d
B)Ij above. The second condition is satisfied since, for

all A(y) ∈ ϕ with f(y) = ε, we have BA(y) ⊆ B ∩ BR, O |=
d
BA(y) v BA(y), and

BA(y) = A. Condition three is trivially fulfilled in the base case. Regarding the
last condition we consider an atom R(y, z) ∈ ϕ with f(y) = ε and f(z) = (S1,R).
For those (S1,R) ∈ range(f) for which BR(y,z) is defined in the first case of that def-
inition (i.e., we have BR(y,z) ⊆ BR and O |=

d
BR(y,z) v BR(y,z)) O |=

d
B v ∃S1

follows directly from BR(y,z) ⊆ B and BR(y,z) = ∃S1. Hence, (S1,R) is rigidly
witnessed in ψ by Definition 6.5. For all other (S1,R) ∈ range(f), we know that
(S1,R) cannot be rigidly witnessed in ψ. Observe that we then have R ⊆ NRR: if
there was a flexible role inR, then it would have to be introduced for an atom of the
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form R(y, z) that was flexible and to equal R, and there could not be an S ∈ NRR
such that O |= S v R and (π(y), π(z)) ∈ SJi by the construction of R; then, there
could neither be an S ∈ NRR such that O |= S v R and (π(y), π(z)) ∈ SIj since
the definition of Ji would yield (π(y), π(z)) ∈ SJi , which contradicts the former
assumption; by the definition of RJi , (π(y), π(z)) ∈ RJi , π(y) = uj%, π(z) = uj%S1 ,
andWO(uj%) = ∅ would thus implyWO(uj%S1) 6= ∅; but, according to Definition 6.4,
the latter means that there is a set B′R(y,z) ⊆ BR such that O |=

d
B′R(y,z) v ∃S1

and uj% ∈ (
d
B′R(y,z))

Ij , yielding O |= ∃S−0
d
B′R(y,z) by Lemma 2.15, which con-

tradicts the assumption that such a set does not exist (i.e., since BR(y,z) is not
defined in the first case of the definition). In order to fulfill the last condition, we
thus can add all atoms S(xε, x(S1,R)), S ∈ R to ψ. Since Definition 2.11 implies
(uj%, uj%S1) ∈ SIj1 and we have O |= S1 v S for all these roles S (see the part below
the construction of R), Definition 2.11 also implies (uj%, uj%S1) ∈ SIj . Hence, these
new atoms can be mapped into Ij , as required for our invariant.
For the induction step, conditions three and four of Definition 6.5 are relevant.
Since the elements (S1,R) ∈ range(f) considered lastly are not rigidly witnessed,
we now focus on all of range(f) which extend those. To this end, we assume that we
have already defined ψ up to a variable of the form xσ, in line with Definition 6.5,
and that there is some σ · (S2,R) ∈ range(f) that is not rigidly witnessed. Regard-
ing condition three, we consider all A(y) ∈ ϕ of the form f(y) = σ · (S2,R). Since
π(y) ∈ AJi , Lemma 6.13 yields that either (i’) there is a set BA ⊆ BR(O) such
that O |=

d
BA v A and π(y) ∈ (

d
BA)Ij , or (ii’) π(y) ∈ AIj and WO(π(y)) 6= ∅.

In Case (i’), we add the atoms BA(yσ·(S2,R)) to ψ and thus satisfy condition three
while maintaining our invariant. Case (ii’) cannot apply since it leads to a con-
tradiction as follows. For WO(π(y)) 6= ∅, Definition 6.4 yields that there must be
a prefix %′S′ of %σ|1S2 and a set BS′ ⊆ BR(O) such that O |=

d
BS′ v ∃S′ and

either uj%′ ∈ (
d
BS′)Ij or %′ ∈ NI(K) ∪ Naux

I and %′ ∈ (
d
BS′)Ij . If %′S′ is a prefix

of %, then this contradicts the assumption that WO(uj%) = ∅. But, if % is a prefix
of %′S′, then there is a %′′ ∈ range(f) such that %′′ |1= %′, and we have added the
atoms in BS′(y%′′) to ψ already. But then σ · (S2,R) is rigidly witnessed in ψ,
which contradicts the assumption.
Regarding the fourth condition, we have to consider all elements of the form
σ · (S2,R2) · (S3,R3) ∈ range(f). We discern two cases, similar to the above defi-
nition of B′α for B. If there is a set B∃S3 ⊆ BR such that O |= ∃S−2 v

d
B∃S3

and O |=
d
B∃S3 v ∃S3, then we add the atoms B∃S3(x%σ·(S2,R2)) to ψ and

get that σ · (S2,R2) · (S3,R3) is rigidly witnessed in ψ. Otherwise, we have
R2 ⊆ NRR for the same reasons as in the base case. We hence can add all the
atoms S(xσ·(S2,R2), xσ·(S2,R2)·(S3,R3)), S ∈ R2, to ψ and continue the inductive
construction with σ · (S2,R2) · (S3,R3), which is not rigidly witnessed.
It is easy to see that this construction of ψ terminates since f is finite. Moreover,
the final ψ satisfies Definition 6.5 and is hence a tree witness query for ϕ w.r.t. B
and f; and we have that Ij |= ψ.

• If WO(uj%) 6= ∅, then we construct a witness query of the second kind. By Defi-
nition 6.4, % is of the form % = %0R0 . . . R`, and there are a set B ⊆ BR(O) such
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that O |=
d
B v ∃R0 and an element uj%0 ∈ ∆Iju that satisfies

d
B in Ij . By Defi-

nition 2.11 and Lemma 2.15, uj% ∈ ∆Iju leads to O |= ∃R−i v ∃Ri+1, i ∈ [0, `− 1],
which means that B is a witness of ∃R−` w.r.t. O.
It remains to show that {∃R−` } ∈ ConO(ϕ, f). But for all A(y) ∈ ϕ with f(y) = ε,
π(y) = uj% ∈ AJi implies uj% ∈ AIj since Ij |= O by Lemma 6.13. Then,
Lemma 2.15 yields O |= ∃R−` v A. For an element (S1,R) ∈ (N−R×2N−R )∩range(f),
our definition of f similarly implies that the element uj%S1 ∈ ∆Iju exists. Then, Defi-
nition 2.11 leads to uj% ∈ (∃S1)Ij , and Lemma 2.15 yields O |= ∃R−` v ∃S1. Hence,
ψ := ∃x.B(x) is a witness query for ϕ and, by regarding the homomorphism that
maps x to uj%0 , we get Ij |= ψ.

Given the above observations, this finishes the proof of Case (I) of Lemma 6.15.

(II) In the remainder of the proof, let π be such that it maps at least one term into
∆n := NI(K) ∪

⋃n+k
j=0 ∆Ija ∪∆Ijt . We directly define a homomorphism π′ of ϕ into Ii to

contradict Ii |= ¬ϕ. This is done in three phases, by considering the terms π maps to
elements from ∆n, those that are directly connected to the latter, and all others. After
phase one, all terms considered are thus mapped to elements from

⋃n+k
j=0 ∆Iju by π.

1) For all t ∈ NI(ϕ)∪NV(ϕ), where π(t) ∈ ∆n, and assuming π(t) = ej , let π′(t) := ei.
We first prove an auxiliary result and subsequently show that, regarding the terms
mapped so far, π′ is a homomorphism of ϕ into Ii.
Corollary 6.16 For all B ∈ B(O) and t ∈ NI(ϕ) ∪ NV(ϕ) with π(t) ∈ ∆n, we have:

If π(t) ∈ BJi, then π′(t) ∈ BIi .

By Lemma 6.13, π(t) ∈ BJi implies two options: (i) π(t) ∈ BIi , or (ii) π(t) ∈ ∆Ija ∪∆Ijt
and there is a set B ⊆ BR(O) such that π(t) ∈ (

d
B)Ij and O |=

d
B v B. In Case (i),

we have π′(t) = π(t) by definition, hence the claim holds. In Case (ii), the claim follows
if i = j, as in Case (i); otherwise, we distinguish the following two cases.

• If π(t) ∈ ∆Ija , then π(t) is of the form ajx. Let ϕ′ ∈ QΦ be the (unique) CQ
containing the variable x. By the definition of Ij and Condition (C3), the existence
of the element ajx implies that ϕ′ ∈ QR. Hence, the element aix must also exist,
and π′(t) = aix is well-defined. Since π(t) ∈ (

d
B)Ij ; B ⊆ BR(O); and AQR and

ARF contain all rigid assertions on ax, taking O into account (i.e., in particular,
all following from AQι(j) are also in AQR); Definition 2.11 and Lemma 2.14 yield
that the elements of B are implied by the conjunction of

– all elements of B(ϕ, ax) and
– all rigid concepts ∃R for which there is an assertion ∃S(ax) ∈ RF with
O |= S v R.

But, for all concepts of the latter form, Condition (C6) yields that ∃R(ax) is
(already) implied by some KB 〈O,AR ∪ AQR ∪ AQι(i′) ∪ Ai′〉, and must hence be
contained in B(ϕ′, ax), because AR and Ai′ do not contain assertions on ax. This
shows that O |=

d
B(ϕ′, ax) v

d
B. Given ϕ′ ∈ QR, the definition of AQR then

implies B′(ax) ∈ AQR for all B′ ∈ B. From Ii |= AQR , we obtain aix ∈ (
d
B)Ii

which together with Ii |= O leads to aix ∈ BIi , as required.
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• If π(t) ∈ ∆Ijt , then π(t) is of the form ajb%. Since ab% then occurs in some ABox by
Definition 2.11, only ARF contains assertions on elements of Ntree

I , and ARF is the
same w.r.t. all time points, the element aib% also exists. By Lemma 2.14 and the
definition of ARF , π(t) ∈ BIj implies that B subsumes the conjunction of all rigid
basic concepts satisfied by ub% in some I〈O,{∃S(b)}〉 where ∃S(b) ∈ RF. Another
application of Lemma 2.14 then yields that B is also satisfied by π′(t) = aib% in Ii.

This concludes the proof of Corollary 6.16.
As a consequence, we have that all concept atoms A(t) in ϕ such that π(t) ∈ ∆n are

satisfied by π′ in Ii. We next show that this also holds for the role atoms that only
contain such terms. Let hence R(t, t′) ∈ ϕ be such that π(t), π(t′) ∈ ∆n. If π(t) and π(t′)
are both contained in ∆Ii , which especially holds for the elements in NI(K), the claim
follows immediately from Lemma 6.11 and the fact that π′(t) = π(t) and π′(t′) = π(t′).
Otherwise, we have that both π(t) and π(t′) belong to some NI(K) ∪ ∆Ija ∪ ∆Ijt for a
fixed j ∈ [0, n + k] such that j 6= i; note that there are no role connections between
elements of different sets ∆Ija ∪∆Ijt and ∆Ij′a ∪∆Ij′t in Ji by definition. We then can
discern the following cases and argue based on our special ABoxes:

• R is rigid, π(t) or π(t′) is contained in ∆Ija , and none is contained in ∆Ijt :
(π(t), π(t′)) ∈ RJi implies (π(t), π(t′)) ∈ RIj . By Definition 2.11, specifically
regarding relations between named individuals, and the fact that AR and K
do not contain assertions on elements from Naux

I , there must be an assertion
S(τ(t), τ(t′)) ∈ AQR ∪ AQι(j) such that O |= S v R; τ(t) = e if π(t) = ej .
By the definition of AQR , which is based on consequences (see Definition 6.2), we
get R(τ(t), τ(t′)) ∈ AQR . Hence, Ii |= AQR implies (π′(t), π′(t′)) ∈ RIi .

• R is rigid and one of π(t) and π(t′) is contained in ∆Ijt :
We argument similar to the previous case. Again, (π(t), π(t′)) ∈ RJi implies
(π(t), π(t′)) ∈ RIj . By Definition 2.11, since only ARF contains assertions on
elements from Ntree

I , and because ARF contains all rigid assertions on the elements
of Ntree

I that follow by O (see the definition of ARF), there must be an assertion
R(τ(t), τ(t′)) ∈ ARF . From Ii |= ARF , we then get (π′(t), π′(t′)) ∈ RIi .

• R is flexible:
Given (π(t), π(t′)) ∈ RJi and the fact that witnesses are not defined for elements
of ∆n, there must be a rigid role S such that (π(t), π(t′)) ∈ SIj and O |= S v R
by the definition of Ji. As in the respective previous case (i.e., based on the kind
of π′(t) and π′(t′) here), it follows that (π′(t), π′(t′)) ∈ SIi . Since Ii |= O, we then
obtain (π′(t), π′(t′)) ∈ RIi .

It remains to define π′ for the variables of ϕ that are mapped by π into
⋃n+k
j=0 ∆Iju . Since

the relations in Ji are based on those in the canonical interpretations, Definition 2.11
implies that all variables that occur in role atoms together with a term mapped to an
element e ∈ ∆n by π are of the form ujeS0 , and the role atom must be an R-atom such
that O |= S0 v R. Moreover, the assumption that ϕ is connected yields that, if any
variable is mapped to an element ujeS0...S` ∈ ∆Iju , then there is a variable that is mapped
to ujeS0 , one directly connected to it and mapped to ujeS0S1 , etc. We hence can proceed
as follows.
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2) We consider all y ∈ NV(ϕ) for which there is an atom R(t, y) ∈ ϕ where π(t) ∈ ∆n
and π(y) ∈ ∆Iju , and assume π(t) = ej , π(y) = ujeS0 , S0 ∈ N−R , and O |= S0 v R. Recall
that π′(t) = ei. The goal is to choose an element of ∆Ii as value for π′(y) so that π′ can
be (extended to) a homomorphism of ϕ into Ii. For now, we however only show that
our definition of π′(y) satisfies (π′(t), π′(y)) ∈ RJi regarding all these role atoms. The
remaining atoms that contain y are then covered in Part 3).

If i = j, then we can directly define π′(y) := π(y) by Lemmas 6.11 and 6.13. Oth-
erwise, we distinguish the following two cases. Note that (ej , ujeS0) ∈ RJi implies
(ej , ujeS0) ∈ RIj by Lemma 6.12.

• If WO(ujeS0) 6= ∅, then (ej , ujeS0) ∈ RIj implies (ej , ujeS0) ∈ RJi by the definition
of Ji. We then get ei = π′(t) ∈ (∃S0)Ii by Corollary 6.16. According to Defini-
tion 2.11, the element uieS0 then exists and the pair (ei, uieS0) is related in Ii as
(ej , ujeS0) is related in Ij . And the latter tuple is interpreted in the same way in
Ji. We can thus set π′(y) := uieS0 .

• IfWO(ujeS0) = ∅, then the definition of Ji yields that, for all atoms R(t, y) as above,
there is a rigid role S such that O |= S0 v S, O |= S v R, and (ej , ujeS0) ∈ SJi .
Note that S0 must be flexible since otherwise ∃S0 would be a witness for ujeS0 .
Furthermore, since (ej , ujeS0) ∈ SIj0 , Lemma 2.14 yields that the assertion ∃S0(e)
is a consequence of the basic concepts obtained from the assertions involving e
in KjR. We now show by a case distinction on the kind of e that this is still the
case if ARF is disregarded.

– If e ∈ NI(K), then we have that any (rigid) basic concept assertion on e that
is a consequence of ARF , by taking O into account, must be contained in AR,
since AR is an ABox type and Ij is a model of both these ABoxes. Since
ARF does not contain flexible assertions, ∃S0(e) is also a consequence of KjR
if ARF is disregarded.

– If e ∈ Naux
I is of the form e = ax and ϕ′ is the CQ in which x appears, then

we know that ∃S0(e) is a consequence of the assertions in AQR ∪AQι(j) ∪ARF

(i.e., again, taking O into account). Regarding ARF , we thus consider a rigid
concept assertions ∃R′(ax), R′ ∈ N−R , for which there is a flexible assertion
∃S′(ax) ∈ RF such that O |= S′ v ∃R′. By Condition (C6), all those as-
sertions ∃R′(ax) follow however from some set of assertions AQR ∪ AQι(j′) ,
j′ ∈ [0, n + k], and hence from

d
B(ϕ′, ax). By the definition of AQR , they

are thus contained in this ABox, which means that ARF can be disregarded.
– If e ∈ Ntree

I , then ∃S0(e) must similarly follow from ABox assertions by
Lemma 2.14; particularly, it follows exclusively from ARF (and O) because
elements from Ntree

I do not occur in other ABoxes. Since ARF contains only
rigid assertions, the corresponding rigid basic concepts constitute a witness
for ujeS0 , which contradicts our assumption and yields e 6∈ Ntree

I .
The case distinction proves the entailment required to apply the “only if” direction
Condition (C6) to infer that ∃S0(e) ∈ ARF . Since Ii |= ARF , (ei, aieS0

) ∈ SIi holds
for all rigid roles S as above. Given Ii |= O, the above assumptions on O, and
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WO(ujeS0) = ∅, (ei, aieS0
) satisfies all the role atoms R(t, y) in Ii that are mapped

to (ej , ujeS0) by π. We can therefore define π′(y) := aieS0
.

It thus remains to consider the satisfaction of the atoms we left out in 2) and, in
particular, the other variables of ϕ mapped by π to elements of

⋃n+k
j=0 ∆Iju . As described

above, we can assume them to be related in a tree structure and, especially, to the
elements we focused on in 2).

3) We finish the definition of π′ using an induction over the structures of unnamed
elements in the image of the homomorphism π, starting with the elements we considered
in 2). For all variables y with π(y) ∈ ∆Iiu , we can obviously set π′(y) := π(y). We
therefore only consider the case that π(y) ∈ ∆Iju and j 6= i in the following. Note that
this is valid for the induction by Fact 6.10 and the interpretation of roles in Ji, which
show that elements from different sets ∆Iiu and ∆Iju cannot be related in Ji.

Given the latter observations, we can also maintain the following invariant while
finishing the construction of π′ regarding the remaining variables y (i.e., we do not have
to satisfy the invariant at all for variables mapped by π to elements from ∆Iiu since
π′ is already defined for all variables directly connected to them); let m denote the
number of variables for which π′ is defined already at the respective moments in the
induction: If π(y) = uj%S1 , then either (i) WO(uj%S1) = ∅, π′(y) = ai%S1

, and |%| < m, or
(ii) WO(uj%S1) 6= ∅, π′(y) is of the form uiσS1 , and |σ| < m. As induction hypotheses,
we assume that the (partial) definition of π′ satisfies all role atoms that only contain
variables for which it is already defined and the invariant. It can readily be checked that
our definitions from 2), which represent the base case, satisfy both these requirements.

To show that π′ is a homomorphism of ϕ into Ii regarding the variables mapped so
far, it remains to consider the concept atoms. We assume π(y) = uj%S1 ∈ ∆Iju and π′(y)
to be defined already and consider all concept atoms A(y) ∈ ϕ. Since uj%S1 ∈ A

Ji , we
know by Lemma 6.13 that either (i’) there is a B ⊆ BR(O) with uj%S1 ∈ (

d
B)Ij and

O |=
d
B v A, or (ii’) uj%S1 ∈ A

Ij and WO(uj%S1) 6= ∅. If the above Case (ii) applies,
meaning π′(y) = uiσS1 , then two applications of Lemma 2.15 yield that O |= ∃S−1 v A
and π′(y) = uiσS1 ∈ A

Ii . Otherwise, (i’) must hold because of uj%S1 ∈ A
Ji by the defini-

tion of Ji. Ii |= O then implies uj%S1 ∈ A
Ij , and Lemma 2.15 yields O |= ∃S−1 v

d
B.

From π′(y) = ai%S1
, we then get ai%S1

∈ (
d
B)Ii by the definition of ARF . Given Ii |= O,

we conclude that π′(y) ∈ AIi .
To continue the definition of π′, we consider an element uj%S1S2 ∈ range(π) and all role

atoms R(y, z) ∈ ϕ with π(y) = uj%S1 and π(z) = uj%S1S2 . We hence can assume that ϕ
contains a variable x such that π(x) = uj%S1 for which π′ has been defined already. For all
these role atoms, we have that O |= S2 v R by the definition of Ji and Definition 2.11.
Once again, we distinguish two cases w.r.t. WO(uj%S1S2).

• If WO(uj%S1S2) 6= ∅, then we have (uj%S1 , u
j
%S1S2) ∈ SJi2 since the pair is contained

in S
Ij
2 and also O |= ∃S−1 v ∃S2 by the definitions of the two interpretations.

Further, one of the following two cases must apply:
– If WO(uj%S1) 6= ∅, then (ii) implies that π′(y) is of the form π′(y) = uiσS1 .

Given Ii |= O, the element uiσS1S2 then exists, and (uiσS1 , u
i
σS1S2) satisfies

all role atoms R(y, z) of the above form in Ii by Definition 2.11. Hence, we
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6 Temporal Query Entailment in DL-LiteHhorn

can define π′(z) := uiσS1S2 for all such variables z and maintain the invariant
(Case (ii)).

– IfWO(uj%S1) = ∅, then there must be a set B ⊆ BR(O) such thatO |=
d
B v ∃S2

and uj%S1 ∈ (
d
B)Ij by Definition 6.4, which implies O |= ∃S−1 v

d
B by

Lemma 2.15. Since (i) yields that π′(y) is of the form ai%S1
, the definition

of ARF implies B(a%S1) ⊆ ARF , and Ii |= ARF then yields π′(y) ∈ (
d
B)Ii .

Together with Ii |= O, this implies π′(y) ∈ (∃S2)Ii . By Definition 2.11, the
element uia%S1S2 thus exists and the pair (ai%S1

, uia%S1S2) satisfies all the roles
R in Ii. We hence can set π′(z) := uia%S1S2 ; this satisfies Case (ii) of our
invariant.

• If WO(uj%S1S2) = ∅, then we know that also WO(uj%S1) = ∅ holds, and hence
Case (i) of our invariant applies, meaning π′(y) = ai%S1

. In addition, for every
of the above role atoms R(y, z), there is a rigid role S such that O |= S v R
and (uj%S1 , u

j
%S1S2) ∈ SIj by the definition of Ji. Definition 2.11 then yields

O |= S2 v S. Together with O |= ∃S−1 v ∃S2 and the given bound on the
length of %, this implies that the element ai%S1S2

exists in ARF , in all the rigid
assertions S(ai%S1

, ai%S1S2
). Thus, Ii |= ARF and Ii |= O, because of the fact that

O |= S v R yield that (a%S1 , a%S1S2) satisfies all all relevant role atoms R(y, z).
We set π′(z) := a%S1S2 for all such variables z and obtain Case (i) of our invariant.

This concludes the construction of π′ and shows that it is a homomorphism of ϕ into Ii,
which contradicts our assumption that Ii |= ¬ϕ.

This finishes also the proof of Lemma 6.9. In what follows, we use this characteri-
zation of r-satisfiability for obtaining complexity bounds for both combined and data
complexity.

6.2 Combined Complexity
In this section, we show that TCQ entailment is in PSpace w.r.t. combined complexity,
which matches the hardness given by satisfiability in LTL. The previous section shows
that there is no need to store the exponentially large set W for testing the conditions
characterizing r-satisfiability. Hence, we can apply Algorithm 3.1: we first guess a tuple
(AR, QR, Q

¬
R, RF) as described in Section 6.1 and then test the satisfiability of the LTL

formula Φpa as it is done in Algorithm 2.1, but ensure additionally that the guessed
worlds satisfy the conditions of r-completeness (see Definition 6.8). This procedure is
in line with Lemma 3.13: we integrate the r-satisfiability with the t-satisfiability test.

Subsequently, we specify the algorithm, prove correctness, and then show that it uses
only polynomial space. Note that, throughout this section, all complexity considerations
target combined complexity so that we do not always mention that explicitly.

We start describing the functions we apply.

• CQCONSEQUENCES: Given a CQ ϕ and an ontology O, it computes the set CO(ϕ)
(see Definition 6.2). That is, it performs a series of subsumption tests.
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Since the size of the considered sets B¬R(O) and N−RR(O) depends polynomially on
the size of O; that of Aϕ, also regarded, depends linearly on the size of ϕ; and sub-
sumption in DL-LiteHhorn is in P w.r.t. combined complexity [Art+09, Thm. 8.2],
this procedure runs in polynomial time in the size of its input.

• KBCONSISTENT: Given a knowledge base in DL-LiteHhorn, it decides consistency.
According to [Art+09, Thm. 8.2], this can be done in polynomial time in the size
of the input.

• UCQENTAILED: Given a CQ ϕ and a DL-LiteHhorn knowledge base K = 〈O,A〉,
it decides the entailment K |= ϕ based on the nondeterministic version of the
algorithm in [BAC10] (see the sketch after Theorem 12 in that paper) in three
steps:

– apply algorithm PerfectRef [BAC10, Fig. 2] to rewrite ϕ using O,
– nondeterministically choose a CQ ψ from the resulting UCQ,
– check whether DB(A) |= ψ.

Especially note that the size of ψ is polynomial in that of ϕ. Altogether, this
nondeterministic procedure runs in polynomial time in its input [BAC10].

Next to the above functions, we use two enumerators:

• TREEWITNESSENUM: Given a CQ ϕ and an ontology O, it enumerates all tree
witnesses for ϕ w.r.t. O (see Definition 6.3).
Since tree witnesses mimic the structure of ϕ and the range of the candidate
mappings f : NV(ϕ)→ (N−R × 2N−R )∗ contains only sequences of size polynomial in
the size of ϕ, all these candidates can be enumerated using polynomial space only.
The conditions of Definition 6.3 can also be checked in polynomial time; regarding
the subsumption, we again refer to [Art+09, Thm. 8.2].

• WITNESSQENUM: Given a CQ ϕ, an ontology O, and a tree witnesses f for ϕ w.r.t.
O, it enumerates all witness queries for ϕ w.r.t. O and f (see Definition 6.5).
All sets B ⊆ B(O) are of polynomial size and can hence be enumerated using only
polynomial space, in the size of O. Checking if B ∈ ConO(ϕ, f) (see Definition 6.3)
is again subsumption testing and hence in P.
(i) Tree witness queries can, based on ϕ, f, and B, be constructed by considering
the polynomially-sized f, enumerating all possibilities of assigning a set of basic
concepts to each relevant node of ϕ, and checking if the conditions from Defini-
tion 6.5 are satisfied. The size of the set is polynomial in O, and the testing again
involves a series of P-tests.
(ii) The other kind of witness query can be constructed as follows:8

– Construct a graph over all roles in N−R (O) that contains an edge from R to
S iff O |= ∃R− v ∃S.

8This idea is also implicitly used in the form of the reachability relation ; in [BBL05; KKS12].
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– Check whether it is possible to reach an S satisfying {∃S} ∈ ConO(ϕ, f) from
an R with O |=

d
B v ∃R for some B ⊆ BR(O).

It is easy to see that this approach is both sound and complete.
The graph can be constructed by quadratically many P-tests. The subsequent
reachability test can, given the above observations, be done within polynomial
space. More specifically, this is because B, R, and S can be guessed and then
considered by using polynomial space only and the reachability problem is in
NLogSpace (e.g., see [AB09, p. 74]).

The above observations show that all the procedures we apply run in polynomial space
in the size of their input. Our algorithm based on Algorithm 2.1 is presented next.

Definition 6.17 Given a TCQ Φ and TKB K = 〈O, (Ai)0≤i≤n〉, satisfiability of Φ
w.r.t. K can be decided by running Algorithm 3.1:

• GUESSDATA: It guesses a tuple (AR, QR, Q
¬
R, RF) with an ABox type AR for K and

sets QR, Q
¬
R ⊆ QΦ and RF ⊆ {∃S(b) | S ∈ NR(O) \ NRR, b ∈ NI(K) ∪ Naux

I };
Additionally, it initializes a set R⇐F := RF and returns it together with the guessed
tuple.

• TESTRSAT: Given Φ,O,Ai, d (i.e., the tuple guessed and R⇐F ), i, s, p, and W , it
first defines the following sets:

QW := {ϕj ∈ QΦ | pj ∈W},

AQR :=
⋃

ϕ∈QR

CQCONSEQUENCES(ϕ,O),

KR := 〈O,AR ∪ AQR ∪ AQW ∪ Ai〉,

and, for every assertion ∃S(b) ∈ R⇐F , updates R⇐F := R⇐F \ {∃S(b)} if the function
UCQENTAILED(∃S(b), 〈O,AR ∪ AQR ∪ AQW ∪ Ai〉) returns true.
Then, it returns true iff the following conditions are satisfied:

(C1) Check if KBCONSISTENT(KR) returns true.
(C2) For each pj ∈W :

– Guess a connected set A′RF
⊆ ARF that is of polynomial size (the size

of ϕj).
– Check if UCQENTAILED(ϕj , 〈O,AR∪AQR∪AQW ∪A′RF

∪Ai〉) returns false.
(C3) For each pj ∈W : Check if ϕj ∈ QR.
(C4) For each pj ∈W : Check if ϕj ∈ Q¬R.
(C5) For all ϕ ∈ Q¬R, f in TREEWITNESSENUM(ϕ,O), and ψ in WITNESSQENUM(ϕ, f,O):

Check if UCQENTAILED(KR, ψ) returns false.
(C6) For each S ∈ NR(O) \ NRR and b ∈ NI(K) ∪ Naux

I :
If UCQENTAILED(∃S(b),KR) returns true, then check if ∃S(b) ∈ RF.
If i = s+ p, then check if R⇐F = ∅. ♦
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Observe that our algorithm modifies Algorithm 2.1 in two critical points: it adapts
the recording of the start of the period, and it adds tests that may lead to a negative
outcome. Most of the tests we apply are self-explanatory. Note however that the set
R⇐F is used to check the “only if” direction of Condition (C6), which cannot be done
locally (i.e., separately for each time point i). The next lemma summarizes the goal of
our extensions.

Lemma 6.18 The nondeterministic algorithm described in Definition 6.17 decides TCQ
satisfiability w.r.t. a TKB by using only polynomial space w.r.t. combined complexity.

Proof. For proving correctness, we consider the conditions in Lemma 3.13.

• Let the set W = {W1, . . . ,Wk} be defined as the set of all worlds W encountered
during a run of the procedure. The mapping ι : [0, n]→ [1, k] is defined such that
ι(i) := ` where W` = Fc ∩ {p1, . . . , pm}.

• Regarding t-satisfiability (see Definition 3.11), it is easy to see that the above
definition of W fulfills the first condition. For the second condition, we can focus
on our modifications since Algorithm 2.1 is correct by Lemma 2.21.
s > n: The (possible) moving of the recorded period start may cause Algorithm 2.1
to run longer, though maximally n iterations of that algorithm, but does not
change its final outcome.
GUESSDATA/TESTRSAT: Our other extensions do not modify steps in Algorithm 2.1
itself nor do they ever return true on their own (i.e., independent of Algorithm
2.1), hence our algorithm is sound w.r.t. the second condition as well; and it is
complete if the extensions never return false if an r-satisfiable set W exists.
The last condition for t-satisfiability is satisfied also because of our definitions of
ι and W.

• It thus remains to show that W is r-satisfiable iff the extensions do not return
false on their own. By Lemma 6.9, we can consider Conditions (C1)–(C6) from
Definition 6.8.

(C1) Observe that our algorithm only checks the consistency of the knowledge base
〈O,AR ∪ AQR ∪ AQW ∪ Ai〉 and hence drops ARF .
However, this exponentially large ABox can be ignored for this consistency
test since, once Condition (C6) is verified, we know that for each A∃S(b) ⊆ ARF

there is at least one index j ∈ [0, n + k] for which the existence of the ele-
ments described in A∃S(b) follows from the KB 〈O,AR ∪AQR ∪AQWι(j) ∪Aj〉
where, for all j > n, Wι(j) = Wj and Aj = ∅. Hence, the rigid consequences
of the assertion ∃S(b) regarding b ∈ NI(K) ∪ Naux

I , which are represented by
A∃S(b), must follow from AR or AQR (i.e., based on the kind of b) given our
definitions of all the additional ABoxes. We thus can disregard the assertions
from A∃S(b) including the elements from Ntree

I since any model of the KB we
consider must have domain elements of this kind.
Further note that we modify the initialization of the period start s, in order
to ensure that all the ABoxes in the given TKB are considered; but the result
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6 Temporal Query Entailment in DL-LiteHhorn

of [SC85, Thm. 4.7] only applies when there are no external conditions on the
propositional models. It is however easy to see that the latter result extends
to our case.

(C2) To check whether KR 6|= ϕj holds, for each pj ∈ W , we apply the algorithm
UCQENTAILED. Given the fact that this nondeterministic algorithm basically
checks the satisfaction of a CQ whose size is polynomial in that of ϕj , we
can especially consider the exponentially large, forest-shaped ABox ARF by
regarding only a nondeterministically chosen part of size polynomial in ϕj .

(C3) The corresponding test obviously captures this condition.
(C4) The corresponding test obviously captures this condition.
(C5) Given the above specifications of the subprocedures used, our tests also cap-

ture this condition.
(C6) The “if” direction of the equivalence is captured by the first test. The other

direction of Condition (C6) is checked globally, regarding all time points
considered. Observe that the latter test may require us to look for an LTL
structure with a longer period. Though, the maximally required period is still
exponential in the input—in contrast to the original dependency of the period
length on the given formula, the TKB is now also of influence—and can be
represented in polynomial space. To see this, note that our global condition
corresponds to the extension of the given TCQ with linearly many additional
conjuncts of the form 3P3F∃S(b): if there is a model of Φ w.r.t. K, then a
set RF so that the algorithm does not fail because of that adaptation of the
query can easily be defined; completeness is retained since, if the algorithm
succeeds, then we can construct such a model for that TCQ based on its
processing.

We analyze the complexity. The nondeterministic guessing of the polynomially large
sets AR, QR, Q

¬
R, and RF can be done using polynomial space only.

The number of sets CO(ϕj) to be computed for the construction of AQR equals the
cardinality of QR, which depends linearly on the size of Φ. According to [Art+09,
Thm. 8.2], we need a number of P (subsumption) tests to compute each set CO(ϕj); and
this number depends linearly on the size of ϕj (and hence that of Φ) and polynomially
on the size of the ontology O.

Regarding the original parts (of Algorithm 2.1), we refer to Lemma 2.21.
It remains to consider the tests in the last extension. The above descriptions of

the applied subprocedures show that all of them run within polynomial space w.r.t.
combined complexity. Since we apply them only for input of size polynomial in Φ and
K, the guessing for testing Condition (C2) can clearly be done nondeterministically in
polynomial time, and all other checks described for testing the conditions can be done
in polynomial time, our nondeterministic algorithm altogether uses only polynomial
space.

Given the general consideration of rigid names, we thus can conclude this section with a
result which is even better than that for EL (see Corollary 5.16). The nondeterminism is
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not relevant for PSpace complexity according to the well-known result of Savitch [Sav70,
Thm. 1].

Corollary 6.19 TCQ entailment in DL-LiteHhorn is in PSpace in combined complexity,
even if NRR 6= ∅.

6.3 First-Order Rewritings of r-Satisfiability
In this section, we show that r-satisfiability is first-order rewritable and thus, once again,
solve the following problem: Given a set W ⊆ 2{p1,...,pm} with W = {W1, . . . ,Wk}, a
mapping ι : [0, n]→ [1, k], and the TKB K = 〈O,A〉 in DL-LiteHhorn with A = (Ai)0≤i≤n,
is W r-satisfiable w.r.t. ι and K? More precisely:

• We propose a set of FO formulas such that, if evaluated over the ABox sequence
considered as one finite structure TDB(A), all of them are satisfied iff W is r-
satisfiable w.r.t. ι and K.

• The formulas capture the conditions for r-completeness (see Definition 6.8)—our
approach is based on Lemma 6.9.

• In particular, they address a fixed tuple as described in Section 6.1.2, which we
construct based on W.

The idea is thus to check if the this tuple is r-complete for deciding the r-satisfiability
of W. The correctness of this approach is established at the end of this section (see
Lemma 6.30). Observe that the tests for r-completeness basically represent a series of
consistency and non-entailment tests regarding traditional KBs. We can hence apply
the two rewritings proposed by [BAC10], which are Boolean UCQs (with inequalities)—
called qunsat(O) and PerfectRef(ϕ,O), respectively—, independent of the given ABox A,
and evaluated over the FO structure DB(A) to solve these problems (see Lemma 2.24).
However, the conditions for r-completeness target many more ABoxes in addition to the
sequence A. This section therefore focuses on the incorporation of this data into the
two existing rewritings, so that the resulting formulas can be answered over A alone.
Then, the r-completeness conditions can be formulated easily (see Lemma 6.30). To get
an intuition of our goal and proceeding, consider the following example.

Example 6.20 We focus on the atemporal case and the rewriting PerfectRef(ϕ,O) of
UCQ entailment. Recall that, for a KB 〈O,Ai〉 and CQ ϕ, Lemma 2.24 yields the
following:

〈O,Ai〉 |= ϕ iff DB(Ai) |= PerfectRef(ϕ,O).

Let now A := {A(a)} be an additional ABox that is relevant to test r-completeness but
not part of the given KB; for simplicity, we assume a to also occur in Ai.9 The goal
is then to adapt PerfectRef(ϕ,O) such that the resulting FO formula PRef(ϕ,O|A) is as
follows:

〈O,Ai ∪ A〉 |= ϕ iff DB(Ai) |= PRef(ϕ,O|A).

9We detail later in this section why this assumption considerably simplifies matters. The point is that
the quantifiers in the queries we adapt quantify only over the individuals in the given KB. In order
to refer to new individuals, the quantification thus has to be adapted as well.
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This can be done, for instance, by replacing every occurrence of A(a) in PerfectRef(ϕ,O)
by true, and every occurrence of an atom A(x) with variable x by (x = a) ∨A(x). ♦

The fact that we consider different kinds of auxiliary ABoxes focusing on various kinds of
named individuals makes the actual rewritings yet more complex than the example case.
Moreover, these rewritings are evaluated over the structure TDB(A). This temporal
database interpretation is specified analogously to DB(A), the structure considered in
the atemporal case, which regards only a single ABox A.

Definition 6.21 (TDB(A)) For the given ABox sequence A = (Ai)0≤i≤n, the two-
sorted first-order structure TDB(A) = (NI(A),NT(A), ·TDB) over the individual domain
NI(A) :=

⋃
0≤i≤n NI(Ai) and temporal domain NT(A) := [−1, n] contains the following

relations for all B ∈ B(A) and R ∈ NR(A):10

BTDB := {(a, i) | i ∈ [0, n], B(a) ∈ Ai},
RTDB := {(a, b, i) | i ∈ [0, n], R(a, b) ∈ Ai}. ♦

The semantics of the satisfaction relation |= is defined as usual:

TDB(A) |= B(a, i) iff (a, i) ∈ BTDB,
TDB(A) |= R(a, b, i) iff (a, b, i) ∈ RTDB.

Note that we use the temporal domain element −1 to describe an empty ABox A−1 = ∅,
which can be accessed with formulas such as B(a,−1) and R(a, b,−1). Further, we can
simplify presentation by omitting the sequence of ABoxes A in the notation ·TDB, since
it is fixed. Since R(a, b) and R−(b, a) are used interchangeably for role atoms in the
previous sections, we continue with this convention in the following, so that we may use
atoms of the form R−(b, a, i)—especially in the rewriting—and assume the atoms to be
resolved as intended when evaluated w.r.t. TDB(A).

In Section 6.3.1, we next first specify the tuple we target and, based on that, present
the KBs in focus of the r-completeness tests (i.e., for practical reasons, we have to adapt
the KBs introduced in Definition 6.8). Then, we develop our versions of qunsat(O) and
PerfectRef(ϕ,O), which address these KBs, in Section 6.3.2. Lastly, we present the final
rewritings and prove the correctness of our approach in Section 6.3.3.

Note that we focus on data complexity throughout the section; if we refer to size
etc., we hence disregard the impact of the ontology and the query. Constant size then
indicates, for instance, that the sets are rather easily constructed or stored in a procedure
deciding TCQ satisfiability (i.e., w.r.t. time and memory costs).

6.3.1 A Tuple for Testing r-Satisfiability
The first goal is to specify a fixed tuple (AR[W,BΦ], QR[W], Q

¬
R[W], RF[W,BΦ]) as described

in Section 6.1.2: it is based on two given setsW ⊆ 2{p1,...,pm} such thatW = {W1, . . . ,Wk}
and BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)}, both of constant size, and r-complete iff W
is r-satisfiable w.r.t. ι and K. For testing r-completeness, we subsequently also specify
the KBs regarded in these tests.
10Note that we follow the approach of [Cal+05] and introduce a relation for every basic concept, instead

of only for the concept names.
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We define the tuple such that the four sets are minimal and satisfy the r-completeness
conditions. More precisely, we focus on those parts of the conditions which we can ad-
dress without considering information that is not given (e.g., the mapping ι, which
depends on the data). While the definition of components such as QR[W] and Q¬R[W] is
straightforward, the construction of the set RF represents a challenge. This is because
the focus on data complexity imposes special limits and Condition (C6) is rather intri-
cate. Regarding data complexity, it would be critical to consider the entire set RF and
ABox ARF within our rewriting. Recall that ARF may contain auxiliary elements tai-
lored to individual elements in NI(K), which then would need to be considered explicitly
within the rewriting—this is obviously impossible. To circumvent that, we first of all
discern the assertions in RF more fine-granularly, according to the kind of individual
they address. In particular, the set RF is considered to be the disjoint union of three sets
RF|aux, RF|Φ, and RF|o (o for “other”), each containing only assertions on the individuals
from Naux

I , NI(Φ), and NI(K) \NI(Φ), respectively (i.e., next to the ones from Ntree
I ). For

each of these sets, we can restrict our tests to parts of Condition (C6):

• RF|aux is constant and hence its size is not relevant. In particular, the elements
of Naux

I neither occur in the ABox type, nor in the input ABoxes, and can be
uniquely associated to one of the CQs in Φ. For constructing RF|aux in line with
Condition (C6), it is thus enough to focus on instantiations of the latter CQs,
individually.

• The construction of RF|o is more involved. The issue with the size of the corre-
sponding ABox is covered later in this section. To ensure that Condition (C6) is
satisfied, we first model the derivation of all relevant (rigid) basic concept asser-
tions, the consequences of the TKB, in our rewriting and then use them to derive
those in RF|o. Observe that the condition requires several ABoxes to be considered.
Since the elements under consideration do not occur in Φ, we can however focus
on the ABox type and the input ABoxes. That is, the rigid assertions represent
(the relevant part of) the ABox type AR[W,BΦ]; the derivation resolves transitivity
and thus ensures that AR[W,BΦ] is in line with Condition (C1). We define the set
of these rigid assertions based on the below derivation as BR|o := B|BR(O)|

R|o .

B0
R|o := ∅,

Bj+1
R|o := {B(a) | B ∈ BR(O), a ∈ NI(K) \ NI(φ), ∃i.0 ≤ i ≤ n,

〈O,BjR|o ∪ Ai〉 |= B(a)}.

• The set RF|Φ is of constant size. For constructing it, we have to apply a derivation
as above since the elements in NI(Φ) might occur in the input ABoxes. Actually,
these elements may occur in all the ABoxes regarded in Condition (C6), which
thus all would have to be taken into account in the derivation. However, we
can obviously not apply the mapping ι to define a fixed rewriting. This is why
we assume a set BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)} to be given instead of
defining it. The test if RF|Φ satisfies Condition (C6), in dependence of BΦ, is thus
postponed to the actual application and evaluation of the rewriting.
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These observations lead to the following definitions:

QR[W] := {αj ∈ QΦ |W ∈ W , pj ∈W},
Q¬R[W] := {αj ∈ QΦ |W ∈ W , pj 6∈W},

RF|aux[W] := {∃S(ay) | S ∈ N−R (O) \ N−RR, ay ∈ Naux
I , ∃Wj ∈ W , 〈O,AQj 〉 |= ∃S(ay)},

RF|Φ[BΦ] := {∃S(a) ∈ BΦ | S ∈ N−R (O) \ N−RR},
RF|o := {∃S(a) | S ∈ N−R (O) \ N−RR, a ∈ NI(K) \ NI(Φ),

∃i.0 ≤ i ≤ n, 〈O,BR|o ∪ Ai〉 |= ∃S(a)}.

Based on these sets, we define the corresponding auxiliary ABoxes, as in Section 6.1.2:

• AQR[W] :=
⋃
ϕ∈QR[W]

CO(ϕ).

• AQj for j ∈ [1, k] is defined in Section 6.1.2; for convenience, we sometimes write
AQWj instead of AQj .

• ARF[W,BΦ] := ARF|aux[W] ∪ ARF|Φ[BΦ] ∪ ARF|o ; ARF|aux ,ARF|Φ , and ARF|o represent the
ABoxes corresponding to the sets RF|aux, RF|Φ, and RF|o, respectively, and are
constructed in correspondence to the definition of ARF in Section 6.1.2. Note
that, while the former sets contain only flexible assertions, the ABoxes contain
only rigid ones.

• AR[W,BΦ] is then defined as the union of the set A+
R[W,BΦ], specified below, and all

negative rigid role and basic concept assertions ¬α over NI(K) for which we have
α 6∈ A+

R[W,BΦ]. BΦ|R denotes the set of rigid assertions in BΦ.

A+
R[W,BΦ] := BΦ|R ∪ BR|o ∪ {∃R(a) | R(a, e) ∈ ARF|Φ[BΦ] , a ∈ NI(Φ)} ∪

{R(a, b) | R ∈ NRR(O), a, b ∈ NI(K), R(a, b) ∈ AQR[W] or
∃i.0 ≤ i ≤ n, 〈O,Ai〉 |= R(a, b)}

As mentioned above, we cannot assume the arbitrary set BΦ to be complete and to
provide the part on the elements of NI(Φ) which follows from the TKB, especially,
regarding all the assertions to be contained in AR. Since we test the sufficiency
of BΦ when the rewriting is evaluated by using entailment tests, we then can
however not detect rigid information missing in BΦ if it is implied by the flexible
assertions. For that reason, we consider ARF|Φ[BΦ] in the above construction and
thus explicitly regard the consequences from the flexible assertions in BΦ.

Observe that, apart from ARF|o and AR[W,BΦ], which depend on the input ABoxes A, all
of the ABoxes we defined are constant.

The below auxiliary lemma shows that AR[W,BΦ] is, in a certain sense, closed regarding
the data in the given ABox sequence.

Lemma 6.22 For all B ∈ BR(O), R ∈ NRR(O) and a, b ∈ NI(K) \ NI(Φ), we have:

• B(a) ∈ AR[W,BΦ] iff there is an i ∈ [0, n] such that 〈O,AR[W,BΦ] ∪ Ai〉 |= B(a),

• R(a, b) ∈ AR[W,BΦ] iff there is an i ∈ [0, n] such that 〈O,AR[W,BΦ] ∪Ai〉 |= R(a, b).
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6.3 First-Order Rewritings of r-Satisfiability

Proof. (⇒) This direction is trivial. (⇐) We assume that 〈O,AR[W,BΦ] ∪ Ai〉 |= B(a)
holds for some i ∈ [0, n]. Observe that, if we have BjR|o = Bj+1

R|o at some point, then we
have BjR|o = Bj+lR|o for all l ≥ 0. Hence, there must be some j′ ∈ [0, |BR(O)|] such that
Bj
′

R|o = Bj
′+l

R|o , for all l ≥ 0, because every set Bj+1
R|o such that Bj+1

R|o 6= B
j
R|o must contain at

least one new assertion, there are only |BR(O)| relevant assertions per individual, and an
assertion on a specific individual does not depend on assertions on other individuals by
Lemma 2.14. Given 〈O,AR[W,BΦ] ∪Ai〉 |= B(a) and the fact that only the assertions on
the individual a (possibly contained in a tuple of individuals) in AR[W,BΦ] are relevant
for the entailment by Lemmas 2.14 and 2.13, we can neglect all but the second and last
conjuncts in the definition of A+

R[W,BΦ]; a cannot occur in these sets. In addition to
the assertions in BR|o, we thus consider those entailed by some 〈O,Ai〉, i ∈ [0, n]. But
the basic concept assertions corresponding to those role assertions have to be contained
in B1

R|o and hence in also in BR|o by definition. This leads to B(a) ∈ AR[W,BΦ] by the
definition of AR[W,BΦ].

We second assume 〈O,AR[W,BΦ]∪Ai〉 |= R(a, b). By Definition 2.11 and Lemma 2.13,
there is some S ∈ N−R such that S(a, b) ∈ AR[W,BΦ] ∪ Ai and O |= S v R. If
S(a, b) ∈ Ai, then we have that 〈O,Ai〉 |= R(a, b), and hence R(a, b) ∈ AR[W,BΦ] by
the definition of AR[W,BΦ]. Otherwise, that definition implies that there is a j ∈ [0, n]
such that 〈O,Aj〉 |= S(a, b), and hence also 〈O,Aj〉 |= R(a, b), which also shows that
R(a, b) ∈ AR[W,BΦ].

Given all the relevant ABoxes and additionally a mapping ι : [0, n] → [1, k], we
can specify the KBs in the focus of the r-completeness tests in Definition 6.8 for all
i ∈ [0, n+ k], considering Ai := ∅ for i > n:

KiR[W,BΦ] := 〈O,AiR[W,BΦ]〉,

where
AiR[W,BΦ] := AR[W,BΦ] ∪ AQR[W] ∪ AQι(i) ∪ ARF[W,BΦ] ∪ Ai.

Before we continue regarding the rewriting, we show that we can use BΦ as intended.

Lemma 6.23 For allW ⊆ 2{p1,...,pm} such thatW = {W1, . . . ,Wk} and ι : [0, n]→ [1, k],
there is an r-complete tuple w.r.t. W and ι iff there is a set BΦ such that the tuple

(AR[W,BΦ], QR[W], Q
¬
R[W], RF[W,BΦ])

is r-complete w.r.t. W and ι.

Proof. (⇐) This direction is trivial. (⇒) We assume (AR, QR, Q
¬
R, RF) to be an r-

complete tuple, define BΦ as follows, and show that (AR[W,BΦ], QR[W], Q
¬
R[W], RF[W,BΦ])

is r-complete as well:

BΦ := {B(a) ∈ AR ∪RF | B ∈ B(O), a ∈ NI(φ)}.

We focus on the conditions in Definition 6.8. Our tuple obviously satisfies Condi-
tions (C3) and (C4) by construction.
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Regarding Conditions (C1), (C2), and (C5), we describe a model of KiR[W,BΦ] that can
be homomorphically embedded into the canonical interpretation of the consistent KB
that exists for the given tuple, since it satisfies Condition (C1); we denote the latter KB
by KiR. Observe that all positive assertions contained in one of the ABoxes of KiR[W,BΦ]
must also be contained in KiR:

• AQR[W] ⊆ AQR follows from the facts that both tuples satisfy Condition (C3) and
QR[W] is the minimal set satisfying that condition.

• ARF|aux[W] ∪ARF|Φ[BΦ] ∪ARF|o ⊆ ARF is a consequence of the following observations.
By definition, every ∃S(b) ∈ RF|aux[W] is a consequence of a KB 〈O,AQj 〉, Wj ∈ W .
Since the given tuple satisfies Condition (C6) and we have ι(n + j) = j in that
definition, the assertion is also contained in RF. ARF|Φ[BΦ] ⊆ ARF follows from the
construction. Each ∃S(b) ∈ RF|o follows, by definition, from BR|o together with
some Ai (and O). Since the given tuple satisfies Condition (C1), AR must contain
all assertions in BR|o; since Condition (C6) is satisfied, the assertion is thus also
contained in RF.

• All positive assertions in AR[W,BΦ] have to be positive in AR, too, by the definition
of AR[W,BΦ] and the observations in the previous items. More precisely, we have
BΦ|R ⊆ AR, BR|o ⊆ AR, and that all positive assertions in

(
AR[W,BΦ] \ BΦ|R

)
\BR|o

are implied by a KB 〈O,ARF|Φ[BΦ] ∪ AQR[W] ∪ Ai〉, i ∈ [0, n]. Since the latter
assertions occur in KiR, which is consistent by assumption, the ABox type AR also
contains the latter rigid consequences.

Hence, any difference between KiR and KiR[W,BΦ] (i.e., focusing on the assertions in
KiR[W,BΦ] and disregarding additional assertions in KiR) must be due to negative rigid
assertions in AR[W,BΦ] that occur positively in AR (because AR is an ABox type) and
may cause the inconsistency of KiR[W,BΦ]. By providing a model for KiR[W,BΦ], we show
that such assertions cannot exist. Since the given tuple satisfies Condition (C1) and
KiR contains all positive assertions occurring in KiR[W,BΦ], the KB [KiR[W,BΦ]]

+, obtained
from KiR[W,BΦ] by dropping the negative assertions, is also consistent. We focus on the
canonical interpretation I of that KB and show that it also satisfies KiR[W,BΦ]. We
consider negative role and basic concept assertions in KiR[W,BΦ].

• Let ¬R(a, b) ∈ AR[W,BΦ]. We prove I 6|= R(a, b) by contradiction, assuming that
some of the ABoxes in [KiR[W,BΦ]]

+ contains a role assertion S(a, b) such that
O |= S v R. We thus consider the positive assertions in the ABoxes AR[W,BΦ],
AQR[W] , AQι(i) ,ARF[W,BΦ] , and Ai and argue with the definitions of these ABoxes.
Let S be rigid, first. We can disregard AQι(i) and ARF[W,BΦ] , since all rigid asser-
tions in the former ABox are also contained in AQR[W] and because the ABoxes
ARF[W,BΦ] consists of do not contain assertions on two elements of NI(K). Further,
(rigid) role assertions that contain only elements of NI(K) are positively contained
in AR[W,BΦ] if they occur in AQR[W] or are a consequence of a KB 〈O,Aj〉, j ∈ [0, n].
Together with the fact that S(a, b) ∈ AQR[W] implies R(a, b) ∈ AQR[W] , this yields
that the occurrence of S(a, b) in one of the latter ABoxes causes R(a, b) ∈ AR[W,BΦ].
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Since AR[W,BΦ] is an ABox type (i.e., only one R(a, b) or ¬R(a, b) is contained in
it), that contradicts the assumption.
If S is flexible, S(a, b) occurs in Ai or AQι(i) , which implies that Wι(i) ∈ W . By
the definition of AR[W,BΦ] and AQR[W] , based on QR[W] and Definition 6.2, we then
get R(a, b) ∈ AR[W,BΦ] or R(a, b) ∈ AQR[W] , which also implies R(a, b) ∈ AR[W,BΦ]
and thus a contradiction to the assumption.

• Let ¬B(a) ∈ AR[W,BΦ]. If a ∈ NI(Φ), this implies ¬B(a) ∈ AR by the definitions of
AR[W,BΦ] based on BΦ|R and BΦ based on AR. Since AR is an ABox type and the
given tuple satisfies Condition (C1), Lemma 2.12 yields I ′ 6|= B(a), assuming I ′ to
be the canonical interpretation of KiR. By our above observation on the positive
assertions in KiR[W,BΦ], this interpretation must also satisfy [KiR[W,BΦ]]

+. Hence,
B(a) cannot be a consequence of that KB, and Lemma 2.13 yields I 6|= B(a).
For the case a 6∈ NI(Φ), we again proceed by contradiction and assume I |= B(a).
Lemma 2.14 then yields that there are positive assertions about a in the ABoxes
AR[W,BΦ] ∪ ARF|o ∪ Aj , j ∈ [0, n], that together imply B; the other ABoxes do
not contain assertions on such individuals. By that lemma, we can also disregard
ARF|o since AR[W,BΦ] contains the relevant assertions. Note that assertions in ARF|o
only on elements of NI(K) are always basic concept assertions. Then, Lemma 6.22
implies that we can actually focus on AR[W,BΦ] alone and obtain B(a) ∈ AR[W,BΦ].
This contradicts the assumption since AR[W,BΦ] is an ABox type.

Since I is a model of [KiR[W,BΦ]]
+ by Lemma 2.12 and we have shown that it satisfies all

negative assertions in AR[W,BΦ], it is also a model of KiR[W,BΦ]. Hence, our tuple satisfies
Condition (C1).

If one of Conditions (C2) and (C5) is contradicted, then Lemma 2.13 yields that there
is a homomorphism of the CQ that causes the contradiction into I. Again, the above
observation that the positive assertions contained in KiR[W,BΦ] must be contained in KiR
is important. By Definition 2.11 and the semantics, every such homomorphism into I
is also a homomorphism into the canonical interpretation of the positive part of KiR.
This contradicts the assumption that KiR satisfies Conditions (C2) and (C5), again by
Lemma 2.13.

It remains to consider Condition (C6), and we discern regarding the elements in
focus. Observe that, w.r.t. the ABoxes considered in that condition, the individual
names occurring in RF|aux[W] can only occur within AQR[W] ∪

⋃
W∈W AQW , and those in

RF|o only in AR[W,BΦ] ∪
⋃

0≤i≤nAi.

• We regard the assertions in RF|aux[W]. (⇐) For every ∃S(ay) ∈ RF|aux[W], and
thus ay ∈ Naux

I , the definition of RF|aux[W] directly yields that there is a Wj ∈ W
such that 〈O,AQj 〉 |= ∃S(ay). This solves the claim given that Condition (C6)
considers ι to be such that j = ι(n+ j).
(⇒) If there is a W ∈ W such that 〈O,AQR[W] ∪AQW 〉 |= ∃S(ay), ay ∈ Naux

I , then
Lemma 2.14 implies that ∃S(ay) can only follow from assertions involving ay. But
ay can be associated to a unique query ϕj ∈ QΦ that contains the variable y and
corresponding ABox Aϕj ; no other such ABoxes contains assertions on ay. This
implies ϕj ∈ QR[W]. By the definition of QR[W], there is a W ′ ∈ W with pj ∈ W ′

127



6 Temporal Query Entailment in DL-LiteHhorn

and, in particular, AQW ′ implies all assertions on ay in AQR[W] . This shows that
∃S(ay) already follows from AQW ′ (and O), which yields ∃S(ay) ∈ RF|aux[W].

• We regard the assertions in RF|o. (⇐) If ∃S(b) ∈ RF|o, then there is an in-
dex i ∈ [0, n] such that 〈O,BR|o ∪ Ai〉 |= ∃S(b). By the definition of AR[W,BΦ], we
have BR|o ⊆ AR[W,BΦ], and hence obtain that 〈O,AR[W,BΦ] ∪ Ai〉 |= ∃S(b).
(⇒) If 〈O,AR[W,BΦ]∪Ai〉 |= ∃S(b), then the definition of AR[W,BΦ] and Lemma 2.14
yield that the assertion follows from rigid assertions in BR|o and several rigid
role assertions of the form R(b, a), R ∈ N−R (O), each of which follows from a
KB 〈O,Aj〉, j ∈ [0, n]. But, for those rigid role assertions, we have that the
corresponding rigid basic concept assertions ∃R(b) are contained in BR|o by con-
struction. Hence ∃S(b) follows from BR|o (and O), and is thus contained in RF|o,
by the definition of that set.

• We regard the assertions in RF|Φ[BΦ]. Since the given tuple satisfies Condition (C6)
and, by the definition of RF|Φ[BΦ], RF and RF|Φ[BΦ] coincide regarding NI(Φ), we
have that there is an i ∈ [0, n] such that 〈O,AR ∪ AQR ∪ AQι(i) ∪ Ai〉 |= ∃S(a) iff
∃S(a) ∈ RF|Φ[BΦ] for all a ∈ NI(Φ).
(⇒) This direction then directly follows from the above observation that all posi-
tive assertions in AR[W,BΦ] occur in AR and AQR[W] ⊆ AQR .
(⇐) Since AR is an ABox type, the fact that the given tuple satisfies Condi-
tion (C1) yields that all basic concept assertions that can be derived from asser-
tions in AR or AQR are also positively contained in AR; note that these ABoxes
both contain only rigid assertions. Moreover, BΦ contains all these rigid basic
concepts on elements of NI(Φ) which are contained in AR, by definition. Hence,
Lemma 2.14 yields that ∃S(a) ∈ RF|Φ[BΦ] implies that there is an i ∈ [0, n] such
that 〈O,AR[W,BΦ] ∪ AQR[W] ∪ AQι(i) ∪ Ai〉 |= ∃S(a).

Thus, Condition (C6) is also satisfied.

In order to be able to specify rewritings, we next propose an approach to handle the
critical size of the ABox ARF|o .

Introducing Prototypes

To untangle the knowledge captured in the ABox ARF|o and separate it from the in-
put data as much as possible, we introduce prototypes11. Specifically, instead of the
names occurring in ARF|o , we consider prototypical, fresh individual names of the form
[S], a[S]S , a[S]S%, etc., meaning [S] is used instead of a concrete individual name from
NI(K). We collect all these new names in the set Npro

I .
The ABox A∃S for all S ∈ N−R (O) \NRR represents a prototypical version of an ABox

A∃S(b) with b ∈ NI(K) (see Section 6.1.2) and is obtained from A∃S(b) as follows, where
b ∈ NI(K) and ab%, ab%S ∈ Ntree

I :

• every R(b, abS) is replaced by R(b, a[S]S),

11Not to be confused with the prototypical elements in canonical interpretations.
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• every R(ab%, ab%S) is replaced by R(a[S]%, a[S]%S),

• every B(ab%) is replaced by B(a[S]%).

For query answering regarding the adapted ABox, we propose the rewriting ·℘.

Definition 6.24 (·℘) Let pro be a unary predicate that identifies exactly the elements
of Npro

I . For a CQ ϕ := ∃~x.ψ, define the query ϕ℘ := ∃~x.ψ ∧ ψfilter with

ψfilter :=
∧

R∈N−R ,
R(s,t)∈ψ

¬pro(s) ∧ pro(t)→
∧

R′∈N−R ,
R′(t,u)∈ψ

(s = u ∨ pro(u))

 .

The ABox A℘RF|o
is defined as the union of the set

⋃
∃S(a)∈RF|o

A∃S and the set that, for
each a ∈ Npro

I occurring in the latter set, contains the assertion pro(a). ♦

The below lemma captures the intent of the rewriting.

Lemma 6.25 Let ϕ be a CQ and A ∪ ARF|o be one of the ABoxes AiR[W,BΦ], where
i ∈ [0, n+ k]. Then, we have

DB(A ∪ARF|o) |= ϕ iff DB(A ∪A℘RF|o
) |= ϕ℘.

Proof. Let ϕ := ∃~x.ψ. (⇒) Based on a homomorphism π of ϕ into DB(A∪ARF|o), we
define a homomorphism π′ of ϕ℘ into DB(A ∪ A℘RF|o

). More precisely, π′ corresponds
to π but maps elements from Ntree

I , which do not occur in A℘RF|o
, to the corresponding

prototypes, which exist in the domain of DB(A ∪A℘RF|o
) by the definition of A℘RF|o

.
Let R(s, t), S(t, u) ∈ ϕ;R,S ∈ N−R (O); π′(s) 6∈ Npro

I ; and π′(t) ∈ Npro
I , such that

the precondition of ψfilter evaluates to true under π′; otherwise, the implication clearly
holds. Recall that, an ABox AiR[W,BΦ] as considered (see the definition in the previous
section) only via ARF|o refers to elements such as π(t) of Ntree

I that are associated to
named individuals—here, π(s)—from NI(K)\NI(Φ) (i.e., elements which are replaced by
·℘). By Definition 2.23, the assumption thus implies R(π(s), π(t)), S(π(t), π(u)) ∈ ARF|o .
Together with the assumption that π′(s) 6∈ Npro

I ; the fact that ·℘ replaces all of Ntree
I , and

only those, by prototypes; and π′(s) = π(s), given by the definition of π′, this means that
π(s) 6∈ Ntree

I . Since π(s) occurs in the ABox ARF|o , we hence have π(s) ∈ NI(K) \NI(Φ).
By the construction of ARF|o and the two role atoms contained in it, we thus must have
π(u) = π(s) or π(u) ∈ Ntree

I . This yields that either π′(u) = π′(s) or π′(u) ∈ Npro
I by our

definition of π′, which especially yields π(s) = π′(s). Hence, π′ satisfies ϕfilter.
(⇐) Let π′ be a homomorphism of ϕ℘ into DB(A∪A℘RF|o

). We construct a homomor-
phism π of ϕ into DB(A ∪ARF|o) and discern two cases. If π′ does map to elements of
Npro

I , but not to elements of NI(K) \ NI(Φ), then it maps only to elements of Npro
I . This

is because atoms containing terms mapped to elements of Npro
I can only be satisfied by

DB(A∪A℘RF|o
) through assertions in A℘RF|o

, by Definition 2.23 and the fact that elements
of Npro

I do not occur in A; A℘RF|o
only contains individuals of Npro

I and NI(K)\NI(Φ); and
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we assume ϕ to be connected. Furthermore, the elements of Npro
I in A℘RF|o

are connected
in tree structures (see the definition of ARF|o in Section 6.1.2) and, for each such struc-
ture, there is at least one corresponding structure in ARF|o by the definition of A℘RF|o

.
We hence can define π to map to the corresponding tree elements in one such structure
which correspond to the ones that π′ maps to.

It remains to consider the case that π′ maps to elements of both Npro
I and NI(K)\NI(Φ).

First, we define π as π′ w.r.t. all terms that are not mapped to elements of Npro
I . Note

that A℘RF|o
does not contain assertions which do not contain elements of Npro

I (see the
definition of ARF|o). By Definition 2.23, we thus have α ∈ A for all atoms α ∈ ϕ where
π′(α) does not contain elements of Npro

I . This particularly means that our definition of
π is as required w.r.t. all those atoms.

For defining π on the terms not yet considered, we regard a term s in ϕ that is mapped
to an element of NI(K) \NI(Φ) and occurs in a role atom R(s, t) together with a term t
mapped to an element of Npro

I ; since we assume π′ to map to elements of both Npro
I and

NI(K) \ NI(Φ) and ϕ to be connected, such a role atom must exist. By Definition 2.23
and the fact that A does not contain elements of Npro

I , given by assumption, we have
R(π′(s), π′(t)) ∈ A℘RF|o

.
Together, the definition of A℘RF|o

and its dependence on ARF|o then yield that ARF|o

is based on an ABox A∃S(π′(s)) such that S ∈ N−R and ∃S(π′(s)) ∈ RF|o; it contains
the assertion R(π′(s), aπ′(s)S), aπ′(s)S ∈ Ntree

I ; and, for all R′(π′(s), π′(t)) ∈ A℘RF|o
, we

have R′(π′(s), aπ′(s)S) ∈ A∃S(π′(s)). The latter follows from the observation that, apart
from the ABox A∃S(π′(s)), where π′(s) is related to aπ′(s)S , no ABox A℘RF|o

is based upon
contains an assertion that relates π′(s) to an element of the form abS , b ∈ NI(K). Thus,
the introduction of prototypes yielding elements of the form a[S]S does not change the
fact that all assertions in A℘RF|o

on both π′(s) and a[S]S must stem from ∈ A∃S(π′(s)).
Note that we also get π′(t) = a[S]S . We define π(t) = aπ′(s)S . Since the filter conjunct
is satisfied, we have that all role atoms R′(t, u) in which t occurs contain only terms u
that are either mapped to π′(s) or to an element π′(u) ∈ Npro

I . The former kind of role
atoms is satisfied by this definition of π by the above observation that all role assertions
in A℘RF|o

that contain both π′(s) and a[S]S stem from A∃S(π′(s)).
We regard a role atom of the other kind. Since this case is similar to the induction

case, we abstract from the given information by assuming π′(t) = a[S]%, π(t) = ab%
to be defined, and ∃S(b) ∈ RF|o. Again, by Definition 2.23 and the fact that A does
not contain elements of Npro

I , by assumption, we have R′(π′(t), π′(u)) ∈ A℘RF|o
. By the

definition of A℘RF|o
based on ABoxes of the form A∃S′ , S′ ∈ N−R , which do not overlap in

the elements of Npro
I they contain, we get that R′(π′(t), π′(u)) ∈ A∃S since the shape of

π′(t) indicates that it is contained in that ABox. By the same argument, we then get
R′′(π′(t)), π′(u)) ∈ A∃S for all R′′(π′(t), π′(u)) ∈ A℘RF|o

. Given the way the prototypes
are created and the definition of the ABox A∃S , we can assume π′(u) to be of the
form π′(u) = a[S]%S′ , S′ ∈ N−R . From ∃S(b) ∈ RF|o and the construction of A∃S(b),
we know that the element ab%S′ ∈ Ntree

I exists and that R′′(π(t), π(u)) ∈ A∃S(b) for all
R′′(π′(t)), π′(u)) ∈ A∃S . We thus can define π(u) = aπ′(s)%S′ .
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If we apply this lemma in the following, we assume Ntree
I to only contain the auxiliary

elements used in ARF|aux[W] and ARF|Φ[BΦ] , meaning that we disregard the auxiliary ele-
ments from ARF|o , which it contains according to the original definition. Also note that
Ntree

I does not contain elements from Npro
I .

6.3.2 Rewriting Knowledge Base Satisfiability and Query Answering
We next adapt the rewritings qunsat(O) and PerfectRef(ϕ,O) to incorporate the knowl-
edge from the auxiliary ABoxes. Observe, however, that for constructing auxiliary
ABoxes such as AR[W,BΦ] and ARF|o , we need to decide entailment w.r.t. different KBs
already. Specifically, these tests include an index i ∈ [0, n] as parameter and regard
some of the other auxiliary ABoxes. For that reason, we first propose variants of
PerfectRef(ϕ,O) that similarly incorporate the given CQ ϕ and ontology but also the
corresponding auxiliary ABoxes and that target our time-stamped database TDB(A).

In the following, we assume that the CQs we consider only contain individual names
from NI(Φ).

First Variants of PerfectRef(ϕ,O)

The formula PRef(ϕ,O)(i) represents PerfectRef(ϕ,O) regarding TDB(A): Given a pa-
rameter i ∈ [−1, n], it decides if ϕ is entailed by the atemporal KB 〈O,Ai〉. It is obtained
from PerfectRef(ϕ,O) by replacing all atoms B(t) and R(s, t) by B(t, i) and R(s, t, i), re-
spectively. The correctness can be readily checked by considering the original semantics
of the query (i.e., O is correctly included/rewritten w.r.t. the interpretation DB(Ai))
and the fact that TDB(A) is defined such that TDB(A) |= B(a, i) iff DB(Ai) |= B(a) for
all B ∈ B(O) and i ∈ [0, n], and correspondingly for all relations R in TDB(A) where
R ∈ NR(O).

Lemma 6.26 For all i ∈ [−1, n], 〈O,Ai〉 |= ϕ iff TDB(A) |= PRef(ϕ,O)(i).

The formula PRef(ϕ,O|BjR|o)(i) represents PerfectRef(ϕ,O) regarding TDB(A) and BjR|o
for all j ∈ [0, `] with ` = |BR(O)|. We define:

• PRef(ϕ,O|B0
R|o)(i) := PRef(ϕ,O)(i).

• PRef(ϕ,O|Bj+1
R|o )(i) for j ∈ [1, `] is obtained from PerfectRef(ϕ,O) by replacing all

basic concept atoms B(t), if flexible, by B(t, i) and otherwise by

B(t, i) ∨
∧

a∈NI(Φ)
(t 6= a) ∧ ∃p.PRef(B(t),O|BjR|o)(p),

and all role atoms R(s, t) by R(s, t, i).

Lemma 6.27 For all j ∈ [0, `] and i ∈ [−1, n]:

〈O,BjR|o ∪ Ai〉 |= ϕ iff TDB(A) |= PRef(ϕ,O|BjR|o)(i).
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Proof. The proof is by induction, based on the definition of the set BR|o. For the base
case, where j = 0, the definitions of B0

R|o and PRef(ϕ,O|B0
R|o) yield that the equivalence

〈O, ∅∪Ai〉 |= ϕ iff TDB(A) |= PRef(ϕ,O)(i) is to be shown, which holds by Lemma 6.26.
We regard j > 0.

(⇒) We assume 〈O,BjR|o∪Ai〉 |= ϕ and thus get DB(BjR|o∪Ai) |= PerfectRef(ϕ,O) by
Lemma 2.24. That is, there is a homomorphism π of PerfectRef(ϕ,O) into DB(BjR|o∪Ai)
and hence a CQ ϕ′ in the UCQ PerfectRef(ϕ,O) such that, for all atoms α in ϕ′,
π(α) ∈ BjR|o ∪ Ai, by the query semantics and the definition of DB(BjR|o ∪ Ai) (see
Definition 2.23). For all these atoms, we show that π is also a homomorphism of the
corresponding replacement into TDB(A).12

• If α is a flexible basic concept atom B(t) or a role atom R(s, t), then π(α) cannot be
contained in the set BjR|o containing only rigid basic concepts, by definition; hence,
we get π(α) ∈ Ai. The definition of TDB(A) (see Definition 6.21) then implies
that BDB contains the tuple (π(t), i) or that RDB contains the tuple (π(s), π(t), i),
respectively. Thus, π is as required.

• Let α be a rigid basic concept atom B(t). If π(α) ∈ BjR|o, then the defini-
tion of BjR|o, especially the fact that BjR|o contains only individual names from
NI(K) \ NI(Φ), yields that π(t) 6∈ NI(Φ) and that there is a k ∈ [0, n] such
that 〈O,Bj−1

R|o ∪ Ak〉 |= π(α). By the induction hypothesis, the latter implies
TDB(A) |= PRef(π(α),O|Bj−1

R|o )(k), which together with the former yields that π is
also a homomorphism of the replacement into TDB(A) and thus as required.
If π(α) ∈ Ai, then BDB contains the tuple (π(t), i) by the definition of TDB(A).

(⇐) We argue correspondingly and consider a given homomorphism π and a satisfied
disjunct of PRef(ϕ,O|BjR|o)(i), which itself is a conjunction and, before our replacements,
originally had been a CQ obtained from PerfectRef(ϕ,O). We consider an arbitrary
conjunct α in that conjunction and show that π is also a homomorphism of the atom
that has been replaced by the conjunct into DB(BjR|o ∪ Ai).

• If α has replaced a role atom R(s, t) or flexible basic concept atom B(t), then it is of
the form R(s, t, i) or, respectively, B(t, i). By the assumption that TDB(A) |= π(α)
and the definition of TDB(A), we then directly get that R(π(s), π(t)) ∈ Ai or,
respectively, B(π(t)) ∈ Ai. Hence, π is as required w.r.t. the original atom and
the database.

• Let α be the replacement of a rigid basic concept atom B(t). If the first dis-
junct B(t, i) in α is satisfied, we can argument as in the previous case. Other-
wise, we have TDB(A) |= ∃p.PRef(B(π(t)),O|Bj−1

R|o )(p) and π(t) 6∈ NI(Φ). But this

yields 〈O,Bj−1
R|o ∪ Ap〉 |= B(π(t)) by the induction hypothesis. Then, we have

12We assume the notion of homomorphism to be extended to the replacements, which may be nested
disjunctions of rewritings (i.e., PRef(ϕ,O|Bj+1

R|o )(i) is a disjunction whose disjuncts are conjunctions
where each conjunct my be an inequality, a disjunction or, in turn, be recursively defined as to be
of that form) and equality assertions in the obvious way.
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B(π(t)) ∈ BjR|o, by the definition of BjR|o, and hence again get that π is as re-
quired.

The formula PRef(ϕ,O|AR[W,BΦ])(i) represents PerfectRef(ϕ,O) regarding TDB(A) and
AR[W,BΦ]. It is obtained from PerfectRef(ϕ,O) by replacing

• all basic atoms B(t), if flexible, by B(t, i) and otherwise by

 ∨
B(a)∈BΦ|R

(t = a)

 ∨ PRef(B(t),O|BR|o)(i) ∨


∨

B=∃R,a∈NI(K),
R(a,e)∈ARF|Φ[BΦ]

(t = a)

 ;

• all role atoms R(s, t), if flexible, by R(s, t, i) and otherwise by

∃p.PRef(R(s,t),O)(p) ∨

 ∨
R(a,b)∈AQR[W]

(t = a) ∧ (t = b)

 .
Given the definition of AR[W,BΦ] and the rewritings introduced above, it can be readily
checked that the adapted query decides if ϕ is entailed by the KB 〈O,AR[W,BΦ] ∪ Ai〉.

Lemma 6.28 〈O,AR[W,BΦ] ∪ Ai〉 |= ϕ iff TDB(A) |= PRef(ϕ,O|AR[W,BΦ])(i).

Proof. Since we construct the rewriting based on PerfectRef(ϕ,O), Lemma 2.24 yields
〈O,AR[W,BΦ] ∪ Ai〉 |= ϕ iff DB(AR[W,BΦ] ∪ Ai) |= PerfectRef(ϕ,O).

(⇒) We assume 〈O,AR[W,BΦ] ∪ Ai〉 |= ϕ, which hence means that there is a disjunct
ϕ′ in the UCQ PerfectRef(ϕ,O) and a homomorphism π of ϕ′ into DB(AR[W,BΦ] ∪ Ai).
That is, for all atoms α in ϕ′, we have π(α) ∈ AR[W,BΦ] ∪ Ai by Definition 2.23.

• If α is flexible, then we have π(α) ∈ Ai since AR[W,BΦ] contains only rigid as-
sertions. But then, π also fits our rewriting for that case, which addresses the
corresponding relation in TDB(A).

• If α is rigid and π(α) ∈ Ai, then the definition of BR|o yields π(α) ∈ BR|o if we
consider a basic concept atom. Thus, TDB(A) satisfies either PRef(π(α),O|BR|o)(i)
or PRef(π(α),O)(i), depending on the kind of atom, by Lemmas 6.26 and 6.27.
Hence, our rewriting is as required for this case.
For the remaining case where π(α) ∈ AR[W,BΦ], it can readily be checked that
the rewriting covers all parts referenced in the definition of AR[W,BΦ], again using
Lemmas 6.26 and 6.27.

(⇐) We argument correspondingly and consider a given homomorphism π and a sat-
isfied disjunct in the UCQ PRef(ϕ,O|AR[W,BΦ])(i), which itself is a conjunction. That is,
it is a CQ obtained from PerfectRef(ϕ,O) where the atoms are replaced according to
our above construction. We focus on an arbitrary such replacement for an atom α and
show that we have π(α) ∈ AR[W,BΦ] ∪ Ai. By the definition of the replacements, the
replacement must be a disjunction, and at least one of its disjuncts must be satisfied
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under π. If this disjunct refers to an assertion contained in BΦ|R,ARF|Φ[BΦ] , or AQR[W] ,
then we have π(α) ∈ AR[W,BΦ] by the definition of AR[W,BΦ]. If the disjunct refers to
the rewriting PRef(α,O), then Lemma 6.26 yields π(α) ∈ AR[W,BΦ]. In case it refers
to the rewriting PRef(α,O|BR|o), then α is a rigid basic concept atom of the form B(t),
and Lemma 6.27 yields 〈O,BR|o ∪ Ai〉 |= B(π(t)). Because of BR|o ⊆ AR[W,BΦ], we
thus also have 〈O,AR[W,BΦ] ∪ Ai〉 |= B(π(t)). For that reason, Lemma 6.22 leads
to B(π(t)) ∈ AR[W,BΦ]. Thus, π is also a homomorphism of PerfectRef(ϕ,O) into
DB(AR[W,BΦ] ∪ Ai) by Definition 2.23.

The Final Versions of qunsat(O) and PerfectRef(ϕ,O)

We finally come to the rewritings we target. Recall that, for checking the conditions for
r-completeness (see Definition 6.8), we need to decide KB consistency and CQ entailment
by including, next to the input ABoxes A = (Ai)0≤i≤n, several auxiliary ABoxes based
on the tuple defined at the beginning of this section. Specifically, we focus on the KBs
〈O,AiR[W,BΦ]

℘〉 with i ∈ [0, n] and

AiR[W,BΦ]
℘ := AR[W,BΦ] ∪ AQR[W] ∪ AQι(i) ∪ ARF|aux[W] ∪ ARF|Φ[BΦ] ∪ A

℘
RF|o
∪ Ai.

Observe that the ABoxes AR[W,BΦ],AQR[W] ,ARF|aux[W] ,ARF|Φ[BΦ] , and A℘RF|o
are constant,

whereasAQι(i) andAi depend on the considered time point i. Since the auxiliary ABoxes
are not part of the input (of the r-satisfiability problem), we in the following adapt the
FO formulas qunsat(O) and PerfectRef(ϕ,O) such that the two problems can be solved
by evaluating the respective formula over the input ABoxes alone (i.e., also without the
ontology), which are captured by TDB(A).

For all sets W ⊆ 2{p1,...,pm}, W ∈ W , and BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)}, which
are constant, we create the rewritings qunsat(O|W,W,BΦ)(i) and PRef(ϕ,O|W,W,BΦ)(i), based
on q℘unsat(O) and PerfectRef(ϕ,O)℘, respectively;13 ·℘ represents a function that applies
the rewriting ·℘ to every CQ in the given UCQ. That is, we adopt the approach proposed
by Lemma 6.25; in line with this, we also consider A℘RF|o

instead of ARF|o . As in the
previous section, we provide replacements for the atoms in these two queries.

Since the database addressed by these queries contains only the individuals occur-
ring in the input ABoxes, but we want to include auxiliary elements from Naux

I , Ntree
I ,

and Npro
I , we especially have to consider the quantifiers, which quantify only over the

individuals in the original database. Note that this issue is not relevant regarding the
rewritings we proposed in the previous section because we assume all individual names
occurring in Φ to also occur in the input ABoxes and, in that section, focus on auxiliary
ABoxes that do not contain names from Naux

I , Ntree
I , and Npro

I . To this end, we now
consider each disjunct

q = ∃x1, . . . , x`.ϕ(x1, . . . , x`) ∧ ϕfilter(x1, . . . , x`)

contained in the original queries—because of the filter condition included by ·℘, we do
not have UCQs anymore—, where ϕ(x1, . . . , x`) is a conjunction of atoms. The idea
13Note that we here use the subscript part W,W,BΦ to describe the dependence of the rewriting on

the given parameters, whereas we have used the additionally included ABoxes above. For brevity,
we here do not use AR[W,BΦ] ∪ AQR[W] ∪ AQι(i) ∪ ARF|aux[W] ∪ ARF|Φ[BΦ] ∪ A

℘
RF|o

.
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is to duplicate q several times such that we have 2` versions q0, . . . , q2`−1 of it, and to
augment the quantification of variables to consider also the elements in Naux

I ∪Ntree
I ∪Npro

I ,
a constant number. We then replace q by the disjunction q0 ∨ · · · ∨ q2`−1.

Formally, for all j ∈ [0, ` − 1] and k ∈ [0, 2` − 1], we consider the quantified variable
xj in qk with

k = b0 ∗ 20 + . . .+ bj ∗ 2j + . . .+ b`−1 ∗ 2`−1

and drop the quantification if bj = 0. We then define

qk := ∃′x1. . . . ∃′x`.rep(ϕ∧ϕfilter|W,W,BΦ)(i)

where ∃′xj stands for ∃xj if bj = 1, and for
∨
aj∈Naux

I ∪Ntree
I ∪Npro

I
if bj = 0. For every

b ∈ {0, 1}, we denote by Qb(k) the set {xj | 0 ≤ j ≤ ` − 1, bj = b}. The for-
mula rep(ϕ∧ϕfilter|W,W,BΦ)(i) is constructed by replacing every atom α in ϕ ∧ ϕfilter by
rep(α|W,W,BΦ)(i), in dependence of the form of α:

• For all t ∈ NI(q) ∪ NV(q):

rep(pro(t)|W,W,BΦ)(i) :=
{

true if t ∈ Q0(k), t = xj , aj ∈ Npro
I ,

false otherwise.

• For all s, t ∈ NI(q) ∪ NV(q):

rep(s=t|W,W,BΦ)(i) :=


s = t if s, t ∈ Q1(k) ∪ NI(q),
true if s, t ∈ Q0(k), s = xj , t = xj′ , aj = aj′ ,
false otherwise.

• The remaining kinds of atoms are covered in Figures 6.1 and 6.2.

Observe that neither the two above case distinctions nor the tables conditions ref-
erencing AQR[W] ,AQW ,ARF|aux[W] , and ARF|Φ[BΦ] depend on the input ABoxes. Fur-
thermore, the definitions basically consider two different cases, depending on whether
the atom contains a variable which gets unquantified by our adaptation of the query.
If this is the case, then it has to be mapped to an auxiliary element, and hence
corresponding assertions (i.e., for the atom under consideration) can only occur in
AQR[W] ∪ AQW ∪ ARF|aux[W] ∪ ARF|Φ[BΦ] ; otherwise, the input ABoxes and AR[W,BΦ] are
also taken into account—by using the query PRef(ϕ,O|AR[W,BΦ]). The variables that get
unquantified by our adaptation and are associated to an element from Npro

I represent
however an exception. For them, the input ABoxes have to be considered to ensure that
corresponding prototypical elements actually occur in A℘RF|o

. Also recall that the same
definitions apply for i = −1, where we assume the considered ABox Ai to be empty.

The next lemma establishes the correctness of our translation of the original UCQs
over KiR[W,BΦ] into FO formulas over TDB(A).

Lemma 6.29 For all CQs ϕ over concept and role names in O, W ⊆ 2{p1,...,pm}, worlds
W ∈ W, sets BΦ ⊆

⋃
B∈B(O),
a∈NI(Φ)

{B(a)}, and indexes i ∈ [−1, n], we have:
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Conditions rep(B(t)|W,W,BΦ)(i)

aj ∈ Naux
I , B(aj) ∈ AQR[W] ∪ AQW true

aj ∈ Ntree
I , B(aj) ∈ ARF|aux[W] ∪ ARF|Φ[BΦ] true

aj ∈ Npro
I , 〈∅,A∃S〉 |= B(aj), and aj = a[S]S%

∃x.
( ∧
a∈NI(Φ)

(x 6= a)
)
∧

∃p.PRef(∃y.S(x,y),O|AR[W,BΦ])(p)

Otherwise false
(a) t ∈ Q0(k) (t = xj)

Conditions rep(B(t)|W,W,BΦ)(i)

B 6∈ BR(O)

( ∨
B(a)∈AQW ,

a∈NI(Φ)

(t = a)
)
∨ B(t, i)

Otherwise

( ∨
B(a)∈AQR[W] ,

a∈NI(Φ)

(t = a)
)
∨ PRef(B(t),O|AR[W,BΦ])(i)

(b) t ∈ Q1(k) ∪ NI(q)

Figure 6.1: The replacement definition for all B ∈ B(O) and t ∈ NI(q) ∪ NV(q).
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Conditions rep(R(s,t)|W,W,BΦ)(i)

aj , aj′ 6∈ Npro
I , R(aj , aj′) ∈ AQR[W] ∪ AQW ∪ ARF|aux[W] true

aj , aj′ 6∈ Npro
I , R(aj , aj′) ∈ ARF|Φ[BΦ] true

aj ∈ Npro
I , R(aj , aj′) ∈ A∃S and aj = a[S]%

∃x.
( ∧
a∈NI(Φ)

(x 6= a)
)
∧

∃p.PRef(∃y.S(x,y),O|AR[W,BΦ])(p)

Otherwise false
(a) s, t ∈ Q0(k) (s = xj , t = xj′ )

Conditions rep(R(s,t)|W,W,BΦ)(i)

R(aj , t) ∈ AQR[W] ∪ AQW true

R(aj , t) ∈ ARF|Φ[BΦ] true

Otherwise false
(b) s ∈ Q0(k), t ∈ NI(q) (s = xj)

Conditions rep(R(s,t)|W,W,BΦ)(i)

aj ∈ Naux
I

∨
R(aj ,b)∈AQR[W]∪AQW ,b∈NI(Φ)

(t = b)

aj ∈ Ntree
I

∨
R(aj ,b)∈ARF|Φ[BΦ] ,b∈NI(Φ)

(t = b)

aj ∈ Npro
I , R(aj , [S]) ∈ A∃S , and aj = a[S]S

∧
b∈NI(Φ)

(t 6= b) ∧

∃p.PRef(∃y.S(t,y),O|AR[W,BΦ])(p)

Otherwise false
(c) s ∈ Q0(k), t ∈ Q1(k) (s = xj)

Conditions rep(R(s,t)|W,W,BΦ)(i)

R 6∈ NRR

( ∨
R(a,b)∈AQW ,

a,b∈NI(Φ)

(s = a) ∧ (t = b)
)
∨ R(s, t, i)

Otherwise

( ∨
R(a,b)∈AQR[W] ,

a,b∈NI(Φ)

(s = a) ∧ (t = b)
)
∨ PRef(R(s,t),O|AR[W,BΦ])(i)

(d) s, t ∈ Q1(k) ∪ NI(q)

Figure 6.2: The replacement definition for all R ∈ N−R (O) and s, t ∈ NI(q) ∪ NV(q).
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• DB(AiR[W,BΦ]) |= qunsat(O) iff TDB(A) |= qunsat(O|W,W,BΦ)(i).

• DB(AiR[W,BΦ]) |= PerfectRef(ϕ,O) iff TDB(A) |= PRef(ϕ,O|W,W,BΦ)(i).

Proof. (⇒) We assume DB(AiR[W,BΦ]) |= q′, where q′ is one of the two UCQs, and show
that TDB(A) satisfies one of the queries in the disjunction representing the correspond-
ing rewriting. By the definition of ·℘, the semantics of disjunction, and Lemma 6.25, we
can equivalently assume DB(AiR[W,BΦ]

℘) |= (q′)℘. Hence, there is a homomorphism π of
some query

q℘ = ∃x1, . . . , x`.ϕ(x1, . . . , x`) ∧ ϕfilter(x1, . . . , x`)

contained in (q′)℘ into that database, where ϕ(x1, . . . , x`) is a conjunction of atoms. By
definition, our translation of (q′)℘ further contains a query qk that is an adaptation of
q℘ and such that

k = b0 ∗ 20 + . . .+ bj ∗ 2j + . . .+ b`−1 ∗ 2`−1

where bj = 0 iff π(xj) ∈ Naux
I ∪ Ntree

I ∪ Npro
I for all j ∈ [0, `− 1].

We show that, if it is restricted to NV(qk) ∪ NI(qk), π is a homomorphism of qk into
TDB(A).14 For that, we consider all conjuncts α of q℘ and replacements rep(α|W,W,BΦ)(i)
introduced by our adaptation and prove that π(α) is satisfied by the database iff
π(rep(α|W,W,BΦ)(i)) is satisfied by TDB(A). Observe that this approach focusing on
those atoms in q℘ that contain quantified variables or individual names, and the cor-
responding replacements, is correct since the queries are Boolean. Furthermore, since
the case that π(α) is not satisfied by the database can only occur w.r.t. the filtering
conjunct, it actually suffices to show implication regarding all atoms with predicates dif-
ferent from pro. By the assumption, the database satisfies the assertion π(α), obtained
from α by replacing the variable(s) x in α by π(x). By Definition 2.23, we thus get that
π(α) ∈ AiR[W,BΦ]

℘.
Regarding the case that α = pro(xj), the correspondence of the definitions of the

predicate pro and rep(α|W,W,BΦ)(i) directly yields the equivalence. That is, π(α) evaluates
to true iff rep(α|W,W,BΦ)(i) = true, which means that the restriction of π (trivially) fits
in this regard. Note that the shape of these replacements yields that the adaptation of
ϕfilter is basically a conjunction of equality statements (see Definition 6.24).

Regarding the other kinds of atoms, we focus on the types of the mapped ele-
ments. As mentioned above, the definitions of the replacement formulas overall de-
pend on whether the regarded atom contains a variable xj , j ∈ [0, ` − 1], such that
π(xj) ∈ Naux

I ∪ Ntree
I ∪ Npro

I . For that reason, we assume α to be an arbitrary atom
containing such a variable xj , in all but the last of the below cases, where we show that
the above mentioned implication holds. The scheme of these proofs is the same: the
kinds of the considered elements (i.e., regarding all elements π maps a term of α to)
constrain the ABoxes to be considered, and the definition of rep(α|W,W,BΦ)(i) is based
on exactly those ABoxes.

• Let π(xj) ∈ Naux
I ∪NI(ARF|aux[W]). That is, we also regard elements from Ntree

I of the
form aax%, where ax ∈ Naux

I . We hence must have π(α) ∈ AQR[W]∪AQW ∪ARF|aux[W]

14Note that we have not defined the notion of homomorphism w.r.t. disjunction (∨) and (in)equality
predicates in Definition 3.5, but the corresponding extension should be obvious.
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because the input ABoxes and AR[W,BΦ] only regard elements of NI(K) and neither
ARF|Φ[BΦ] nor A℘RF|o

contain elements of this kind. For the case that π(xj) ∈ Ntree
I ,

we obtain π(α) ∈ ARF|aux[W] by analogous arguments and the fact that neither
AQR[W] nor AQW contains elements from Ntree

I .
If α does not contain a variable that is quantified within qk, then we directly
get rep(α|W,W,BΦ)(i) = true, which is trivially satisfied by π. For basic concept
atoms, this holds because we only have to consider π(xj) and ARF|aux[W] does
not contain basic concept assertions on elements of Naux

I . Regarding role atoms,
observe that π cannot map to elements of Npro

I , since they do not occur within
AQR[W]∪AQW ∪ARF|aux[W] , and that ARF|aux[W] does not contain role assertions with
individuals from NI(K). The latter is relevant regarding the case where t ∈ NI(q)
(in the definition of the replacement), since we have NI(qk) ⊆ NI(Φ) and assume
NI(Φ) ⊆ NI(K).
If α next to xj contains a variable y that is quantified within qk—which means
we regard the case s ∈ Q0(k), t ∈ Q1(k)—, then we have π(y) ∈ NI(K), by
the semantics, and that α is a role atom. Let α = R(xj , y), R ∈ N−R . The
fact that ARF|aux[W] does not contain role assertions with individuals from NI(K)
yields R(π(xj), π(y)) ∈ AQR[W] ∪ AQW . Since rep(α|W,W,BΦ)(i), for all assertions
R(π(xj), b) ∈ AQR[W] ∪ AQW with b ∈ NI(Φ), contains the disjunct (y = b) and
elements from NI(K)\NI(Φ) do not occur in this ABox, it also contains the disjunct
(y = π(y)). Hence π is obviously as required.

• Let π(xj) ∈ Ntree
I ∩ NI(ARF|Φ[BΦ]). That is, we regard elements from Ntree

I of the
form ab%, where b ∈ NI(Φ)—the elements from Ntree

I that remain to be considered.
We then must have π(α) ∈ ARF|Φ[BΦ] since that kind of elements only occurs in this
ABox. The arguments for showing that π satisfies rep(α|W,W,BΦ)(i) are analogous
to the ones applied for the case where π(xj) ∈ Ntree

I in the previous item. The
only difference now is that ARF|Φ[BΦ] can obviously contain role assertions with
individuals from NI(K).

• For π(xj) ∈ Npro
I , we get π(α) ∈ A℘RF|o

, since the other ABoxes do not contain
elements from Npro

I , and can assume aj to be of the form a[S]%. Observe that,
then, no term is mapped to an element of NI(Φ) since A℘RF|o

does not contain such
elements (1). By the definition of A℘RF|o

, a[S]% is (unambiguously) associated to the
ABox A∃S , one of the components of A℘RF|o

, which do not share elements of Npro
I .

This yields π(α) ∈ A∃S (2). The existence of the component A∃S further implies
that there is an individual a ∈ NI(K) \NI(Φ) such that ∃S(a) ∈ RF|o. By the defi-
nition of the latter set, there then is an index p such that 〈O,BR|o ∪Ap〉 |= ∃S(a).
Lemma 6.27 thus yields that TDB(A) satisfies PRef(∃y.S(x,y),O|BR|o)(p), which is
a disjunct of PRef(∃y.S(x,y),O|AR[W,BΦ])(p). Note that, regarding role atoms, (1)
implies that the case t ∈ NI(q) never applies.
If α does not contain a variable that is quantified within qk, then (2), a 6∈ NI(Φ),
and TDB(A) satisfying PRef(∃y.S(x,y),O|AR[W,BΦ])(p) together yield that the replace-
ment rep(α|W,W,BΦ)(i) is (trivially) satisfied under π.
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If α contains a variable y that is quantified within qk, we need to show π(y) = [S],
in addition. In this case, we have π(y) ∈ NI(K) and that α is of the form R(xj , y),
R ∈ N−R . This means that the assertion R(π(xj), π(y)) is contained in A℘RF|o

and,
especially, in A∃S(a), by the definition of A℘RF|o

and the above observation that
∃S(a) ∈ RF|o. The (tree) shape of A∃S(a) and the definition of A∃S , based on that
ABox, then imply R(π(xj), [S]) ∈ A∃S (and % = S), S ∈ N−R .

• We consider the case where the variable(s) and term(s) in α are not mapped
to auxiliary elements of Naux

I ∪ Ntree
I ∪ Npro

I , which means they are mapped to
elements of NI(K). If α is a flexible atom, then we have π(α) ∈ AQW ∪ Ai since
all other ABoxes contain only rigid assertions. In case π(α) ∈ AQW , we can apply
arguments corresponding to (a subset of) those used for π(xj) ∈ Naux

I in the first
item. The other case, π(α) ∈ Ai, is covered by Definitions 2.23 and 6.21. That is,
the definition of TDB(A) based on Ai yields that π is as required.
If α is rigid, then we have π(α) ∈ AR[W,BΦ] ∪ AQR[W] ∪ AQW ∪ Ai because ARF

contains no assertion without auxiliary elements from Ntree
I . We can also dis-

regard AQW since its rigid assertions are part of AQR[W] , by definition, given
that we assume W ∈ W . Moreover, AQR[W] is addressed directly in the replace-
ment; that part is especially complete since AQR[W] does not contain elements of
NI(K)\NI(Φ). The other two ABoxes are covered by PRef(α,O|AR[W,BΦ])(i), accord-
ing to Lemma 6.28.

It can readily be checked that the above cases cover all kinds of elements π can map
to. These observations show that π is a homomorphism of all our replacements into
TDB(A), and thus TDB(A) |= qk. Hence, TDB(A) satisfies also our adaptation of (q′)℘,
which was to be shown.

(⇐) We only sketch the proof for this direction since it is very similar to the above
one. Since it neither differs for the two items to be proven, we again assume q′ to be
one of the two UCQs that are rewritten. By the semantics and the definition of the
rewritings, we have a query qk in the given rewriting that is an adaptation of a query q℘
in (q′)℘ and satisfied in TDB(A). We thus have a homomorphism π of qk into TDB(A)
(i.e., w.r.t. the individual names and (existentially quantified) variables in qk) and show
that we can extend it adequately to cover the terms occurring in q℘. Because, qk is a
disjunction by construction, one of its disjuncts must be satisfied, by the semantics. We
regard the individual names aj from Naux

I ∪Ntree
I ∪Npro

I associated to the variables xj in
q℘ and to that disjunct. In particular, we extend π such that π(xj) = aj for all these
variables and subsequently show that this definition satisfies our purpose.

We ignore the “filtering” conjunct of q℘, for now, and consider an arbitrary conjunct
representing the replacement for an atom B(t) in q℘, in the disjunct under consideration,
satisfied under π by assumption.

• If π(t) ∈ Naux
I ∪Ntree

I , then true must be the replacement and B(π(t)) contained in
AQR[W] ∪AQW ∪ARF|aux[W] ∪ARF|Φ[BΦ] . By Definition 2.23, it can readily be checked
that π then is as required.

• If π(t) ∈ Npro
I , then there are an S ∈ N−R (O)\NRR (i.e., ABoxes of the form A∃S are

only defined for such roles), an individual a ∈ NI(K)\NI(Φ), and an index i ∈ [0, n]
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such that 〈O,AR[W,BΦ] ∪ Ai〉 |= ∃S(a) by Lemma 6.28. By Lemma 6.22, all rigid
assertions about a that are consequences of that KB are contained in AR[W,BΦ].
By the definition of the latter, such assertions with a then are either contained
in BR|o or role assertions and consequences of a KB 〈O,Aj〉, j ∈ [0, n]; none of
the other parts of AR[W,BΦ] contains an element a 6∈ NI(Φ), by their definitions.
Since BR|o includes the basic concept assertions corresponding to the former role
assertions, by definition, and AR[W,BΦ] cannot contain flexible assertions, we hence
get 〈O,BR|o∪Ai〉 |= ∃S(a) by Lemma 2.14. This means that ∃S(a) is part of RF|o,
by definition, which yields A∃S ⊆ A℘RF

. We thus can again apply Definition 2.23,
to show that π is as required.

• For the case where π(t) ∈ NI(K), Definition 2.23 can be applied regarding the first
disjuncts, referring to QR[W]. Regarding the others, the definition of TDB(A) and,
respectively, Lemma 6.28 confirm the claim that the database satisfies B(π(t)).

The proof is similar for role atoms.
We lastly consider the “filtering” conjunct ϕfilter of q℘, which is a conjunction of im-

plications. By our extension of π in accordance with the individual names associated to
the disjunct under consideration and the definitions of the predicate pro and the replace-
ment of the corresponding atoms (i.e., those containing pro), we have that each atom
occurring in ϕfilter is satisfied in the database under the extended π iff its replacement
is true and hence evaluates to true in TDB(A) under π. Thus, our extension of π is as
required. Again, the proof for the equality atoms is correspondingly.

6.3.3 Rewriting r-Satisfiability
Based on the specific FO rewritings of KB satisfiability and UCQ entailment developed
in the previous sections, we next define the FO formulas that capture r-satisfiability
based on r-completeness.

For all W ⊆ 2{p1,...,pm}, W ∈ W , and BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)}:

• f(C1)(i) := ¬qunsat(O|W,W,BΦ)(i);

• f(C2)(i) :=
∧
pj∈W ¬PRef(ϕj ,O|W,W,BΦ)(i);

• f(C5)(i) :=
∧

ϕ∈Q¬R ,
ψ witness query
for ϕ w.r.t. O

¬PRef(ψ,O|W,W,BΦ)(i).

We integrate these formulas into the following abbreviation and subsequently describe
how r-satisfiability can be tested.

rSatW,W,BΦ(i) := f(C1)(i) ∧ f(C2)(i) ∧ f(C5)(i).

Lemma 6.30 For all W ⊆ 2{p1,...,pm} where W = {W1, . . . ,Wk}, ι : [0, n]→ [1, k], and
BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)}, the tuple

(AR[W,BΦ], QR[W], Q
¬
R[W], RF[W,BΦ])

is r-complete w.r.t. W and ι iff the following hold:
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• For all i ∈ [0, n], we have TDB(A) |= rSatW,Wι(i),BΦ(i).

• For all W ∈ W, we have TDB(A) |= rSatW,W,BΦ(−1).

• For all S ∈ N−R (O) \ N−RR and a ∈ NI(Φ), we have ∃S(a) ∈ BΦ iff there is an
i ∈ [0, n] such that TDB(A) |= PRef(∃S(a),O|W,Wι(i),BΦ)(i).

Proof. We consider Definition 6.8. The tuple generally satisfies some of the conditions
by construction: AR[W,BΦ] is an ABox type; and QR[W] and Q¬R[W] are in accordance
with Conditions (C3) and (C4). Furthermore, Lemmas 6.29 and 2.24 show that the
formulas in rSatW,W,BΦ(i) as considered in the first two items cover Conditions (C1),
(C2), and (C5) adequately.

It remains to prove the equivalence between the satisfaction of Condition (C6) and
the last item. For RF|aux[W] and RF|o, we have shown in the proof of Lemma 6.23 that
they satisfy Condition (C6) by construction, independent of that item. We therefore
focus on RF|Φ[BΦ].

(⇐) If the equivalence in the last item holds, then the definition of RF|Φ[BΦ] based on
BΦ and Lemmas 6.29 and 2.24 yield that ∃S(a) ∈ RF|Φ[BΦ] iff there is an i ∈ [0, n] such
that 〈O,AR[W,BΦ] ∪ AQR[W] ∪ AQι(i) ∪ Ai ∪ ARF|Φ[BΦ]〉 |= ∃S(a); note that RF|aux[W] and
RF|o do not contain relevant assertions. However, by Lemma 2.14, all parts of ARF|Φ[BΦ]
relevant to obtain such a conclusion are contained in AR[W,BΦ], given the definition of
that ABox and that of ARF|Φ[BΦ] . Note that the latter does not contain basic concept
assertions on elements of NI(Φ). We thus get that ∃S(a) ∈ RF|Φ[BΦ] iff there is an
i ∈ [0, n] such that 〈O,AR[W,BΦ] ∪ AQR[W] ∪ AQι(i) ∪ Ai〉 |= ∃S(a), as required.

(⇒) It is easy to see that, given the definition of RF|Φ[BΦ] and Lemmas 6.29 and 2.24,
Condition (C6) implies the condition in the last item.

6.4 Data Complexity
In this section, we show that the low data complexity of query answering in DL-Lite
does not increase dramatically in our temporal setting, for which we prove ALogTime-
completeness. Though, FO rewritability thus is lost. As it is shown next, this holds
already for the case without rigid names and regarding DL-Litecore. The matching
containment result is presented thereafter and based on several results from the previous
sections.

6.4.1 Hardness
ALogTime-hardness can be shown by reducing the word problem of deterministic finite
automata to TCQ entailment. The idea is to encode the given word into subsequent
ABoxes and to emulate the state transitions in the TCQ, by requiring each to iterate
to the next time point and to hold at all considered time points. Further, the TCQ
considers the final state as a consequence of the latter, and the initial state is represented
in the first ABox. In this way, the TCQ is entailed iff the automaton accepts the word.
Note that we thus even do not need an ontology.
Theorem 6.31 TCQ entailment in DL-Litecore is ALogTime-hard in data complexity,
even if NRC = ∅ and NRR = ∅.
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Proof. It is well-known that every finite monoid M (i.e., a finite, closed set having an
associative binary operation and an identity element) can be directly translated (in log-
arithmic time) to a deterministic finite automaton (DFA) that decides the word problem
for that monoid, by regarding the elements of M as states and considering transitions ac-
cording to the associative operation.15 Moreover, for some such monoids (e.g., the group
S5), this problem is complete for LogTime-uniform NC1 under LogTime-uniform AC0

reductions [BIS90, Cor. 10.2]; and LogTime-uniform NC1 equals ALogTime [BIS90,
Lem. 7.2].

We hence can establish ALogTime-hardness by considering an arbitrary DFA M and
reducing its word problem to TCQ entailment in logarithmic time. For that, we adapt
a construction of [Art+15a, Thm. 9].

Let M be a tuple of the form (Q,Σ,∆, q0, F ), specifying the set of states Q, the
alphabet Σ, the transition relation ∆, the initial state q0, and the set of final states F .
Regarding data complexity, the task is to specify a TCQ ΦM based on M and an ABox
sequence Aw based on an arbitrary input word w ∈ Σ∗ such that: M accepts w iff
〈∅,Aw〉 |= ΦM . We consider concept names Aσ and Qq for all characters σ of the input
alphabet Σ and states q ∈ Q, respectively, and define the following TCQ:

ΦM := 2P

( ∧
q→σq′∈∆

(
Qq(a) ∧Aσ(a)

)
→ #FQq′(a)

)
→

∨
qf∈F

Qqf (a).

For a given input word w = σ0 . . . σn−1, we then define the sequence Aw = (Ai)0≤i<n
of ABoxes as follows: A0 := {Qq0(a)} and, for all i ∈ [0, n], Ai := {Aσi(a)}. It is easy
to see that this reduction can be computed in logarithmic time.

Given that the semantics of TCQ entailment focus on time point n, it can readily
be checked that the model of 〈∅,Aw〉 that satisfies the premise of ΦM at n represents
the run of M on w. Observe that there is only one such model relevant for entailment
since M is deterministic. Hence, M accepts w iff all models of 〈∅,Aw〉 that satisfy
the premise also satisfy the disjunction

∨
qf∈F Qqf (a) at n. This is equivalent to the

entailment 〈∅,Aw〉 |= ΦM .

6.4.2 Containment
In this section, we finally provide an alternating Turing machine that solves our prob-
lem in logarithmic time based on Lemma 3.13. Since the latter considers satisfiability
problems in both LTL and the DL, we first introduce some notation and establish last
auxiliary results that facilitate our construction regarding the LTL part. The DL prob-
lems are solved by using the rewritability result from Section 6.3.

Separating LTL Satisfiability Testing

Similar to the algorithms proposed previously, our ATM is based on splitting the TCQ
satisfiability testing into separate tests, each considering only a subset of time points
(e.g., by regarding a set of formulas for each). Here, we again focus on Φpa; without loss
of generality, we assume it to be separated. Specifically, we further separate the future
15We refer the reader to [BIS90] for details about monoids, groups, and the word problem in that

context.
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from the past formulas and then split the satisfiability testing of the latter. To this
end, we again abstract from the given formula, similar to the idea of the propositional
abstraction (see Definition 3.8).

Definition 6.32 (Propositional Boolean Abstraction)Let {q1, . . . , qo} be a finite
set of propositional variables such that there is a bijection ·ba mapping the top-level
future and past subformulas occurring in Φpa to elements of that set.16

The propositional Boolean abstraction Φba of Φpa w.r.t. ·ba is the propositional formula
obtained from Φpa by replacing every top-level future and past subformula f in Φpa

by fpa. ♦

Additionally, we apply the following notation:

• We assume ·ba to be the propositional Boolean abstraction of Φpa w.r.t. the bijec-
tion ·ba mapping the top-level future and past subformulas f1, . . . , fo contained in
Φpa to propositions q1, . . . , qo such that qi = fba

i for i ∈ [1, o].

• F and P denote the sets of replaced top-level future and past subformulas in Φpa,
respectively; that is, they form a partition of {f1, . . . , fo}.

• V denotes the set of all valuations v : {q1, . . . , qo} → {true, false} under which Φba

evaluates to true.

• We represent each v ∈ V also on the level of top-level formulas as follows:

Pv := {fi ∈ P | v(qi) = true} ∪ {¬fi | fi ∈ P , v(qi) = false};

Fv is defined analogously.

• For each W ⊆ 2{p1,...,pm} and v ∈ V , the set Fut(W,v) collects the worlds that
may represent the beginning of an LTL model (restricted to W) of the future
subformulas Fv induced by v:

Fut(W,v) := {W ∈ W | ∃W = (wi)i≥0, ∀i ≥ 1 : wi ∈ W ,W |=
∧
f∈Fv

f, w0 = W}.

Note that all the above sets are independent of the data and can hence be regarded as
constant. The below lemma describes the intention and establishes the correctness of
our basic approach.

Lemma 6.33 Let W = {W1, . . . ,Wk} ⊆ 2{p1,...,pm} and w0, . . . , wn ∈ W. The existence
of an LTL structure W that only contains worlds from W, starts with w0, . . . , wn, and
is such that W, n |= Φpa is equivalent to the existence of a valuation v ∈ V such that

• wn ∈ Fut(W,v) and

• (w0, . . . , wn, wn, . . . ), n |=
∧
f∈Pv f .

16Note that such a set and bijection obviously exist for the propositional abstraction of a TCQ.
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Proof. (⇒) Given such an LTL structure W, the valuation v can be obtained by check-
ing which elements of {f1, . . . , fo} are satisfied at time point n, and the LTL structure
needed for Fut(W,v) is defined as the substructure of W starting at n. Note that the
satisfaction of the past formula

∧
f∈Pv f in the LTL structure (w0, . . . , wn, wn, . . . ) at

time point n does not depend on any time point after n. We hence can choose arbitrary
worlds from W, such as wn, for those time points.

(⇐) It is easy to see that W can be constructed by joining w0, . . . , wn and the LTL
structure obtained from the fact that wn ∈ Fut(W,v), since the satisfiability of past
(future) subformulas at n is not affected by the worlds after (before) that time point.

As outlined above, we further separate the satisfiability testing regarding the past
subformulas. More precisely, we want to abstract similarly as for the future formulas
and regard sets of worlds representing the satisfiability of a given set of past formulas.
Since we however need to consider n specific such sets of worlds, we focus on t-compatible
types, sets of past subformulas that are, respectively, satisfiable in one LTL structure at
consecutive time points:

• A type for P is a subset T of Clo(P)∪
⋃

1≤i≤m{pi,¬pi} that satisfies the following
conditions:

– for every f ∈ Clo(P), we have f ∈ T iff ¬f /∈ T ;
– for every f ∧ g ∈ Clo(P), we have f ∧ g ∈ T iff {f, g} ⊆ T .

Observe that we explicitly consider an extension of the closure since there may be
propositions in {p1, . . . , pm} that do not occur in P, which are relevant when we
regard time point n.

• The set Typ(P) represents the set of all types for P.

• A type T ∈ Typ(P) is called initial if it does not contain formulas of the form
#P f and, for all f S g ∈ T , we have g ∈ T .

• A pair (T−1, T ) ∈ Typ(P)× Typ(P) is called t-compatible if the following hold:
– #P f ∈ T iff f ∈ T−1,
– f S g ∈ T iff either (i) g ∈ T , or (ii) f ∈ T and f S g ∈ T−1.

Note that the decisions if a type is initial or if two types are t-compatible are independent
of the data. Similarly, the above introduced sets can be regarded as constant. The next
lemma shows that these new notions allow us to describe the satisfiability of the past
subformulas at n by the existence of a specific mapping ι′, which, based on types,
distinguishes the worlds of an LTL structure. Note that this approach is in a certain
way similar to the mapping ι regarded with TCQ satisfiability in Lemma 3.13.

Lemma 6.34 For a set W ⊆ 2{p1,...,pm}, valuation v ∈ V, and worlds w0, . . . , wn ∈ W,
we have

(w0, . . . , wn, wn, . . . ), n |=
∧
f∈Pv

f

iff there is a mapping ι′ : [0, n]→ Typ(P) as follows:
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• ι′(0) is initial and Pv ⊆ ι′(n);

• for all i ∈ [0, n[, the pair (ι′(i), ι′(i+ 1)) is t-compatible;

• for all i ∈ [0, n], we have wi ∈ ι′(i) ∩ {p1, . . . , pm}.

Proof. (⇒) The mapping ι′ can be defined based on the first n worlds w0, . . . , wn in the
given structure, by considering exactly the past formulas satisfied in it at the respective
time point. Note that other worlds do not have to be considered since the satisfiability
of the past formulas between 0 and n does not depend on other time points, after n. For
i ∈ [0, n], this mapping is obviously compatible with the worlds wi (formalized by the
condition that wi ∈ ι′(i) ∩ {p1, . . . , pm}), and it also satisfies the remaining conditions
because of the temporal semantics.

(⇐) Given ι′, it can be shown by induction over the time points i, starting with i = 0,
that, for all f ∈ Clo(P)∪

⋃
1≤i≤m{pi,¬pi}, we have f ∈ ι′(i) iff (w0, . . . , wn, wn, . . . ), i |= f .

The condition on ι′(n) in the first item, which is assumed to be satisfied, then yields
the claim.

Observe that the conditions in the lemma are largely independent of the data (i.e., of
n): Given a set W ⊆ 2{p1,...,pm}, which can be regarded as constant, it has basically to
be ensured that there are t-compatible types for the time points between 0 and n and
also corresponding worlds in W. Most importantly, only two t-compatibility conditions
have to be satisfied regarding each of these types, and each of these conditions influences
only the selection of other types, in one direction of the time line—assuming the types
from the first item in the lemma are selected correctly. This allows us to iteratively
construct the mapping ι′ in logarithmic time, by using an alternating Turing machine.

An Alternating Logarithmic-Time Turing Machine

We finally describe an alternating Turing machine that solves the TCQ satisfiability
problem in DL-LiteHhorn in logarithmic time in the size of the input, under the assumption
that the ontology and the TCQ are fixed. Before describing the idea and going into the
details of this particular machine, we briefly present some general specifics of TMs
bounded by logarithmic time. The alternating version of such a machine is defined
in the usual way, as an extension that discerns existential and universal states (see
Definition 2.25).

Most importantly, the sublinear-time bound makes it necessary to provide a mech-
anism that allows the machine to reach all of the input in logarithmic time, which is
not possible with the usual sequential scanning. We therefore adopt the random ac-
cess model of [CKS81], where the symbols on the read-only input tape are accessed by
writing the address of the symbol to be read (in binary) on a specific address tape, of
which the TM then can access up to log l cells; l represents the length of the input, and
the cells are assumed to hold the corresponding address. Next to those two tapes the
machine may use a constant number of read/write work tapes.17 To cover all the work

17Since Definition 2.25 is intended to introduce the concept of alternation on a higher level, we do not
consider several tapes in it. According to [AB09, Claim 1.6], this extension leads however only to a
quadratic increase in time.
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tapes, the transition relation is then adapted correspondingly, and a step of the machine
consists of reading one symbol from each tape, writing a symbol on each of the work
tapes, moving each of the heads left or right one tape cell, or not at all, and entering a
new state, in accordance with the transition relation.

We further apply the results of [BIS90] and assume that such TMs can do simple
calculations as specified below.

Lemma 6.35 ([BIS90, Lem. 7.1]) A deterministic log-time Turing Machine with
input of length l can

• add and subtract numbers of O(log l) bits,

• determine the logarithm of a binary number of O(log l) bits, and

• subtract binary numbers of O(log l) bits, compare such numbers, and compare them
to 0.

The idea of our machine M that decides the TCQ satisfiability problem integrates
most of the results from the previous sections:

• The problem is equivalent to the existence of an r-satisfiable setW ∈ 2{p1,...,pm} and
mapping ι—focusing on propositions instead of CQs—such that Φpa is t-satisfiable
w.r.t. them (Lemma 3.13).

• r-Satisfiability is FO rewritable if a set BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)} is
considered additionally (Lemmas 6.30 and 6.9).

• t-Satisfiability can be decided based on a mapping τ ′ : [0, n] → Typ(P), which
focuses on types instead of propositions (Lemmas 6.33 and 6.34), in a modular
way.

The sets W and BΦ are guessed in the beginning. The mapping ι′ is constructed while
processing and such that it satisfies the conditions for t-satisfiability, and ι can be
obtained from it. Based on ι, r-satisfiability is then checked in the last computation
steps.

Note that most states we consider do not depend on the input data, which means
that these computing steps do not influence the processing time significantly. On the
other hand, log(n+ 1) specific states are crucial for our approach.

The mapping ι′ is constructed in three phases. The two types ι′(0) and ι′(n) are
existentially guessed initially. Then, M continuously first guesses a t-compatible pair
of types for the time points in the middle of the sequence for which ι′ is to be defined
(e.g., 0, . . . , n in the beginning) and, second, splits this sequence into half.18 To ensure
that ι′ is fully constructed, this splitting happens in a universal state and, afterwards,
a left and a right copy of M are responsible for constructing ι′ regarding the respec-
tive subsequences—excluding the time points at the borders of the sequences, which
always have been guessed in previous steps. The copies proceed in this way until they
18For ease of presentation, we assume that n + 1 is a power of 2. If this was not the case, the ATM

would have to handle non-uniform divisions of the sequence 0, . . . , n; this extension is possible but
would complicate the presentation.
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Figure 6.3: A sketch of the computation of the ATM for n = 15. The number ` denotes
the current level of the computation tree. The nodes are labeled with the
index i (in binary notation), which represents the computation path by des-
ignating the left border of the currently considered subsequence of 0, . . . , n.
The copy of the ATM designated by the marked node (i = 1000, ` = 3)
guesses a t-compatible pair (ι′(1011), ι′(1100)) of sets from Typ(P). The
ATM then splits into two copies and each of those proceeds with one of the
guessed types.

reach a sequence of two (consecutive) time points. For those, the types are then al-
ready given and, in particular, t-compatible regarding the respective other neighbor
time points, w.r.t. the sequence 0, . . . , n. It thus remains to ensure that the given pairs
are t-compatible. Note that, in this construction, each value of ι′ is guessed only once,
which prevents conflicting guesses for one time point. Moreover, the copies do not have
to know about the guessing that happens in other branches of the computation tree.
We below give an example of the construction.

Example 6.36 Figure 6.3 illustrates the computation of M given an ABox sequence
with n = 15. We focus on the construction of ι′. Note that all circles apart from
those in the bottom represent sequences of existential states followed by a universal
state, in which the machine splits into two copies. The binary numbers on the labels
are the starting (time) points of the respective sequences the copies are responsible for
(i.e., regarding the construction of ι′). In an initial existential state ι′(0) and ι′(n) are
guessed. After guessing ι′(n+1

2 − 1) and ι′(n+1
2 ), ι′(0111) and ι′(1000) in binary, M

splits into two copies that focus on the sequences 0, . . . , 7 and 8, . . . , n, respectively.
The right copy thus regards i = 1000 as start, in binary, and guesses a t-compatible pair
(ι′(i + 2`−1 − 1), ι′(i + 2`−1)) of types, ι′(1011) and ι′(1100) in binary. Since all copies
proceed in this way, those at level ` = 1 focus on sequences of two time points for which
the types have been guessed before. M then accepts iff the corresponding pair of types
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is t-compatible, which means that ι′ is as required w.r.t. t-compability, and there are a
set W and mapping ι such that W is r-satisfiable w.r.t. ι and K. ♦

After the last verification steps regarding ι′ and two time points, each copy splits one
last time so that every resulting copy can be associated to one time point i ∈ [0, n].
Together, these copies then construct the mapping ι by guessing a world that is in line
with the type ι′(i), such that wi ∈ W ∩ ι′(i) ∩ {p1, . . . , pm}.

Recall that testing r-satisfiability amounts to checking the satisfiability of FO formu-
las w.r.t. TDB(A); and that the latter problem is in AC0 [BIS90, Thm. 9.1], a subclass
of LogTime. Hence, there are (deterministic) log-time TMs that decide the problems
we consider in this regard, and M can simulate these machines: for all W ⊆ 2{p1,...,pm},
W ∈ W , BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)}, S ∈ N−R (O) \ N−RR, and a ∈ NI(Φ), we
consider the machines MrSatW,W,BΦ

and MPRef(∃S(a),O|W,W,BΦ) . Observe that the overall
complexity of our algorithm does not change because the number of considered satisfi-
ability problems is constant and log(n) + log(n) = 2 log(n). There are still two points
that deserve special attention.

Regarding the second item in Lemma 6.30, M has to consider satisfiability problems
w.r.t. the empty ABox (i = −1) for the elements of W, individually. To this end, it
splits into |W| further copies that then verify the corresponding problems.

Regarding the last item in Lemma 6.30, we need to provide a solution to deal with
the n + 1 satisfiability problems to really obtain a constant number of satisfiability
problems to be considered. M therefore guesses additionally, for each ∃S(a) ∈ BΦ with
S ∈ NR \ NRR, at which time point i TDB(A) satisfies PRef(∃S(a),O|W,wi,BΦ)(i). The
elements of BΦ for which a copy of M is responsible for are then propagated along
the branches of the computation tree. Note that this guessing specifically does not
consider all n + 1 time points at once but is done by dividing the set of assertions to
be considered with each relevant split of M (i.e., the splits represent the division of the
sequence 0, . . . , n).

Lastly, note that we assume the number n to be given with the input, written on the
input tape in binary, at the beginning of the tape, and to be separated from the other
input by a special marker symbol. This assumption is valid since n can be retrieved
from the input via an FO query (e.g., a database could provide the number n in a view
defined by the FO(<) query ¬∃t.t > x). The general input, the temporal database
TDB(A), is assumed to be given in the format required by the auxiliary machines that
M simulates (i.e., MrSatW,W,BΦ

with input i for deciding TDB(A) |= rSatW,wi,BΦ(i), etc.).
All information on Φ and O is fixed and encoded into the ATM itself. To this end M

uses corresponding states, transitions, and several work tapes, next to the input and ad-
dress tape. Specifically, it comprises the tapes needed for the operations of Lemma 6.35;
those required to simulate the machines MrSatW,W,BΦ

and MPRef(∃S(a),O|W,W,BΦ) for all
W ⊆ 2{p1,...,pm}, W ∈ W , BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)}, S ∈ N−R (O) \ N−RR,
and a ∈ NI(Φ); and the below tapes. These tapes store the bounds of the sequence
considered by the corresponding copy of M:

Tape 1 the index i of the left border of the considered subsequence of 0, . . . , n, initially
set to i := −1 and representing the branch of the computation tree;

Tape 2 the level ` in the computation tree.
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The number of work tapes is thus constant. Tape 1 requires log(n+ 1) bits and Tape 2
requires O(log log(n+1)) bits. For simplicity, we in the following use the term auxiliary
machines to refer to all the machines M simulates and also for the parts of M that
implement the operations described in Lemma 6.35.

We define the ATM as a tuple M = (Q,Σ,Γ, q0,∆) (see also Definition 2.25):

• Q comprises all the states of the auxiliary machines and additional states that are
specified below.

• Σ consists of symbols for representing n, the marker symbol used for separating
n from the other input, and all symbols that may occur in the latter—its format
depends on the requirements of the auxiliary machines.

• Γ comprises all symbols used by the auxiliary machines, especially those for im-
plementing the counters i and `.

• q0 ∈ Q∃.

• Regarding the transitions, first note that, with each transition, we always focus
on one tape and assume the other tapes to remain the same (i.e., regarding such a
tape, the transition replaces the symbol under the head by that symbol and does
not move the head).
∆ then contains the corresponding extensions of all transitions considered in the
auxiliary machines and additional ones that we specify below, while describing the
processing of the machine.

As outlined above, the processing of each copy of M is based on sets W and BΦ guessed
in the beginning. During the computation, additional information is characterizing the
copies—a subset of BΦ and two types Tl and Tr. Furthermore, a valuation v ∈ V
is associated with each copy, to guess the type ι′(n) correctly, such that Pv ⊆ ι′(n).
We implement this using corresponding states. Note that this is possible since the
characterizing information itself is independent of the input. Specifically, we assume all
states in Q apart from q0 to be of the form qϑ, where ϑ denotes a (possibly indexed)
tuple from a set Θ containing all tuples (W,BΦ,B′Φ, v, Tl, Tr) where:

• W ⊆ 2{p1,...,pm} such that W 6= ∅;

• BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)};

• B′Φ ⊆ {∃S(a) ∈ BΦ | S ∈ N−R (O) \ N−RR};

• v ∈ V ;

• Tl, Tr ∈ Typ(P);

and similar tuples (W,BΦ,B′Φ, v, T ) with T ∈ Typ(P). The latter are considered in
the last computation steps, which focus on a single time point. Note that we assume
that we also have corresponding versions of all states of the auxiliary machines; again,
this assumption is possible because the information is independent of the input. In the
following, we describe the processing of M in detail.
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• At start time, we have i := −1 and M is in state q0 ∈ Q∃.

• M then can go to all states qϑ ∈ Q∀ where ϑ = (W,BΦ,B′Φ, v, Tl, Tr) ∈ Θ, Tl is
initial, and Pv ⊆ Tr.
Tl and Tr represent ι′(0) and ι′(n), respectively.

• M then must go to all states qϑ′ as follows:
– ϑ′ = (W,BΦ,B′Φ, v, Tl, Tr)W , W ∈ W : M uses the machine MrSatW,W,BΦ

with
input i to check whether TDB(A) |= rSatW,W,BΦ(−1), rejects if this is not the
case, and otherwise accepts (i.e., we assume that there are a corresponding
existential and universal state, both without successor states).

– ϑ′ is of the same form as ϑ, but the corresponding state is existential; we
denote it by q∃ϑ′ ∈ Q∃: M proceeds as described in the following.

• M increments the left index i and further initializes the counter ` such that i := 0
and ` := log(n+ 1). We then assume M to be in a state qϑ ∈ Q∃ as above.

• M then continuously executes the below steps, while ` > 1:
– M updates ` := `− 1. We assume M to be in a state qϑ ∈ Q∃ as above.
– M then can go to all states qϑ′ ∈ Q∀ where

ϑ′ = (W,BΦ,B′Φ, v, Tl, Tr)B(l)
Φ ,B(r)

Φ ,T (l),T (r)

B(l)
Φ and B(r)

Φ represent a partition of B′Φ, and (T (l), T (r)) ∈ Typ(P)×Typ(P)
is a t-compatible tuple.
Note that, if there is no such t-compatible tuple, then qϑ is rejecting since it
is existential.

– From each such state qϑ′′ , M then must go to the two states qϑ(l) , qϑ(r) ∈ Q∃
where

ϑ(l) := (W,BΦ,B
(l)
Φ , v, Tl, T

(l)),

ϑ(r) := (W,BΦ,B
(r)
Φ , v, T (r), Tr),

and M updates i := i+ 2` in the latter state.
In this way, we “store” the sets Tl = ι′(i) and Tr = ι′(i+ 2` − 1) in the state after
each execution of the loop—as it was the case before the loop, after initialization.

• When ` has reached 1, M proceeds similarly one final time:
– M updates ` := `− 1. We then assume M to be in a state qϑ ∈ Q∃ as above.
– M then can go to all states qϑ′ ∈ Q∀ such that

ϑ′ = (W,BΦ,B′Φ, v, Tl, Tr)B(l)
Φ ,B(r)

Φ
,

the tuple (Tl, Tr) is t-compatible, and B(l)
Φ and B(r)

Φ represent a partition of
B′Φ.
If the tuple is not t-compatible, then qϑ is rejecting since it is existential.
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– M then must go to the states qϑ(l) , qϑ(r) ∈ Q∃ where ϑ(l) = (W,BΦ,B
(l)
Φ , v, Tl),

ϑ(r) = (W,BΦ,B
(r)
Φ , v, Tr), and M updates i := i + 1 in the latter state. We

assume M to be in a state qϑ ∈ Q∃ where ϑ = (W,BΦ,B′Φ, v, T ).
Note that we now have that ` = 0 and that T represents ι′(i).

• M then can go to all states qϑ′ ∈ Q∃ where ϑ′ = (W,BΦ,B′Φ, v, T )wi and we have
wi ∈ T ∩ {p1, . . . , pm}.
Again, qϑ is rejecting if such a world does not exist since it is existential.

• M then can go to the state qϑ′′ := qϑ′ if i 6= n; if i = n and wn ∈ Fut(W,v), M can
go to the state qϑ′′ where ϑ′′ = (W,BΦ,B′Φ, v, T )wn ; otherwise it rejects; in both
cases we consider qϑ′′ ∈ Q∃.

• Lastly, M checks if the below conditions are satisfied, by using the corresponding
machines (i.e., MrSatW,wi,BΦ

etc.) with i as additional input.
– TDB(A) |= rSatW,wi,BΦ(i).
– For all S ∈ N−R (O) \ N−RR and a ∈ NI(Φ) with ∃S(a) /∈ BΦ:

TDB(A) 6|= PRef(∃S(a),O|W,wi,BΦ)(i).

– For all ∃S(a) ∈ B(i)
Φ :

TDB(A) |= PRef(∃S(a),O|W,wi,BΦ)(i).
If any of these tests fails, M rejects; otherwise it accepts.

A successful run confirms the satisfiability of Φ w.r.t. K, as it is proven next.
Theorem 6.37 TCQ entailment in DL-LiteHhorn is in ALogTime in data complexity,
even if NRR 6= ∅.

Proof. We regard the TCQ Φ, TKB K = 〈O,A〉, and temporal database TDB(A) from
above. Recall that TDB(A) is simply a different representation of the ABox sequence
A = (Ai)0≤i≤n and, particularly, of the same size.

Furthermore, it can readily be checked that M terminates in logarithmic time in the
size of the input:

• the number of states one copy of M passes in one run of the loop is constant and
the loop is run log(n+ 1)− 1 times;

• the number of all other states explicitly mentioned above is also constant, and
these states are passed at most once by a copy of M;

• all other states passed by a copy are due to calculations as in Lemma 6.35, based
on existing log-time TMs.

We thus have that

the ATM M accepts the input n and TDB(A) (in logarithmic time) iff

there are setsW = {W1, . . . ,Wk} ⊆ 2{p1,...,pm} and BΦ ⊆ {B(a) | B ∈ B(O), a ∈ NI(Φ)},
a valuation v ∈ V , a mapping ι′ : [0, n] → Typ(P), and worlds w0, . . . , wn ∈ W as
follows:
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• for every W ∈ W , we have TDB(A) |= rSatW,W,BΦ(−1);

• ι′(0) is initial and Pv ⊆ ι′(n);

• for every i ∈ [0, n], the pair (ι′(i), ι′(i+ 1)) is t-compatible;

• for every i ∈ [0, n], we have wi ∈ ι′(i) ∩ {p1, . . . , pm};

• wn ∈ Fut(W,v);

• for every i ∈ [0, n], we have TDB(A) |= rSatW,wi,BΦ(i);

• for all S ∈ N−R (O) \ N−RR and a ∈ NI(Φ), we have:
∃S(a) ∈ BΦ iff there is an i ∈ [0, n] such that TDB(A) |= PRef(∃S(a),O|W,wi,BΦ)(i).

By Lemmas 6.34 and 6.33, this is equivalent to the existence of sets W and wi as above
and an LTL-structure W as follows:

• W only contains worlds from W,

• W starts with w0, . . . , wn,

• W, n |= Φpa.

Moreover, because of the condition that each wi is an element of W, the sequence
w0, . . . , wn can equivalently be expressed by a mapping ι : [0, n] → [1, k] such that
wi = Wι(i) for all i ∈ [0, n].

The fact that the above is equivalent to the existence of sets W and ι such that Φpa

is t-satisfiable w.r.t. W and ι, and W is r-satisfiable w.r.t. ι and K then follows from
Definition 3.11 for t-satisfiability. Regarding r-satisfiability, we can apply Lemmas 6.23
and 6.30 describing the existence of an r-complete tuple w.r.t. W and ι and Lemma 6.9
linking this to r-satisfiability of W. Finally, Lemma 3.13 yields the equivalence to
the satisfiability of Φ w.r.t. K. The claim thus follows from the fact that the class
ALogTime is closed under complement (see [CKS81, Thm. 2.5]).

We have thus completely classified TCQ entailment in several Horn fragments of
DL-Lite regarding different settings with rigid symbols. In summary, we have shown
that the main features of these logics, conjunction, inverse roles, role hierarchies, and
unqualified existential restriction do not lead to “critical” interaction with LTL. This
holds for both combined and data complexity. While the former stays the same, the
latter only increases from in AC0 to ALogTime-completeness.
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7 Temporal Query Entailment in DL-Lite, Beyond
the Horn Fragment

In this chapter, we show that for the Krom and Bool fragments of DL-Lite, the com-
plexity results from Chapter 6, which focuses on the Horn fragment, do not apply any
more, even if role hierarchies are disregarded. TCQ entailment actually gets as hard as
for very expressive DLs such as SHQ, and even harder.

We regard a Boolean TCQ Φ and a TKB K = 〈O, (Ai)0≤i≤n〉 written in a DL between
DL-Litekrom and DL-LiteHbool, depending on the context, and investigate the combined
and data complexity in Sections 7.1 and 7.2, respectively. Throughout the chapter, we
use the notation of Section 3.2.

7.1 Combined Complexity
For determining the combined complexity results, we first show a key observation: TCQ
entailment in DL-Litebool can be reduced to the problem in DL-Litekrom. Specifically,
the restricted disjunction allowed in DL-Litekrom together with TCQs allows to express
several kinds of very expressive GCIs. The former then follows as a corollary and di-
rectly yields some hardness results based on atemporal query entailment for DL-Litebool.
Subsequently, we investigate the combined complexity covering the different cases w.r.t.
the rigid symbols.

As in the previous sections we often proceed according to Lemma 3.13 for obtaining
containment results—for DL-Litekrom. We therefore close this introduction with an
auxiliary result on the satisfiability of conjunctions of CQ literals, which is important
in this context.

Satisfiability of Conjunctions of CQ literals

We show that, for a Boolean TCQ that is a conjunction of CQ literals, the satisfiability
w.r.t. a classical KB can be decided in ExpTime w.r.t. combined complexity. This
can be proven using a reduction to UCQ non-entailment by instantiating the positive
literals, as we did it for EL (see the proof of Lemma 5.1). This approach is independent
of the DL and proposed in [BBL15b] (see the proof of Theorem 4.1 in that paper).

Lemma 7.1 For a Boolean conjunction Ψ of CQ literals and a (atemporal) knowl-
edge base K = 〈O,A〉 in DL-Litekrom, the satisfiability of Ψ w.r.t. K can be decided in
ExpTime w.r.t. combined complexity.

Proof. As outlined above, the idea is to reduce the problem to UCQ non-entailment
by instantiating the positive literals, as it is described in the proof of Lemma 5.1.
The ExpTime complexity for DL-Litekrom then follows from the fact that UCQ non-
entailment w.r.t. a set of facts and so-called frontier-one disjunctive inclusion depen-
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GCI TCQ
∃R.A1 v A2 ¬∃x, y.R(x, y) ∧A1(y) ∧A2(x)
A1 v ∀R.A2 ¬∃x, y.A1(x) ∧R(x, y) ∧A2(y)
A1 u · · · u Am v Am+1 t · · · t Am+n ¬∃x.A1(x) ∧ · · · ∧ Am(x) ∧Am+1(x) ∧ . . . Am+n(x)

Figure 7.1: The representation of complex GCIs in DL-Litekrom by TCQs.

dencies can be decided in ExpTime [BMP13, Thm. 8]. This kind of dependencies are
first-order formulas of the form ∀~x.ϕ(~x) →

∨`
i=1 ∃~y.ψi(~z, ~yi), where ϕ is a conjunction

of binary atoms, all ψi with i ∈ [1, `] are binary atoms, ~x and all ~yi where i ∈ [1, `]
are pairwise disjoint sets of variables of cardinality two, and ~z ⊆ ~x has maximally a
cardinality of one. Observe that CIs of the form A u B v ⊥ cannot be expressed with
such dependencies. However, considering A′ to be an ABox containing instantiations
of the positive CQ literals and Ψ′ to be the disjunction of the negative ones, the en-
tailment 〈O,A ∪ A′〉 |= Ψ′ is equivalent to 〈O′,A ∪ A′〉 |= Ψ′ ∨ Ψ⊥, where O′ is the
maximal subset of O that does not contain the CIs of the form A u B v ⊥, and Ψ⊥ is
a disjunction containing a CQ ∃x.A(x) ∧ B(x), for each of these CIs. It is easy to see
that the combined complexity of in ExpTime is retained by this reformulation.

7.1.1 Reducing DL-Litebool to DL-Litekrom Entailment
We show that CIs with disjunction that are of the form > v AtA, which are allowed in
DL-Litekrom, together with TCQs can express several kinds of GCIs that are not allowed
in DL-Litekrom and especially cover DL-Litebool (see Figure 7.1). More precisely, we use
TCQs that are negated CQs to rule out the satisfaction of combinations of concepts if
it would contradict such a GCI. To describe these combinations, we use (fresh) symbols
of the form A, representing the complements of given concept names A; that is, CIs as
the above one and corresponding disjointness axioms are added to the ontology. The
following lemma specifies our approach.
Lemma 7.2 Let (C v D,¬ϕ) be one of the pairs of a GCI and a TCQ given in Fig-
ure 7.1, and let I be a model of > v Ai tAi and Ai uAi v ⊥ for all concept names Ai
occurring in D. Then, we have that I |= C v D iff I |= ¬ϕ.

Proof. (⇒) We assume I 6|= ¬ϕ, which yields I |= ϕ, and hence that there is a
corresponding homomorphism by Definition 3.5. Especially, observe that the atoms in
the CQ ϕ always refer to the concepts and roles of the corresponding GCI C v D in the
same way, so that C and ¬D are modeled in the CQ. Thus, the shape of ϕ together with
our assumption that I satisfies the CIs w.r.t. D and the semantics of the constructor ∀1

yield that there is an element e in the domain of I such that e ∈ CI and e 6∈ DI . This
directly yields CI 6⊆ DI , and thus I 6|= C v D. (⇐) The proof for this direction is by
dual arguments.

We thus can use GCIs as described above in the ontology we construct for proving
hardness of TCQ entailment. More precisely, by the above lemma, we have:

〈O, (Ai)0≤i≤n〉 |= Φ iff 〈O′, (Ai)0≤i≤n〉 |= ((2P2FΨ)→ Φ), where
1In an interpretation I = (∆I , ·I), a concept ∀R.C is interpreted as {x ∈ ∆I | ∀(x, y) ∈ RI : y ∈ CI}.
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• O′ is obtained from O by removing all GCIs of the forms listed in Figure 7.1 and
adding the CIs to express the corresponding complement concepts, and

• Ψ is the conjunction of the negated CQs simulating the removed GCIs.

With the same construction, Φ is satisfiable w.r.t. 〈O, (Ai)0≤i≤n〉 iff (2P2FΨ) ∧ Φ is
satisfiable w.r.t. 〈O′, (Ai)0≤i≤n〉. This means that we can also use CIs of DL-Litebool in
DL-Litekrom for our purpose, which yields the following corollary.

Corollary 7.3 TCQ entailment in DL-Litebool can be polynomially reduced to TCQ
entailment in DL-Litekrom.

This result implies that TCQ entailment in DL-Litebool can be decided by applying algo-
rithms solving the problem for DL-Litekrom and that the complexity does not increase.
On the other hand, we can apply the kinds of GCIs from Figure 7.1 when proving
hardness results for TCQ entailment in DL-Litekrom. Additionally, observe that more
complex GCIs with nested conjunctions and disjunctions can be reduced to those forms
by introducing appropriate abbreviations, as long as qualified existential restriction (i.e.,
in concepts of the form ∃R.A) only appears on the left and qualified value restriction
(i.e., in concepts of the form ∀R.A) only on the right-hand side.2 This is demonstrated
in the following example; note that the transformation therein is polynomial.

Example 7.4 The GCI

A1 tA2 t ∃R1.A3 v A4 t ∀R1.(A1 u ∃R2)

can be expressed by the following GCIs, assuming A′5, . . . , A′7 to be fresh concept names:

A1 v A4 tA′5, A2 v A4 tA′5, A′6 v A4 tA′5,
∃R1.A3 v A′6, A′5 v ∀R1.A

′
7, A

′
7 v A1, A

′
7 v ∃R2.

These GCIs can then, in turn, be simulated by negated CQs as described in Figure 7.1.♦

We hence can also apply such complex GCIs in the following proofs; with all these
applications, we will outline the corresponding transformation.

7.1.2 Without Rigid Names
Given the results from the previous section (see Corollary 7.3), we directly get two
rather strong hardness results from atemporal query answering, even without consid-
ering rigid symbols. More precisely, the ExpTime-hardness of UCQ entailment in
DL-Litebool [Bou+16, Thm. 8.2] and the 2-ExpTime-hardness of UCQ entailment in
DL-LiteHbool [Bou+16, Thm. 8.1] yield corresponding hardness results for TCQ entail-
ment in DL-Litekrom and DL-LiteHkrom, respectively.

Corollary 7.5 Regarding combined complexity, TCQ entailment is

• ExpTime-hard in DL-Litekrom and
2Recall that qualified existential restriction on the right-hand side can be expressed in DL-Lite if role

inclusions are allowed (see the beginning of Chapter 6). But we disregard those here.
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• 2-ExpTime-hard in DL-LiteHkrom,

even if NRC = ∅ and NRR = ∅.

Note that TCQ entailment in SHIQ can be decided in 2-ExpTime, including rigid
symbols [BBL15a, Thm. 12]. Since DL-LiteHbool is a subset of this DL, we can focus on
DL-Litekrom and DL-Litebool in the remaining considerations w.r.t. combined complexity.

Regarding the case without rigid symbols, Lemma 3.13 yields that TCQ satisfiabil-
ity can be decided in exponential time, given the above auxiliary results. Hence, the
entailment problem can be solved similarly.

Theorem 7.6 TCQ entailment in DL-Litebool is in ExpTime in combined complexity
if NRC = ∅ and NRR = ∅.

Proof. By Corollary 7.3, it suffices to describe a decision procedure for DL-Litekrom,
which can be done by following Lemma 3.13. Assuming Φ to be satisfiable w.r.t.
〈O, (Ai)0≤i≤n〉, we in the following show that we can construct a set W ⊆ 2{p1,...,pm} as
required by the lemma. By Lemma 3.7, we can restrict the focus to the TKB 〈O, ∅〉 and
hence disregard ι by Fact 3.15. To check the r-satisfiability of a set W = {W1, . . . ,Wk}
as proposed in Lemma 3.14, it suffices to check satisfiability of the conjunctions χ(i)

i with
i ∈ [1, k] individually by Lemma 3.16—without rigid names, it is impossible to enforce
any dependency between the elements of W. Hence, it suffices to define W as the set
of all those of these sets for which χi is satisfiable w.r.t. O. According to Lemma 7.1,
this can be done in exponential time.

The deterministic definition ofW as the maximal possible set satisfying the conditions
implies that Lemma 3.13 applies by Fact 3.15, which means that the procedure is sound
and complete. We thus can decide TCQ satisfiability in deterministic exponential time
in the size of all the input. The same then holds for entailment.

7.1.3 With Rigid Concept Names
Regarding the case with rigid concept names but without rigid role names, we show that
TCQ satisfiability is NExpTime-hard. In fact, this is a direct consequence of the proof
of Theorem 4.8, where NExpTime-hardness is shown for the satisfiability problem of
formulas in DL-Litehorn-LTL, similarly regarding rigid concept names. In a nutshell, the
proof combines the nondeterminism and exponentiality expressible in LTL with the DL
features: the rigid symbols may “save” the nondeterministic choices invariant to time
and CIs allow to express constraints on them.

The proof of Theorem 4.8 is a reduction from a NExpTime-hard variant of the
domino problem, constructing a corresponding DL-Litehorn-LTL formula ΦD,I . Given
the following two observations, ΦD,I can be regarded as a TCQ and, taking a DL-Litekrom
ontology O as specified below into account, the result can be directly applied here:

• The assertions in the constructed DL-Litehorn-LTL formula ΦD,I are of the form
A(a) for A ∈ NC and a ∈ NI and hence can be regarded as CQs.

• The CIs occurring in ΦD,I are of the form > v A1, A1 v ⊥, or A1u· · ·uA` v A`+1,
A1, . . . , A`+1 ∈ NC, and thus Lemma 7.2 yields that they can be replaced by
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negated CQs according to Figure 7.1 without affecting the semantics (see also the
part above Corollary 7.3). O then collects the CIs that constrain the interpretation
of the auxiliary names w.r.t. their complements.

Theorem 7.7 TCQ entailment in DL-Litekrom is co-NExpTime-hard w.r.t. combined
complexity if NRC 6= ∅, even if NRR = ∅.

For proving containment in co-NExpTime regarding DL-Litebool, we apply Lemma 3.13
and the above auxiliary results again. The crucial point for investigating TCQ satisfia-
bility regarding the lemma is the satisfiability testing of the conjunctions of CQ literals,
looking for models that agree on the interpretation of rigid concepts. But we can guess
all combinations of rigid concept names that are instantiated in some of these models
together with one such combination, for each named individual in the TKB, in expo-
nential time. If we include this information, we can separate the satisfiability testing of
the different conjunctions, according to [BBL15b, Lem. 6.2].

Theorem 7.8 TCQ entailment in DL-Litebool is in co-NExpTime regarding combined
complexity if NRR = ∅, even if NRC 6= ∅.

Proof. We regard the satisfiability of Φ w.r.t. K, focus on DL-Litekrom (see Corol-
lary 7.3), and argument based on Lemma 3.13.

• As in the proof of Theorem 7.6, we can assume K to be of the form 〈O, ∅〉, since
integrating the ABoxes into the TCQ does not influence combined complexity. By
Lemma 3.7, we can assume K to be of the form 〈O, ∅〉, since the integration of
the ABoxes into the TCQ does not influence combined complexity. This means
that the selection of an appropriate mapping ι is trivial because ι(0) can be chosen
arbitrarily and hence such that Wι(0) is contained in the setW we construct below;
recall that W must not be empty (see also Fact 3.15).

• We can obviously guess a set W ⊆ 2{p1,...,pm} in exponential time, and the same
holds for checking t-satisfiability of Φpa w.r.t. this set and a corresponding map-
ping ι [BBL15b, Lem. 4.12].

• For checking r-satisfiability, we guess a set T ⊆ 2NRC(O), which specifies the com-
binations of rigid names that are allowed to be satisfied by domain elements in the
models of the considered conjunctions, and a mapping τ : NI(Φ) → T that fixes
the rigid concepts each individual occurring in K instantiates—note that there are
similarities to the ABox types we considered in the previous sections. Based on
τ , we define a polynomially-sized ontology Oτ and CQ ψτ , of exponential size, as
follows:

Oτ :={Aτ(a) ≡ Cτ(a) | a ∈ NI(Φ)} ∪
⋃

A∈NRC(O)
{> v A tA, A uA v ⊥},

ψτ :=
∧

a∈NI(Φ)
Aτ(a)(a)
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where ≡ is an abbreviation for both v and w, and CT with T ⊆ NRC(O) is
defined as CT :=

d
A∈T A u

d
A∈NRC(O)\T A. We further say that an interpreta-

tion J = (∆J , ·J ) respects T if

T = {T ⊆ NRC(O) | ∃e ∈ (CT )J }.

In [BBL15b, Lem. 6.2], it is shown that W is r-satisfiable w.r.t. K iff there are a
set T and mapping τ as above such that each conjunction χi ∧ ψτ with i ∈ [1, k]
has a model w.r.t. O∪Oτ that respects T . The proof considers the DL SHQ, but
similarly holds regarding DL-Litekrom.
Although it seems that the claimed NExpTime result then directly follows from
Lemma 7.1 stating that conjunctions of CQ literals can be decided in exponential
time, this is not the case. The inclusion of T causes an exponential blowup (i.e., the
fact that it is to be respected). For that reason, we consider the proof of [BMP13,
Thm. 8], which addresses UCQ entailment, in more detail; recall that we refer
to that theorem in the proof of Lemma 7.1. In that paper, an exponentially
large looping tree automaton is constructed that recognizes exactly those (forest-
shaped) canonical models of the KB—in a wider sense—that do not satisfy the
given UCQ. We integrate the check that the interpretations respect T into the
automaton. To this end, we adapt the automaton to accept arbitrary models. Still,
the restriction to tree-shaped models is without loss of generality. Then, we restrict
the state set to consider only models where every domain element satisfies some CT
with T ∈ T . To ensure that each T ∈ T is represented somewhere in the model,
we specifically check |T | variants of this automaton for emptiness, each of them
includes an ABox of the form {A(a) | A ∈ T} ∪ {A(a) | A ∈ NRC(O) \ T}, where
a is a fresh individual name, and is of polynomial size. The disjoint union of all
resulting interpretations is still a model of the original KB that does not satisfy the
UCQ (i.e., if none of the variants satisfies the emptiness check, then there is such
an interpretation for each of them). It can readily be checked that this modified
procedure for deciding UCQ non-entailment is sound and complete given the result
of [BMP13, Thm. 8]. The satisfiability of the conjunctions thus can be decided in
exponential time, because the constructed automata are of exponential size and
emptiness of looping tree automata can be decided in polynomial time [VW86,
Thm. 2.2].

The co-NExpTime result for TCQ entailment then directly follows from the above
considerations.

7.1.4 With Rigid Role Names
The previous section has shown that the LTL features for discerning exponentially
many time points and nondeterministically selecting axioms at each of them lead to
NExpTime-hardness if the DL part provides nondeterminism as allowed in DL-Litekrom
and rigid concept names; the latter allow to correspondingly discern exponentially many
concepts and hence kinds of individuals that can be addressed invariant to time. In this
section, we show how rigid roles may augment this interaction and add an exponential
factor to the complexity. The point is that the LTL allows to loop over the exponentially
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many time points—this is not due to the new features—and the rigid roles allow to
relate exponentially many corresponding individuals invariant to time. This yields an
infinite chain whose sequence of individuals mirrors the repeating time points, so that
exponentially many subsequent individuals differ in the kind. Since individuals of one
kind can be addressed in the ontology at a distinct time point in the loop, they can
influence all their successors in the chain independently of individuals of a different
kind—also, regarding rigid symbols. In what follows, we show that this interaction leads
to 2-ExpTime-hardness of TCQ satisfiability. Recall that containment in 2-ExpTime
follows from the corresponding result for the DL SHIQ [BBL15a, Thm. 12].

We prove 2-ExpTime-hardness of TCQ satisfiability and hence entailment by re-
ducing the word problem of exponentially space-bounded alternating Turing machines.
The idea is based on the features outlined above. More precisely, a chain as described
may represent a computation of the machine, and the exponentially long consecutive
sequences of individuals of different kind represent its configurations. The nondeter-
minism provided in DL-Litekrom allows to require additional rigid relations according to
the transition relation and hence to model the entire computation tree.

Note that the latter is not possible in, for example, EL-LTL, DL-Litebool-LTL, or with
TCQs in EL, for which we similarly have NExpTime-hardness, but also completeness.

Theorem 7.9 TCQ entailment in DL-Litekrom is 2-ExpTime-hard w.r.t. combined
complexity if NRR 6= ∅.

Proof. We adapt a reduction proposed in [BGL12] (see the proof of Theorem 4.1),
where the word problem for exponentially space-bounded alternating Turing machines
is reduced to the satisfiability problem in ALC-LTL with global GCIs and rigid names.
While the assertions in the proposed ALC-LTL formula can be directly regarded as
conjuncts of a TCQ, the global GCIs cannot all be transferred into a DL-Litekrom on-
tology since ALC is much more expressive than DL-Litekrom. However, we show how
some of the critical GCIs can be adapted to comply with the shapes given in Figure 7.1,
and how the remaining ones—with qualified existential restrictions on the right-hand-
side—can be replaced by equivalent new constructions. Note that the latter are inspired
by [KRH13] (see Section 6.2 in that paper).

As in the original proof, we assume w.l.o.g. that an ATM never moves to the left
when it is on the left-most tape cell; that there are an accepting state qa and a rejecting
state qr, designating accepting and rejecting configurations, respectively; that any con-
figuration where the state is neither qa nor qr has at least one successor configuration;
and that all computations of an ATM are finite (see [CKS81, Thm. 2.6]). We disregard
transitions that do not move the head (N). Further, we may assume that the length of
every computation on a word w ∈ Σk is bounded by 22k , and that every configuration
in such a computation can be represented using ≤ 2k symbols, plus one to represent the
state.

According to [CKS81, Cor. 3.5], there is an exponentially space-bounded alternating
TM M = (Q,Σ,Γ, q0,∆) with only finite computations for which the word problem is
2-ExpTime-hard. We show that this problem can be reduced to TCQ satisfiability in
DL-Litekrom with rigid role names.
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Figure 7.2: A sketch of the modeling of an exemplary computation tree of the ATM.
The tree nodes represent domain individuals and are labeled with relevant
concepts. The named individual a represents the first cell in the initial
configuration, qI is the initial machine state, and %0 the symbol in the first
tape cell. Some of the rigid concepts are printed in gray to differentiate those
time points from the time points where they are inferred. The figure also
abstracts from the fact that the temporal counter A′ has to be considered
modulo 2k if used in concepts such as A = A′.

To this end, let w = σ0 . . . σk−1 ∈ Σ∗ be an arbitrary input word given to M. We next
construct a TCQ ΦM,w and a TKB 〈OM,w, (A0)〉 in DL-Litekrom such that M accepts
w iff φM,w is satisfiable w.r.t. 〈OM,w, (A0)〉.

Figure 7.2 illustrates the approach by showing an example representation of (parts
of) computations of such an ATM. We use two counters modulo 2k, A and A′. The tree
describes computations in that one path describes one computation. The individual
configurations are represented explicitly, one after the other, and each as a chain, such
that every tree node represents one of the 2k tape cells of a configuration; these cells
are numbered by the A counter invariant to time. Each tree node or cell is represented
by an individual in the reduction and, since these individuals are related by rigid roles,
the computation tree “exists” at all time points; the time points are numbered by the
A′ counter. Branching models the universal transitions. Different from usual compu-
tation trees, the tree however splits at the node representing the cell under the head
of the machine; the remaining parts of the configuration where the splitting occurs are
replicated in each of the subtrees. The following example details the synchronization of
the configurations.

Example 7.10 By means of Figure 7.2, we exemplarily describe the modeling of the
transitions and corresponding successor configurations. In particular, the ontology en-
codes the propagation of the new state q and symbol σ of a transition, and of the cell
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contents % (of the considered configuration) that do not change to the successor config-
uration following in the tree. To represent all this information, we use corresponding
rigid concept names and then propagate them via flexible concept names (marked by a
prime) using the temporal dimension. Specifically, the tape contents of cell i are prop-
agated to the successor configuration if the individual that represents the cell satisfies
A = A′ (e.g., %1 and %2 at time points 1 and 2, respectively) and the cell is not under
the head (e.g., %0 is not propagated at time point 0). The cell under the head can be
identified because it (i.e., the corresponding individual) satisfies a state symbol q. It
thus determines the state of the considered configuration and, together with the sym-
bol in the cell, the transitions to be considered. Given a universal state, for each such
transition, the configurations have one branch identified by a specific concept of the
form Tq0,σ0,M ; for an existential state, there is only one branch. The concept Tq0,σ0,M

initiates the propagation of the symbol σ0 to the successor configuration if A = A′ + 1.
In this way, the propagation stops correctly in the next configuration at the cell that
has been previously under the head, which satisfies A = A′ (i.e., it is left of the cell that
previously satisfied Tq0,σ0,M ). The new state q0 is similarly propagated, but the corre-
sponding time point specifically depends on the direction of the move M . For a right
move, the propagation happens if the individual satisfying Tq0,σ0,M also satisfies A = A′

and thus stops at the same cell in the successor configuration (recall that the individual
satisfying Tq0,σ0,M represents the cell right of the head) (e.g., see the propagation of q0
and q1 at time point 1). For left moves, the propagation should stop two cells left of
the individual satisfying a concept of the form Tq3,σ3,L; we thus require the individual
to satisfy A = A′ + 2 to start the propagation. ♦

Before specifying the TCQ and ontology, we introduce all symbols we use below:

• A single named individual a identifies the root of the tree.

• Rigid role names Rq,%,M where q ∈ Q, % ∈ Γ, and M ∈ {L,R} represent the edges
of the tree. We collect all these role names in the set R.
Note that these roles represent the major difference to the reduction of [BGL12],
where a single rigid role fulfills this purpose, but is used within qualified existential
restrictions on the right-hand side of GCIs.

• Rigid concept names A0, . . . , Ak−1 are used to model the bits of a binary counter
numbering the tape cells in the configurations.

• Rigid concept names I and H point out special cells. In particular, I is satisfied
by the nodes representing the initial configuration, and H is satisfied by all nodes
representing a tape cell that is located (anywhere) to the right of the head in the
current configuration.

• A rigid concept name, for each element in Q∪ Γ, represents the tape content, the
current state, and the head position in each configuration in the tree: if M is in
a state q and the head is on the i-th tape cell, then the individual (tree node)
representing this cell satisfies the concept name q; we correspondingly represent
the symbols in Γ.
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• The rigid concept names Tq,%,M , for all q ∈ Q, % ∈ Γ, and M ∈ {L,R}, are satisfied
by an individual, representing a cell, if the head is on the left neighboring cell and
the ATM executes the transition (q, σ,M) in the described configuration.

We use the temporal dimension to synchronize successor configurations in accordance
with the chosen transition in order to model the change in the tape contents, the head
position, and the state from one configuration to the next:

• Flexible concept names A′0, . . . , A′k−1 are used to model a counter in the temporal
dimension. Its value is incremented (modulo 2k) dual to the counter A0, . . . , Ak−1
but along time and, at every time point, all individuals share the value of this
counter. It is used for the synchronization of successor configurations: if the
A′ counter has value i, then the symbol in the i-th tape cell of any configuration
(where i is not the head position) is propagated to the i-th tape cell of its successor
configuration. Similarly, the state is propagated from the cells c directly right of
the head position, each pointing out a specific transition (via the symbols Tq,%,M ),
to the corresponding cells of the successor configurations (i.e., these cells have the
same position on the tape as c for right-moves and otherwise lie two to the left).

• We further use a flexible concept name, for each element in Q∪Γ, which as above
is distinguished from the rigid version by a prime. Considering a fixed time point,
these names are used for the propagation of the state q or cell content σ of a cell
c to the corresponding cell in the successor configuration(s). This propagation
happens via the right neighboring cells of that configuration, which then satisfy
q′ and σ′, respectively, at the time point whose A′-counter corresponds to the
A-counter at c.

We may further use concept names of the form A for given concept names A as detailed
in Lemma 7.2.

In the remainder of the proof, we define the TCQ ΦM,w and the TKB 〈OM,w, (A0)〉 by
describing the conjuncts of ΦM,w and listing the GCIs contained in OM,w. To enhance
readability, we may use GCIs that are not in DL-Litekrom, but can be transformed as
described in the beginning of this section (see Figure 7.1 and Example 7.4)3. We first
express the tree structure in general.

• We enforce all elements to have some successor except if they satisfy qa or qr.
Since the only elements satisfying a symbol from Q are the ones representing the
position of the head, the tree generation thus is only stopped if we meet a halting
configuration:

qa u qr v
⊔

Rδ∈R
∃Rδ.

Using a big disjunction over all possible roles, we can correctly represent the
nondeterminism of the machine.

3Note that GCIs of the form of some of the critical GCIs neither occur in Figure 7.1 nor in Example 7.4.
However, the right-hand sides of those GCIs are conjunctions. For that reason, the GCIs can be
replaced by several copies of the original ones, each containing only one of the conjuncts on the
right-hand side; the left-hand side is not changed.
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• The A-counter is incremented alongside the tree modulo 2k and modeled using
the following GCIs for all i ∈ [0, k − 1]:

l

0≤j≤i
Aj v

l

Rδ∈R
∀Rδ.Ai,

l

0≤j<i
Aj uAi v

l

Rδ∈R
∀Rδ.Ai,

( ⊔
0≤j<i

Aj
)
uAi v

l

Rδ∈R
∀Rδ.Ai,

( ⊔
0≤j<i

Aj
)
uAi v

l

Rδ∈R
∀Rδ.Ai.

For example, if the bits A0, . . . , Ai are all true in the current tape cell, then in
the successor cell these bits are all false.
We thus have described a sequence of configurations where we can address single
tape cells in all the configurations using the A counter. The latter restarts every
time it has reached 2k − 1, and thus with each new configuration.
The counter is initialized with value 0 at a. Hence, all elements representing the
first tape cell in some configuration in the tree satisfy the auxiliary concept name
CA=0, defined as follows:

CA=0 ≡ A0 u . . . uAk−1.

Below, we use additional concept names of the form CA=i, for (polynomially many)
different values i, which we assume to be defined similarly.
We further add the assertion

CA=0(a)

to A0. Since the names A0, . . . , Ak−1 are rigid, this assertion must be satisfied at
every time point.
We now enforce basic conditions which help to ensure that the tree actually rep-
resents a successful computation of M on w.

• To formulate these conditions, we use the rigid concept name H to identify the
tape cells that are to the right of the head:(

H t
⊔
q∈Q

q
)
u CA=2k−1 v

l

Rδ∈R
∀Rδ.H.

Thus, the propagation stops at tree levels whose elements represent the last cell
in a configuration, since these elements satisfy CA=2k−1.

Observe that the disjunction can be replaced by an auxiliary concept name Caux
to obtain a CI in DL-Litekrom if we additionally consider the following GCI (see
Example 7.4):

H t
⊔
q∈Q

q v Caux.
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• There is only one head position per configuration:

H v
l

q∈Q
q.

Note that we do not have to consider the elements representing the cells left to the
head since, if such a cell satisfies a concept name from Q, then all its successors
in the tree are enforced to satisfy H.

• Each tape cell is associated with at most one state (which, at the same time,
represents the position of the head):

> v
l

q1,q2∈Q,q1 6=q2

q1 t q2.

• Each tape cell contains exactly one symbol:

> v
⊔
σ∈Γ

(
σ u

l

σ′∈Γ\{σ}
σ′
)
.

Observe that we obtain a GCI in DL-Litekrom if auxiliary names are introduced
for the conjunctions on the right-hand side, in the way described above.

Before specifying the remaining, more intricate conditions for the synchronization of
the configurations, we describe the first configuration in the tree (starting at a) as the
initial configuration.

• In particular, we mark the corresponding elements by adding the assertion I(a)
to A0 and by propagating the concept alongside the first configuration as follows:

I u CA=2k−1 v
l

Rδ∈R
∀Rδ.I.

• The first configuration is modeled by adding the assertion q0(a) to A0 and by
considering the following GCIs for all i ∈ [0, k − 1]:

I u CA=i v σi,
I u CA=k v B,

I uB u CA=2k−1 v
l

Rδ∈R
∀Rδ.B

where w = σ0 . . . σk−1 is the input word.

We finally come to the most involved part, the synchronization of the configurations,
which includes the modeling of the transitions.

• We first introduce the A′-counter, which is incremented along the temporal di-
mension. For every possible value of this counter, there is a time point where a
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belongs to the concepts from the corresponding subset of {A′0, . . . , A′k−1}. This is
expressed using the following conjunct of ΦM,w:

2F

∧
0≤i<k

(( ∧
0≤j<i

A′j(a)
)
↔
(
A′i(a)↔ #F¬A′i(a)

))
.

This formula expresses that the i-th bit of the A′-counter is flipped from one world
to the next iff all preceding bits are true. Thus, the value of the A′-counter at the
next world is equal to the value at the current world incremented by one.
Note that it is not necessary to initialize this counter to 0 in A0; we only need to
know that all possible counter values are represented at some time point.

• The value of the A′-counter is always shared by all individuals:

2F

( ∧
0≤i<k

∃x.A′i(x)→ ¬∃x.A′i(x)
)
.

For the application of the A′-counter, we introduce the abbreviation EA,A′ de-
scribing the equality of the two counters:

EiA,A′ ≡
(
Ai uA′i

)
t
(
Ai uA

′
i

)
,

EA,A′ ≡
l

0≤i<k
EiA,A′ .

Furthermore, we define similar abbreviations as follows:

EA,(A′+1) mod 2k ≡
l

0≤j<k

(
A′j uAj

)
t

⊔
0≤i<k

 l

0≤j<i

(
A′j uAj

)
uA′i uAi u

l

i+1≤j<k
EjA,A′

 ,
EA,(A′+2) mod 2k ≡ E0

A,A′ u

 l

1≤j<k

(
A′j uAj

)
t

⊔
1≤i<k

 l

1≤j<i

(
A′j uAj

)
uA′i uAi u

l

i+1≤j<k
EjA,A′

 .
We now can use the temporal dimension to propagate information from one level
of the tree to the next one as outlined above, and hence specify the transitions.

• Symbols not under the head are copied:

σ u
l

q∈Q
q u EA,A′ v

l

Rδ∈R
∀Rδ.σ′,

σ′ u EA,A′ v
l

Rδ∈R
∀Rδ.σ′,

σ′ u EA,A′ v σ.
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• To describe the transitions, we explicitly store chosen transitions with the help
of the rigid concepts Tp,%,M , by enforcing them to be satisfied by the elements
representing the cells directly right-neighbored to the head position. Recall that
there may be several such cells; we are now at the point where we specify the
branching of the tree. Hence, we model the transitions for all q ∈ Q and σ ∈ Γ
using the following GCIs:

q u σ v
⊔

δ∈∆(q,σ)
∃Rδ, if q ∈ Q∃,

q u σ v
l

δ∈∆(q,σ)
∃Rδ, if q ∈ Q∀,

q u σ v
l

δ∈∆(q,σ)
∀Rδ.Tδ.

Observe that our main adaptation of the original proof is that we, instead of
considering a single role R, regard all those in R and, instead of considering one
R-successor per successor configuration δ, consider an Rδ-successor. This enables
us to express a qualified existential restriction of the form

d
δ∈∆(q,σ) ∃R.Tδ on the

right-hand side of a CI in the original proof, via the last two of the above CIs.4

• The (possible) replacement of the symbols under the head is described with the
help of the transition concepts Tq,σ,M for all q ∈ Q, σ ∈ Γ, and M ∈ {L,R}:

Tq,σ,M u EA,(A′+1) mod 2k v
l

Rδ∈R
∀Rδ.σ′.

Recall that the transition concepts are only enforced to hold at the cell to the
right of the current head position (hence the +1).

• The state information is similarly propagated for all q ∈ Q and σ ∈ Γ as follows:

Tq,σ,R u EA,A′ v
l

Rδ∈R
∀Rδ.q′,

Tq,σ,L u EA,(A′+2) mod 2k v
l

Rδ∈R
∀Rδ.q′,

q′ u EA,A′ v
l

Rδ∈R
∀Rδ.q′,

q′ u EA,A′ v q.

We lastly enforce the computation to be an accepting one by disallowing the state qr
entirely using the GCI qr v ⊥. Note that this is correct since we assume all the compu-
tations of M to be terminating. This finishes the definition of the Boolean TCQ ΦM,w

and the global ontology OM,w—which is easily transformable into DL-Litekrom—, which
consist of the conjuncts and GCIs specified above. We further collect all assertions in the

4Recall that qualified existential restriction on the right-hand side of CIs can be modeled in DL-Lite
if role inclusions are allowed (see the beginning of Chapter 6).
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ABox A0. Given our descriptions above, it is easy to see that the size of ΦM,w, OM,w,
and A0 is polynomial in k. Moreover, it can readily be checked that our constructions
are equivalent to those in the proof of [BGL12, Thm. 4.1]. Hence, we get that ΦM,w is
satisfiable w.r.t. 〈OM,w, (A0)〉 iff M accepts w.

7.2 Data Complexity
Regarding data complexity, the co-NP lower bound follows from co-NP-hardness of
conjunctive query answering w.r.t. DL-Litekrom knowledge bases. The latter is a con-
sequence of [Cal+07b, Theorem 48 (1)], where the hardness is stated for DL-Litecore
extended by CIs that allow for a concept ¬A, A ∈ NC, on the left-hand side. We reduce
TCQ entailment in DL-LiteHbool to TCQ entailment in ALCH, and then apply the results
from [BBL15b] to obtain containment in co-NP for the case where NRR = ∅, and in
ExpTime. Note, however, that the case with rigid role names is still open for ALCH
w.r.t. data complexity, which means that the latter result is not tight. This also leaves
us a gap between co-NP and ExpTime.

We assume K to be written in DL-LiteHbool and construct an ALCH TKB K′ and a
TCQ Φ′ such that K |= Φ iff K′ |= Φ′. Note that the reduction leads to an exponential
blowup in the size of the query, but this is irrelevant regarding data complexity. First,
we extend the set of role names to include all inverse roles R−, where R or R− occurs
in O. Then, we construct the TKB K′ := 〈O′, (A′i)0≤i≤n〉 based on K by replacing all
occurrences of concepts of the form ∃R, R ∈ N−R , by ∃R.>, and adding the following
axioms:

(i) a GCI ∃R.(¬∃R−.>) v ⊥ for each R ∈ N−R (O),

(ii) an RI R− v S− for each R v S ∈ O.

We call a CQ ϕ′ a variant of a CQ ϕ if ϕ′ is obtained from ϕ by replacing some role
atoms R(s, t) ∈ ϕ by R−(t, s). We construct Φ′ by replacing every CQ ϕ in Φ by a
disjunction of all variants of ϕ. The correctness of this reduction is established next.

Lemma 7.11 We have K |= Φ iff K′ |= Φ′.

Proof. (⇐) Let I = (Ii)i≥0 be a model of K such that I 6|= Φ. We show that we then
have a model I′ = (I ′i)i≥0 of K′ such that I′ 6|= Φ′. Specifically, I′ has the same domain
as I, interprets all symbols occurring in K as I does, and, for all I ′i, the interpretation
of role names R− such that R− ∈ NR(O′) \ NR(O), is equal to (R−)Ii .

Given this definition of I′, we obviously have that I ′i |= A′i for all i ∈ [0, n], since
Ii |= Ai. The same holds for the GCIs and RIs that are contained in O. Moreover, it
is easy to see that the new GCIs and RIs are satisfied, too. We thus have I′ |= K′.

We now assume that I′ |= Φ′, by contradiction. Given the construction of Φ′, we
first show that, for every CQ ϕ in Φ which is replaced by a disjunction α in Φ′, I ′i |= α
leads to Ii |= ϕ, for all i ≥ 0. Let thus π be a homomorphism of some CQ ϕ′ in an
arbitrary such disjunction α into some I ′i, and let ϕ be the CQ that was replaced by
α. ϕ and ϕ′ thus only differ in the role atoms. Let R(s, t) be an atom in ϕ and let
R−(t, s) be the corresponding replacement in ϕ′. Then, we have (π(s), π(t)) ∈ RIi , by
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construction, which yields that π is also a homomorphism of ϕ into Ii. Considering the
other direction, we trivially have that I ′i 6|= α leads to Ii 6|= ϕ for all i ≥ 0, given our
construction. By induction on the shape of Φ, it now can be easily shown that I |= Φ
follows, which contradicts the assumption.

(⇒) Let now I′ = (I ′i)i≥0 be a model of K′ such that I′ 6|= Φ′. We show this direction
similarly by constructing a model I = (Ii)i≥0 of K such that I 6|= Φ. In particular, we
assume I to have the same domain as I′, to interpret all concept names as I′ does, and
to interpret all role names R ∈ NR(O) such that RIi = RI

′
i ∪ {(d, e) | (e, d) ∈ (R−)I′i}

for all i ≥ 0.
The latter definition yields that (d, e) ∈ RIi if (d, e) ∈ RI

′
i , and (d, e) ∈ (R−)Ii if

(d, e) ∈ (R−)I′i for all i ≥ 0. Together with (i) and the definition of RIi , we thus obtain
that e ∈ (∃R)Ii iff e ∈ (∃R)I′i for all R ∈ N−R (O). Then, it is easy to see that we get
Ii |= Ai for all i ∈ [0, n], since I ′i |= Ai. The above observation about concepts of the
form e ∈ (∃R)Ii , R ∈ N−R (O), and the fact that the interpretations I ′i satisfy O further
yields that Ii is a model of all CIs in O. Lastly, we consider an arbitrary RI R v S in
O and (d, e) ∈ RIi . If (d, e) ∈ RI′i , then I ′i |= O implies (d, e) ∈ SI′i ⊆ SIi . Otherwise,
we must have (e, d) ∈ (R−)I′i and, by (ii) (i.e., we have R− v S− ∈ O′) and I ′i |= O′
get (e, d) ∈ (S−)I′i . But then, we have (d, e) ∈ SIi , as well. Hence, we have I |= K.

As above, we now assume that I |= Φ, by contradiction. Given the construction of
Φ′, we regard an arbitrary CQ ϕ in Φ replaced by a TCQ α in Φ′ (i.e., α is a disjunction
of CQs). If I ′ |= α, then there must be a homomorphism from a disjunct ϕ′ of α
into I ′, and thus obviously I |= ϕ by the constructions of α and I. Let now π be a
homomorphism of ϕ into I. Then, for every role atom R(s, t) in ϕ, we must either have
(π(s), π(t)) ∈ RI

′ or (π(t), π(s)) ∈ (R−)I′ , by the construction of I. But then, π is
also a homomorphism of the variant ϕ′ contained in α that contains the corresponding
combination of role atoms into I ′. This yields I ′ |= α. By induction, it now can be
easily shown that I ′ |= Φ′ follows, which contradicts the assumption.

This reduction allows us to use the results for TCQ entailment in SHQ [BBL15b,
Thm. 5.2 and 4.15] to show the following.

Corollary 7.12 TCQ entailment in DL-LiteHbool w.r.t. data complexity is

• in co-NP if NRR = ∅, even if NRC 6= ∅, and

• in ExpTime, even if NRR 6= ∅.

We have thus completely classified TCQ entailment regarding ontologies in logics
between DL-Litekrom and DL-LiteHbool, and different settings with rigid symbols. In sum-
mary, we have shown that the combined complexity between ExpTime and 2-ExpTime
is not lower than that given for ALC or more expressive DLs [BBL15b; BBL15a]. In
particular, we have 2-ExpTime-completeness if role inclusions are allowed, even if rigid
symbols are disregarded. Also our data complexity results are equal to those for more
expressive DLs. Hence, the case for data complexity where NRR 6= ∅ is an interesting
open problem since it may still reveal an important difference between the expressive
DL-Lite logics and even more expressive DLs.
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8 Temporal Query Answering Without Negation

In this chapter, we propose a generic approach targeting the practical application of
temporal ontology-based data access. We focus on a very general setting, based on
the lessons learned in the previous chapters. The goal is to answer temporal queries
by rewriting into standard query languages and, as the title suggests, this is achieved
by dropping the negation operator (i.e., these rewritings are defined analogously to the
first-order rewritings from Definition 2.22). We here focus on general query answering
instead of only “yes/no” questions as considered in the previous chapters and, instead
of investigating complexity, we show that temporal query answering can be rewritten;
this allows for implementation based on existing tooling. Furthermore, we neither re-
strict the investigations to the QL queries introduced in Chapter 3 nor to particular
DLs but also consider other query languages and logics that satisfy certain properties
as ontology languages. These properties are satisfied by many fragments of existential
rules (or simply rules) [Bag+11b]. Existential rules are function-free first-order impli-
cations where both the premise and conclusion are conjunctions of atomic formulas,
and existentially quantified variables may occur only in the conclusion;1 note that we
allow for equality predicates. It is well known that query answering w.r.t. existential
rules is undecidable in general [CLM81, Thm. 5.1][BV81, Thm. 7]. Yet, first decidable
fragments have been proposed in the early days of database research and, still today,
there is active research on such logics. The DLs EL and DL-LiteHhorn, for which TCQ
entailment is investigated in Chapters 5 and 6 represent examples. Moreover, several
other decidable rule fragments that meet our requirements and for which temporal query
answering is thus rewritable are important in practice and successfully applied: exam-
ples are ontology languages proposed for information integration in databases, such as
global-as-view mappings (e.g., see Figure 1.2); Datalog, a popular language for defin-
ing recursive views [AHV95]; the DLs EL++ [BBL05] and DL-LiteR [Cal+07b], which
represent the logics behind profiles of the Web Ontology Language OWL 2; and many
other description logics.

In what follows, we first generally specify these logics we focus on and describe several
examples of concrete formalisms in Section 8.1,2 then define the temporal query language
in a similarly abstract way in Section 8.2, and finally prove the rewritability result in
Section 8.3.

8.1 Preliminaries
In this section, we specify the syntax and semantics of the logics and (atemporal) queries
we consider, to establish the logical framework for querying atemporal knowledge bases

1Alternative notions used in literature are, amongst others, ∀∃-rules [Bag+11a], Datalog± [CGL09],
and tuple generating dependencies [BV84].

2Note that, in line with the previous chapters, we primarily consider description logics.
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in these logics. Note that these definitions are nearly analogous to but abstract from
the ones given in Chapters 2 and 3. Thereafter, we detail the properties we require the
formalisms to satisfy particularly. We also give a wealth of examples of concrete query
formalisms that have been proposed in the literature and meet these requirements.

8.1.1 Logics
The basic setting is that of function-free first-order languages and focuses on signa-
tures Σ = (Ω, (Πn)n≥0) based on constant symbols Ω (also constants) and a fam-
ily (Πn)n≥0 of sets of n-ary predicate symbols (also predicates). To simplify presentation,
we assume the sets Ω and

⋃
n≥0 Πn to be non-empty and finite. Note that this assump-

tion is reasonable given that a domain of interest usually focuses on certain symbols.
We further assume that the sets of constants and predicate symbols are disjoint.

In our context, it is essential that the ground data is given separately from the other
logical information since it may vary over time. We therefore focus on knowledge bases
similar to those considered in the previous chapters and explicitly discern facts and
theories. The latter represent the ontologies and may contain axioms more complex than
facts. Since we introduce them in a very general sense, together with their semantics,
we first specify the basis for model-theoretic semantics, interpretations.

Definition 8.1 (Semantics) An interpretation for a signature Σ = (Ω, (Πn)n≥0) of
FOL is a pair I = (∆I , ·I), where ∆I is a non-empty set, the domain of I, and ·I is
an interpretation function that assigns to every c ∈ Ω an element cI ∈ ∆I and, for all
n ≥ 0, to every P ∈ Πn an n-ary relation P I ⊆ (∆I)n.

Such an interpretation is called finite if its domain is finite. Two interpretations are
isomorphic if there is a bijective mapping between their domains that preserves the
interpretations of all constants and predicate symbols. ♦

The set of all interpretations is denoted by I. In what follows, the signature of an
interpretation is generally not mentioned explicitly if it is irrelevant or clear from the
context.

We use the notion of facts as usual.

Definition 8.2 (Facts) Let Σ = (Ω, (Πn)n≥0) be a first-order signature. A fact is an
expression of the form P (c1, . . . , cn) where P ∈ Πn and c1, . . . , cn ∈ Ω.

An interpretation I is a model of a fact P (c1, . . . , cn), written I |= P (c1, . . . , cn), if
(cI1 , . . . , cIn) ∈ P I . ♦

Theories in a specific logical formalism are generally finite sets of axioms. For covering
various logics that may focus on different kinds of axioms, we do not consider the nature
of the axioms in more detail (i.e., apart from the facts already introduced). Specifically,
we consider a generic logic that consists of the set of theories expressible in it and a
satisfaction relation specifying the semantics.

Definition 8.3 (Logic) Let Σ be a first-order signature. A logic is a pair (L, |=L),
where L is a set of L theories over Σ and |=L ⊆ I× L is a satisfaction relation between
interpretations and these L theories.

An interpretation I is a model of an L theory T , written I |=L T , if (I, T ) ∈ |=L. ♦
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We define logics as sets of theories instead of sets of axioms since some logics put
further restrictions on the shape of their theories apart from considering them to be
sets of axioms (e.g., sticky sets are a fragment of Horn rules based on such a kind
of restriction [CGP12]). Nevertheless, in many concrete logics, the basic satisfaction
relation for axioms is lifted in a natural way to theories.

In the following, we often refer to a logic by its first component L and assume it to
be implicitly associated with an entailment relation |=L. If the logic is clear from the
context, we may also write |= instead of |=L and simply consider theories. As in the
previous chapters, we focus on knowledge bases in the atemporal setting.

Definition 8.4 (Knowledge Base) Let L be a logic. A knowledge base (KB) written
in L is a pair K = 〈T ,A〉, where T is an L theory and A is a finite set of facts, the fact
base.

An interpretation I is a model of a fact base A, written I |= A, if I is a model
of all facts contained in A. A knowledge base K = 〈T ,A〉 is consistent if there is an
interpretation that is a model of both T and A. ♦

A basic requirement for the logics we consider is that consistency must be decidable.
Note that consistency checking is generally one of the first steps in reasoning algorithms,
since an inconsistent knowledge base makes most reasoning problems trivial.

The instances of our framework we focus on are fragments of existential rules. The
point is that these rules do not allow to express disjunction—this is important for the
conditions they have to satisfy. We close this part by providing concrete examples of
such formalisms.

Example 8.5 Several Horn description logics extending EL and DL-LiteHhorn satisfy our
requirements (see Sections 1.2 and 2.1 for basics about DLs; further details are given
in [Baa+07]). As described in Chapter 2, DL theories are called ontologies and contain
concept inclusions and role inclusions as axioms. For most DLs, both of the latter can
be expressed as rules. Horn DLs range from light-weight DLs such as EL and (some)
members of the DL-Lite family to syntactically restricted forms of more expressive logics
such as Horn-SHIQ [HMS07]. Also EL++ and DL-LiteR, which represent the basis of
the OWL 2 EL and QL profiles, are Horn DLs. In many Horn DLs, the inability
to express disjunction leads to the interesting property that knowledge bases can be
characterized in terms of a single canonical model.

Regarding KBs with theories specifying constraints such as global-as-view mappings,
[DNR08] study similar universal models.3 Given different applications of universal mod-
els in the literature, they observe that the universality of a model, the fact that there
is a homomorphism into every model of a knowledge base, makes universal models apt
for solving various reasoning problems, such as query answering.

Datalog extends global-as-view mappings. In particular, it allows for defining recur-
sive views. The axioms are rules as introduced above with the restriction that every
variable that occurs in the conclusion must also occur in the premise; thus, rules without
premise are facts. Theories are finite sets of such rules and called Datalog programs. An
interesting property of Datalog is that every program P has a least Herbrand model ,

3[DNR08] also consider constraints that are more expressive than existential rules but remark that
universal models do not generally exist in all these settings.
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which satisfies exactly those facts that hold in all models of P (similar to the canonical
models of knowledge bases in Horn DLs). Since we do not consider function symbols,
the Herbrand domain is Ω, and thus the least Herbrand model is finite. In this work,
we consider the linear Datalog fragment, where the premise of a rule may contain at
most one atom that also occurs in the conclusion of some rule in the program [AHV95].

Theories of logics in the Datalog± family generalize Datalog programs in that they,
next to the equality predicate and the truth constant false, most importantly, allow for
existential quantification in the conclusion of rules [CGL12] (i.e., Datalog± represents
a special kind of existential rules). Since already single such features (e.g., equality)
lead to undecidability of most reasoning problems, the logics proposed in the literature
impose rather strong restrictions on the shape of the theories. The linear fragment,
where the rule premises may contain only one atom [CGL09], or the above mentioned
sticky sets represent examples of such logics. ♦

8.1.2 Query Answering
The query languages we consider are also specified in a largely generic way and given
together with their semantics.

Definition 8.6 (Query Language) Let Σ = (Ω, (Πn)n≥0) be an FO signature and
NV be a set of variables disjoint from Ω and (Πn)n≥0. A variable assignment is a total
mapping of the form a : {x1, . . . , xn} → Ω, x1, . . . , xn ∈ NV.

A query language is a triple (QL,NFV, |=QL), where QL is a set of QL queries over Σ,
NFV : QL → 2NV maps every QL query to the finite set of its free variables, and |=QL is
a satisfaction relation; for an interpretation I, a QL query ϕ, and a variable assignment
a : NFV(ϕ)→ NC

4, the latter is denoted by I |=QL a(ϕ), and it is such that the following
hold, for all ϕ ∈ QL:

(i) For all assignments a1, a2 : {x1, . . . , xn} → NC and interpretations I such that
a1(xi)I = a2(xi)I for all i ∈ [1, n], we have I |=QL a1(ϕ) iff I |=QL a2(ϕ).

(ii) For all assignments a : {x1, . . . , xn} → NC and isomorphic interpretations I and
J , we have I |=QL a(ϕ) iff J |=QL a(ϕ).

If I |=QL a(ϕ), then a is an answer to ϕ w.r.t. I. ♦

Condition (i) expresses that the satisfaction of queries in an interpretation does not
depend on the names of constants in the queries but only on their interpretation, and
Condition (ii) expresses that it is actually characterized by the interpretation. Note
that we need these assumptions for technical reasons; though, they are reasonable in
general.

We adopt the same conventions as for logics and refer to query languages only by their
first component, assume the satisfaction relation to be implicitly associated to it, and
denote that relation by |= if QL is clear from the context. Ans(ϕ, I) ⊆ NNFV(ϕ)

C denotes
the set of all answers to a query ϕ w.r.t. an interpretation I.

Answering queries w.r.t. single interpretations is however not our main goal. Instead,
we focus on the answers w.r.t. a knowledge base, the so-called certain answers.

4We do not consider variable assignments that do not map exactly the free variables of the query.
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Definition 8.7 (Certain Answer) Let L be a logic, QL a query language, K a knowl-
edge base written in L, and ϕ a QL query. A variable assignment a : NFV(ϕ) → Ω is
a certain answer to ϕ w.r.t. K, written K |= a(ϕ), if a is an answer to ϕ w.r.t. every
model of K. ♦

The reasoning problem in focus here is query answering: the task of computing the set
of all certain answers to a query ϕ w.r.t. a knowledge base K. The set of those answers
is denoted by Cert(ϕ,K).

A special situation arises when the considered queries have no free variables. Queries
of this form are called Boolean queries since the set Cert(ϕ,K) can only be empty or
contain the empty variable assignment as its only element. In the latter case, ϕ is
entailed by K. Similarly, regarding an interpretation I and a Boolean query ϕ, I |= ϕ
implies that Ans(ϕ, I) is not empty and, specifically, only contains the empty set.

We assume that every query language contains a special Boolean query true, which
holds in all interpretations. Likewise, we assume the presence of a Boolean query false,
which does not hold in any interpretation. These queries can be added to a query lan-
guage without affecting any of the properties or constructions described in the following.
We also conclude the introduction of the queries with concrete examples.

Example 8.8 The simplest query language arises from considering all facts as Boolean
queries and, correspondingly, taking |=L as |=QL; the variable assignments can be disre-
garded. The entailment of a fact by a knowledge base is then equivalent to the original
definition.

Similarly, we can consider the Boolean query language QL := L with |=QL given by
|=L. That is, we can ask for the entailment of theories. In the context of description
logics, an important such query language is that of subsumptions, which ask whether
single CIs are entailed (see Definition 2.5).

Instance queries (IQs) generalize fact queries by allowing for variables. That is, an
IQ is an atom whose variables are considered as the free variables of the query. To
compute Cert(ϕ,K) for an IQ ϕ and KB K, all variable assignments that certainly (in
all models of K) make the fact true when replacing the free variables accordingly have
to be determined.

For relational databases, an important class of queries are conjunctive queries (CQs)
(also select-project-join queries) of the form ∃y1, . . . , ym.ϕ, where y1, . . . , ym ∈ NV and ϕ
is a conjunction of instance queries.5 The free variables of a CQ are all those occurring
in it except for y1, . . . , ym. In contrast to the free variables, which range only over
the constants, the existentially quantified variables range over the whole domain of a
given interpretation. The semantics of CQs is obtained by viewing them as first-order
sentences in the obvious way. In the standard database setting, which does not include
a logical theory, the focus is on computing Ans(ϕ, I) for a conjunctive query ϕ and
a finite interpretation I, representing a given relational database. This is realized by
formulating ϕ in a query language supported by the system (e.g., SQL is a standard
for such a language) and evaluating it over the database. The more general problem
of computing certain answers to conjunctive queries w.r.t. a knowledge base has been

5Note that we here generalize the definition of CQs given in Section 2.1.2 for the DL setting in that
we consider more general signatures.
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investigated for many logical formalisms, in particular DLs and rules [Cal+07b; Gli+08;
LTW09; RG10].

Unions of conjunctive queries (UCQs) (i.e., disjunctions of CQs) play a role similarly
important to the one of conjunctive queries. Moreover, many approaches for answering
CQs w.r.t. an ontology are based on rewriting to UCQs (e.g., see Lemma 2.24).

Another class of interest between UCQs and arbitrary first-order queries are positive
existential queries (PEQs) are of the form ∃y1, . . . , ym.ϕ, where ϕ is a positive Boolean
combination of instance queries (i.e., using conjunction and disjunction, but no nega-
tion).

Conjunctive regular path queries (CRPQs) are a popular query language for graph
databases and are also studied in the context of description logics, where the predicates
considered are at most binary. They generalize conjunctive queries in a different direc-
tion, by allowing conjuncts of the form L(x, y), where L is a regular expression over the
binary predicate symbols and x and y represent variables. If an interpretation over such
a signature is regarded as a labeled graph, these conjuncts express the existence of a
path from x to y such that the concatenation of its edge labels—DL role names—belongs
to the language generated by L. Conjunctive two-way regular path queries (C2RPQs)
extend CRPQs in that the regular expressions may use the binary predicates in the
backwards direction.

Datalog queries are pairs of the form (P,G) consisting of a Datalog program P and
a goal predicate G, which is to be answered over P . That is, Datalog query answering
w.r.t. a fact base is similar to instance query answering w.r.t. a KB but, with Datalog,
the theory is considered as a part of the query. The program P contains auxiliary
predicates that are local to the query (i.e., the predicates are not part of a signature
of an interpretation in which the query is to be answered) and used to evaluate it.
Specifically, only auxiliary predicates are allowed to occur in the conclusions of rules,
and the goal predicate must be an auxiliary predicate. A variable assignment a is an
answer to such a query in an interpretation I if all extensions of I to the auxiliary
predicates that satisfy P also satisfy G(a(x1), . . . , a(xn)). This is equivalent to the
containment of this fact in the least Herbrand model of the KB 〈P, facts(I)〉, where
facts(I) denotes the (finite) set of all facts that I is a model of.

Note that every UCQ can be formulated as a Datalog query, by regarding the CQs
as premises of rules and introducing a single, fresh goal predicate for the conclusions.
Similarly, PEQs correspond to Datalog queries with nonrecursive programs [AHV95,
Thm. 4.5.2 and 5.4.10]. ♦

8.1.3 Canonical Models and Rewritability
We finally provide the properties we assume the logics and queries we consider to satisfy
next to the decidability of consistency. First, we focus on canonical models as mentioned
above. We tailor the corresponding property however to the reasoning problem of query
answering.
Definition 8.9 (Canonical Model Property) A logic L has the canonical model
property w.r.t. a query language QL if, for each consistent knowledge base K written in
L, there is a countably infinite canonical model IK of K such that, for all QL queries ϕ,
Cert(ϕ,K) = Ans(ϕ, IK). ♦
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L QL shown in

EL++ subs. [BBL05]
ELH UCQ [Ros07, Lem. 1]
ELIf CQ [KL07, Lem. 5]
ELHdr

⊥ CQ [LTW09, Prop. 4]
ELHI¬ CQ [PMH10, Lem. 10]
DL-Lite[R|F ] UCQ [Cal+07b, Thm. 29]
DL-Lite(HN )

horn UCQ [BAC10, Thm. 9]
DL-Litehorn PEQ [Kon+11, Thm. 3]
DL-LiteR C2RPQ [BOS15, Lem. 3.2]
Horn-ALCHIQ CQ [Eit+12, Thm. 3], [Kaz09]
Horn-ALCHOIQDisj

Self C2RPQ [ORŠ11, Thm. 2]

Figure 8.1: DLs L and query languages QL w.r.t. which they have the canonical model
property.

The restriction to countably infinite interpretations is again technical and ensures that
all these models have the same cardinality. This is however only a minor restriction
since canonical models are often explicitly constructed in a countable way. Moreover,
in case the canonical model is finite, it can usually be extended by (countably infinite)
replications without affecting the semantics (i.e., the answers to queries are the same
w.r.t. both models). Example 8.10 presents logics, particularly DLs, that have this
property.

Example 8.10 Figure 8.1 lists several DLs L and query languages QL that have the
canonical model property. The canonical model is usually constructed by applying the
axioms of the knowledge base K = 〈T ,A〉 as completion rules to the facts in A in order
to obtain a model of K.6

In [BBL05], the focus is on subsumption queries. A canonical model is not explicitly
constructed, but it can be easily obtained by regarding the application of the completion
rules (see Table 2 in that paper). This is also the case for [Kaz09] (see Table 3 in that
paper).

Note that the result from [BOS15] also holds for ELH. Further, the one from [Eit+12]
also holds for the more expressive DL Horn-SHIQ if the CQs only contain simple roles
(i.e., roles without transitive subroles).

Regarding a Datalog program obtained from K (i.e., the facts in A are regarded as
rules with empty body), [PMH10; Eit+12] construct a canonical model based on the
least Herbrand model of the program. ♦

Recently, so-called rewriting approaches—in the spirit of the rewriting from data
integration (e.g., (1.2) in Chapter 1)—for computing the set of certain answers to a
given query have become popular. They are usually based on a kind of canonical

6The procedure of applying the completion rules as well as the model are also called chase in the
literature [DNR08].
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model: the idea is to rewrite a query that is to be answered over a KB such that it
can be evaluated over a single and finite interpretation. We specify a corresponding
property of rewritability that is more general than the FO rewritability considered in
Chapter 2 (see Definition 2.22).

Observe that the rewritten query, called rewriting, usually belongs to a more expres-
sive query language. Next to the type of this language, rewriting approaches can be
discerned regarding the information that is used for constructing the rewriting and the
interpretation, respectively. Strict rewriting approaches construct the rewriting based
on the theory and the original query, and consider the interpretation to be the (unmod-
ified) fact base, interpreted under the closed-world assumption. Since this technique is
considered to be very efficient, it is employed in many works (e.g., in [Cal+05; Cal+07b;
CGL09]). More general approaches, such as the combined approach [Kon+10; Kon+11],
are different in that they allow the interpretation to also be influenced by the theory.
Note that, in practice, the data given then has to be preprocessed before query answering
can be performed.

Definition 8.11 (Rewritable) Let L be a logic and QL1 andQL2 be query languages.
Then, QL1 queries are QL2 rewritable w.r.t. L if the following can be computed:

• for every QL1 query ϕ and theory T written in L, a QL2 query ϕT such that
NFV(ϕ) = NFV(ϕT );

• for every L theory T , a finite set ∆T such that Ω ⊆ ∆T ;

• for every consistent knowledge base K written in L, a finite interpretation DK over
the domain ∆T such that cDK = c for all c ∈ Ω (standard name assumption);

such that, for all consistent knowledge bases K = 〈T ,A〉 written in L andQL1 queries ϕ,
we have Cert(ϕ,K) = Ans(ϕT ,DK). ♦

In summary, QL2 rewritability means that finding certain answers to QL1 queries
w.r.t. L KBs can be reduced to finding (ordinary) answers to QL2 queries in finite in-
terpretations. Our last requirement is therefore that the set of answers to a QL2 query
w.r.t. a finite interpretation must be computable. This means that QL2 rewritability
of QL1 queries w.r.t. L implies that the set of answers to a QL1 query w.r.t. a knowl-
edge base is also computable. Focusing on data complexity, observe that Definition 8.11
does not only abstract from but also extend Definition 2.22 in order to capture more
existing rewriting approaches. The latter definition regards a finite interpretation that
is independent of the theory and the query. In contrast, we here require DK only to be
independent of a concrete query. The rewriting ϕT must however still not depend on
knowledge from a fact base. Definition 8.11 again includes technical restrictions that
are needed to lift the atemporal approach to the temporal setting (i.e., the assumption
that ∆T is independent of the data, and the standard name assumption). But all of
them are satisfied by the logics and query languages described in the following example,
for which rewritability is given.

Example 8.12 Figure 8.2 lists several rewritability results for different instances of L,
QL1, and QL2. For the logics of the DL-Lite family and the EL extensions, the finite
interpretation DK is usually obtained by viewing the fact base under the closed world
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L QL1 QL2 shown in

EL++ subs. subs. [BBL05]
ELHdr

⊥ CQ FO= [LTW09, Thm. 5]
ELHI¬ CQ Datalog

}
[PMH10,
Thm. 2, Lem. 16]DL-Lite+ CQ UCQ+

DL-LiteR CQ UCQ [Cal+07b, Lem. 39]
DL-LiteR UCQ PEQ [RA10, Thm. 2]
DL-LiteNhorn CQ FO= [Kon+10, Thm. 10]
DL-Lite(HN )

horn UCQ UCQ [BAC10, Lem. 10]
DL-LiteR C2RPQ C2RPQ [BOS15, Prop. 6.3]
DL-Lite+ CQ CRPQ [Dim+16, Thm. 3]
Horn-ALCHIQ CQ UCQ [Eit+12, Thm. 4]
LDL+ IQ IQ [HEX10, Cor. 11]
SROEL(u,×) IQ IQ [Krö11, Thm. 1]
Datalog± family CQ UCQ [GOP11, Thm. 1]

Figure 8.2: Rewritability results for different instances of L, QL1, and QL2; FO= de-
notes first-order queries with equality and UCQ+ a combination of a UCQ
with a linear Datalog program.

assumption, but sometimes additional constant symbols are introduced (e.g., prototyp-
ical elements as in Definitions 2.10 and 2.11). In the other cases, DK is based on the
least Herbrand model of a suitable Datalog program that is based on K.

Again, the rewritability result from [BBL05] is only implicitly given in that paper
(see Lemma 3).

As in Example 8.10, the result from [BOS15] also holds for ELH; and the one from
[Eit+12] also holds for Horn-SHIQ if the CQs do not contain non-simple roles.

In the constructions for LDL+ and SROEL(u,×), the original query is not adapted,
and therefore these logics also have the canonical model property.

To ensure the termination of the rewriting algorithm in [GOP11], the theories have
to be restricted (e.g., to linear rules or sticky sets). ♦

Many works suggest to consider rewritability as a decision problem as follows: Given
a logic L, a QL1 query, and a query language QL2, decide if the query is QL2 rewritable
w.r.t. L [Bie+14; CR15; Han+15; Bie+16]. The assumption behind this approach is
that, in practice, concrete query answering problems for expressive logics are actually
rewritable because many features of the logics are rarely used for modeling. Indeed, in
the experiments of [Han+15], efficient7 FO rewritings of instance queries in ELHdr were
obtained in most cases and turned out to be very performant. Based on these results,
our approach extends to more expressive logics, too: instead of QL1, we can consider

7Many of the rewriting approaches proposed in the past are based on backward chaining and rewriting
into UCQs, which requires a lot of optimization to obtain feasibility in applications.
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only those elements of QL1 that have this property, and thus obtain another instance
of Definition 8.11.

Lastly, note that finiteness of DK is obviously not sufficient in practice, where the
interpretations DK additionally should be small, so that QL2 queries can be evaluated
efficiently. Indeed, many rewritability results have subsequently been refined into that
direction. However, in this final (technical) chapter, we investigate rewritability in a
very general temporal setting and consider theoretical complexity considerations to be
out of scope.

8.2 Positive Temporal Queries
In this section, we regard a logic L and a query language QL and lift the definitions
of the previous section to a temporal setting corresponding to the one proposed in
Section 3.1 for description logics and TQs.

In particular, we also consider temporal knowledge bases (TKBs)K = 〈T , (Ai)0≤i≤n〉—
now, written in L—built from global L theories and finite sequences of fact bases (see
Definition 3.2). The semantics here is correspondingly based on sequences I = (Ii)i≥0
of FOL interpretations sharing one domain, which are called temporal L structures. The
fact that I is a model of K is similarly denoted by I |= K and holds if Ii |=L T and
Ii |= Ai for all i ∈ [0, n]. A TKB is consistent if it has a model.

Positive temporal queries do not contain negation and are therefore defined more
fine granularly than the temporal queries introduced in Definition 3.4, since we cannot
consider 2F and 2P to be derived operators (see Figure 2.2). But we can consider 3F

and 3P to be such operators because we assume true to be a QL query.

Definition 8.13 (Syntax of Positive Temporal Queries) Let Σ = (Ω, (Πn)n≥0) be
a FO signature. The set of positive temporal QL queries (PTQs) over Σ is defined by
the following grammar:

Φ ::= ϕ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | #FΦ1 | #PΦ1 | 2FΦ1 | 2PΦ1 | Φ1 U Φ2 | Φ1 S Φ2

where ϕ is a QL query over Σ and Φ1 and Φ2 are positive temporal QL queries, in their
turn. ♦

We in the following use the term positive temporal queries ifQL is clear from the context.
The set of free variables NFV(Φ) of a positive temporal QL query Φ is the union of the
free variables of the QL queries in it, and PTQs for which this set is empty are Boolean
PTQs. A query is a subquery of a PTQ Φ if it occurs in Φ and, if it is atemporal,
occurs at least once not as part of another atemporal query in Φ. S(Φ) denotes the set
of all subqueries of Φ, including Φ itself. For a subquery Ψ of Φ, we denote by aΨ the
restriction of a variable assignment a : NFV(Φ)→ Ω to NFV(Ψ).

Since we here focus on query answering, we explicitly consider the free variables with
the semantics.

Definition 8.14 (Semantics of Positive Temporal Queries) Let Φ be a PTQ,
I = (Ii)i≥0 be a sequence of interpretations over a common domain, a : NFV(Φ)→ Ω be
a variable assignment, and i ∈ [0, n] represent a time point. The satisfaction relation
I, i |= a(Φ) is defined by induction on the structure of Φ as specified in Figure 8.3.
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PTQ Φ Condition for I, i |= a(Φ)

QL query ψ Ii |= a(ψ)
Φ1 ∧ Φ2 I, i |= aΦ1(Φ1) and I, i |= aΦ2(Φ2)
Φ1 ∨ Φ2 I, i |= aΦ1(Φ1) or I, i |= aΦ2(Φ2)
#FΦ1 I, i+ 1 |= a(Φ1)
#PΦ1 i > 0 and I, i− 1 |= a(Φ1)
2FΦ1 I, k |= a(Φ1) for all k, i ≤ k
2PΦ1 I, k |= a(Φ1) for all k, 0 ≤ k ≤ i
Φ1 U Φ2 there is a k, i ≤ k, with I, k |= aΦ2(Φ2)

and I, j |= aΦ1(Φ1) for all j, i ≤ j < k

Φ1 S Φ2 there is a k, 0 ≤ k ≤ i, with I, k |= aΦ2(Φ2)
and I, j |= aΦ1(Φ1) for all j, k < j ≤ i

Figure 8.3: Semantics of temporal QL queries.

If I, i |= a(Φ), then a is an answer to Φ w.r.t. I at i. a is a certain answer to Φ w.r.t.
a TKB K at i, written K, i |= a(Φ), if a is an answer to Φ at i in every model of K. ♦

The set of all answers to Φ w.r.t. I at time point i is denoted by Ans(Φ, I, i), and the
set of all certain answers to Φ w.r.t. K is denoted by Cert(Φ,K, i). Since our focus
is on the time point n, we introduce the abbreviations Ans(Φ, I) := Ans(Φ, I, n) and
Cert(Φ,K) := Cert(Φ,K, n). A Boolean PTQ Φ is entailed by K (at time point i) if the
set Cert(Φ,K) (Cert(Φ,K, i)) is non-empty. In this case, we write K |= Φ (K, i |= Φ),
and similarly for I |= Φ and I, i |= Φ.

As in the previous chapters, we here apply the standard semantics (see Section 3.1).
Observe, however, that this may have some unintended consequences in practice. For
example, the PTQ 3P2FRunning(process1) then always is false, although, at the
current time point, the process may have been running since some past time point, and
the future state of the system is unknown.

An alternative semantics, which overcomes this problem, does not consider time points
before 0 or after n; such a temporal semantics is, for example, used for LTL in [Wil99]
or for temporal query languages for databases [SL89; HS91b; Cho95] and might also
be reasonable for applications of temporal query answering. In fact, we consider this
semantics in [BLT15], which means that our rewritability result, presented in the next
section, extends to that setting. This alternative semantics has the effect that the PTQ
#F true is not entailed at the last time point; the semantics of the #F -operator thus
differs from that given in Figure 8.3: I, i |= a(#FΦ1) iff i < n and I, i+ 1 |= a(Φ1). At
first glance, this may seem counterintuitive, but it is often considered to be more natural
to restrict the aggregation operators to the time points for which data is available. For
instance, current systems for stream reasoning restrict the focus to a so-called window of
the data stream (see Section 1.3 for an overview of current stream reasoning approaches).

A compromise between those two kinds of semantics could be obtained by “looping”
the last interpretation or fact base infinitely often, meaning that the facts of the last
time point stay valid forever. This would make the PTQ #F true equivalent to true,
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while retaining the spirit of the finite semantics. However, also this semantics has
counterintuitive side-effects, as it makes severe assumptions on the future. For example,
then, the PTQ 2FRunning(process1) is true at n if (and only if) Running(process1)
is true at n.

8.3 A Rewritability Result
Targeting temporal query answering, we finally lift the rewriting approach introduced
in Section 8.1.3 to the temporal setting. We show that, under the assumptions formu-
lated in the previous sections, positive temporal QL1 queries also enjoy a rewritability
property—w.r.t. temporal knowledge bases formulated in L—and how the certain an-
swers to positive temporal QL1 queries over L can be computed. Recall our assumption
on the properties of the query languages QL1 and QL2 and logic L:

(P1) Consistency of knowledge bases in L should be decidable. This is a basic prereq-
uisite for any reasoning procedure, in particular for query answering.

(P2) The logic L should have the canonical model property w.r.t. QL1 (see Defini-
tion 8.9). This property often represents a first step towards a rewritability result
and is similarly important for our result.

(P3) QL1 queries should be QL2 rewritable w.r.t. L. In particular, we make use of ∆T ,
DK, and ϕT introduced in Definition 8.11.

(P4) The set of answers to any QL2 query w.r.t. a finite interpretation should be com-
putable.

Observe that we do not need (P4) in order to obtain our result, but the latter would
otherwise be useless.

Before providing the rewritability result, we first lift the constructions of Defini-
tions 8.9 and 8.11 to the temporal setting. For this, consider a temporal QL1 query Φ
and a consistent TKB K = 〈T , (Ai)0≤i≤n〉, which is possible by (P1); to see the latter,
observe that the consistency of the TKB can be decided by regarding the KBs 〈T ,Ai〉
with i ∈ [0, n] separately. That is, we can also assume these atemporal KBs to be con-
sistent, and thus define the sequences IK := (IKi)i≥0 and DK := (DKi)i≥0 of canonical
and finite interpretations by (P2) and (P3); for all i > n, we consider the canonical
and finite interpretations of 〈T , ∅〉. Due to the assumption that each IKi is countably
infinite and Condition (ii) of Definition 8.6, we can without loss of generality assume
that these canonical models have the same domain. Similarly, the finite interpretations
DKi have the common domain ∆T . Thus, they are valid sequences of interpretations
according to our semantics. We then define the temporal QL2 query ΦT as the one
obtained from Φ by replacing every QL1 query ϕ occurring in Φ by the QL2 query ϕT
and get the following rewritability result.

Theorem 8.15 Let QL1 and QL2 be query languages and L be a logic that has the
canonical model property w.r.t. QL1, such that QL1 queries are QL2 rewritable w.r.t. L.
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Then, for every consistent TKB K = 〈T , (Ai)0≤i≤n〉, every temporal QL1 query Φ, and
every i ∈ [0, n], we have:

Cert(Φ,K, i) = Ans(Φ, IK, i) = Ans(ΦT ,DK, i).

Proof. We first prove Cert(Φ,K, i) ⊆ Ans(Φ, IK, i). For some a ∈ Cert(Φ,K, i) and
every I = (Ii)0≤i≤n with I |= K, we then have I, i |=QL1 a(Φ). By (P2) and Defini-
tion 8.14, we get IK, i |=QL1 a(Φ) or, equivalently, a ∈ Ans(Φ, IK, i).

It is left to prove the following two claims:

(1) Ans(Φ, IK, i) ⊆ Ans(ΦT ,DK, i),

(2) Ans(ΦT ,DK, i) ⊆ Cert(Φ,K, i).

We show this by induction on the structure of Φ.
For the base case, we regard an atemporal QL1 query Φ. For (1), let a ∈ Ans(Φ, IK, i).

Since Φ is a QL1 query, the semantics yields that a ∈ Ans(Φ, IKi). From (P3), we
obtain a ∈ Ans(ΦT ,DKi), and thus a ∈ Ans(ΦT ,DK, i), by the semantics of temporal
QL2 queries.

For (2), let a ∈ Ans(ΦT ,DK, i). Since ΦT is aQL2 query, this implies a ∈ Ans(ΦT ,DKi).
Because of (P3), we have a ∈ Cert(Φ,Ki). This means that for every interpretation I
with I |= Ai and I |= T , we have that I |=QL1 a(Φ). Hence, for every sequence
I = (Ii)0≤i≤n with I |= K, we have Ii |=QL1 a(Φ). Since Φ is a QL1 query, the latter
condition is equivalent to a ∈ Ans(Φ, I, i), and thus we get a ∈ Cert(Φ,K, i).

Let now Φ be of the form Φ1 ∧ Φ2. For (1), assume that IK, i |=QL1 a(Φ), and thus
we have IK, i |=QL1 aΦ1(Φ1) and IK, i |=QL1 aΦ2(Φ2). By the induction hypothesis,
DK, i |=QL2 aΦ1(ΦT1 ) and DK, i |=QL2 aΦ2(ΦT2 ), and thus we get DK, i |=QL2 a(ΦT ) by
the definition of ΦT and the semantics.

For (2), we assume that DK, i |=QL2 a(ΦT ), and thus DK, i |=QL2 aΦ1(ΦT1 ) and
DK, i |=QL2 aΦ2(ΦT2 ). Hence, we have a ∈ Cert(Φ1,K, i) and a ∈ Cert(Φ2,K, i) by the
induction hypothesis. Thus, for every I with I |= K, it holds that I, i |=QL1 aΦ1(Φ1)
and I, i |=QL1 aΦ2(Φ2). This is equivalent to a ∈ Cert(Φ1 ∧ Φ2,K, i).

Let now Φ be of the form #FΦ1. For Claim (1), we take IK, i |=QL1 a(#FΦ1). By
the temporal semantics, we have IK, i + 1 |=QL1 a(Φ1). By the induction hypothesis,
we get DK, i+ 1 |=QL2 a(ΦT1 ), which implies DK, i |=QL2 a(ΦT ) by the definition of ΦT .

For (2), let DK, i |=QL2 a(ΦT ). Hence, we have DK, i+ 1 |=QL2 a(ΦT1 ), which implies
a ∈ Cert(Φ1,K, i + 1) by the induction hypothesis. This means that, for every I |= K,
we have I, i |=QL1 a(#FΦ1), which shows that a ∈ Cert(Φ,K, i).

For the next inductive case, let Φ be of the form Φ1 U Φ2. For (1), we assume that
IK, i |=QL1 a(Φ1 U Φ2), and thus there is a k ≥ i such that IK, k |=QL1 aΦ2(Φ2)
and IK, j |=QL1 aΦ1(Φ1) for all j ∈ [i, k[. By the induction hypothesis, we obtain
DK, k |=QL2 aΦ2(ΦT2 ) and DK, j |=QL2 aΦ1(ΦT1 ) for all j ∈ [i, k[. The definitions of |=QL2

and ΦT yield that DK, i |=QL2 a(ΦT ).
For (2), we assume that DK, i |=QL2 a(ΦT ). By the definition of ΦT , there is a k ≥ i

with DK, k |=QL2 aΦ2(ΦT2 ) and DK, j |=QL2 aΦ1(ΦT1 ) for all j ∈ [i, k[. The induction
hypothesis yields a ∈ Cert(Φ2,K, k) and a ∈ Cert(Φ1,K, j) for all j ∈ [i, k[. As a
consequence, we have for every I |= K that I, i |=QL1 a(Φ1 U Φ2).
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The remaining cases can be proven in a similar way. For example, the arguments
for #PΦ1 can be obtained from those of case #FΦ1 by replacing i + 1 by i − 1, and
correspondingly for Φ1 S Φ2 and Φ1 U Φ2. The cases for 2 and 2P follow from similar
arguments.

8.4 Summary
In this chapter, we have generalized the abstract setting for ontology-based temporal
query answering introduced in Chapter 3 even more. In particular, we have shown that
the temporal query answering problem is rewritable in certain cases if the negation in the
queries is dropped. This generality allows to augment many existing query answering
approaches with temporal features: both the temporal queries and the ontologies can be
instantiated with arbitrary queries and logical theories, as long as they satisfy certain
requirements. And we have shown that many formalisms already applied or proposed
in the literature do so.

The rewritability result is still of theoretical nature, but we have proposed algorithms
for answering PTQs in [BLT15].8 The focus of the latter work is on the temporal
database monitoring problem: the continuous evaluation of a fix set of PTQs over a
temporal knowledge base, which contains data about the past (and present), growing
over time. We have identified three different approaches for solving that problem.

The most straightforward option is to evaluate PTQs in a database system that
supports temporal information or in a data stream processing system. The advantage
of this approach is that the optimization techniques of the database can directly be
exploited. Yet, it requires to store the whole history of past data—even if only a
small part of it is necessary to answer the query—and to re-evaluate the query at each
time point using a temporal database query language, such as ATSQL [CTB01]. The
feasibility thus depends on the amount of data that has to be considered. Note that
many existing stream processing systems limit the latter by adopting a “sliding view”
semantics, in which only a fixed amount of past time points is used to evaluate PTQs.

Second, we can apply an approach proposed by [Cho95; Tom04], which achieves a so-
called bounded history encoding; that is, the amount of data that is required to answer
the given queries is bounded. In the algorithm, it is continuously updated as soon as
new data is available. However, since the original proposal disregards future operators,
they have to be eliminated in an extra step; in [BLT15], we describe how this can be
done. Although this elimination is independent of the length of the history, it involves
a theoretical non-elementary blowup in the size of the query, due to the application
of the separation theorem (see Lemma 2.20). An advantage of the history encoding
from [Cho95; Tom04] is that it can be implemented inside a database system using
views and triggers, which could yield a good performance in spite of the possibly very
large size of the query. Generally, this option is the best of the three if the PTQs contain
no future operators or if one can find a small equivalent representation without future
operators.

As most general solution, we propose a new algorithm, which is an adaptation of
the one proposed in [Cho95]. Our algorithm allows for rigid unary predicates (see

8Recall that we consider a slightly different semantics in [BLT15].
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Section 3.1), directly works with future operators, and also achieves a bounded history
encoding. In particular, we can limit the influence of the future operators on the time
and space requirements to a single exponential factor. But it is not straightforward how
this algorithm can be implemented inside a database system. While it is theoretically
the most efficient solution, it remains to be seen how it implementations perform in
practice.
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9 Conclusions

The goal of this thesis was to systematically analyze ontology-based access to temporal
data in terms of computational complexity, and rewritability to existing formalisms. In
this chapter, we summarize our achievements and describe directions of future research.

9.1 Summary of Results
In this work, we have focused on a temporal query answering scenario that reflects
the needs of the applications of today: the temporal queries are based on LTL, one of
the most important temporal logics; the ontologies are written in standard lightweight
logics; and the data allows to capture data streams.

In Chapter 3, we have introduced an abstract temporal query language that combines
atemporal queries QL via the operators of linear temporal logic and allows to access
temporal data through ontologies. In particular, it generalizes existing temporal query
languages and, at the same time, provides a framework for the design of new formalisms
and general investigations. We have proven that its direct application yields only con-
tainment in NExpTime (NP) w.r.t. combined (data) complexity,1 which does not fit
the low complexity we usually have with lightweight DLs; regarding entailment, we thus
get containment in co-NExpTime (co-NP). For that reason, we have proposed a new
approach based on the original algorithm for solving the satisfiability problem in LTL,
which requires only polynomial space. This approach is similarly general w.r.t. the
query language and DL considered, but leaves one part of the TQ satisfiability problem,
r-satisfiability, open and thus to be solved for concrete TQs and DLs.

In Chapter 4, we have studied the combined complexity of the satisfiability problem
in DL-LTL for DLs DL meeting a few rather weak requirements. Moreover, we have
showed that the latter are satisfied in the popular DL EL and many DL-Lite fragments.
Nevertheless, DL-LTL has turned out to be powerful enough to show a lower bound of
NExpTime if rigid symbols are considered. For the case without rigid symbols, we have
shown containment in PSpace, based on our new approach. For EL and DL-LiteHhorn,
this PSpace result also holds w.r.t. rigid symbols if the considered concept inclusions
are global. An overview of these results is given in Figure 4.1.

In Chapter 5, we have focused on TCQ entailment in EL and showed results similar
to those for EL-LTL w.r.t. combined complexity (see Figure 9.1): our general approach
can be applied to design a polynomial-space algorithm, and co-NExpTime-hardness
can be shown similarly. However, in contrast to EL-LTL, the former also holds for the
case with rigid concept names. This shows that the local GCIs allowed in EL-LTL are
rather powerful; note that EL-LTL formulas without them can be seen as TCQs w.r.t. a

1Recall that, in order to obtain this complexity, the satisfiability of conjunctions of QL queries and
negated QL queries w.r.t. a KB in DL has to be decidable nondeterministically in polynomial time.

187



9 Conclusions

Data Complexity Combined Complexity
(i) (ii) (iii) (i) (ii) (iii)

DL-Lite[ |H]
[core|horn] ALogTime ALogTime ALogTime PSpace PSpace PSpace

≥ Th. 6.31 ≤ Th. 6.37 ≥ [SC85] ≤ Co. 6.19

EL P co-NP co-NP PSpace PSpace co-NExpTime
≥ [Cal+06], ≤ Th. 5.19 ≥ Th. 5.21 ≤ Co. 5.20 ≥ [SC85] ≤ Co. 5.16 ≥ Th. 5.18, ≤ Co. 5.17

ALC-SHQa co-NP co-NP ≤ExpTime ExpTime co-NExpTime 2-ExpTime
DL-Lite[krom|bool] co-NP co-NP ≤ExpTime ExpTime co-NExpTime 2-ExpTime

≥ [Cal+05] ≥ Co. 7.5, ≤ Th. 7.6 ≥ Th. 7.7, ≤ Th. 7.8 ≥ Th. 7.9

DL-LiteH[krom|bool] co-NP co-NP ≤ExpTime 2-ExpTime 2-ExpTime 2-ExpTime
≤ Co. 7.12 ≤ Co. 7.12 ≥ Co. 7.5 ≤ [BBL15a]

Figure 9.1: The complexity of TCQ entailment considering (i) no rigid symbols, (ii) rigid
concept names, and (iii) rigid role names. Our results are highlighted. All
complexities except those marked with ≤ are tight; ≥ hardness, ≤ contain-
ment.

a[BBL15b]

global ontology. Regarding data complexity, tractability only holds for the case without
rigid symbols.

In Chapter 6, we have focused on TCQ entailment in Horn fragments of DL-Lite,
including role inclusions, which offer expressive features that are rather similar to those
of EL. But the results we have shown are considerably better: containment in PSpace
and ALogTime w.r.t. combined and data complexity. Although we could not achieve
FO rewritability, the latter result is interesting since containment in ALogTime is
considered as an indicator for the existence of efficient parallel implementations [AB09,
Thm. 6.27]; also recall that, in many applications, data complexity better captures
resource consumption than combined complexity (see Section 2.3). To achieve both of
these results, we have shown that polynomially many stored assertions and queries, if
guessed before processing, suffice to test r-satisfiability; that is, to testy¿y if the data of
one observation moment does not contradict rigid knowledge about past moments.

In Chapter 7, we have considered TCQ entailment regarding the two DLs DL-Litekrom
and DL-Litebool, also with role inclusions, which are no Horn logics. These DLs are rather
expressive, but do not allow to model qualified existential restrictions on the left-hand
side of concept inclusions. As described above, we have identified this feature as a
cause of complexity for TCQ answering; recall that it is the main difference between EL
and DL-Litehorn, which instead allows for inverse roles. For that reason, the results of
Chapter 7 are especially interesting. We have shown that entailment in DL-Litebool can
be reduced to entailment in DL-Litekrom. TCQ entailment in these logics generally has
turned out to be as complex as in more expressive DLs, such as SHQ [BBL15b]. Further,
we have shown that role inclusions, which allow to express qualified existential restric-
tions on the right-hand side of concept inclusions, lead to 2-ExpTime-completeness in
combined complexity, which is even higher than the results proven for very expressive
DLs [BBL15b]. Note that further results on TCQ entailment in DLs extending SHQ
are presented in [BBL15a]. An interesting observation regarding those DLs is that the
complexity of CQ entailment is often already higher than the one of TCQ entailment
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in SHQ. Nevertheless, the complexities for several cases are still open, also for CQ
entailment.

In Chapter 8, we have investigated query answering, considered temporal query lan-
guages based on many different atemporal query languages studied in the literature,
and regarded various different lightweight logics as ontology languages. In particular,
we have achieved a generic rewritability result by disallowing negation in the temporal
queries.

Altogether, our results show that the features we have studied can often be considered
“for free”:

• Regarding combined complexity, we have shown that there are many popular DLs
for which the problems of DL-LTL satisfiability or TCQ entailment w.r.t. a TKB
are in PSpace, even if rigid symbols are considered. This matches the complexity
of satisfiability in LTL, which is much less expressive given the fact that ontologies
are not considered at all.

• Comparing the data complexity of TCQ entailment to that of CQ entailment,
we only get similar results for EL in the case without rigid symbols, and for the
expressive DL-Lite logics in the cases without rigid roles2; but the TCQs still
provide much more expressivity. Moreover, the results for DL-LiteHhorn are not
much higher than the AC0-containment given for standard CQ entailment and
even hold w.r.t. rigid symbols.

• There exist many rewritable query languages QL and lightweight logics DL that
satisfy the requirements which we show to imply that positive temporal QL queries
w.r.t. DL TKBs are similarly rewritable.

9.2 Future Work
Our results can be extended in two directions: on the theoretical side, it is left to
close some gaps and to push the envelope of the promising results by considering more
expressive query and ontology languages; on the other hand, many questions are left
open regarding the practical impact of our results.

In this work, we have focused on the standard LTL operators in queries and basic
lightweight DLs as ontology languages. We consider several follow-up questions to be
especially interesting:

• What tight data complexity results do we get for TCQ entailment in the more
expressive DL-Lite fragments if rigid role names are considered? The difference
between in co-NP and in ExpTime should have an impact on practical consid-
erations.

• For which extensions of EL and DL-Lite do we get similar complexity results?
This may be particularly interesting regarding ELO⊥(D)3, the DL closest to OWL
2 EL for which we may get such results—in EL+ and EL++, CQ answering is

2Note that the result for the case with rigid roles is not tight.
3ELO⊥(D) extends ELO⊥ in that it allows to use concrete domains.
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undecidable [Ros07, Thm. 3]. Recall that DL-LiteR, the DL closest to OWL 2
QL extends DL-Litecore with role inclusions and allows to express disjointness of
roles. Since we consider the former with DL-Lite and the latter can be easily
modeled with TCQs, our results for DL-LiteHcore extend to DL-LiteR. Yet, there
are many other features that can be regarded with DL-Lite and which we have not
considered; for example, functionality or number restrictions [Art+09]. We also
estimate the possibility to refer to concrete values in the ontology to be particularly
relevant in practice. Hence, another useful extension for both the query and the
ontology language could be concrete domains [BH91].

• Are there restrictions that yield better complexities and constraints different from
the ones we have proposed for achieving rewritability? Since several restrictions
have turned out to be effective for temporal lightweight DLs [Art+15a; GJK16],
also our results could be augmented by considering, for instance, acyclicity condi-
tions for the ontology.

• What is the influence of metric temporal operators in the queries? First steps in
the direction of metric temporal DLs have recently been made [GJO16; Baa+17].
Since there are metric extensions of LTL for which the complexity does not dif-
fer from that of LTL [LWW07], it would be interesting to see if our approaches
are robust enough or can be extended to work for temporal queries with such
operators.

• Can we also achieve good results if we allow some temporal operators in the on-
tology? That is, finally, our work could be integrated with recent advances on
temporal lightweight DLs [Art+15a; GJK16], which show that rewritability can
be obtained sometimes and that there are several kinds of restriction that allow
for tractable query answering.

On the practical side, several questions arise directly:

• Are there efficient algorithms for solving the satisfiability problem for temporal
queries? Our PSpace results rely on the LTL satisfiability algorithm proposed
in [SC85]. Practical algorithms solving LTL satisfiability are however usually
exponential-time approaches or apply special techniques, such as parallelization,
to cope with the nondeterminism since the guessing employed in the original al-
gorithm is hardly feasible in applications [Wul+08; Li+13; Li+15]. It is still open
which kinds of algorithms are useful in applications of ontology-based temporal
query answering, in particular, if rigid symbols are considered. On the other
hand, application knowledge discerning rigid symbols in advance could improve
performance.

• For the cases where we have shown promising results for query entailment, do
there exist efficient algorithms for query answering? In general, algorithms solv-
ing query entailment do not allow for efficient query answering since the latter
problem, in practice, is harder to solve (see Section 3.1).

• Can the rewritability result easily be implemented based on existing systems rewrit-
ing atemporal queries? Recall that it has been rather easily obtained from existing
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rewritability results for the atemporal case. In [BLT15], we describe different al-
gorithms for temporal query answering that rely on such existing approaches, but
the implementation is still future work.
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[Krö11] Markus Krötzsch. “Efficient Rule-Based Inferencing for OWL EL”. In:
Proc. of the 22nd Int. Joint Conference on Artificial Intelligence (IJCAI’11).
Ed. by Toby Walsh. AAAI Press, 2011, pp. 2668–2773.

[Kur+03] Agi Kurucz, Frank Wolter, Michael Zakharyaschev, and Dov M. Gabbay.
Many-Dimensional Modal Logics: Theory and Applications. Vol. 148. Gulf
Professional Publishing, 2003.

[Len02] Maurizio Lenzerini. “Data Integration: A Theoretical Perspective”. In: Proc.
of the 21st Symposium on Principles of Database Systems (PODS’02). Ed.
by Lucian Popa, Serge Abiteboul, and Phokion G. Kolaitis. ACM, 2002,
pp. 233–246.

[Li+13] Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y. Vardi, and Jifeng He.
“LTL Satisfiability Checking Revisited”. In: Proc. of the 20th Int. Sympo-
sium on Temporal Representation and Reasoning (TIME’13). Ed. by César
Sánchez, Kristen Brent Venable, and Esteban Zimányi. IEEE Computer
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tree witness query, 95
tree-shaped CQ

DL-LiteHhorn, 94
EL, 73

true

LTL, 22
QL, 175
TQ, 33

Turing machine, 26
see also alternating TM

type, 145

UCQ, see union of conjunctive queries
UNA, see unique name assumption
uniformity, 28
union, see disjunction
union of conjunctive queries, 176

DL, 15
unique name assumption, 13
universal model, 173
until operator, 21

variable assignment, 174

witness (of a concept etc.)
DL-LiteHhorn, 95
EL, 74

witness query, 96
world, 22

213


	Abstract
	Acknowledgments
	Contents

	Contents
	List of Figures
	Introduction
	Ontology-Based Data Access
	Lightweight Description Logics as Ontology Languages
	Ontology-Based Temporal Query Answering
	Contributions and Outline of the Thesis

	Basic Definitions
	Description Logics
	Syntax, Semantics, and Standard Reasoning
	Conjunctive Queries
	Canonical Interpretations for Horn Description Logics

	Propositional Linear Temporal Logic
	Computational Complexity

	Introduction to Temporal Query Answering
	Temporal Queries
	A General Approach for Solving Satisfiability
	Problem Analysis and Technical Contributions
	Related Work
	Reasoning with Temporalized Concepts and Axioms
	Querying for Temporal Data


	LTL over Lightweight Description Logic Axioms
	Satisfiability of Conjunctions of DL Literals
	Without Rigid Names
	With Rigid Names
	Global GCIs in EL-LTL
	Rigid Canonical Interpretations
	Characterizing r-Satisfiability
	Containment

	Summary

	Temporal Query Entailment in EL
	Characterizing r-Satisfiablility Without Rigid Roles
	Combined Complexity
	With(out) Rigid Concept Names
	With Rigid Role Names

	Data Complexity
	Without Rigid Names
	With Rigid Names


	Temporal Query Entailment in DL-LiteHhorn
	Characterizing r-Satisfiablility
	ABox Types, Consequences, and Witness Queries
	r-Complete Tuples

	Combined Complexity
	First-Order Rewritings of r-Satisfiability
	A Tuple for Testing r-Satisfiability
	Rewriting Knowledge Base Satisfiability and Query Answering
	Rewriting r-Satisfiability

	Data Complexity
	Hardness
	Containment


	Temporal Query Entailment in DL-Lite, Beyond the Horn Fragment
	Combined Complexity
	Reducing DL-Litebool to DL-Litekrom Entailment
	Without Rigid Names
	With Rigid Concept Names
	With Rigid Role Names

	Data Complexity

	Temporal Query Answering Without Negation
	Preliminaries
	Logics
	Query Answering
	Canonical Models and Rewritability

	Positive Temporal Queries
	A Rewritability Result
	Summary

	Conclusions
	Summary of Results
	Future Work

	Bibliography
	Index

