Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases:
 - named perspective, unnamed perspective, interpretations, ground fracts, (hyper)graphs
- There are many ways to describe query languages:
 - relational algebra, domain independent FO queries,
 - safe-range FO queries, active domain FO queries,
 - Codd’s tuple calculus
 - either under named or under unnamed perspective

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?

How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)
 - database queries return many results (no decision problem)
- The size of a query result can be very large
 - it would not be fair to measure this as “complexity”
- In practice, database instances are much larger than queries
 - can we take this into account?

Query Answering as Decision Problem

We consider the following decision problems:

- **Boolean query entailment**: given a Boolean query \(q \) and a database instance \(I \), does \(I \models q \) hold?
- **Query of tuple problem**: given an \(n \)-ary query \(q \), a database instance \(I \) and a tuple \(\langle c_1, \ldots, c_n \rangle \), does \(\langle c_1, \ldots, c_n \rangle \in M(q)(I) \) hold?
- **Query emptiness problem**: given a query \(q \) and a database instance \(I \), does \(M(q)(I) = \emptyset \) hold?

\(\sim \) Computationally equivalent problems (exercise)
The Size of the Input

Combined Complexity
Input: Boolean query \(q \) and database instance \(I \)
Output: Does \(I \models q \) hold?

~ estimates complexity in terms of overall input size
~ "2KB query/2TB database" = "2TB query/2KB database"

Review: Computation and Complexity Theory
There are many different but equivalent ways of defining TMs.

Languages Accepted by TMs

The (nondeterministic) TM accepts an input \(\sigma_1 \cdots \sigma_n \in (\Gamma \setminus \{\bullet\})^* \) if, when started on the tape \(\sigma_1 \cdots \sigma_n \),

1. the TM halts on every computation path and
2. there is at least one computation path that halts in the accepting state \(q_{acc} \in Q \).

TMs operate step-by-step:

- At every moment, the TM is in one state \(q \in Q \) with its read/write head at a certain tape position \(p \in \mathbb{N} \), and the tape has a certain contents \(\sigma_p\sigma_{p+1}\cdots \) with all \(\sigma_i \in \Gamma \)
 - current configuration of the TM
- The TM starts in state \(q_{start} \) and at tape position \(0 \).
- Transition \((q, \sigma, q', \sigma', i, j) \in \Delta \) means:
 - if in state \(q \) and the tape symbol at its current position is \(\sigma \),
 - then change to state \(q' \), write symbol \(\sigma' \) to tape, move head by \(j \) (left/right/stay)
- If there is more than one possible transition, the TM picks one nondeterministically
- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.

Solving Computation Problems with TMs

A decision problem is a language \(L \) of words over \(\Sigma = \Gamma \setminus \{\bullet\} \)
 - the set of all inputs for which the answer is “yes”

A TM decides a decision problem \(L \) if it halts on all inputs and accepts exactly the words in \(L \)

TM states take time (number of steps) and space (number of cells):

- Time\(f(n) \): Problems that can be decided by a DTM in \(O(f(n)) \) steps, where \(f \) is a function of the input length \(n \)
- Space\(f(n) \): Problems that can be decided by a DTM using \(O(f(n)) \) tape cells, where \(f \) is a function of the input length \(n \)
Solving Computation Problems with TMs

A decision problem is a language \mathcal{L} of words over $\Sigma = \Gamma \setminus \{\Sigma\}$, which is the set of all inputs for which the answer is “yes”.

A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}.

TMs take time (number of steps) and space (number of cells):

- **Time($f(n)$)**: Problems that can be decided by a DTM in $O(f(n))$ steps, where f is a function of the input length n.
- **Space($f(n)$)**: Problems that can be decided by a DTM using $O(f(n))$ tape cells, where f is a function of the input length n.
- **NTime($f(n)$)**: Problems that can be decided by a TM in at most $O(f(n))$ steps on any of its computation paths.
- **NSpace($f(n)$)**: Problems that can be decided by a TM using at most $O(f(n))$ tape cells on any of its computation paths.

Some Common Complexity Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{Time}(n^k)$</td>
</tr>
<tr>
<td>Exp</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{Time}(2^{n^k})$</td>
</tr>
<tr>
<td>NExp</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{NTime}(2^{n^k})$</td>
</tr>
<tr>
<td>2Exp</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{Time}(2^{2^{n^k}})$</td>
</tr>
<tr>
<td>N2Exp</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{NTime}(2^{2^{n^k}})$</td>
</tr>
<tr>
<td>PTime</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{Time}(n^k)$</td>
</tr>
<tr>
<td>NP</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{NTime}(n^k)$</td>
</tr>
<tr>
<td>NTime</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{NTime}(2^{n^k})$</td>
</tr>
<tr>
<td>NSpace</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{NSpace}(n^k)$</td>
</tr>
<tr>
<td>LogSpace</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{Space}(\log n)$</td>
</tr>
<tr>
<td>NLogSpace</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{NSpace}(\log n)$</td>
</tr>
<tr>
<td>PSpace</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{Space}(n^k)$</td>
</tr>
<tr>
<td>ExpSpace</td>
<td>$\bigcup_{k \in \mathbb{N}} \text{Space}(2^{n^k})$</td>
</tr>
</tbody>
</table>

NP

NP = Problems for which a possible solution can be verified in P:

- for every $w \in \mathcal{L}$, there is a certificate $c_w \in \Sigma^*$, such that
- the length of c_w is polynomial in the length of w, and
- the language $\{w \# c_w \mid w \in \mathcal{L}\}$ is in P.

Equivalent to definition with nondeterministic TMs:

- \Rightarrow nondeterministically guess certificate; then run verifier DTM
- \Leftarrow use accepting polynomial run as certificate; verify TM steps

NP Examples

Examples:

- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia “Primality certificate”)
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)
NP and coNP

Note: Definition of NP is not symmetric
• there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
• converse of an NP problem is coNP
• similar for NExpTime and N2ExpTime

Other classes are symmetric:
• Deterministic classes (coP = P etc.)
• Space classes mentioned above (esp. coNL = NL)

Reductions
Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
• \(r_i \) means “vertex \(i \) is red”
• \(g_i \) means “vertex \(i \) is green”
• \(b_i \) means “vertex \(i \) is blue”

Satisfying truth assignment, valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:
$(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)$
(and so on for all vertices)

Colouring conditions for edges:
$(\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2))$
(and so on for all edges)

Satisfying truth assignment \iff valid colouring

Defining Reductions

Definition 3.1: Consider languages $L_1, L_2 \subseteq \Sigma^*$. A computable function $f : \Sigma^* \rightarrow \Sigma^*$ is a many-one reduction from L_1 to L_2 if:

$w \in L_1$ if and only if $f(w) \in L_2$

\Rightarrow we can solve problem L_1 by reducing it to problem L_2
\Rightarrow only useful if the reduction is much easier than solving L_1 directly
\Rightarrow polynomial many-one reductions
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems

NP-Hardness und NP-Completeness

Theorem 3.2 (Cook 1971; Levin 1973): All problems in NP can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- NP has a maximal class that contains a practically relevant problem
- If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Definition 3.3: A language is
- NP-hard if every language in NP is polynomially many-one reducible to it
- NP-complete if it is NP-hard and in NP

Comparing Complexity Classes

Is any NP-complete problem in P?
- If yes, then $P = NP$
- Nobody knows $\neg \neg$ biggest open problem in computer science
- Similar situations for many complexity classes

Some things that are known:
- L ✓
- NL ✓
- P ✓
- NP ✓
- PSpace ✓
- ExpTime ✓
- NExpTime ✓

- None of these is known to be strict
- But we know that $P \neq \text{ExpTime}$ and $NL \neq PSPACE$
- Moreover $PSPACE = \text{NPSpace}$ (by Savitch's Theorem)

(see TU Dresden course complexity theory for many more details)
Comparing Complexity Classes

Is any NP-complete problem in P?
• If yes, then $P = NP$
• Nobody knows \sim biggest open problem in computer science
• Similar situations for many complexity classes

Some things that are known:
- $L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{ExpTime} \subseteq \text{NExpTime}$
- None of these is known to be strict
- But we know that $P \subseteq \text{ExpTime}$ and $NL \subseteq \text{PSPACE}$
- Moreover $\text{PSPACE} = \text{NPSPACE}$ (by Savitch’s Theorem)

(see TU Dresden course complexity theory for many more details)

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \sim what to use for P and below?

Definition 3.4: A LogSpace transducer is a deterministic TM with three tapes:
- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

Such a TM needs a slightly different form of transitions:
- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or $\$\$ to not write anything to the output

The Power of LogSpace

LogSpace transducers can still do a few things:
- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- access/process/compare items from the input tape bit by bit

Example 3.5: Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, … can all be done in L.
Joining Two Tables in LogSpace

Input:
- two relations \(R \) and \(S \), represented as a list of tuples
- Use two pointers \(p_R \) and \(p_S \) pointing to tuples in \(R \) and \(S \), respectively
- Outer loop: iterate \(p_R \) over all tuples of \(R \)
- Inner loop for each position of \(p_R \): iterate \(p_S \) over all tuples of \(S \)
- For each combination of \(p_R \) and \(p_S \), compare the tuples:
 - Use another two loops that iterate over the columns of \(R \) and \(S \)
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples \(p_R \) and \(p_S \) to the output (bit by bit)

Output: \(R \bowtie S \)

LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \(\sim \) a partial function \(\Sigma^* \rightarrow \Sigma^* \).

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition 3.6: A many-one reduction \(f \) from \(L_1 \) to \(L_2 \) is a LogSpace reduction if it is implemented by some LogSpace transducer.

\(\sim \) can be used to define hardness for classes P and NL

From L to NL

NL: Problems whose solution can be verified in L

Example: Reachability
- Input: a directed graph \(G \) and two nodes \(s \) and \(t \) of \(G \)
- Output: accept if there is a directed path from \(s \) to \(t \) in \(G \)

Algorithm sketch:
- Store the id of the current node and a counter for the path length
- Start with \(s \) as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching \(t \), accept
- When the step counter is larger than the total number of nodes, reject
Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:
\[\text{iterate over possible truth assignments and check each in turn} \]

More generally: all problems in NP can be solved in PSpace
\[\text{try all conceivable polynomial certificates and verify each in turn} \]

What is a “typical” (that is, hard) problem in PSpace?
\[\text{Simple two-player games, and other uses of alternating quantifiers} \]

Example: Playing “Geography”

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Question:
given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?
\[\text{PSpace-complete problem} \]
Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

\[Q_1 X_1. Q_2 X_2. \cdots Q_n X_n. \varphi[X_1, \ldots, X_n] \]

where \(Q_i \in \{ \exists, \forall \} \) are quantifiers, \(X_i \) are propositional logic variables, and \(\varphi \) is a propositional logic formula with variables \(X_1, \ldots, X_n \) and constants \(\top \) (true) and \(\bot \) (false).

Semantics:

- Propositional formulae without variables (only constants \(\top \) and \(\bot \)) are evaluated as usual.
- \(\exists X_i. \varphi(X_i) \) is true if either \(\varphi(X_i/\top) \) or \(\varphi(X_i/\bot) \) are.
- \(\forall X_i. \varphi(X_i) \) is true if both \(\varphi(X_i/\top) \) and \(\varphi(X_i/\bot) \) are.

Question: Is a given QBF formula true?

\(\sim \) PSpace-complete problem

A Note on Space and Time

How many different configurations does a TM have in space \(f(n) \)?

\[|Q| \cdot f(n) \cdot |I|^{f(n)} \]

\(\sim \) No halting run can be longer than this.

\(\sim \) A time-bounded TM can explore all configurations in time proportional to this.

Applications:

- \(L \subseteq P \)
- \(\text{PSpace} \subseteq \text{ExpTime} \)
Summary and Outlook

The complexity of query languages can be measured in different ways.

Relevant complexity classes are based on restricting space and time:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq \text{ExpTime} \]

Problems are compared using many-one reductions.

\[\sim \text{see TU Dresden course Complexity Theory for further details and deeper insights} \]

Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in LogSpace – is this tight?
- How can we study the expressiveness of query languages?