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Warm-up: Something Useful

For k ∈ N, (Nk,≤) is a well partial order (antisymmetric wqo).

Dickson’s Lemma

For every infinite sequence (ai)i∈N (aj ∈ Nk for each j ∈ N), there is an infinite increasing
subsequence, that is an0 ≤ an1 ≤ an2 ≤ . . . with n0 < n1 < n2 < . . ..

Proof.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

A = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, . . .}
minA = a and there is an n0 ≥ 0, such that an0

= a
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Warm-up: Something Useful

For k ∈ N, (Nk,≤) is a well partial order (antisymmetric wqo).

Dickson’s Lemma

For every infinite sequence (ai)i∈N (aj ∈ Nk for each j ∈ N), there is an infinite increasing
subsequence, that is an0 ≤ an1 ≤ an2 ≤ . . . with n0 < n1 < n2 < . . ..

Proof.

an0−2 an0−1 an0 an0+1 an0+2 an0+3 an0+4 an0+5 an0+6 an0+7 . . .. . .

✄

B = {an0+1, an0+2, an0+3, an0+4, an0+5, an0+6, . . .}
minB = b and there is an n1 > n0, such that an1

= b

an0 and n0
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Warm-up: Something Useful

For k ∈ N, (Nk,≤) is a well partial order (antisymmetric wqo).

Dickson’s Lemma

For every infinite sequence (ai)i∈N (aj ∈ Nk for each j ∈ N), there is an infinite increasing
subsequence, that is an0 ≤ an1 ≤ an2 ≤ . . . with n0 < n1 < n2 < . . ..

Proof.

an1−2 an1−1 an1 an1+1 an1+2 an1+3 an1+4 an1+5 an1+6 an1+7 . . .. . .

✄

C = {an1+1, an1+2, an1+3, an1+4, an1+5, an1+6, . . .}
minC = c and there is an n2 ≥ n1, such that an2

= c

an0 ≤ an1 ≤ an2 ≤ . . . and n0 < n1 < n2 < . . .
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Warm-up: Something Useful

For k ∈ N, (Nk,≤) is a well partial order (antisymmetric wqo).

Dickson’s Lemma

For every infinite sequence (ai)i∈N (aj ∈ Nk for each j ∈ N), there is an infinite increasing
subsequence, that is an0 ≤ an1 ≤ an2 ≤ . . . with n0 < n1 < n2 < . . ..

Proof.
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Warm-up: Something Useful

For k ∈ N, (Nk,≤) is a well partial order (antisymmetric wqo).

Dickson’s Lemma

For every infinite sequence (ai)i∈N (aj ∈ Nk for each j ∈ N), there is an infinite increasing
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Warm-up: Something Useful

For k ∈ N, (Nk,≤) is a well partial order (antisymmetric wqo).

Dickson’s Lemma

For every infinite sequence (ai)i∈N (aj ∈ Nk for each j ∈ N), there is an infinite increasing
subsequence, that is an0 ≤ an1 ≤ an2 ≤ . . . with n0 < n1 < n2 < . . ..

Proof.

≤ ≤ ≤ ≤ ≤

76/115



Disclaimer

I will break with any conventions you may have heard of . . .

(e. g., P/T nets or S/T nets, elementary net systems, net systems,
Petri nets, . . . will all be called Petri nets)
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Net Structure

cofi

hu

re

$

(P, T, F, l)

P, T disjoint and finite sets
F ⊆ (P × T ) ∪ (T × P )

l : T → Σ (Σ is an alphabet)

places

transitions

arcs

labels
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Markings and the Token Game

co

E

D

fi

A

C

hu

Bre

$

N = (P, T, F, l,m0)

P, T disjoint and finite sets
F ⊆ (P × T ) ∪ (T × P )

l : T → Σ (Σ is an alphabet)
m0 : P → N (multiset)

m :

A 7→ 1

B 7→ 0

C 7→ 0

D 7→ 1

E 7→ 1

79/115
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N = (P, T, F, l,m0)

P, T disjoint and finite sets
F ⊆ (P × T ) ∪ (T × P )

l : T → Σ (Σ is an alphabet)
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Markings and the Token Game
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N = (P, T, F, l,m0)

P, T disjoint and finite sets
F ⊆ (P × T ) ∪ (T × P )

l : T → Σ (Σ is an alphabet)
m0 : P → N (multiset)

m :

A 7→ 1

B 7→ 0
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D 7→ 1

E 7→ 1
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Markings and the Token Game
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N = (P, T, F, l,m0)

P, T disjoint and finite sets
F ⊆ (P × T ) ∪ (T × P )

l : T → Σ (Σ is an alphabet)
m0 : P → N (multiset)

m :

A 7→ 0

B 7→ 1

C 7→ 0

D 7→ 1

E 7→ 1
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Markings and the Token Game
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N = (P, T, F, l,m0)

P, T disjoint and finite sets
F ⊆ (P × T ) ∪ (T × P )

l : T → Σ (Σ is an alphabet)
m0 : P → N (multiset)

m :

A 7→ 0

B 7→ 0
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Markings and the Token Game

co

E

D

fi

A

C

hu

Bre

$

N = (P, T, F, l,m0)

P, T disjoint and finite sets
F ⊆ (P × T ) ∪ (T × P )

l : T → Σ (Σ is an alphabet)
m0 : P → N (multiset)

m :

A 7→ 1

B 7→ 0

C 7→ 0

D 7→ 2

E 7→ 0
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Definitions and Observations

Definition 4.1 (Net Structure)

Let Σ be an alphabet. A (Σ-labeled) net structure is a quadruple (P, T, F, l) with disjoint
finite sets P of places and T of transitions, F ⊆ (P × T ) ∪ (T × P ), and l : T → Σ.

For nodes v ∈ P ∪ T , •v := {u | (u, v) ∈ F} and v• := {w | (v, w) ∈ F}.

Definition 4.2 (Marking, Firing Rule)

For (labeled) net structure N = (P, T, F, l), we call a multiset m over P a marking of N . A
transition t ∈ T is enabled under marking m if •t ≤ m. An enabled transition t under
marking m may fire, producing the successor marking m′ such that for all p ∈ P ,

m(p) :=


m(p)− 1 if p ∈ •t \ t•

m(p) + 1 if p ∈ t• \ •t

m(p) otherwise.

We also write m
t−→ m′ or even m

l(t)−−→ m′.
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Definitions and Observations

Definition 4.3 (Petri net, reachability graph)

A (Σ-labeled) Petri net is a quintuple N = (P, T, F, l,m0) where (P, T, F, l) is a labeled net
structure and m0 is a marking for it (initial marking).
The set of reachable markings of N [N⟩ is defined inductively by (1) m0 ∈ [N⟩ and (2)
m ∈ [N⟩ and m

t−→ m′ implies m′ ∈ [N⟩.
The reachability graph of N R(N) is induced by the set of reachable markings [N⟩ as the
set of nodes and (

t−→)t∈T forming the edge relation.

We sometimes needs [N,m⟩ for arbitrary markings m of N to be the set of reachable markings
of N where m0 is replaced by m. Special case: [N,m0⟩ = [N⟩.
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The Boundedness Problem

Given a Petri net N = (P, T, F, l,m0), is [N⟩ finite?

Definition 4.4 (Bounded Petri net)

Let k ∈ N. A Petri net N = (P, T, F, l,m0) is k-bounded if for all m ∈ [N⟩ and all places
p ∈ P , m(p) ≤ k. N is bounded if there is a k, such that N is k-bounded. If no such k exists,
N is unbounded.

Lemma 4.5
The following statements are equivalent for Petri nets N = (P, T, F, l,m0):

1. [N⟩ is infinite.

2. N is unbounded.

3. There are markings m1,m2 of N , such that
(a) m1 ∈ [N⟩, (b) m2 ∈ [N,m1⟩, (c) m1 ≤ m2, and (d) m1(p) < m2(p) for some p ∈ P .
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Bounded and Unbounded Nets
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The Boundedness Problem

Given a Petri net N = (P, T, F, l,m0), is [N⟩ finite?

Definition 4.4 (Bounded Petri net)

Let k ∈ N. A Petri net N = (P, T, F, l,m0) is k-bounded if for all m ∈ [N⟩ and all places
p ∈ P , m(p) ≤ k. N is bounded if there is a k, such that N is k-bounded. If no such k exists,
N is unbounded.

Lemma 4.5
The following statements are equivalent for Petri nets N = (P, T, F, l,m0):

1. [N⟩ is infinite.

2. N is unbounded.

3. There are markings m1,m2 of N , such that
(a) m1 ∈ [N⟩, (b) m2 ∈ [N,m1⟩, (c) m1 ≤ m2, and (d) m1(p) < m2(p) for some p ∈ P .
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From 3 to 2

For Petri net N = (P, T, F, l,m0), let m1,m2 be markings, such that
(a) m1 ∈ [N⟩, (b) m2 ∈ [N,m1⟩, (c) m1 ≤ m2, and (d) m1(p) < m2(p) for some p ∈ P .

m2 = m1 + s for some non-empty marking s! In particular, s(p) > 0

m0 · · · m1 · · · m2

σ

Lemma 4.6 (Monotonicity)

For Petri net N = (P, T, F, l,m0), t ∈ T , and markings m,m′, s of N , m t−→ m′ implies
m+ s

t−→ m′ + s.

For every k ∈ N, repeat transition sequence σ k + 1 times, reaching a marking mk with
mk(p) > k.

Thus, N is unbounded.
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From 1 to 3

Let N = (P, T, F, l,m0) be a Petri net, such that [N⟩ is infinite.

1. As [N⟩ is infinite, R(G) is infinite.

2. For every m ∈ [N⟩, the number of successors of m in R(G) is bounded by |T |.
3. Hence, there is an infinite simple path m0 −→ m1 −→ m2 −→ . . . (by König’s Lemma)

4. m0m1m2 . . . is an infinite sequence of markings or, equivalently vectors from N|P |.

5. Due to Dickson’s Lemma, there is an infinite chain n0 < n1 < n2 < . . . of indices, such
that mn0 ≤ mn1 ≤ mn2 ≤ . . ..

6. Set m1 = mn0
and m2 = mn1

.

7. By construction (a) m1 ∈ [N⟩, (b) m2 ∈ [N,m1⟩, and (c) m1 ≤ m2.

8. As m1 and m2 stem from a simple path, there is at least one place p ∈ P with
m2(p) > m1(p).
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Theorem: Boundedness is Decidable

Start constructing R(N) by BFS:

• either the construction terminates (bounded), or
• a marking m2 is constructed with a respective marking m1 ≤ m2 earlier on a path from
m0, such that m1(p) < m2(p) for some p ∈ P (unbounded).

Many more decidable problems:

• Reachability
• Coverability
• Deadlock-freedom
• Liveness
• Language inclusion/equivalence (?)
• Bisimilarity (?)

Yes to both (?), but not for labeled Petri nets!
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The Equivalence Problem(s)

The (prefix) language L(N) of a labeled Petri net N = (P, T, F, l,m0) is the set of all

words w ∈ Σ∗, such that w = ε or m0
t1−→ t2−→ · · ·

t|w|−−→ such that l∗(t1t2 . . . t|w|) = w.

Two Petri nets N1, N2 are language equivalent if L(N1) = L(N2).

Theorem 4.1: Language equivalence is undecidable for labeled Petri nets.

We reduce from the halting problem of Minsky machines with two counters.

Petri nets are not Turing-complete!
⇝ weak simulation of Turing machines/Minsky machines
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Minsky Machines

A Minsky machine is a pair ⟨P, {c1, c2, . . . , ck}⟩, where c1, . . . , ck are counters and P is a
finite sequence of commands l1l2 . . . ln, such that ln = HALT and li (i = 1, . . . , n− 1) is

1. i: cj:=cj+1; goto k, or

2. i: if cj=0 then goto k1 else cj:=cj-1; goto k2

Example 4.7
We consider two counter c1 and c2.

1: if c2=0 then goto 3 else c2:=c2-1; goto 2

2: c1:=c1+1; goto 1

3: HALT

If c1 and c2 are initialized with m and n, then the program halts with value m+ n in c1.
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Constructing a Petri Net

For Minsky machine M = ⟨l1l2 . . . lm, {c1, . . . , cn}⟩,
N(M) = ({l1, . . . , lm, c1, . . . , cn}, T, F, l,m0) where for each i ∈ {1, . . . ,m− 1}:
li = i: cj := cj+1; goto lk:

li

ti

lk

cj

li = i: if cj=0 then goto k1 else cj := cj-1; goto k2:

li

t=0
i

lk1

t̸=0
i

lk2

cj

The labeling can be arbitrary but injective.

For input x1, . . . , xn ∈ N, define m0 = {c1 7→ x1, . . . , cn 7→ xn, l1 7→ 1}.

95/115



Petri Net Construction by Example

l1

t=0
1 t̸=0

1
x2

c2

l3 l2

t2 x1

c1
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Undecidability of Language Equivalence: The Reduction

N1

l1

ωt=0
1 t̸=0

1
x2

c2

l3 l2

t2 x1

c1

p

x

N2

l1

ωt=0
1 t ̸=0

1
x2

c2

l3 l2

t2 x1

c1

pp′

x

ωdc
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Undecidability of Bisimilarity: The Reduction

N1

l1

ωt=0
1 t ̸=0

1
x2

c2

l3 l2

t2 x1

c1

p

x

p′

ωdcωdc′

N2

l1

ωt=0
1 t̸=0

1
x2

c2

l3 l2

t2 x1

c1

pp′

x

ωdcωdc′
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The Coverability Graph

Definition 4.8 (ω-marking)

For a net (P, T, F ), m : P → N ∪ {ω} is called an ω-marking.

Note, ω > n and ω + /− n = ω for all n ∈ N.

For directed graph G = (V,E) and v ∈ V , defined v ⇓ to be the smallest set, such that (1)
v ∈ v ⇓ and (2) if w ∈ v ⇓ and u −→ w, then u ∈ v ⇓.

Definition 4.9
Let N = (P, T, F,m0, l) be a (labeled) Petri net. The coverability graph (of N) is the graph C(N) = (V,E),
such that

1. m0 ∈ V ;

2. if m ∈ V and m
t−→ m′, then ω(m′) ∈ V and (m,ω(m′)) ∈ E such that for all p ∈ P ,

ω(m′)(p) =

{
ω if m′′ ∈ m ⇓ with m′′(p) < m′(p)

m′(p) otherwise.
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Properties of the Coverability Graph

Theorem 4.2: The coverability graph C(N) of a Petri net N is finite.

⇝ follows the same argument as for the decidability proof of the boundedness problem.
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Properties of the Coverability Graph

Theorem 4.3: The coverability problem — given a Petri net N and a marking m, is
there a reachable marking m′, such that m ≤ m′? — is decidable.

1. Construct C(N)

2. Check if there is an ω-marking mω with m ≤ mω

3. Consider the path m0
t1−→ . . .

tn−→ mω and the marking m′ reached after firing the
sequence t1 . . . tn

4. If m ≤ m′, witness found.
5. If m ̸≤ m′, then there is at least one ω in mω and there are markings on the path from

m0 to mω that led to the addition of ω
6. Repeat the respective firing sequences until a covering marking is reached.
7. Hence, it is sufficient to check only mω.
8. If m is not coverable, then there is no marking m′ in the coverability graph with m ≤ m′.
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Equivalence of Unlabeled Nets

Theorem 4.4: Bisimilarity and language equivalence of Petri nets is decidable for unla-
beled Petri nets.

• Given are N1 = (P1, T1, F1,m
1
0, l1) and N2 = (P2, T2, F2,m

2
0, l2) (P1 ∩ P2 = ∅ = T1 ∩ T2).

• Construct N1 +N2 = (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2,m
1
0 +m2

0).

• Each transition t ∈ T1 ∪ T2 is duplicated to t′ with the same in-/outputs and label as t.

• Add a fresh place p and add {p} × (T1 ∪ T2) and {t′ | t′ is a duplicate} × {p} to the arc relation.

• For each label a ∈ Σ, add places pa1 , p
a
2 and for t ∈ Ti with li(t) = a, add arcs (t, paj ), (p

a
j , u

′) for
transition duplicate u′ with lj(u) = a.

• If the nets are language equivalent, then every transition firing of t ∈ Ti can be reproduced in Nj

by u′, such that li(t) = lj(u).

• If the nets are not language equivalent, then there is a shortest word w of L(Ni) \ L(Nj). After
firing the last transition of w in Ni, no duplicate can be fired in Nj .

• Unlabledness is important to not leave Nj the chance to use more clever a-labeled transitions. 102/115


