Concurrency Theory

Lecture 9: Petri Nets

Stephan Mennicke Knowledge-Based Systems Group

June 13-21, 2023

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ $(a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

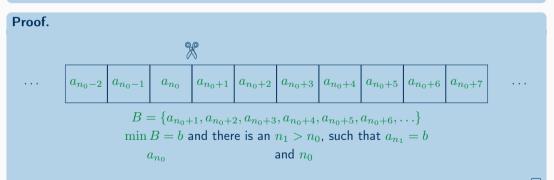
Proof.

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--

 $A = \{a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, \ldots\}$ min A = a and there is an $n_0 \ge 0$, such that $a_{n_0} = a$. .

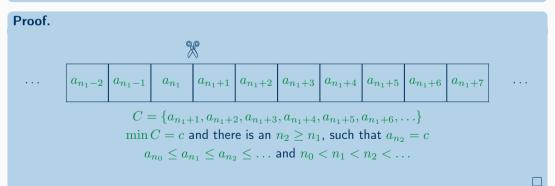
For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma



For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma



For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ $(a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

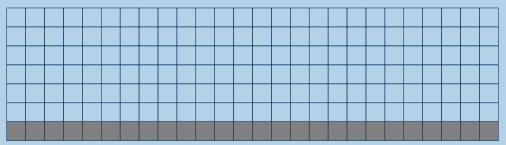
Proof.

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ $(a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

Proof.

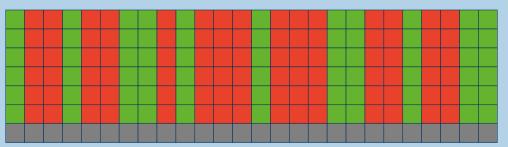


For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma

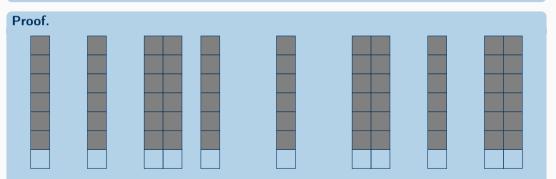
For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

Proof.



For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma



For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

Dickson's Lemma

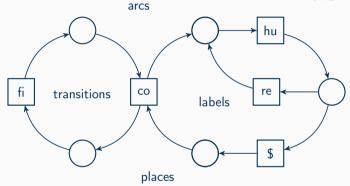
For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a well partial order (antisymmetric wqo).

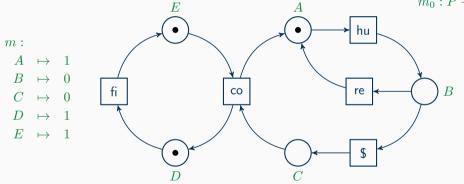
Dickson's Lemma

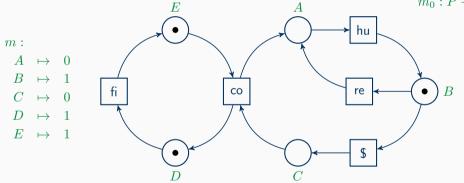
I will break with any conventions you may have heard of . . . (e. g., P/T nets or S/T nets, elementary net systems, net systems, Petri nets, . . . will all be called **Petri nets**)

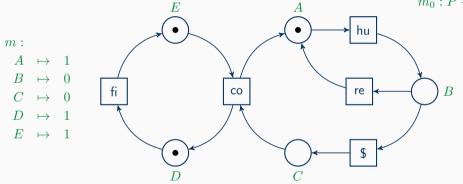
Net Structure

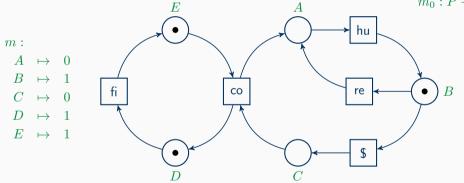
 $\begin{array}{l} (P,T,F,l) \\ P,T \text{ disjoint and finite sets} \\ F \subseteq (P \times T) \cup (T \times P) \\ l:T \to \Sigma \ (\Sigma \text{ is an alphabet}) \end{array}$

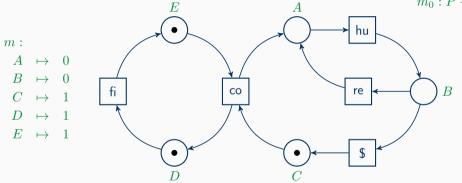


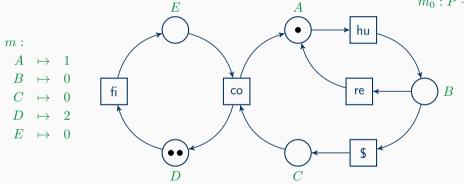












Definitions and Observations

Definition 4.1 (Net Structure)

Let Σ be an alphabet. A (Σ -labeled) net structure is a quadruple (P, T, F, l) with disjoint finite sets P of places and T of transitions, $F \subseteq (P \times T) \cup (T \times P)$, and $l : T \to \Sigma$.

For nodes $v \in P \cup T$, $\bullet v := \{u \mid (u, v) \in F\}$ and $v^{\bullet} := \{w \mid (v, w) \in F\}$.

Definition 4.2 (Marking, Firing Rule)

For (labeled) net structure N = (P, T, F, l), we call a multiset m over P a marking of N. A transition $t \in T$ is enabled under marking m if $t \leq m$. An enabled transition t under marking m may fire, producing the successor marking m' such that for all $p \in P$,

$$m(p) := \begin{cases} m(p) - 1 & \text{if } p \in \bullet t \setminus t \bullet \\ m(p) + 1 & \text{if } p \in t^{\bullet} \setminus \bullet t \\ m(p) & \text{otherwise.} \end{cases}$$

We also write $m \xrightarrow{t} m'$ or even $m \xrightarrow{l(t)} m'$.

Definitions and Observations

Definition 4.3 (Petri net, reachability graph)

A (Σ -labeled) Petri net is a quintuple $N = (P, T, F, l, m_0)$ where (P, T, F, l) is a labeled net structure and m_0 is a marking for it (initial marking). The set of reachable markings of $N [N\rangle$ is defined inductively by (1) $m_0 \in [N\rangle$ and (2) $m \in [N\rangle$ and $m \xrightarrow{t} m'$ implies $m' \in [N\rangle$. The reachability graph of $N \mathcal{R}(N)$ is induced by the set of reachable markings $[N\rangle$ as the set of nodes and $(\xrightarrow{t})_{t \in T}$ forming the edge relation.

We sometimes needs $[N, m\rangle$ for arbitrary markings m of N to be the set of reachable markings of N where m_0 is replaced by m. Special case: $[N, m_0\rangle = [N\rangle$.

The Boundedness Problem

Given a Petri net $N = (P, T, F, l, m_0)$, is $[N\rangle$ finite?

Definition 4.4 (Bounded Petri net)

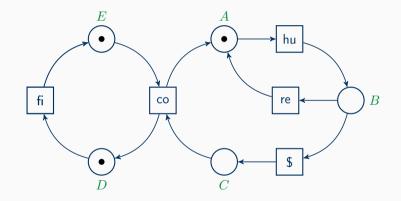
Let $k \in \mathbb{N}$. A Petri net $N = (P, T, F, l, m_0)$ is k-bounded if for all $m \in [N)$ and all places $p \in P$, $m(p) \leq k$. N is bounded if there is a k, such that N is k-bounded. If no such k exists, N is unbounded.

Lemma 4.5

The following statements are equivalent for Petri nets $N = (P, T, F, l, m_0)$:

- 1. $[N\rangle$ is infinite.
- 2. N is unbounded.
- 3. There are markings m_1, m_2 of N, such that (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N, m_1\rangle$, (c) $m_1 \le m_2$, and (d) $m_1(p) < m_2(p)$ for some $p \in P$.

Bounded and Unbounded Nets



The Boundedness Problem

Given a Petri net $N = (P, T, F, l, m_0)$, is $[N\rangle$ finite?

Definition 4.4 (Bounded Petri net)

Let $k \in \mathbb{N}$. A Petri net $N = (P, T, F, l, m_0)$ is k-bounded if for all $m \in [N)$ and all places $p \in P$, $m(p) \leq k$. N is bounded if there is a k, such that N is k-bounded. If no such k exists, N is unbounded.

Lemma 4.5

The following statements are equivalent for Petri nets $N = (P, T, F, l, m_0)$:

- 1. $[N\rangle$ is infinite.
- 2. N is unbounded.
- 3. There are markings m_1, m_2 of N, such that (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N, m_1\rangle$, (c) $m_1 \le m_2$, and (d) $m_1(p) < m_2(p)$ for some $p \in P$.

From 3 to 2

For Petri net $N = (P, T, F, l, m_0)$, let m_1, m_2 be markings, such that (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N, m_1\rangle$, (c) $m_1 \leq m_2$, and (d) $m_1(p) < m_2(p)$ for some $p \in P$. $m_2 = m_1 + s$ for some non-empty marking s! In particular, s(p) > 0

$$m_0 \longrightarrow \cdots \longrightarrow m_1 \xrightarrow[\sigma]{\sigma} m_2$$

Lemma 4.6 (Monotonicity)

For Petri net $N = (P, T, F, l, m_0)$, $t \in T$, and markings m, m', s of $N, m \xrightarrow{t} m'$ implies $m + s \xrightarrow{t} m' + s$.

For every $k \in \mathbb{N}$, repeat transition sequence $\sigma \ k+1$ times, reaching a marking m^k with $m^k(p) > k$.

Thus, N is unbounded.

From 1 to 3

Let $N = (P, T, F, l, m_0)$ be a Petri net, such that $[N\rangle$ is infinite.

- 1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.
- 3. Hence, there is an infinite simple path $m_0 \rightarrow m_1 \rightarrow m_2 \rightarrow \dots$ (by König's Lemma)
- 4. $m_0m_1m_2\ldots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
- 5. Due to Dickson's Lemma, there is an infinite chain $n_0 < n_1 < n_2 < \ldots$ of indices, such that $m_{n_0} \le m_{n_1} \le m_{n_2} \le \ldots$
- 6. Set $m_1 = m_{n_0}$ and $m_2 = m_{n_1}$.
- 7. By construction (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N, m_1\rangle$, and (c) $m_1 \leq m_2$.
- 8. As m_1 and m_2 stem from a simple path, there is at least one place $p \in P$ with $m_2(p) > m_1(p)$.

Theorem: Boundedness is Decidable

Start constructing $\mathcal{R}(N)$ by BFS:

- either the construction terminates (bounded), or
- a marking m_2 is constructed with a respective marking $m_1 \le m_2$ earlier on a path from m_0 , such that $m_1(p) < m_2(p)$ for some $p \in P$ (unbounded).

Many more decidable problems:

- Reachability
- Coverability
- Deadlock-freedom
- Liveness
- Language inclusion/equivalence (?)
- Bisimilarity (?)

Yes to both (?), but not for labeled Petri nets!

The Equivalence Problem(s)

The (prefix) language $\mathcal{L}(N)$ of a labeled Petri net $N = (P, T, F, l, m_0)$ is the set of all words $w \in \Sigma^*$, such that $w = \varepsilon$ or $m_0 \xrightarrow{t_1} \xrightarrow{t_2} \cdots \xrightarrow{t_{|w|}}$ such that $l^*(t_1 t_2 \dots t_{|w|}) = w$.

Two Petri nets N_1, N_2 are **language equivalent** if $\mathcal{L}(N_1) = \mathcal{L}(N_2)$.

Theorem 4.1: Language equivalence is undecidable for labeled Petri nets.

We reduce from the halting problem of Minsky machines with two counters.

Petri nets are not Turing-complete!

→ weak simulation of Turing machines/Minsky machines

Minsky Machines

A Minsky machine is a pair $\langle P, \{c_1, c_2, \dots, c_k\}\rangle$, where c_1, \dots, c_k are counters and P is a finite sequence of commands $l_1 l_2 \dots l_n$, such that $l_n = \text{HALT}$ and l_i $(i = 1, \dots, n-1)$ is

```
1. i: c_j := c_j + 1; goto k, or
```

```
2. i: if c_j=0 then goto k_1 else c_j:=c_j-1; goto k_2
```

Example 4.7

```
We consider two counter c_1 and c_2.
```

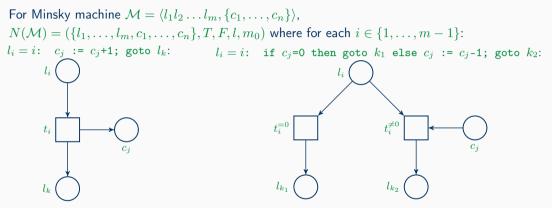
```
1: if c_2=0 then goto 3 else c_2:=c_2-1; goto 2
```

```
2: c_1:=c_1+1; goto 1
```

```
3: HALT
```

If c_1 and c_2 are initialized with m and n, then the program halts with value m + n in c_1 .

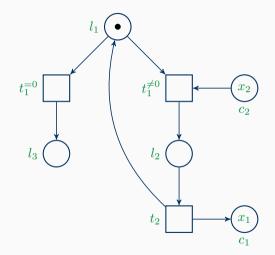
Constructing a Petri Net



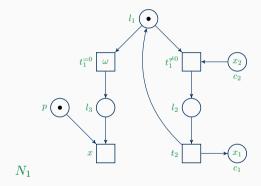
The labeling can be arbitrary but injective.

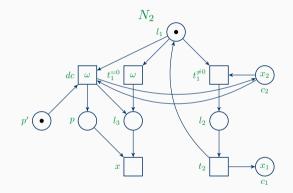
For input $x_1, \ldots, x_n \in \mathbb{N}$, define $m_0 = \{c_1 \mapsto x_1, \ldots, c_n \mapsto x_n, l_1 \mapsto 1\}$.

Petri Net Construction by Example

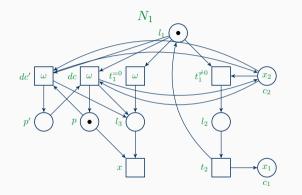


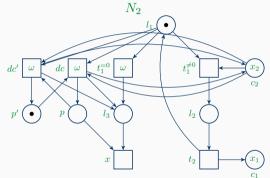
Undecidability of Language Equivalence: The Reduction





Undecidability of Bisimilarity: The Reduction





The Coverability Graph

Definition 4.8 (ω -marking)

For a net $(P,T,F)\text{, }m:P\rightarrow\mathbb{N}\cup\{\omega\}\text{ is called an }\omega\text{-marking.}$

Note, $\omega > n$ and $\omega + / -n = \omega$ for all $n \in \mathbb{N}$.

For directed graph G = (V, E) and $v \in V$, defined $v \Downarrow to$ be the smallest set, such that (1) $v \in v \Downarrow$ and (2) if $w \in v \Downarrow$ and $u \to w$, then $u \in v \Downarrow$.

Definition 4.9

Let $N = (P, T, F, m_0, l)$ be a (labeled) Petri net. The coverability graph (of N) is the graph C(N) = (V, E), such that

1. $m_0 \in V$;

2. if $m \in V$ and $m \xrightarrow{t} m'$, then $\omega(m') \in V$ and $(m, \omega(m')) \in E$ such that for all $p \in P$,

$$\omega(m')(p) = \begin{cases} \omega & \text{if } m'' \in m \Downarrow \text{ with } m''(p) < m'(p) \\ m'(p) & \text{ otherwise.} \end{cases}$$

Properties of the Coverability Graph

Theorem 4.2: The coverability graph C(N) of a Petri net N is finite.

 \rightsquigarrow follows the same argument as for the decidability proof of the boundedness problem.

Properties of the Coverability Graph

Theorem 4.3: The coverability problem — given a Petri net N and a marking m, is there a reachable marking m', such that $m \leq m'$? — is decidable.

- 1. Construct C(N)
- 2. Check if there is an $\omega\text{-marking }m^\omega$ with $m\leq m^\omega$
- 3. Consider the path $m_0 \xrightarrow{t_1} \ldots \xrightarrow{t_n} m^{\omega}$ and the marking m' reached after firing the sequence $t_1 \ldots t_n$
- 4. If $m \leq m'$, witness found.
- 5. If $m \not\leq m'$, then there is at least one ω in m^{ω} and there are markings on the path from m_0 to m^{ω} that led to the addition of ω
- 6. Repeat the respective firing sequences until a covering marking is reached.
- 7. Hence, it is sufficient to check only m^{ω} .
- 8. If m is not coverable, then there is no marking m' in the coverability graph with $m \leq m'$.

Equivalence of Unlabeled Nets

Theorem 4.4: Bisimilarity and language equivalence of Petri nets is decidable for unlabeled Petri nets.

- Given are $N_1 = (P_1, T_1, F_1, m_0^1, l_1)$ and $N_2 = (P_2, T_2, F_2, m_0^2, l_2)$ $(P_1 \cap P_2 = \emptyset = T_1 \cap T_2)$.
- Construct $N_1 + N_2 = (P_1 \cup P_2, T_1 \cup T_2, F_1 \cup F_2, m_0^1 + m_0^2).$
- Each transition $t \in T_1 \cup T_2$ is duplicated to t' with the same in-/outputs and label as t.
- Add a fresh place p and add $\{p\} \times (T_1 \cup T_2)$ and $\{t' \mid t' \text{ is a duplicate}\} \times \{p\}$ to the arc relation.
- For each label $a \in \Sigma$, add places p_1^a, p_2^a and for $t \in T_i$ with $l_i(t) = a$, add arcs $(t, p_j^a), (p_j^a, u')$ for transition duplicate u' with $l_j(u) = a$.
- If the nets are language equivalent, then every transition firing of t ∈ T_i can be reproduced in N_j by u', such that l_i(t) = l_j(u).
- If the nets are not language equivalent, then there is a shortest word w of $L(N_i) \setminus L(N_j)$. After firing the last transition of w in N_i , no duplicate can be fired in N_j .
- Unlabledness is important to not leave N_i the chance to use more clever *a*-labeled transitions. 102/115