
Knowledge Graphs
Lecture 12: Knowledge Graph Quality

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 20 Jan 2026

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs/en

https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs_(WS2025/26)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Knowledge_Graphs/en

Review

Datalog is a general language for recursive, relational queries

• Easy to adopt to graphs (edges = special relations)

• Plain Datalog is a “pure” paradigm without the technical extensions of real query
languages (esp. data types, filters)

• Adding negation is useful, but the interplay with recursion must be limited

• Adding aggregation must consider similar issues

Nemo is a free rule engine for knowledge graphs

• Data can be loaded from various sources, including SPARQL endpoints

• Support for datatypes, SPARQL-like functions and filters, stratified negation, and
aggregation

• Syntax inspired by RDF and SPARQL to work with IRIs and datatype literals

Web-based Datalog reasoner at https://tools.iccl.inf.tu-dresden.de/nemo/

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 2 of 24

https://tools.iccl.inf.tu-dresden.de/nemo/

Knowledge Graph Quality

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 3 of 24

Motivation

The quality of KGs is an aspect of utmost importance:

• Almost any data can be turned into a graph format and called “knowledge graph”

• When switching to graphs, we need to know if it was a success or failure

• As time passes, the quality of the KG must be monitored

What does quality mean in this context?
How can it be measured?
How can it be monitored automatically?

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 4 of 24

Can quality be measured?

A project manager’s dream: capture the objective quality as a single numeric value

• easy to communicate; fits into business culture

• money (cost & revenue) is also a number

• extends to valuation of employees (compare salary with quality produced)

However, the world is not that simple:

• Quality is multi-dimensional and non-linear

• Usually not metric (“We improved by 12.6%”) but merely ordinal (“We improved a lot”)

• Relationship to (metric) cost/revenue numbers all but clear

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 5 of 24

Can quality be measured?

A project manager’s dream: capture the objective quality as a single numeric value

• easy to communicate; fits into business culture

• money (cost & revenue) is also a number

• extends to valuation of employees (compare salary with quality produced)

However, the world is not that simple:

• Quality is multi-dimensional and non-linear

• Usually not metric (“We improved by 12.6%”) but merely ordinal (“We improved a lot”)

• Relationship to (metric) cost/revenue numbers all but clear

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 5 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

What is quality in KGs?

There are two prevailing dimensions of quality:

1. Functional requirements: the KG supports the envisioned application

• contains necessary information (topical, accurate, complete, ...)

• free of errors (correct, up-to-date)

• accessible in intended ways/using intended tools, with sufficient performance

2. Non-functional requirements: the KG is well built

• adheres to style guides (choice of identifiers, usage of syntax features, ...)

• includes documentation, esp. regarding modelling approach

• comes with useful schema information (declarations, ontologies, constraints, ...)

• is internally consistent and non-redundant

• based on mature technologies/standards

Functional and non-functional requirements are rarely independent

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 6 of 24

Example: TimBL’s Open Data Quality proposal

Tim Berners-Lee in 2006 proposed a 5-star quality metric for open data:

⋆ make your stuff available on the Web (whatever format) under an open license

⋆ ⋆ make it available as structured data (e.g., Excel instead of image scan of a table)

⋆ ⋆ ⋆ make it available in a non-proprietary open format (e.g., CSV instead of Excel)

⋆ ⋆ ⋆ ⋆ use URIs to denote things, so that people can point at your stuff

⋆ ⋆ ⋆ ⋆ ⋆ link your data to other data to provide context

Notes:

• ⋆ is not about data quality

• All other criteria are non-functional

• The criteria are ordinal, not metric, and no means of estimating partial progress is given
(esp. for ⋆ ⋆ ⋆ ⋆ ⋆)

• The term Linked Open Data refers to 5-⋆ RDF data with resolvable URIs

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 7 of 24

Example: TimBL’s Open Data Quality proposal

Tim Berners-Lee in 2006 proposed a 5-star quality metric for open data:

⋆ make your stuff available on the Web (whatever format) under an open license

⋆ ⋆ make it available as structured data (e.g., Excel instead of image scan of a table)

⋆ ⋆ ⋆ make it available in a non-proprietary open format (e.g., CSV instead of Excel)

⋆ ⋆ ⋆ ⋆ use URIs to denote things, so that people can point at your stuff

⋆ ⋆ ⋆ ⋆ ⋆ link your data to other data to provide context

Notes:

• ⋆ is not about data quality

• All other criteria are non-functional

• The criteria are ordinal, not metric, and no means of estimating partial progress is given
(esp. for ⋆ ⋆ ⋆ ⋆ ⋆)

• The term Linked Open Data refers to 5-⋆ RDF data with resolvable URIs

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 7 of 24

KGs as software?

KG as digital artefact are similar to software, so similar methods and criteria might apply.

But there are important differences:

• development process (many editors, often weakly coordinated; data imports; unclear
development life cycle)

• lack of modularisation/interfaces/separation of concerns
(integration vs. separation of knowledge)

• KGs have no fully self-contained function: they need to be used by some software

• KGs may be intended for multiple or yet unknown functions

And measuring software quality is already a difficult issue . . .

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 8 of 24

KGs as software?

KG as digital artefact are similar to software, so similar methods and criteria might apply.

But there are important differences:

• development process (many editors, often weakly coordinated; data imports; unclear
development life cycle)

• lack of modularisation/interfaces/separation of concerns
(integration vs. separation of knowledge)

• KGs have no fully self-contained function: they need to be used by some software

• KGs may be intended for multiple or yet unknown functions

And measuring software quality is already a difficult issue . . .

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 8 of 24

Checking instead of measuring

Summary: Quality is difficult to measure, and the choice of concrete quality measures is
always subjective

Way forward:

• We will focus on methods of checking specific quality criteria

• The outcomes of many checks can be quantified to obtain measures

• One can aggregate measures by (subjective) weighting functions, or analyse them as
multi-dimensional aspects of the KG’s status

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 9 of 24

Checking instead of measuring

Summary: Quality is difficult to measure, and the choice of concrete quality measures is
always subjective

Way forward:

• We will focus on methods of checking specific quality criteria

• The outcomes of many checks can be quantified to obtain measures

• One can aggregate measures by (subjective) weighting functions, or analyse them as
multi-dimensional aspects of the KG’s status

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 9 of 24

Quality checking: basic approaches
Quality criteria can be assessed in various ways:

• Manual: checks performed by human experts
– Subjective: Based on expert assessment

Example: Interview domain experts for completeness and correctness.

– Objective: Based on clearly defined criteria

Example: Define use cases (user stories) and check if they can been realised
in the application context.

• Automated: checks run by computers
– Operational: Ad hoc implementation of quality checks

Example: Script that retrieves matching data from a third-party database and
compares its values with the data in the KG.

– Declarative: Specification of quality criteria in some formal language that can be
interpreted by (standard) tools

Example: Schema document that constrains syntactic form of KG.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 10 of 24

Quality checking: basic approaches
Quality criteria can be assessed in various ways:

• Manual: checks performed by human experts

– Subjective: Based on expert assessment

Example: Interview domain experts for completeness and correctness.

– Objective: Based on clearly defined criteria

Example: Define use cases (user stories) and check if they can been realised
in the application context.

• Automated: checks run by computers
– Operational: Ad hoc implementation of quality checks

Example: Script that retrieves matching data from a third-party database and
compares its values with the data in the KG.

– Declarative: Specification of quality criteria in some formal language that can be
interpreted by (standard) tools

Example: Schema document that constrains syntactic form of KG.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 10 of 24

Quality checking: basic approaches
Quality criteria can be assessed in various ways:

• Manual: checks performed by human experts
– Subjective: Based on expert assessment

Example: Interview domain experts for completeness and correctness.

– Objective: Based on clearly defined criteria

Example: Define use cases (user stories) and check if they can been realised
in the application context.

• Automated: checks run by computers
– Operational: Ad hoc implementation of quality checks

Example: Script that retrieves matching data from a third-party database and
compares its values with the data in the KG.

– Declarative: Specification of quality criteria in some formal language that can be
interpreted by (standard) tools

Example: Schema document that constrains syntactic form of KG.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 10 of 24

Quality checking: basic approaches
Quality criteria can be assessed in various ways:

• Manual: checks performed by human experts
– Subjective: Based on expert assessment

Example: Interview domain experts for completeness and correctness.

– Objective: Based on clearly defined criteria

Example: Define use cases (user stories) and check if they can been realised
in the application context.

• Automated: checks run by computers
– Operational: Ad hoc implementation of quality checks

Example: Script that retrieves matching data from a third-party database and
compares its values with the data in the KG.

– Declarative: Specification of quality criteria in some formal language that can be
interpreted by (standard) tools

Example: Schema document that constrains syntactic form of KG.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 10 of 24

Quality checking: basic approaches
Quality criteria can be assessed in various ways:

• Manual: checks performed by human experts
– Subjective: Based on expert assessment

Example: Interview domain experts for completeness and correctness.

– Objective: Based on clearly defined criteria

Example: Define use cases (user stories) and check if they can been realised
in the application context.

• Automated: checks run by computers

– Operational: Ad hoc implementation of quality checks

Example: Script that retrieves matching data from a third-party database and
compares its values with the data in the KG.

– Declarative: Specification of quality criteria in some formal language that can be
interpreted by (standard) tools

Example: Schema document that constrains syntactic form of KG.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 10 of 24

Quality checking: basic approaches
Quality criteria can be assessed in various ways:

• Manual: checks performed by human experts
– Subjective: Based on expert assessment

Example: Interview domain experts for completeness and correctness.

– Objective: Based on clearly defined criteria

Example: Define use cases (user stories) and check if they can been realised
in the application context.

• Automated: checks run by computers
– Operational: Ad hoc implementation of quality checks

Example: Script that retrieves matching data from a third-party database and
compares its values with the data in the KG.

– Declarative: Specification of quality criteria in some formal language that can be
interpreted by (standard) tools

Example: Schema document that constrains syntactic form of KG.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 10 of 24

Quality checking: basic approaches
Quality criteria can be assessed in various ways:

• Manual: checks performed by human experts
– Subjective: Based on expert assessment

Example: Interview domain experts for completeness and correctness.

– Objective: Based on clearly defined criteria

Example: Define use cases (user stories) and check if they can been realised
in the application context.

• Automated: checks run by computers
– Operational: Ad hoc implementation of quality checks

Example: Script that retrieves matching data from a third-party database and
compares its values with the data in the KG.

– Declarative: Specification of quality criteria in some formal language that can be
interpreted by (standard) tools

Example: Schema document that constrains syntactic form of KG.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 10 of 24

Declarative quality checks for KGs

The distinction between “operational” and “declarative” is often fuzzy

• A testing script is operational: implementation-specific meaning; not portable

• A schema document in a standard language (e.g., XML Schema) is declarative: meaning
standardised and understood by many tools

• Many other approaches are in between:
– Graph database constraints: possibly proprietary language; may or may not be

portable
– Wikidata property constraints: community-developed approach for expressing

schema information in data
– SPARQL test queries: declarative queries used in some operational wrapper that

validates results
– Business rules: rule-based programs interpreted by proprietary software
– . . .

{ declarativity is not a rigorously defined feature, but an ideal to strive for

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 11 of 24

Competency questions

A classical approach of knowledge model evaluation are so-called competency questions

Definition 12.1: A competency question is a (usually application-related) question to-
wards the KG that is formalised in a query language, together with a formal specification
of how an acceptable answer may look.

A competency question does not need to pre-determine the KG data in all detail.

Example 12.2: We can specify that Wikidata should “know” that humans (Q5) are mam-
mals (Q7377) by requiring that the query

SELECT * WHERE { wd:Q5 wdt:P171* wd:Q7377 }

returns a non-empty result (“true”). This query leaves empty how the taxonomic hierar-
chy is modelled.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 12 of 24

Competency questions

A classical approach of knowledge model evaluation are so-called competency questions

Definition 12.1: A competency question is a (usually application-related) question to-
wards the KG that is formalised in a query language, together with a formal specification
of how an acceptable answer may look.

A competency question does not need to pre-determine the KG data in all detail.

Example 12.2: We can specify that Wikidata should “know” that humans (Q5) are mam-
mals (Q7377) by requiring that the query

SELECT * WHERE { wd:Q5 wdt:P171* wd:Q7377 }

returns a non-empty result (“true”). This query leaves empty how the taxonomic hierar-
chy is modelled.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 12 of 24

Competency questions

Competency questions focus on functional metrics:

• Coverage/completeness (but cannot check all cases)

• Correctness

• Accessibility (using query answering software)

They can be used in several situations:

• To define the initial scope (requirements) of a new KG project

• To formalise data modelling decisions (how should knowledge be encoded to be
accessible)

• For regression testing (ensure that KG does not break in the future)

However, there are also costs: modelling effort, maintenance, . . .

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 13 of 24

Unit testing

Competency questions take a content-oriented view (application- and domain-specific), but the
approach can be generalised to set up unit testing:

• Define a test suite of queries + (constraints on) expected answers

• Automatically run queries to detect problems

Unit tests can also validate non-functional criteria.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 14 of 24

Schema languages

The most formal way of defining quality criteria is by specifying structural requirements in a
formal schema language

Example 12.3: XML Schema is a classical schema language to constrain the syntactic
form of XML documents (DTD is another, older, approach with similar goals).

For RDF, there are mainly two schema languages today:

• SHACL, a W3C standard (since 2017)

• ShEx, a W3C member submission and community group effort

Note: RDF Schema, despite its name, is a lightweight ontology language rather than a schema
language.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 15 of 24

Schema languages

The most formal way of defining quality criteria is by specifying structural requirements in a
formal schema language

Example 12.3: XML Schema is a classical schema language to constrain the syntactic
form of XML documents (DTD is another, older, approach with similar goals).

For RDF, there are mainly two schema languages today:

• SHACL, a W3C standard (since 2017)

• ShEx, a W3C member submission and community group effort

Note: RDF Schema, despite its name, is a lightweight ontology language rather than a schema
language.

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 15 of 24

SHACL

SHACL is the W3C Shapes Constraint Language

Basic principles:

• Overall approach similar to query-based unit testing
• SHACL shapes specify constraints by defining two aspects:

(1) a pattern that RDF graph nodes may match (akin to simple queries),
(2) and the set of target nodes that should match the pattern

• SHACL-SPARQL extension allows using SPARQL for pattern specification

• Shapes can have meta-data to define, e.g., error messages and severity levels

• Shapes and sets of shapes are encoded in RDF as shape graphs

Further reading:

• W3C SHACL Recommendation at https://www.w3.org/TR/shacl/

• Labra Gayo, Prud’hommeaux, Boneva, Kontokostas: Validating RDF Data (Morgan
Claypool 2018); see https://book.validatingrdf.com/

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 16 of 24

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://book.validatingrdf.com/
https://book.validatingrdf.com/

SHACL by Example

The following RDF graph (in Turtle, without prefixes) defines a shape ex:PersonShape:

ex:PersonShape rdf:type sh:NodeShape ;

sh:targetClass ex:Person ; # Applies to all persons

sh:property [# Declare a constraint on property usage

sh:path ex:ssn ; # ... for property ex:ssn (social security number)

sh:maxCount 1 ; # ... at most one value

sh:datatype xsd:string ; # ... having type string

sh:pattern "ˆ\\d{3}-\\d{2}-\\d{4}$" # ... matching this regexp

] ;

sh:property [# Declare another property constraint

sh:path ex:worksFor ; # ... for property ex:worksFor

sh:nodeKind sh:IRI ; # ... values are IRIs

sh:class ex:Company # ... of rdf:type ex:Company (or a subclass)

] ;

sh:closed true ; # No other properties are allowed

sh:ignoredProperties (rdf:type) . # ... except for rdf:type

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 17 of 24

Shapes in SHACL
. . . are identified by IRIs and may optionally include:
• a specification of target nodes they apply to (sh:targetClass, sh:targetSubjectsOf,
sh:targetObjectsOf, or sh:targetNode)

• a set of property shapes that define constrains on values reached through (paths of)
properties

• constraints on whether the shape is closed
• non-validating constraints, e.g., sh:description

There is a rich vocabulary for specifying property constraints, including:
• (SPARQL-like) property paths instead of single properties
• minimal and maximal cardinalities
• resource types, datatypes, or RDF classes for values
• lists of admissible values
• ways to say that one property’s values are disjoint or equal to another’s
• (possibly recursive) reference to the NodeType of property values
• Boolean combinations of constraints (and, or, not)

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 18 of 24

Shapes in SHACL
. . . are identified by IRIs and may optionally include:
• a specification of target nodes they apply to (sh:targetClass, sh:targetSubjectsOf,
sh:targetObjectsOf, or sh:targetNode)

• a set of property shapes that define constrains on values reached through (paths of)
properties

• constraints on whether the shape is closed
• non-validating constraints, e.g., sh:description

There is a rich vocabulary for specifying property constraints, including:
• (SPARQL-like) property paths instead of single properties
• minimal and maximal cardinalities
• resource types, datatypes, or RDF classes for values
• lists of admissible values
• ways to say that one property’s values are disjoint or equal to another’s
• (possibly recursive) reference to the NodeType of property values
• Boolean combinations of constraints (and, or, not)

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 18 of 24

ShEx

ShEx is the Shape Expressions Language as proposed by a W3C Community Group

Basic principles:

• Overall approach similar to matching a grammar description to a graph
• ShEx shapes specify constraints by defining a pattern that refers to

(1) required features of the RDF graph
(2) required patterns matched by adjacent nodes (recursively)

• Validation tries to consistently map nodes in an RDF graphs to types as required (based
on some initial map)

• Sets of shapes form a schema, encoded in an RDF-inspired own syntax

Further reading:

• ShEx community homepage at http://shex.io/

• Labra Gayo, Prud’hommeaux, Boneva, Kontokostas: Validating RDF Data (Morgan
Claypool 2018); see https://book.validatingrdf.com/

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 19 of 24

http://shex.io/
http://shex.io/
https://book.validatingrdf.com/
https://book.validatingrdf.com/

ShEx by Example
The following defines a shape a:PersonShape (without prefix declarations), which is
functionally equivalent to the previous SHACL example:

a:PersonShape CLOSED EXTRA rdf:type {
ex:ssn xsd:string /ˆ\\d{3}-\\d{2}-\\d{4}$/ ? ;

ex:worksFor IRI @a:CompanyShape * ;

}

a:CompanyShape [ex:Company] OR { rdfs:subClassOf @:CompanyShape }

Notes:

• CLOSED and EXTRA play the role of sh:closed and sh:ingoredProperties

• “property shapes” are compactly expressed in single lines

• taking indirect typing (instances of subclasses) into account requires the use of recursive
shape definitions

As for SHACL, there are many further features. For example, shape expressions can be
combined with boolean operators AND, OR, and NOT.
Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 20 of 24

Validating SHACL and ShEx

Both approaches support recursive constraints and disjunctions:

• Node types are not part of the data: their recursive use means that validation has to
extend shapes to new target nodes

• Disjunction means that this assignment might be non-determinstic

{ worst-case NP-complete complexity in the size of the graph (data complexity!)

However:

• In SHACL, recursive assignments are a minor feature, and the specification does not
define their semantics. Selection of target nodes mostly governed by conditions on RDF.

• In ShEx, type maps are the only mechanism for selecting targets, and recursive
assignments are necessary to check indirect class membership

{ NP-completeness seems more challenging for ShEx than for SHACL

Since SHACL is mostly deterministic, it can also provide detailed error reports in case of failing
constraints (this is hard if many assignments need to be considered which may all fail, but for different reasons)

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 21 of 24

Validating SHACL and ShEx

Both approaches support recursive constraints and disjunctions:

• Node types are not part of the data: their recursive use means that validation has to
extend shapes to new target nodes

• Disjunction means that this assignment might be non-determinstic

{ worst-case NP-complete complexity in the size of the graph (data complexity!)

However:

• In SHACL, recursive assignments are a minor feature, and the specification does not
define their semantics. Selection of target nodes mostly governed by conditions on RDF.

• In ShEx, type maps are the only mechanism for selecting targets, and recursive
assignments are necessary to check indirect class membership

{ NP-completeness seems more challenging for ShEx than for SHACL

Since SHACL is mostly deterministic, it can also provide detailed error reports in case of failing
constraints (this is hard if many assignments need to be considered which may all fail, but for different reasons)

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 21 of 24

Validating SHACL and ShEx

Both approaches support recursive constraints and disjunctions:

• Node types are not part of the data: their recursive use means that validation has to
extend shapes to new target nodes

• Disjunction means that this assignment might be non-determinstic

{ worst-case NP-complete complexity in the size of the graph (data complexity!)

However:

• In SHACL, recursive assignments are a minor feature, and the specification does not
define their semantics. Selection of target nodes mostly governed by conditions on RDF.

• In ShEx, type maps are the only mechanism for selecting targets, and recursive
assignments are necessary to check indirect class membership

{ NP-completeness seems more challenging for ShEx than for SHACL

Since SHACL is mostly deterministic, it can also provide detailed error reports in case of failing
constraints (this is hard if many assignments need to be considered which may all fail, but for different reasons)

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 21 of 24

SHAC/ShEx vs. OWL (1)
Many features of SHACL are very similar to constructions in OWL in another surface syntax.

For example, the SHACL declaration

ex:PersonShape rdf:type sh:NodeShape ;

sh:targetClass ex:Person ;

sh:property

[sh:path ex:worksFor ; sh:nodeKind sh:IRI ; sh:class ex:Company]

is similar to the OWL axiom

SubClassOf(

ex:Person

ObjectSomeValuesFrom(ex:worksFor ex:Company)

)

In particular, syntactic “restrictions” in both cases are almost exclusively tree-shaped.
Simliar observations apply to ShEx.
Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 22 of 24

SHACL/ShEx vs. OWL (2)

Differences between SHACL/ShEx and OWL mainly concern the semantics and intended use
of the information:

SHACL/ShEx

• Constraints (stating requirements on the
data){ error reports

• Semantics similar to query answering;
node types complicate recursion

• No semantics for recursive shapes with
negation

• Can exclude unmentioned properties by
“closing” shapes

OWL

• Terminological knowledge (added to
the data){ new inferences

• Semantics based on first-order logic
(specifically: description logics)

• Semantics supports any form of
recursive specifications

• Can only exclude individual
properties by explicit negation

Many similarities in what specifications express – main differences in how they are used
(one also could also have made a constraint language based on OWL by interpreting axioms differently for this purpose, and some researchers have even
proposed to view parts of SHACL as a description logic)

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 23 of 24

Summary

Defining and measuring knowledge graph quality is difficult; there are many criteria

Competency questions and unit tests are basic approaches for automatic quality checks

RDF constraint languages like SHACL and ShEx can declaratively specify constraints
(but dedicated, scalable tools for applying them to KGs remain elusive)

What’s next?

• Summary

• Consultation

• Examinations

Markus Krötzsch, 20 Jan 2026 Knowledge Graphs slide 24 of 24

