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1 Introduction

DL reasoning is of high computational complexity even for basic DLs such as ALCI
[3, Chapter 3]. Intuitively, due to disjunctions (or-branching) and/or existential quan-
tifiers (and-branching), a DL reasoner may need to investigate (at least) exponentially
many combinations of concepts. A range of highly-tuned optimizations, such as absorp-
tion, dependency-directed backtracking, blocking, and caching [3, Chapter 9], can be
used to tame these sources of complexity. None of these techniques, however, provide
formal tractability guarantees. Such guarantees can be obtained by restricting the lan-
guage expressivity, as done in the EL [2], DL-Lite [4,1], and DLP [8] families of DLs.
Tractable DLs typically do not support disjunctions, which eliminates or-branching, and
they either significantly restrict universal quantification (as in EL and DL-Lite) or disal-
low existential quantification (as in DLP), which eliminates or reduces and-branching.

Obtaining tractability guarantees for hard computational problems has been exten-
sively studied in parameterized complexity [5]. The general idea is to measure the “hard-
ness” of a problem instance of size n using a nonnegative integer parameter k, and the
goal is to solve the problem in time that becomes polynomial in n whenever k is fixed.
A particular goal is to identify fixed parameter tractable (FPT) problems, which can be
solved in time f (k) · nc, where c is a constant and f is an arbitrary computable function
that depends only on k. Note that not every problem that becomes tractable if k is fixed
is in FPT. For example, checking whether a graph of size n contains a clique of size k
can clearly be performed in time O(nk), which is polynomial if k is a constant; however,
since k is in the exponent of n, this does not prove membership in FPT.

Note that every problem is FPT if the parameter is the problem’s size, so a useful
parameterization should allow increasing the size arbitrarily while keeping the param-
eter bounded. Various problems in AI were successfully parameterized by exploiting
the graph-theoretic notions of tree decompositions and treewidth [6,7,10], which we
recapitulate next. A hypergraph is a pair G = 〈V,H〉 where V is a set of vertices and
H ⊆ 2V is a set of hyperedges. A tree decomposition of G is a pair 〈T, L〉 where T is
an undirected tree whose sets of vertices (also called bags) and edges are denoted with
B(T ) and E(T ), and L : B(T )→ 2V is a labeling of B(T ) by subsets of V such that

(T1) for each v ∈ V , the set {b ∈ B(T ) | v ∈ L(b)} induces a connected subtree of T , and
(T2) for each e ∈ H, there exists a bag b ∈ B(T ) such that e ⊆ L(b).

The width of 〈T, L〉 is defined as maxb∈B(T ) L(b) − 1. Finally, the treewidth of G is the
minimum width among all possible tree decompositions of G. Consider now an in-
stance N of the SAT problem, where N is a finite set of clauses (i.e., disjunctions



of possibly negated propositional variables). The notions of tree decompositions and
treewidth of N are defined w.r.t. the hypergraph GN = 〈VN ,HN〉 where VN is the set of
propositional variables occurring in N, and HN contains the hyperedge {p1, . . . , pk} for
each clause (¬)p1 ∨ . . . ∨ (¬)pk ∈ N. When parameterized by treewidth, SAT is FPT
[10]. Intuitively, the treewidth of N shows how many propositional variables must be
considered simultaneously in order to check the satisfiability of N; thus, bounding the
treewidth has the effect of bounding or-branching.

Inspired by these results, we present a novel DL reasoning algorithm that ensures
fixed parameter tractability. To this end, in Section 3 we introduce a notion of a de-
composition D of a signature Σ. Intuitively, D is a graph that restricts the propagation
information between the atomic concepts in Σ. A decomposition of Σ can be seen as
one or more tree decompositions, each reflecting the propagation of information due
to or-branching, interconnected to reflect the propagation of information due to and-
branching. We identify a parameter ofD called width; intuitively, this parameter deter-
mines an upper bound on the number of concepts that must be considered simultane-
ously to solve a reasoning problem. Let O be anALCI ontology normalized to contain
only axioms of the form

�
i Ai v

⊔
j B j, A v ∃R.B, and A v ∀R.B, where A(i) and B( j)

are atomic concepts, and R is a (possibly inverse) role. We present a resolution-based
reasoning calculus that runs in time O( f (d) · |D| · |O|), where d is the width ofD, |D| is
the size ofD, and |O| is the number of axioms in O. Our calculus is not complete for all
D: it is not guaranteed to derive all consequences that might be of interest. To remedy
that, we introduce a notion ofD being admissible for O and the relevant consequences,
and we show that admissibility guarantees completeness.

Ideally, given O and the relevant consequences, one would identify an admissible
decompositionD of smallest width and then run our calculus in order to obtain an FPT
algorithm. In Section 4, however, we show that, for certain O, all admissible decompo-
sitions of smallest width have exponentially many vertices. This is in contrast to tree
decompositions (e.g., for each instance of SAT, a tree decomposition of minimal width
exists in which the number of vertices is linear in the size of the instance) and is due
to the fact that, in addition to or-branching, our decompositions analyze information
flow due to and-branching as well. We therefore further restrict the notion of admissi-
ble decompositions in several ways. For each of the resulting notions, one can compute
a decomposition of width at most d (if one exists) in time f (d) · |O|c with f a computable
function and c an integer constant; together with our resolution-based calculus, we thus
obtain an FPT calculus for reasoning with normalizedALCI ontologies.

In Section 5 we show that the minimum decomposition width of several commonly
used ontologies is much smaller than the respective ontology’s size. This suggests that
decomposition width provides a “reasonable” measure of ontology complexity, and that
our approach might even provide practical tractability guarantees.

Our results can be applied to SHI ontologies by transforming away role hierar-
chies and transitivity and normalizing the ontology in a preprocessing step. Such trans-
formations, however, are don’t-care nondeterministic, and the minimum decomposition
width of the normalization result might depend on the nondeterministic choices. In this
paper we thus restrict our attention to normalized ALCI ontologies, and we leave an
investigation of how normalization affects the minimum width for future work.
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Fig. 1. A simple resolution calculus

The proofs of all results presented in this paper are available in the technical report
at http://www.comlab.ox.ac.uk/boris.motik/pubs/smk11dl-decomposition.pdf.

2 Source of Complexity in DL Reasoning

In order to motivate the results presented in the following sections, in this section we
present a very simple calculus that is not FPT, and we discuss the rough idea for making
the calculus FPT. The calculus is based on resolution, and is similar to the calculus pre-
sented in [9]. Resolution can often provide worst-case optimal calculi whose best case
complexity is significantly lower than the worst case complexity; indeed, the calculus
from [9] has demonstrated excellent practical performance.

The calculus manipulates clauses—expressions of the form K v M, where K is a
finite conjunction of atomic concepts, and M is a finite disjunction of atomic concepts.
With sig(K), sig(M), and sig(K v M) we denote the sets of atomic concepts occurring
in K, M, and K v M, respectively. We consider two disjunctions (resp. conjunctions) to
be the same whenever they mention the same atoms; that is, we disregard the order
and the multiplicity of atoms. We write empty K and M as > and ⊥, respectively.
Furthermore, we say that a clause K′ v M′ is a strengthening of a clause K v M if
sig(K′) ⊆ sig(K) and sig(M′) ⊆ sig(M). We write K v M ∈̂ N if the set of clauses N
contains at least one strengthening of the clause K v M.

Given a normalized ontology O, our calculus constructs a derivation—a sequence
S0,S1, . . . of sets of clauses such that S0 = ∅, and for each i > 0, set Si is obtained
from Si−1 by applying a rule from Fig. 1. Rules R1 and R2 implement propositional
resolution, and rule R3 ensures that each clause in O is taken into account. Rule R4

handles role restrictions; letter R stands for a role (i.e., R need not be atomic), and
inv(R) is the inverse role of R; finally, note that the atom B in the premise of the rule is
optional. Intuitively, the rule says that, if B, Di, and ¬E j jointly imply a contradiction,
but A v ∃R.B, Ci v ∀R.Di, and ¬F j v ∀R.¬E j hold, then A, Ci, and ¬F j jointly imply
a contradiction too. Reasoning with the second premise is analogous.

A saturation is defined as S B
⋃

i Si. The calculus infers a clause K v M, written
O ` K v M, if K v M ∈̂ S. It is straightforward to see that the calculus is sound: if
O ` K v M, then O |= K v M. Typically, resolution is used as a refutation-complete
calculus; however, it is possible to show that the variant of resolution presented here
is complete in the following stronger sense: if O |= K v M, then O ` K v M; note that
this means that the calculus infers at least one strengthening of each clause entailed by

http://www.comlab.ox.ac.uk/boris.motik/pubs/smk11dl-decomposition.pdf


O. This stronger notion of completeness can be useful in practice; for example, O can
be classified using a single run of the calculus, which is not the case for calculi (such as
tableau) that are only refutationally complete.

Let d be the number of atomic concepts in O. Since each clause is uniquely identi-
fied by the atomic concepts that occur in K and/or M, the calculus can derive at most
4d clauses, which is exponential in |O|. The high complexity of DL reasoning arises
because one may have to consider exponentially many combinations of concepts, and
this fact fundamentally underpins all DL reasoning algorithms. Clearly, a tractable algo-
rithm should consider only polynomially many combinations. For example, reasoning
algorithms for EL exploit the fact that only polynomially many combinations are “rele-
vant” and that all of them can be constructed deterministically. In the following sections,
we ensure tractability of reasoning in a radically different way. Instead of restricting the
ontology language, we show that by restricting the structure of the ontology with a
suitable parameter one can limit the number of concepts that must be simultaneously
considered, which effectively limits the exponent in the above calculation. Since the
base of the exponent not depend on |O|, we will thus obtain an FPT reasoning calculus.

3 Reasoning with Decompositions

In this section we develop the notions of decomposition, decomposition admissibility,
and the resolution calculus. We start by introducing the notion of decomposition.

Definition 1. Let Σ = 〈ΣA, ΣR〉 be a DL signature, where ΣA is a finite set of atomic
concepts and ΣR is a finite set of atomic roles; let ΣR− = {R− | R ∈ ΣR} be the set of
inverse roles of ΣR; and let ε be a symbol not contained in ΣA ∪ ΣR ∪ ΣR− .

A decomposition of Σ is a labeled graph D = 〈V,E, sig〉, where V is a finite set
of vertices, E ⊆ V ×V × (ΣR ∪ Σ

−
R ∪ {ε}) is a set of directed edges labeled by a role or

by ε, and sig : V → 2ΣA is a labeling of each vertex with a set of atomic concepts. The
width ofD is defined as wd(D) B maxv∈V |sig(v)|.

Note that D is not defined w.r.t. an ontology, but w.r.t. a signature Σ, and we will
establish a link between D and O shortly in our notion of admissibility. This is mainly
so as to gather all conditions that guarantee completeness in one place. We discuss the
intuition behind this definition after presenting the resolution-based calculus.

Definition 2. Let Σ be a DL signature, let D = 〈V,E, sig〉 be a decomposition of Σ,
and let O be a normalized ALCI ontology over Σ. The resolution calculus for D and
O is defined as follows.

A clause system for D is a function S that assigns to each vertex v ∈ V a set of
clauses S(v). A derivation of the calculus is a sequence of clause systems S0,S1,S2, . . .
such that S0(v) = ∅ for each v ∈ V and, for each i > 0, Si is obtained from Si−1 by
an application of a derivation rule from Fig. 2; we assume that each derivation is fair
in the usual sense. The saturation is the clause system S defined by S(v) B

⋃
i Si(v) for

each v ∈ V. The calculus infers a clause K v M at vertex v, written O, v `D K v M, if
K v M ∈̂ S(v); furthermore, the calculus infers a clause K v M, written O `D K v M,
if a vertex v ∈ V exists such that O, v `D K v M.
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A v ∃R.B ∈ O
Ci v ∀R.Di ∈ O

E j v ∀inv(R).F j ∈ O

〈u, v,R〉 ∈ E
sig(A u

�
i Ci v

⊔
j F j) ⊆ sig(v)

R5
K v M ∈ S(u)

add K v M to S(v)
:
〈u, v, ε〉 ∈ E
sig(K v M) ⊆ sig(v)

Fig. 2. The decomposition calculus

The calculus is complete (sound) ifO |= K v M implies (is implied by)O `D K v M
for each clause K v M over Σ. Given a set of clauses C over Σ, the calculus is C-
complete if O |= K v M implies O `D K v M for each K v M ∈ C.

While the simple calculus from Section 2 saturates a single set of clauses, the res-
olution calculus for D and O saturates one set of clauses per decomposition vertex. In
particular, for a vertex v ∈ V, set S(v) contains only clauses whose propositional atoms
are all contained in sig(v), so v identifies a propositional subproblem of O. Rules R1–R3

implement propositional resolution “within” each vertex v. Rule R5 propagates proposi-
tional consequences from vertex u to vertex v connected by an ε-labeled edge; thus, the
ε-labeled edges ofD “connect” the subproblems of O in accordance with or-branching.
Finally, rule R4 propagates modal consequences from a vertex u to a vertex v connected
by an R-labeled edge; thus, the R-labeled edges of D “connect” the subproblems of O
in accordance with and-branching. A clause is inferred if at least one saturated set S(v)
contains a strengthening of the clause.

Note that rules R1–R3 consider only one vertex at a time, whereas rules R4 and R5

involve two vertices. Thus, although this was not our initial motivation, the calculus
seems to exhibit significant parallelization potential. We leave a thorough investigation
of the reasoning problem in terms of parallel complexity classes for future work.

The notion of C-completeness takes into account that one might be interested not
only in refutational completeness, but in the derivation of all clauses from some set C.
For example, if one is interested in the classification of O, then C would contain all
clauses of the form A v B with A and B atomic concepts occurring in O.

The following proposition determines the complexity of the calculus in terms of the
sizes ofD and the number |O| of axioms in O. It essentially observes two key facts: first,
since the clauses in each S(v) are restricted to atomic concepts in sig(v), the maximum
number of clauses in S(v) is determined solely by wd(D); and second, given a node or a



pair of nodes, all rules can be applied in time that also depends solely on wd(D). Once
we limit the size ofD, this proposition will provide us with an FPT algorithm.

Proposition 1. Let D = 〈V,E, sig〉 and O be as in Definition 2. The saturation of the
resolution calculus forD andO can be computed in time O( f (wd(D)) · (|V| + |E|) · |O|),
where f is some computable function.

The rules of our calculus are clearly sound for arbitrary decompositions D and
ontologies O; however, the converse is not true. As a trivial example, note that the
decomposition with the empty vertex and edge sets satisfies Definition 1, and that our
calculus does not infer any clause using suchD. Therefore, we next introduce the notion
of admissibility, which we later show to be sufficient for completeness.

Definition 3. LetD = 〈V,E, sig〉 be a decomposition of a DL signature Σ = 〈ΣA, ΣR〉.
Let W ⊆ V be an arbitrary set of vertices. The signature of W is defined as

sig(W) B
⋃

w∈W sig(w). The ε-projection of D w.r.t.W is the undirected graph DW
that contains the undirected edge {u, v} for each 〈u, v, ε〉 ∈ E with u, v ∈ W. SetW is
ε-connected if, for all u, v ∈ W, vertices {w0,w1, . . . ,wn} ⊆ W exist such that w0 = u,
wn = v, and 〈wi−1,wi, ε〉 ∈ E for each 1 ≤ i ≤ n; furthermore,W is an ε-component of
D ifW is ε-connected, and eachW′ such thatW (W′ ⊆ V is not ε-connected.

DecompositionD is admissible for an ontologyO if 〈u, v, ε〉 ∈ E implies 〈v, u, ε〉 ∈ E
for all u, v ∈ V, and if each ε-componentW ofD satisfies the following properties:

(i) DW is an undirected tree;
(ii) for each atomic concept A ∈ sig(W), the set {w ∈ W | A ∈ sig(w)} is ε-connected;

(iii) for each clause K v M ∈ O such that sig(K) ⊆ sig(W), a vertex w ∈ W exists such
that sig(K v M) ⊆ sig(w);

(iv) for each axiom A v ∃R.B ∈ O such that A ∈ sig(W), an ε-componentU of D and
vertices w ∈ W and u ∈ U exist such that

– 〈u,w,R〉 ∈ E,
– A ∈ sig(w),
– B ∈ sig(u),
– for each C v ∀R.D ∈ O, if C ∈ sig(W) then C ∈ sig(w) and D ∈ sig(u), and
– for each E v ∀inv(R).F ∈ O, if E ∈ sig(U) then E ∈ sig(u) and F ∈ sig(w).

A clause K v M is covered by D if an ε-componentW of D and a vertex w ∈ W
exist such that sig(K) ∪ [sig(M) ∩ sig(W)] ⊆ sig(w). Decomposition D is admissible
for C if each clause in C is covered byD.

Definition 3 incorporates two largely orthogonal ideas. First, each ε-componentW
of D reflects the propositional constraints on domain elements of a particular type in a
model ofO. To deal with or-branching, eachW is a tree decomposition formed by undi-
rected ε-labeled edges. Conditions (i)–(iii) are analogous to (T1) and (T2) in Section 1,
but (iii) is more general: instead of requiring sig(K v M) ⊆ sig(w) for each K v M ∈ O
and some w ∈ W, Condition (iii) takes into account that, if sig(K) * sig(W), then
K v M can be satisfied by making the atomic concepts in sig(K) \ sig(W) false on the
appropriate domain element; thus, sig(K v M) ⊆ sig(w) must hold for some w ∈ W
only if sig(K) ⊆ sig(W). Admissibility for C uses an analogous idea.



Second, to deal with and-branching, the ε-components of D are interconnected via
role-labeled edges. If a concept A occurs in an ε-componentW and in an axiom of O of
the form A v ∃R.B, then a domain element corresponding toW might need to have an
R-successor; to reflect that,Dmust contain an ε-componentU, and vertices w ∈ W and
u ∈ U connected by an R-labeled edge must exist such that A ∈ sig(w) and B ∈ sig(u).
Furthermore, in order to address the universal quantifiers over R, if C v ∀R.D ∈ O and
C ∈ sig(W), then C ∈ sig(w) and D ∈ sig(u) must hold, and analogously for universals
over inv(R). These conditions ensure that w and u contain all atomic concepts that might
be relevant for modal reasoning, which in turn allows our calculus to infer all relevant
constrains on atomic concepts.

The following theorem shows that admissibility indeed ensures completeness.

Theorem 1. Let O be an ontology, let C be a set of clauses, and letD = 〈V,E, sig〉 be
a decomposition that is admissible for O and C. Then, the resolution calculus forD and
O is C-complete.

Ideally, given an ontology O and a set of clauses C, one would identify a decom-
position D of smallest width and then apply the resolution calculus for D and O to
obtain an FPT algorithm. The following theorem shows, however, that this idea does
not work, since it is not the case that, for each ontology O, there exists a decomposition
of minimal width that is admissible for O and whose size is polynomial in |O|. In order
to address this problem, in Section 4 we further restrict the notion of admissibility.

Theorem 2. A family of ALCI ontologies {On} exists such that each decomposition
admissible for On and C = {C v ⊥} of minimal width has size exponential in |On|.

4 Constructing Decompositions of Polynomial Size

In Section 4.3 we present a general method for computing admissible decompositions
of polynomial size, for which we obtain the desired FPT result. This method embodies
two largely orthogonal ideas, each of which we present separately for didactic purposes.
In particular, in Section 4.1 we present an approach for analyzing and-branching, and
in Section 4.2 we present an approach for analyzing or-branching.

4.1 Analyzing And-Branching via Deductive Overestimation

In this section we present an approach for analyzing and-branching, which is inspired
by the reasoning algorithm for EL [2]. The approach uses an overestimation of the
subsumption relation to construct the decomposition. It manipulates expressions of the
form K  A, where K is a conjunction of atomic concepts, and A is an atomic concept.
Given anALCI ontology O and a set of clauses C, the deductive overestimation for
O and C is the relation obtained by exhaustive application of the rules shown in Fig. 3.

Intuitively, K  A states that an object whose existence is required to satisfy K can
become an instance of A. On EL ontologies coincides with the subsumption relation,
but on more expressive ontologies overestimates the subsumption relation. In order
to check whether a clause K v M ∈ C is entailed by O, rule E1 introduces an instance



E1 K  A1 . . . K  An
:

A1 u . . . u An v B1 t . . . t Bm ∈ C

K = A1 u . . . u An

E2
K  A1 . . . K  An

K  B1 . . . K  Bm
: A1 u . . . u An v B1 t . . . t Bm ∈ O

E3
K  A
B B

: A v ∃R.B ∈ O

E4
K  A K  C

B D
:

A v ∃R.B ∈ O
C v ∀R.D ∈ O

E5
K  A B E

K  F
:

A v ∃R.B ∈ O
E v ∀R−.F ∈ O

Fig. 3. Computing the deductive overestimation for O and C

of all atomic concepts in K. Rule E2 addresses the fact that, if some object α is an
instance of A1, . . . , An and O contains a clause A1 u . . . u An v B1 t . . . t Bm, then the
object must be an instance of some Bi. Since a polynomial overestimation method that
reasons by case is unlikely to exist, rule E2 overestimates the subsumption relation by
saying that α can be an instance of all B1, . . . , Bm. Rule E3 takes into account that, given
A v ∃R.B ∈ O, each instance of A needs an R-successor that is an instance of B. Anal-
ogously to the EL reasoning calculus, in order to obtain a polynomial overestimation
method, rule E3 “reuses” the same successor to satisfy multiple existential restrictions
to the same concept B. Finally, rules E4 and E5 implement modal reasoning.

Having computed , we construct the decompositionDE = 〈V,E, sig〉 of the sym-
bols occurring in O and C as shown below. Note that DE contains no ε-labeled edges,
as this decomposition method does not analyze or-branching. By Theorems 1 and 3, the
resolution calculus forDE and O is C-complete.

V B {vK | K  A for some A} sig(vK) B {A | K  A}
E B {〈vB, vK ,R〉 | K  A and A v ∃R.B ∈ O}

Theorem 3. DecompositionDE is admissible for O and C.

4.2 Analyzing Or-Branching via Tree Decomposition

We now present an approach for computing admissible decompositions that analyzes
or-branching. The approach handles the clauses in O as explained in Section 1 for SAT,
and it imposes additional constraints in order to satisfy condition (iv) of Definition 3.

Given a normalized ontology O and a set of clauses C, we define the hypergraph
GO,C = 〈V,H〉 such that V and H are the smallest sets satisfying the following proper-
ties. For each atomic concept A occurring in O or C, we have A ∈ V . For each clause
K v M ∈ O, we have sig(K v M) ∈ H. For each A v ∃R.B ∈ O, set H contains hyper-
edges domAv∃R.B and ranAv∃R.B defined as shown below, where Ci v ∀R.Di, 1 ≤ i ≤ n
and E j v ∀inv(R).F j, 1 ≤ j ≤ m are all axioms in O of the respective forms:

domAv∃R.B B {A,C1, . . . ,Cn, F1, . . . , Fm},

ranAv∃R.B B {B,D1, . . . ,Dn, E1, . . . , Em}.



Finally, sig(K v M) ∈ H for each K v M ∈ C.
Given a tree decomposition 〈T, L〉 of GO,C, we construct (don’t-care nondeterminis-

tically) a decompositionDT = 〈V,E, sig〉 as follows. The vertices ofDT are the bags of
T—that is,V B B(T ). The signatures of DT are the labels of T—that is, sig B L. The
ε-edges ofDT are the edges of T—that is, for each {u, v} ∈ E(T ), we have 〈u, v, ε〉 ∈ E.
Finally, for each A v ∃R.B ∈ O, choose vertices u, v ∈ V such that ranAv∃R.B ⊆ L(u)
and domAv∃R.B ⊆ L(v) and set 〈u, v,R〉 ∈ E; such u and v exist due to property (T2) of
the definition of tree decompositions in Section 1.

Theorem 4. Every decompositionDT is admissible for O and C.

4.3 Analyzing And- and Or-Branching Simultaneously

We now show how to combine the approaches for analyzing and- and or-branching to
obtain a C-decomposition of a normalizedALCI ontology O and a set of clauses C.

The procedure consists of three steps. First, we compute the relation as described
in Section 4.1. This step analyzes the and-branching inherent in O and C.

Second, for all K such that K  A for some A, we simultaneously define hyper-
graphs GK = 〈VK ,HK〉 where VK B {A | K  A}, and HK are the smallest sets satisfy-
ing the following conditions. For each clause K′ v M′ ∈ Owith sig(K′ v M′) ⊆ VK , we
have sig(K′ v M′) ∈ HK . For each axiom A v ∃R.B ∈ O such that A ∈ VK , set HK con-
tains hyperedge domK,Av∃R.B and set HB contains hyperedge ranK,Av∃R.B defined below,
where Ci v ∀R.Di, 1 ≤ i ≤ n and E j v ∀inv(R).F j, 1 ≤ j ≤ m are all axioms in O of the
respective forms such that Ci ∈ VK and E j ∈ VB:

domK,Av∃R.B B {A,C1, . . . ,Cn, F1, . . . , Fm},

ranK,Av∃R.B B {B,D1, . . . ,Dn, E1, . . . , Em}.

Finally, [sig(K v M) ∩ VK] ∈ HK for each K v M ∈ C.
Third, we compute a tree decomposition 〈TK , LK〉 for each hypergraph GK ; without

loss of generality we assume that all sets B(TK) are disjoint. We then construct the
decomposition DC = 〈V,E, sig〉 as follows. The vertices of DC are the bags of the
tree decompositions—that is, V B

⋃
K B(TK). The signatures of DC are the labels of

the tree decompositions—that is, sig B
⋃

K LK . The ε-edges of DC are the edges of
the tree decompositions—that is, 〈u, v, ε〉 ∈ E for each {u, v} ∈ E(TK). Finally, for each
axiom A v ∃R.B ∈ O and each K such that A ∈ VK , choose u ∈ B(VB) and v ∈ B(VK)
such that ranK,Av∃R.B ⊆ L(u) and domK,Av∃R.B ⊆ L(v) and set 〈u, v,R〉 ∈ E; such u and v
exist due to property (T2) of the definition of tree decompositions in Section 1.

The class of all C-decompositions of O and C consists of all decompositions ob-
tained in the way specified above. Note that the first step (computation of ) is deter-
ministic, but the second step is not as each GK may admit several tree decompositions.
The C-width of O and C is the minimal width of any C-decomposition of O and C.

Theorem 5. Every decompositionDC is admissible for O and C.

To show that DL reasoning is FPT if the C-width is bounded, we next estimate the
effort required for computing a C-decomposition of O and C. With ‖O‖ and ‖C‖ we de-
note the sizes of (i.e. the numbers of symbols required to encode) O and C, respectively.



Table 1. Upper bounds on C-width for classification

Ontology |ΣA| |Σnorm
A | wd(DE) wd(DC)

SNOMED CT (http://ihtsdo.org/snomed-ct/) 315,489 516,703 349 100
SNOMED CT-SEP (see [9] for reference) 54,973 149,839 1,196 168
FMA (http://fma.biostr.washington.edu/) 41,700 81,685 1,166 35
GALEN (http://opengalen.org/) 23,136 49,245 646 54
OBI (http://obi-ontology.org/) 2,955 4,296 304 45

Proposition 2. An algorithm exists that takes as input a positive integer d, a normalized
ALCI ontology O, and a set of clauses C, that runs in time O(g(d) · (‖O‖ + ‖C‖)5) for
g a computable function, and that computes a C-decomposition of O and C of width at
most d whenever at least one such decomposition exists.

We can now formulate the main FPT result for C-decompositions.

Theorem 6. Let d be a positive integer, let O be a normalized ALCI ontology, and
let K v M be a clause. The problem of deciding whether a C-decomposition of O and
C = {K v M} of width at most d exists, and if so, whether O |= K v M, is FPT.

5 Experimental Results

It can be argued that FPT is interesting only if the parameter can be substantially smaller
than the input size. In order to judge the “usefulness” of C-width as a complexity mea-
sure, we measured the C-width of several ontologies (listed in Table 1) that are often
used for evaluating DL reasoners. We weakened all ontologies toALCHI by discard-
ing all unsupported features, we applied the structural transformation from [9], and we
eliminated role inclusion axioms by unfolding the role hierarchy into universal restric-
tions to obtain normalizedALCI ontologies. Note that there are several different ways
of formulating and optimizing structural transformation, and each could produce an
ontology of a different C-width, so our results are not necessarily optimal.

After normalization, we next computed the deductive overestimation and the de-
composition DE as described in Section 4.1, we constructed the hypergraphs GK as
described in Section 4.3, and we fed all of them into TreeD1—a library for computing
tree decompositions—to construct a C-decomposition DC. For each ontology we con-
sidered two sets of goal clauses: C1 = {A v ⊥ | A ∈ ΣA}, which corresponds to checking
satisfiability of all atomic concepts, and C2 = {A v B | A, B ∈ ΣA}, which corresponds
to classification. In theory, the C-width of O and C1 can be smaller than the C-width of
O and C2; however, we have not observed a difference between the two in practice, so
we present here only the results for classification. Also, please note that TreeD was able
only to produce approximate, rather than exact tree decompositions; hence, our results
provide only an upper bound on the C-width.

The results of our experiments are shown in Table 1. For each ontology we list
the number of atomic concepts in the original ontology (|ΣA|), the number of atomic

1 http://www.itu.dk/people/sathi/treed/

http://ihtsdo.org/snomed-ct/
http://fma.biostr.washington.edu/
http://opengalen.org/
http://obi-ontology.org/
http://www.itu.dk/people/sathi/treed/


concepts after normalization (|Σnorm
A |), and the widths of the two decompositions that

we constructed. Notice that although some of the tested ontologies contain tens or even
hundreds of thousands of concepts, the width ofDC rarely exceeds one hundred, and it
is always by several orders of magnitude smaller than the total number of concepts in
the ontology. This suggests that our notion of a decomposition might even prove to be
useful in practice, provided that our resolution algorithm is suitably optimized.

6 Conclusion

We presented a DL reasoning algorithm that is fixed parameter tractable for a suitable
notion of the input width. We see two main challenges for our future work. On the the-
oretical side, our approach should be extended to more complex ontology languages;
handling counting seems particularly challenging. On the practical side, our algorithm
should be optimized for practical use. A particular challenge is to combine the construc-
tion of a decomposition with actual reasoning and thus save preprocessing time.
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