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Abstract
Snomed ct is a large-scale medical ontology,
which is developed using a variant of the inexpres-
sive Description Logic EL. Description Logic rea-
soning can not only be used to compute subsump-
tion relationships between Snomed concepts, but
also to pinpoint the reason why a certain subsump-
tion relationship holds by computing the axioms
responsible for this relationship. This helps devel-
opers and users of Snomed ct to understand why
a given subsumption relationship follows from the
ontology, which can be seen as a first step toward
removing unwanted subsumption relationships.
In this paper, we describe a new method for axiom
pinpointing in the Description Logic EL+, which is
based on the computation of so-called reachability-
based modules. Our experiments on Snomed ct
show that the sets of axioms explaining subsump-
tion are usually quite small, and that our method
is fast enough to compute such sets on demand.

Introduction

Description Logics (DLs) [1] are a family of logic-
based knowledge representation formalisms, which
can be used to develop ontologies in a formally
well-founded way. This is true both for expres-
sive DLs, which are the logical basis of the Web
Ontology Language OWL [2], and for inexpres-
sive DLs of the EL family [3], which are used in
the design of large-scale medical ontologies such as
Snomed ct1 and the National Cancer Institute’s
ontology.2

One of the main advantages of employing a logic-
based ontology language is that reasoning services
can be used to derive implicit knowledge from the
one explicitly represented. DL systems can, for ex-
ample, classify a given ontology, i.e., compute all

1http://www.ihtsdo.org/our-standards/
2http://www.nci.nih.gov/cancerinfo/terminologyresources

the subsumption (subconcept–superconcept) rela-
tionships between the concepts defined in the on-
tology. The advantage of using an inexpressive DL
of the EL family is that classification is tractable,
i.e., EL reasoners such as CEL [4] can compute
the subsumption hierarchy of a given ontology in
polynomial time.

Similar to writing large programs, building large-
scale ontologies is an error-prone endeavor. Clas-
sification can help to alert the developer or user
of an ontology to the existence of errors. For
example, the subsumption relationship between
“amputation of finger” and “amputation of up-
per limb” in Snomed ct is clearly unintended
[6, 7], and thus reveals a modeling error. How-
ever, given an unintended subsumption relation-
ship in a large ontology like Snomed ct with al-
most four hundred thousand axioms, it is not al-
ways easy to find the erroneous axioms responsible
for it by hand. To overcome this problem, the DL
community has recently invested quite some work
on automating this process. Given a subsump-
tion relationship or another questionable conse-
quence, axiom pinpointing computes a minimal
subset (all minimal subsets) of the ontology that
have this consequence (called MinAs in the fol-
lowing). Most of the work on axiom pinpointing
in DLs was concerned with rather expressive DLs
(see, e.g., [8, 9, 10]). The only work that concen-
trated on pinpointing in the EL family of DLs was
[11]. In addition to providing complexity results
for pinpointing, [11] introduces a “pragmatic” al-
gorithm for computing one MinA, which is based
on a modified version of the classification algo-
rithm used by the CEL reasoner [4]. Though this
approach worked quite well for mid-size ontologies
(see the experiments on a variant of the Galen
medical ontology described in [11]), it was not ef-
ficient enough to deal with large-scale ontologies
like Snomed ct.



In the present paper, we describe a new method
for axiom pinpointing in the Description Logic
EL+, which is based on the computation of so-
called reachability-based modules [5]. Our experi-
ments on Snomed ct show that the sets of axioms
explaining a given subsumption are usually quite
small (78% of the MinAs we computed were of size
ten or less), and that our method is fast enough
(on average, it took one second to obtain a MinA)
to compute these sets on demand, i.e., whenever
the user asks for a MinA for a suspect subsump-
tion relationship.

Axiom pinpointing in EL+

In this section, we first introduce the DL EL+,
which is an extension of the DL EL used to define
Snomed ct. Then, we define minimal axiom sets
(MinAs) for subsumption, and recall some of the
known results about computing MinAs in EL+.

Syntax Semantics

> ∆I

C uD CI ∩DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I :
(x, y) ∈ rI ∧ y ∈ CI}

C v D CI ⊆ DI

r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIn ⊆ sI

Table 1: Syntax and semantics of EL+.

Starting with a set of concept names CN and a
set of role names RN, EL+ concept descriptions
can be built using the constructors shown in the
upper part of Table 1, i.e., every concept name
A ∈ CN and the top concept > are EL+ con-
cept descriptions, and if C,D are EL+ concept
descriptions and r ∈ RN is a role name, then
C uD (conjunction) and ∃r.C (existential restric-
tion) are EL+ concept descriptions. Role chains
of the form r1 ◦ · · · ◦ rn for n ≥ 0 are called role
descriptions. An EL+ ontology is a finite set of
axioms of the form shown in the lower part of Ta-
ble 1, where axioms of the form C v D are called
general concept inclusions (GCIs) and of the form
r1 ◦ · · · ◦ rn v s role inclusions (RIs). An EL on-
tology is an EL+ ontology that does not contain
RIs. We use C ≡ D as an abbreviation for the two
GCIs C v D,D v C.
The semantics of EL+ is defined in terms of inter-
pretations I = (∆I , ·I), where the domain ∆I is a
non-empty set of individuals, and the interpreta-
tion function ·I maps each concept name A ∈ CN

α1 AmpOfFinger ≡ Amp u ∃site.FingerS

α2 AmpOfHand ≡ Amp u ∃site.HandS

α3 InjToFinger ≡ Inj u ∃site.FingerS

α4 InjToHand ≡ Inj u ∃site.HandS

α5 FingerE v FingerS

α6 FingerP v FingerS u ∃part.FingerE

α7 HandE v HandS

α8 HandP v HandS u ∃part.HandE

α9 ULimbE v ULimbS

α10 ULimbP v ULimbS u ∃part.ULimbE

α11 FingerS v HandP

α12 HandS v ULimbP

Figure 1: Ontology OAmp illustrating a faulty
SEP-triplet encoding in Snomed ct.

to a subset AI of ∆I and each role name r ∈ RN
to a binary relation rI on ∆I . The extension of ·I
to arbitrary concept descriptions is inductively de-
fined, as shown in the semantics column of Table 1.
An interpretation I is a model of an ontology O if,
for each inclusion axiom in O, the conditions given
in the semantics column of Table 1 are satisfied.
The main reasoning problem in EL+ is the sub-
sumption problem: given an EL+ ontology O and
two EL+ concept descriptions C,D, check whether
C is subsumed by D w.r.t. O (written C vO D),
i.e., whether CI ⊆ DI holds in all models of O.
The computation of all subsumption relationships
between the concept names occurring inO is called
classification of O.
Figure 1 shows a small EL ontology defining con-
cepts related to amputation/injury of hand and
finger. It uses the so-called SEP-triplet encoding
[12], in which anatomical concepts (like hand) are
represented by three concepts: the structure con-
cept (e.g, HandS , which stands for the hand and
its proper parts), the part concept (e.g, HandP ,
which stands for the proper parts of the hand),
and the entity concept (e.g, HandE , which stands
for the entire hand). The axioms α5–α10 consti-
tute a completed SEP-triplet encoding for finger,
hand, and upper limb. For example, axiom α8 says
that proper parts of the hand belong to the struc-
ture concept HandS , and they are parts of hand
(i.e., linked with the role part to the entity con-
cept HandE). Given this encoding, the fact that
the finger is part of the hand can be expressed us-
ing axiom α11. The main reason for using this
encoding in Snomed ct is that it can simulate
transitivity reasoning for the role part, although
transitivity of part cannot be expressed in EL. For
example, it is easy to see that the ontology OAmp



implies that the finger is part of the upper limb,
i.e., FingerE vOAmp

∃part.ULimbE . As a side-effect,
the SEP-triplet encoding can also be used to simu-
late so-called right-identity rules [13], which allow
to inherit properties along the part role. Consider
the following subsumption relationships that hold
in our example ontology:

AmpOfFinger vOAmp
AmpOfHand, (1)

InjToFinger vOAmp
InjToHand. (2)

While subsumption (2) actually makes sense (it
is sensible to say that an injury to the finger is
an injury to the hand), subsumption (1) is clearly
undesirable. Subsumption (1) is an example of a
false positive subsumption, which does indeed oc-
cur in Snomed ct. It has been argued [6, 7] that
this subsumption is due to a faulty SEP-triplet en-
coding. In fact, using the entity concepts instead
of the structure concepts in the axioms α1 and α2

would have avoided this problem.
In EL+, one could actually dispense with the SEP-
triplet encoding altogether since both transitiv-
ity and right-identity rules can be expressed using
RIs. For example, part◦part v part expresses tran-
sitivity of the role part. An alternative and direct
representation of anatomical concepts, as well as
referring concepts like clinical findings and proce-
dures, based on this additional expressive power of
the DL EL+ is proposed in [6]. The new modeling
is succinct and also avoids the above false positive
subsumption (1).
For a small ontology like OAmp, it is not hard to
do the subsumption reasoning manually, and thus
also to find the axioms responsible for a given sub-
sumption relationship by hand. For a very large
ontology like Snomed ct, this manual approach
to pinpointing the responsible axioms is very time-
consuming, and thus should be automated. First,
we give a formal definition of what automated pin-
pointing is actually supposed to compute.
Definition 1 (MinA). Let O be an EL+ ontol-
ogy, and A,B concept names such that A vO B.
The set S ⊆ O is a minimal axiom set (MinA) for
A vO B if, and only if, A vS B and, for every
S ′ ⊂ S, A 6vS′ B. 3

In our example, {α1, α2, α8, α11} is the only MinA
for subsumption (1), whereas {α3, α4, α8, α11} is
the only MinA for subsumption (2). As shown
in [11], a given subsumption relationship w.r.t. an
EL+ ontology may have exponentially many Mi-
nAs, and even deciding whether there is a MinA
of cardinality ≤ k is an NP-complete problem. In
contrast, one MinA can always be extracted in

Algorithm 1 Naive linear extraction of a MinA.
function lin-extract-mina(A, B,O)

1: S := O
2: for each axiom α ∈ O do
3: if A vS\{α} B then
4: S := S \ {α}
5: return S

Algorithm 2 Logarithmic extraction of a MinA.
function log-extract-mina(A, B,O)

1: return log-extract-mina-r(A, B, ∅,O)

function log-extract-mina-r(A, B, S,O)

1: if |O| = 1 then
2: return O
3: S1, S2 := halve(O)
4: if A vS∪S1 B then
5: return log-extract-mina-r(A, B, S, S1)
6: if A vS∪S2 B then
7: return log-extract-mina-r(A, B, S, S2)
8: S′

1 := log-extract-mina-r(A, B, S ∪ S2, S1)
9: S′

2 := log-extract-mina-r(A, B, S ∪ S′
1, S2)

10: return S′
1 ∪ S′

1

polynomial time. In [11], this was shown using the
simple Algorithm 1, which requires linearly many
(polynomial) subsumption tests. For a large on-
tology, however, this naive approach is not feasi-
ble. For example, for Snomed ct it would require
almost half a million subsumption tests for each
MinA extraction.

We can do much better by adopting the algorithm
for computing prime implicates described in [14]
to our problem. Basically, this algorithm applies
binary search to find a MinA. Instead of taking
out one axiom at a time, it partitions the ontol-
ogy into two halves, and checks whether one of
them entails the subsumption. If yes, it imme-
diately recurses on that half, throwing away half
of the axioms in one step. Otherwise, essential
axioms are in both halves. In this case, the algo-
rithm recurses on each half, using the other half as
the “support set”. Algorithm 2 describes this ap-
proach in more detail, where the function halve(O)
partitions O into S1 ∪ S2 with ||S1| − |S2|| ≤ 1. It
follows from the results in [14] that computing a
MinA S for a given subsumption A vO B with Al-
gorithm 2 requires O ((|S| − 1) + |S|log(|O|/|S|))
subsumption tests. This greatly improves on the
naive algorithm. For instance, computing a MinA
consisting of nine axioms for Snomed ct requires
about one hundred subsumption tests. Though
this is much better than the almost half a million
required by the naive algorithm, it is still not good
enough to compute MinAs on demand (see below).



Modularization-based axiom
pinpointing in EL+

Instead of applying Algorithm 1 or 2 directly to
the whole ontology O, one can first try to find a
non-minimal (but hopefully small) subset S ⊆ O
with A vS B (called nMinA in the following),
and then apply Algorithm 1 or 2 to this subset to
obtain a MinA. In [11], we have sketched a modi-
fied version of the classification algorithm for EL+

[3, 4] that extracts such nMinAs. In the exper-
iments on a version of Galen described in [11],
Algorithm 1 was then used to minimize these sets.
Whereas the nMinA extraction was fast and pro-
duced quite small sets for Galen, it crashed after
a few hours because of space problems when ap-
plied to Snomed ct.
To overcome this problem, we propose an algo-
rithm for extracting nMinAs that is based on
modularization. In the following, we introduce
only those notions regarding modularization that
are strictly necessary in the context of this pa-
per. More details regarding the reachability-based
modularization approach from which these notions
are derived, as well as its connection to other work
on modularization, can be found in [5].
Let O be an EL+ ontology, and A a concept name
occurring in O. We say that S ⊆ O is a sub-
sumption module for A in O whenever A vO B if,
and only if, A vS B holds for all concept names
B occurring in O. Obviously, if S is a subsump-
tion module for A in O and A vO B, then S is
an nMinA for this subsumption, and Algorithm 1
or 2 can be used to compute a MinA S ′ ⊆ S from
S. Thus, we know that a subsumption module
for A contains a MinA for every valid subsump-
tion relationship A vO B. The reachability-based
modules introduced below satisfy an even stronger
property: they contain all MinAs for all valid sub-
sumptions.

Definition 2. Let O be an EL+ ontology and A
a concept name occurring in O. The subsumption
module S for A in O is called strong if the fol-
lowing holds for all concept names B occurring in
O: if A vO B, then every MinA for A vO B is a
subset of S. 3

Obviously, O itself is a strong subsumption mod-
ule for every concept name A occurring in O.
The following definition (first introduced in [5])
yields strong subsumption modules that are usu-
ally much smaller than the whole ontology. For
an EL+ entity X—i.e., either a (concept or role)
description, a (concept or role) inclusion axiom, or
an ontology—we write Sig(X) to denote the set of

concept and role names occurring in the entity X.
Definition 3 (Reachability-based modules).
Let O be an EL+ ontology and A a concept name
occurring in O. The set of A-reachable names in
O is the smallest set N of concept and role names
such that

• A belongs to N;

• for all (concept/role) inclusion axioms αL v αR

in O, if Sig(αL) ⊆ N then Sig(αR) ⊆ N.

We call an axiom αL v αR A-reachable in O if
every element of Sig(αL) is A-reachable in O. The
reachability-based module for A in O, denoted by
Oreach

A , consists of all A-reachable axioms from O.
3

In [5], it has been shown that Oreach
A is indeed a

subsumption module for A in O. Here, we show
the following stronger results.
Theorem 4. Let O be an EL+ ontology and A a
concept name. Then Oreach

A is a strong subsump-
tion module for A in O.
Proof. The fact that Oreach

A is a subsumption
module was already shown in [5]. To show that
it is strong, assume that A vO B holds, but there
is a MinA S for A vO B that is not contained in
Oreach

A . Thus, there is an axiom α ∈ S \ Oreach
A .

Let S1 be the subset of S that contains the A-
reachable axioms. Note that S1 is a strict subset
of S since α 6∈ S1. We claim that A vS B implies
A vS1 B, which contradicts the assumption that
S is a MinA for A vO B.
To show the claim, we assume to the contrary that
A 6vS1 B, i.e., there is a model I1 of S1 such that
AI1 6⊆ BI1 . We modify I1 to I by setting yI := ∅
for all (concept or role) names that are not A-
reachable. It is easy to see that AI 6⊆ BI . In fact,
we have AI = AI1 (since A is A-reachable), and
BI = BI1 or BI = ∅.
It remains to show that I is indeed a model of
S, i.e. satisfies all axioms βL v βR in S. If
βL contains a name that is not A-reachable, then
(βL)I = ∅, and the axiom is trivially satisfied.
Otherwise, this axiom belongs to S1, and the def-
inition of A-reachability implies that all names in
βR are A-reachable as well. Consequently, I1 and
I coincide on the names occurring in βL v βR.
Since I1 is a model of S1, we thus have (βL)I =
(βL)I1 ⊆ (βR)I1 = (βR)I . ❏

As an immediate consequence of this theorem, in-
stead of extracting a MinA for A vO B from O, it
is sufficient to extract a MinA for A vOreach

A
B from

Oreach
A . This is what the function extract-mina in



Algorithm 3 Modularization-based extraction of
a MinA
function extract-mina(A, B,O)

1: Oreach
A ← extract-module(O, A)

2: return log-extract-mina(A, B,Oreach
A )

function second-mina?(A, B,Oreach
A ,S1)

1: for each axiom α ∈ S1 do
2: O′ ← Oreach

A \{α}
3: if A vO′ B then
4: return “second MinA exists”
5: return “MinA unique”

function extract-module(O, A)

1: OA ← ∅
2: queue← active-axioms({A})
3: while not empty(queue) do
4: (αL v αR)← fetch(queue)
5: if Sig(αL) ⊆ {A} ∪ Sig(OA) then
6: OA ← OA ∪ {αL v αR}
7: queue← queue ∪

(active-axioms(Sig(αR)) \ OA)
8: return OA

Algorithm 3 does. Note that, instead of the log-
arithmic extraction algorithm (Algorithm 2), we
could also use the linear extraction algorithm (Al-
gorithm 1). Since reachability-based modules are
usually quite small, it is not a priori clear whether
using the more complicated logarithmic algorithm
really pays off (see the results of our experiments
below). The function second-mina? in Algorithm 3
takes the extracted module and the first MinA as
input, and checks if the subsumption in question
still holds in the absence of one of the axioms in
the MinA. In this case, this subsumption obviously
must have more than one MinA. Note that, for this
function to be correct, we really need to know that
Oreach

A is a strong subsumption module.
The function extract-module in Algorithm 3 re-
alizes one way of computing reachability-based
modules. The function call active-axioms used
there yields, for a given set of names, all ax-
ioms that contain at least one of these names in
their left-hand side. It is not hard to show that
the call extract-module(O, A) indeed computes the
reachability-based module for A in O (see [5] for
more details). The experiments described in [5]
show that extraction of reachability-based mod-
ules in Snomed ct is usually quite fast, and the
modules obtained this way are quite small. In the
next section, we show that these positive results
extend to the modularization-based extraction of
MinAs.

Experimental Results

We have implemented the three algorithms de-
scribed in this paper, using CEL [4] to com-

pute subsumption. Our experiments use the
January/2005 release of the DL version of
Snomed ct, which contains 379,691 concept
names, 62 role names, and 379,704 axioms.3 In
the following, we call this ontology OSnomed. The
experiments were carried out on a PC with 2.40
GHz Pentium-4 processor and 1 GB of memory.
As stand-alone algorithms for computing a MinA,
we applied Algorithm 1 and 2 only to the
false positive subsumption AmpOfFinger vOSnomed

AmpOfHand. Algorithm 1 did not terminate on
this input after 24 hours, whereas Algorithm 2 re-
quired 26:05 minutes (1,565 seconds) to compute a
MinA of cardinality 6. (Note that the actual mod-
elling of “amputation of finger” and “amputation
of hand” in Snomed ct differs from the one given
in Fig. 1 due to the use of role groups and of two
different roles to express location in Snomed ct.
Thus, the computed MinA also differs from the
one given above. However, it also shows that the
reason for the unintended subsumption is the in-
correct use of the SEP-triplet encoding.)
Algorithm 3 performs much better for the am-
putation example. The reachability-based mod-
ule OSnomed

AmpOfFinger contains 57 axioms, and was
computed in 0.04 seconds. Extracting a MinA
for AmpOfFinger vOSnomed

AmpOfFinger
AmpOfHand from

OSnomed
AmpOfFinger using the logarithmic minimization al-

gorithm then took only half a second. An appli-
cation of second-mina? then showed that the ex-
tracted MinA is the only one for this subsumption.
We have also applied Algorithm 3 to a large num-
ber of subsumption relationships that follow from
OSnomed. Since there are more than five million
such subsumptions, testing the algorithm on all
of them was not feasible: assuming an average
extraction time of 1 second, this would have re-
quired 58 days. For this reason, we sampled 0.5%
of all concepts in each top-level category C in
Snomed ct. Let us denote the set of samples for
category C by c-samples(C). For each sampled
concept A, all positive subsumptions A vOSnomed B
with A as subsumee were considered.
The first column of Table 2 shows the top-level
categories and the second the number of sampled
subsumption relationships with the subsumee in
this category. The next four columns give the
time needed to compute and the size of the cor-
responding modules and MinAs. The values in
square brackets give the time required by the

3The DL version is also known in the SNOMED
lingo as the ‘stated form,’ while axioms here boil down
to (primitive) concept definitions.
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Figure 2: Module and MinA size distribution.

modularization-based pinpointing algorithm, but
with the naive linear minimization algorithm in-
stead of the logarithmic one. In all four columns,
we give both average and maximum values. The
last column shows the percentage of subsump-
tions that have only one MinA. Interestingly, more
than two thirds of all subsumptions have only
one MinA. The overall empirical results for the
27,477 sampled subsumptions (about 0.5% of all
subsumptions) are given in the last row of the ta-
ble. These results show that, on average, a MinA
can be computed within one second, and its size is
smaller than 10. Thus, MinAs can indeed be com-
puted on demand, and their size is small enough
such that they can then be inspected by hand.
Surprisingly, the linear minimization algorithm
performed better in our experiments than the log-
arithmic one. An explanation for this is probably
that, unlike the experiments of Algorithm 1 and 2
on the whole ontology, the modules are already
quite small, and thus the overhead required by the
logarithmic algorithm does not pay off. Figure 2
depicts the size distribution of our sampled mod-
ules and MinAs. As easily visible from the chart,
the modules are quite small, but the MinAs are
even smaller. In fact, the majority of all subsump-
tions (78%) have a MinA of size ten or less.

Conclusions

We have introduced a new method for axiom pin-
pointing in the DL EL+ that is based on the com-
putation of reachability-based modules. The ex-
periments carried out on Snomed ct show that
this method is fast enough to extract a minimal
axiom set (MinA) for a given subsumption on de-
mand. In addition, the extracted MinAs are usu-
ally quite small and can therefore be inspected by
users and designers of Snomed ct by hand. In the
future, we will extend the approach such that it
can (i) extract all MinAs, (ii) provide natural lan-
guage explanations for subsumption, and (iii) give
suggestions for how to revise the ontology to get
rid of an unwanted subsumption.
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