EXERCISE 3 Human Reasoning and Computational Logic

Steffen Hölldobler, Emmanuelle Dietz winter semester 2019/20

Problem 3.1

Consider program \mathcal{P} consisting of the following three clauses:

$$\begin{array}{rcl} p(X) & \leftarrow & \neg q(X) \wedge r(X) \wedge t(X). \\ p(X) & \leftarrow & \neg s(X) \wedge r(X). \\ t(a) & \leftarrow & \top. \end{array}$$

Assume that $\mathcal{IC} = \emptyset$ and that $\mathcal{O} = \{p(a)\}$, and that the set of abducibles $\mathcal{A}_{\mathcal{P}}$ consists of the following facts and assumptions:

q(a)	\leftarrow	⊤.	r(a)	\leftarrow	Τ.	s(a)	\leftarrow	Τ.
q(a)	\leftarrow	⊥.	r(a)	\leftarrow	\perp .	s(a)	\leftarrow	\perp .

- 1. What are the (minimal) explanations for \mathcal{O} given \mathcal{P} ?
- 2. What follows skeptically and credulously from \mathcal{P} and \mathcal{O} ?

Problem 3.2

Show that the following proposition holds:

Proposition Let \mathcal{P} be a propositional logic program. Computing the least model of wc \mathcal{P} under the Łukasiewicz logic can be done in polynomial time.

Problem 3.3

Consider the following proposition:

Proposition Let $\langle \mathcal{P}, \mathcal{A}, \mathcal{IC}, \models_{wcs} \rangle$ be an abductive framework, where \mathcal{P} is a propositional logic program. Deciding whether \mathcal{E} is an explanation for \mathcal{O} given \mathcal{P} can be done in polynomial time. Show that the proposition holds by showing the following:

- 1. \mathcal{E} is a consistent subset of \mathcal{A} ,
- 2. wc $(\mathcal{P} \cup \mathcal{E})$ is consistent under Łukasiewicz logic and
- 3. $\mathcal{P} \cup \mathcal{E} \models_{wcs} \mathcal{O}$.

Problem 3.4

Show that the following proposition holds

Proposition Let $\langle \mathcal{P}, \mathcal{A}, \mathcal{IC}, \models_{wcs} \rangle$ be an abductive framework, where \mathcal{P} is a propositional logic program. Deciding, whether \mathcal{E} is a minimal explanation of \mathcal{O} can be done in polynomial time.