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1 INTRODUCTION

The ability to quantify over substructures to express properties of a model is often instrumental
to perform modular and local reasoning. Two well-known examples are provided by separation
logics [32, 41, 48], dedicated to reasoning on pointer programs, and ambient (or more generally,
spatial) logics [11, 14, 16, 21], dedicated to reasoning on disjoint data structures. In the realm of
modal logics dedicated to knowledge representation, submodel reasoning remains a key ingredient
to express the dynamics of knowledge and belief, as done in the logics of public announcement [5,
37, 42], sabotage modal logics [4], refinement modal logics [13] and relation-changing logics [1–3].
Though the models may be of different nature (e.g. memory states for separation logics, epistemic
models for logics of public announcement or finite edge-labelled trees for ambient logics), all those
logics feature operators that enable to compose or decompose substructures in a very natural way.

From a technical point of view, reasoning about submodels requires a global analysis, unlike the
local approach for classical modal and temporal logics (typically based on automata techniques [55,
56]). This makes the comparison between those formalisms quite challenging and often limited to
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a superficial analysis on the different classes of models and composition operators. For instance,
the composition operator in ambient logics decomposes a tree into two disjoint pieces such that
once a node has been assigned to one submodel, all its descendants belong to the same submodel.
Instead, the separating conjunction ∗ from separation logic decomposes the memory states into two
disjoint memory states. Obviously, these and other well-known operators are closely related but no
uniform framework investigates exhaustively their relationships in terms of expressive power.
Most of these logics can be easily encoded in monadic second-order logicMSO (or in second-

order modal logics [27, 34]). Complexity-wise, if models are tree-like structures, we can then
infer decidability thanks to the celebrated Rabin’s theorem [46]. However, most likely, this does
not produce the best decision procedures when it comes to solving simple reasoning tasks (e.g.
the satisfiability problem ofMSO is Tower-complete [49]). Thus, relying onMSO as a common
umbrella to understand the differences between those logical formalisms is often not satisfactory.

Our motivations. Our intention in this work is to provide an in-depth comparison between the
composition operator from static ambient logic [14] and the separating conjunction ∗ from
separation logics [48] by identifying common ground in terms of logical languages and models.
As a consequence, we are able to study the effects of having these operators as far as expressivity
and complexity are concerned. We aim at defining two logics whose only differences rest on their
use of and ∗ syntactically and semantically (by considering the adequate composition operation).
To do so, we pick as our common class of models, the Kripke-style finite trees (actually finite
forests, so that the class is closed under taking submodels), which provides a ubiquitous class of
structures, intensively studied in computer science. For the underlying logical language (i.e. apart
from or ∗), we advocate the use of the standard modal logic K (i.e. to have Boolean connectives and
the modality 3) so that the main operations on the models amount to quantifying over submodels
or to moving along the edges. The generality of this framework enables us to take advantage of
model theoretical tools from modal logics [6, 10, 22]. The benefits of settling common ground for
comparison may lead to further comparisons with other logics and to new results.

Our contributions. We introduceML( ) andML(∗), two logics interpreted on Kripke-style forest
models. The logicML( ) features the standard modality3 and the composition operator from static
ambient logic [14]; whereasML(∗) puts together the modality3 with the separating conjunction ∗
from separation logic [48]. Both logical formalisms can state non-trivial properties about submodels,
but the binary modalities and ∗ operate differently: whereas ∗ is able to decompose the models
at any depth, is much less permissive as the decomposition is completely determined by what
happens at the level of the children of the current node. We study their expressive power and
complexity, obtaining surprising results. We show that ML( ) is as expressive as the graded modal
logic GML [6, 52] (Theorem 3.7) whereasML(∗) is strictly less expressive than GML (Theorem 5.6).
Interestingly, this latter development partially reuses the result forML( ), hence showing how our
framework allows us to transpose results between the two logics. To show thatGML is strictly more
expressive thanML(∗), we define Ehrenfeucht-Fraïssé games forML(∗). In terms of complexity,
the satisfiability problem for ML( ) is shown AExpPol-complete1 (Corollary 3.12), interestingly the
same complexity as for the refinement modal logic RML [13] handling a quantifier over refinements
(generalising the submodel construction). The AExpPol upper bound follows from an exponential-
size model property (Lemma 3.9), whereas the lower bound is by reducing the satisfiability problem
for an AExpPol-complete team logic [30]. Much more surprisingly, although ML(∗) is strictly less
expressive thanML( ), its complexity is much higher (not even elementary). Precisely, we show

1Problems in AExpPol are decidable by an alternating Turing machine working in exponential-time and using polynomially
many alternations [12].
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that the satisfiability problem for ML(∗) is Tower-complete (Theorem 4.34). The Tower upper
bound is a consequence of [46], as ML(∗) is a fragment of MSO. Hardness is shown by reduction
from a Tower-complete tiling problem, adapting substantially the Tower-hardness proof from [7]
for second-order modal logic K on finite trees, see also a similar method used in [43]. To conclude,
we get the best of our results onML( ) andML(∗) to solve several open problems. We relateML( )
with an intensional fragment of static ambient logic SAL( ) from [14] by providing polynomial-time
reductions between their satisfiability problems. Consequently, we establish AExpPol-completeness
of SAL( ) (Corollary 6.6), refuting hints from [14, Section 6]. Similarly, we show that the modal
separation logic MSL(3−1, ∗) from [23] is Tower-complete (Corollary 7.3).
The following table states the main results of the paper, illustrating the relations in terms of

expressivity and complexity between the logics for composing forests.
ML( ) ML(∗)

Expressive Power Graded Modal Logic (GML) < GML
Complexity (satisfiability problem) AExpPol-complete Tower-complete

This paper is a revised and completed version of the conference paper [8]. Omitted proofs can
be found in the Electronic Appendix of the paper or in [9, 40].

2 PRELIMINARIES

In this section, we introduce the logics ML( ) and ML(∗) interpreted on tree-like structures
equipped with operators to split the structure into disjoint pieces. Due to the presence of such
operators, we are required to consider a class of models that is closed under submodels, which we
call Kripke-style finite forests (or finite forests for short).
Let AP be a countably infinite set of atomic propositions. A (Kripke-style) finite forest is a triple

𝔐 = (𝑊,𝑅,𝑉 ) where𝑊 is a non-empty finite set of worlds, 𝑉 : AP → P(𝑊 ) is a valuation and
𝑅 ⊆𝑊 ×𝑊 is a binary relation whose inverse 𝑅−1 is functional and acyclic. In particular, the graph
described by (𝑊,𝑅) is a finite collection of disjoint finite trees, where 𝑅 encodes the child relation.
We define 𝑅(𝑤) def

= {𝑤 ′ ∈ 𝑊 | (𝑤,𝑤 ′) ∈ 𝑅}. Worlds in 𝑅(𝑤) are understood as children of 𝑤 .
We inductively define 𝑅𝑛 as 𝑅0 def

= {(𝑤,𝑤) | 𝑤 ∈ 𝑊 } and 𝑅𝑛+1 def
= {(𝑤,𝑤 ′′) | ∃𝑤 ′ (𝑤,𝑤 ′) ∈ 𝑅𝑛

and (𝑤 ′,𝑤 ′′) ∈ 𝑅 }. Moreover, 𝑅+ denotes the transitive closure of 𝑅.
We define operators that chop a finite forest. It should be noted that these operators, as well as the

resulting logics, can be cast under the umbrella of the logic of bunched implications BI [28, 45], with
the exception that we do not explicitly require them to have an identity element (as enforced on
the multiplicative operators of BI, see [28]). Let 𝔐 = (𝑊,𝑅,𝑉 ) and 𝔐𝑖 = (𝑊𝑖 , 𝑅𝑖 ,𝑉𝑖 ) (for 𝑖 ∈ {1, 2})
be three finite forests.

The separation logic composition. We introduce the binary operator + that performs the disjoint
union at the level of parent-child relation. Formally,

𝔐 = 𝔐1 +𝔐2
def⇔ 𝑅1 ⊎ 𝑅2 = 𝑅, 𝑊1 =𝑊2 =𝑊, 𝑉1 = 𝑉2 = 𝑉 .

This is the composition used in separation logic [23, 48]. We say that𝔐1 is a submodel of𝔐, written
𝔐1 ⊑ 𝔐, if there is 𝔐2 such that 𝔐 = 𝔐1 +𝔐2. Below, we depict instances for𝔐,𝔐1 and 𝔐2.

= +

The ambient logic composition. We introduce the operator +𝑤 , where𝑤 ∈𝑊 , refining +:

𝔐 = 𝔐1 +𝑤 𝔐2
def⇔ 𝔐 = 𝔐1 +𝔐2 and, for all 𝑖 ∈ {1, 2} and𝑤 ′ ∈ 𝑅𝑖 (𝑤), 𝑅+𝑖 (𝑤 ′) = 𝑅+ (𝑤 ′).
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The finite forest 𝔐 decomposed with +𝑤 is understood as a disjoint union between 𝔐1 and 𝔐2
except that, as soon as𝑤 ′ ∈ 𝑅𝑖 (𝑤), the whole subtree of𝑤 ′ in 𝑅 belongs to𝔐𝑖 , like the composition
in ambient logic [14]. Below, we illustrate a finite forest decomposed with +𝑤 .

𝑤

=

𝑤

+𝑤

𝑤

Modal logics on trees. The logicML( ) enriches the basic modal logic MLwith a binary connective ,
called composition operator , that admits submodel reasoning via the operator +𝑤 . Similarly, ML(∗)
enriches ML with the connective ∗, called separating conjunction (or star) that admits submodel
reasoning via the operator +. Both connectives and ∗ are understood as binary modalities. As
we show throughout the paper,ML( ) andML(∗) are strongly related to the graded modal logic
GML [22]. For conciseness, let us define all these logics by considering formulae that contain all of
their ingredients. These formulae are built from the grammar below:

𝜑 := ⊤ | 𝑝 | 𝜑 ∧ 𝜑 | ¬𝜑 | 3𝜑 | 3≥𝑘 𝜑 | 𝜑 ∗ 𝜑 | 𝜑 𝜑,

where 𝑝 ∈ AP and 𝑘 ∈ N (encoded in unary). A pointed forest (𝔐,𝑤) is a finite forest𝔐 = (𝑊,𝑅,𝑉 )
together with a world𝑤 ∈𝑊 . The satisfaction relation |= is defined as follows (standard clauses
for ∧, ¬ and ⊤ are omitted):

𝔐,𝑤 |= 𝑝 ⇔𝑤 ∈ 𝑉 (𝑝);
𝔐,𝑤 |= 3𝜑 ⇔ there is𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′ |=𝜑 ;
𝔐,𝑤 |= 3≥𝑘 𝜑 ⇔ |{𝑤 ′ ∈ 𝑅(𝑤) | 𝔐,𝑤 ′ |= 𝜑}| ≥ 𝑘 ;
𝔐,𝑤 |= 𝜑1 ∗ 𝜑2 ⇔ there are𝔐1,𝔐2 such that 𝔐 = 𝔐1 +𝔐2, 𝔐1,𝑤 |= 𝜑1 and 𝔐2,𝑤 |= 𝜑2;
𝔐,𝑤 |= 𝜑1 𝜑2 ⇔ there are 𝔐1,𝔐2 such that 𝔐 = 𝔐1 +𝑤 𝔐2,𝔐1,𝑤 |= 𝜑1 and𝔐2,𝑤 |= 𝜑2.

The formulae 𝜑 ⇒ 𝜓 , 𝜑∨𝜓 and⊥ are defined as usual. We use the following standard abbreviations:
2𝜑 def

= ¬3¬𝜑 ,3≤𝑘 𝜑 def
= ¬3≥𝑘+1 𝜑 and3=𝑘 𝜑

def
=3≥𝑘 𝜑∧3≤𝑘 𝜑 . Notice that both and ∗ are associative

operators (we will use this fact implicitely in the rest of the paper). We write size(𝜑) to denote the
size of 𝜑 with a tree representation of formulae and with a reasonably succinct encoding of atomic
formulae. Besides, we write md(𝜑) to denote the modal degree of 𝜑 understood as the maximal
number of nested unary modalities (i.e. 3 or 3≥𝑘 ) in 𝜑 . Similarly, the graded rank gr(𝜑) of 𝜑 is
defined as max({𝑘 | 3≥𝑘 𝜓 ∈ subf (𝜑)} ∪ {0}), where subf (𝜑) is the set of all the subformulae of 𝜑 .
Given the formulae 𝜑 and𝜓 , 𝜑 ≡ 𝜓 denotes that 𝜑 and𝜓 are logically equivalent; i.e., for every

pointed forest (𝔐,𝑤), 𝔐,𝑤 |= 𝜑 if and only if 𝔐,𝑤 |= 𝜓 . For instance (𝑘 ≥ 1 and 𝑝 ∈ AP):
(1). 3𝜑 ≡ 3≥1 𝜑 ; (2). (22⊥ 22⊥) . (22⊥ ∗22⊥);
(3). 3≥𝑘 𝑝 ≡ 3𝑝 ∗ · · · ∗3𝑝︸           ︷︷           ︸

𝑘 times

; (4). 3≥𝑘 𝜑 ≡ 3𝜑 · · · 3𝜑︸        ︷︷        ︸
𝑘 times

.

The modal logic ML is the logic restricted to formulae with the unique modality 3 [10]. Similarly,
the graded modal logic GML is restricted to the graded modalities 3≥𝑘 [22]. We introduce the
modal logicsML( ) andML(∗), which are restricted to the suites of modalities (3, ) and (3, ∗),
respectively. The two equivalences (3) and (4) already shed some light onML( ) andML(∗): the two
logics are similar when it comes to their formulae of modal degree one (as (3) does not generalise
to arbitrary formulae).

Lemma 2.1. Let 𝜑 be a formula inML( ) with md(𝜑) ≤ 1. Then, 𝜑 ≡ 𝜑 [ ← ∗] where 𝜑 [ ← ∗] is
the formula in ML(∗) obtained from 𝜑 by replacing every occurrence of by ∗.
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The proof of Lemma 2.1 can be found inAppendixA. However, as shown by the non-equivalence (2)
above, it is unclear how the two logics compare when it comes to formulae of modal degree greater
than one. Indeed, since𝔐 = 𝔐1 +𝑤 𝔐2 implies𝔐 = 𝔐1 +𝔐2 (in formula, 𝜑 𝜓 ⇒ 𝜑 ∗𝜓 is valid)
but not vice-versa, the separating conjunction ∗ is more permissive than the operator . However,
further connections between the two operators can be easily established. Let us introduce the
auxiliary operator defined as 𝜑 def

= 𝜑 ∗2⊥. Formally,

(𝑊,𝑅,𝑉 ),𝑤 |= 𝜑 ⇔ there is 𝑅′ ⊆ 𝑅 such that 𝑅′ (𝑤) = 𝑅(𝑤) and (𝑊,𝑅′,𝑉 ),𝑤 |= 𝜑.

Similar operators are studied in [2, 4, 13]. We show that and are sufficient to capture ∗ (essential
property for Section 5).

Lemma 2.2. Let 𝜑,𝜓 ∈ GML. We have 𝜑 ∗𝜓 ≡ (𝜑 𝜓 ).

The proof of Lemma 2.2 can be found in Appendix B. Unlike , when ∗ splits a finite forest𝔐
into𝔐1 and𝔐2, it may disconnect in both submodels worlds that are otherwise reachable, from the
current world, in 𝔐. Applying before allows us to imitate this behaviour. Indeed, even though
preserves reachability in either𝔐1 or𝔐2, deletes part of𝔐, making some world inaccessible.
This way of expressing the separating conjunction allows us to reuse some methods developed for
ML( ) in order to studyML(∗).

The logic QK𝑡 . Both ML( ) and ML(∗) can be seen as fragments of the logic QK𝑡 , which in turn is
known to be a fragment of monadic second-order logic on trees [7]. The logicQK𝑡 extendsMLwith
second-order quantification and is interpreted on finite trees. Its formulae are defined according to
the following grammar: 𝜑 := 𝑝 | 3𝜑 | 𝜑 ∧ 𝜑 | ¬𝜑 | ∃𝑝 𝜑 . Given 𝔐 = (𝑊,𝑅,𝑉 ) and 𝑤 ∈𝑊 ,
the satisfaction relation |= ofML is extended as follows:

𝔐,𝑤 |= ∃𝑝 𝜑 ⇔ there is ∃𝑊 ′ ⊆𝑊 such that (𝑊,𝑅,𝑉 [𝑝 ←𝑊 ′]),𝑤 |= 𝜑.

One can show logspace reductions from ML( ) and ML(∗) to QK𝑡 , by simply reinterpreting the
operators ∗ and as restrictive forms of second-order quantification, and by relativising 3 to
appropriate propositional symbols in order to capture the notion of submodel (details are omitted).
Consequently, Tower-hardness of the satisfiability problem for ML(∗) proved in Section 4 entails
the Tower-hardness of QK𝑡 , refining the proof for QK𝑡 in [7].

Expressive power. Given two logics 𝔏1 and 𝔏2, we say that 𝔏2 is at least as expressive as 𝔏1 (written
𝔏1 ⪯ 𝔏2) whenever for every formula 𝜑 of 𝔏1, there is a formula𝜓 of 𝔏2 such that 𝜑 ≡ 𝜓 . 𝔏1 ≈ 𝔏2
denotes that 𝔏1 and 𝔏2 are equally expressive, i.e. 𝔏1 ⪯ 𝔏2 and 𝔏2 ⪯ 𝔏1. Lastly, 𝔏1 ≺ 𝔏2 denotes
that 𝔏2 is strictly more expressive than 𝔏1, i.e. 𝔏1 ⪯ 𝔏2 and 𝔏1 0 𝔏2. The equivalence (1) recalls us
that ML ≺ GML [22]. From the equivalence (4), we get GML ⪯ ML( ).

Satisfiability problem. The satisfiability problem for a logic𝔏, written Sat(𝔏), takes as input a formula
𝜑 in 𝔏 and checks whether there is a pointed forest (𝔐,𝑤) such that 𝔐,𝑤 |= 𝜑 .

Note that any𝔏 amongML,GML,ML( ) orML(∗) has the tree model property, i.e. any satisfiable
formula is also satisfied in some tree structure. The problems Sat(ML) and Sat(GML) are known
to be PSpace-complete, see e.g. [10, 25, 33, 50, 52], and therefore Sat(ML( )) and Sat(ML(∗)) are
PSpace-hard. Note that Sat(GML) is PSpace-complete even when the numbers 𝑘 appearing in
graded modalities 3≥𝑘 are encoded in binary. However, we stress the fact that in this paper we
consider 𝑘 to be encoded in unary, as it better matches the definition of 3≥𝑘 inML( ) given in (4).
As an upper bound, by Rabin’s theorem [46], the satisfiability problem for QK𝑡 is decidable in
Tower, which transfers directly to Sat(ML( )) and Sat(ML(∗)).
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3 ML( ): EXPRESSIVENESS AND COMPLEXITY

In this section, we study the expressive power of ML( ) and the complexity of its satisfiability
problem. We start by constructively showing thatML( ) ⪯ GML, hence provingML( ) ≈ GML.
Then, we study its computational complexity for which we establish that Sat(ML( )) is AExpPol-
complete. We recall that AExpPol denotes the complexity class of those problems decided by
exponential-time bounded alternating Turing Machines using a polynomially bounded number of
alternations. A problem 𝑃 is AExpPol-complete if it is in AExpPol and every problem in AExpPol
can be reduced to 𝑃 under polynomial-time reductions.

The AExpPol upper bound forML( ) follows from an exponential-size model property. The lower
bound is by reduction from the satisfiability problem for propositional team logic [30, Thm. 4.9].

3.1 A disjoint form for graded modal logic

Themethod for establishingML( ) ⪯ GML relies on the fact thatGML is closed under the operator .
We show that given two formulae 𝜑1 and 𝜑2 in GML, one can construct a formula𝜓 in GML such
that 𝜑1 𝜑2 ≡ 𝜓 . For instance, a simple case analysis yields (𝑝 ∨3≥3 𝑟 ) (𝑞 ∨3≤5 𝑞) ≡ (𝑝 ∨3≥3 𝑟 ).
With this closure property at hand, the general algorithm consists in iteratively replacing innermost
subformulae of the form𝜑1 𝜑2 by a counterpart inGML, allowing us to eliminate all the occurrences
of and obtain an equivalent formula in GML. In order to establish the closure property, we first
put the GML formulae 𝜑1 and 𝜑2 in a disjoint form, a normal form that is introduced in this section
alongside other useful definitions.
Let 𝜑 be a formula in GML. We write maxPC (𝜑) for the set of atomic propositions of 𝜑 that

appear at least once outside the scope of a graded modality. Similarly, maxGM (𝜑) denotes the set of
subformulae𝜓 of 𝜑 such that𝜓 is of the form 3≥𝑘 𝜓

′ and one of its occurrences in 𝜑 is not in the
scope of any graded modality. For instance, given 𝜑 = (𝑝 ∨3≥3 𝑟 ) ∧ (𝑞 ∨3≥5 3≥2 𝑞),

maxPC (𝜑) = {𝑝, 𝑞} maxGM (𝜑) = {3≥3 𝑟,3≥5 3≥2 𝑞}.
Clearly, every formula 𝜑 in GML is a Boolean combination of formulae from maxPC (𝜑) ∪ maxGM (𝜑).
Given a natural number 𝑑 ∈ N, we extend the notion of maxGM (𝜑) and write gm(𝑑, 𝜑) to denote the
set of subformulae of 𝜑 of the form 3≥𝑘 𝜓 occurring under the scope of exactly 𝑑 nested graded
modalities. Formally,

gm(0, 𝜑) def= maxGM (𝜑), gm(𝑑 + 1, 𝜑) def=
⋃

3≥𝑘 𝜓 ∈maxGM (𝜑 ) gm(𝑑,𝜓 ).
For simplicity, we also write C∧ (𝜑1, . . . , 𝜑𝑛) = {𝛾1 ∧ · · · ∧ 𝛾𝑛 | for all 𝑖 ∈ [1, 𝑛], 𝛾𝑖 ∈ {𝜑𝑖 ,¬𝜑𝑖 }} for
the set of all complete conjunctions of (possibly negated) formulae 𝜑1, . . . , 𝜑𝑛 . The disjoint form for
formulae in GML is defined as follows.

Definition 3.1. A formula 𝜑 in GML is said to be in disjoint form if for every 𝑑 ∈ [0,md(𝜑)] and
all 3≥𝑘 𝜓,3≥𝑘 ′ 𝜓 ′ ∈ gm(𝑑, 𝜑), either𝜓 ≡ 𝜓 ′ or the conjunction𝜓 ∧𝜓 ′ is unsatisfiable.

The lemma below leads to an inductive procedure to put every GML formula into disjoint form.

Lemma 3.2. Let 𝜑 be a formula in GML and maxGM (𝜑) ⊆ {3≥𝑘1 𝜓1, . . . ,3≥𝑘𝑛 𝜓𝑛} such that
𝜓1 ∧ · · · ∧𝜓𝑛 is in disjoint form. Let 𝑘 = max{𝑘1, . . . , 𝑘𝑛}. There is a GML formula 𝜑 ′ in disjoint form
logically equivalent to 𝜑 and such that maxGM (𝜑 ′) ⊆ {3≥𝑘 𝜒 | 𝑘 ∈ [0, 𝑘] and 𝜒 ∈ C∧ (𝜓1, . . . ,𝜓𝑛)}
and maxPC (𝜑 ′) ⊆ maxPC (𝜑).

Proof. The assumption that𝜓1∧· · ·∧𝜓𝑛 is in disjoint form implies that for every 𝑑 ∈ [1,md(𝜑)]
and every 3≥𝑘 𝜓,3≥𝑘 ′ 𝜓

′ ∈ gm(𝑑, 𝜑), either 𝜓 ≡ 𝜓 ′ or the conjunction 𝜓 ∧ 𝜓 ′ is unsatisfiable.
Therefore, to construct 𝜑 ′ it is sufficient to manipulate the formulae of gm(0, 𝜑) = maxGM (𝜑), without
modifying the set gm(1, 𝜑). We do so by using axioms from GML [6] as well as the equivalences:
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(guess) 3≥𝑘 𝜑 ≡ 3≥𝑘
(
(𝜑 ∧𝜓 ) ∨ (𝜑 ∧ ¬𝜓 )

)
,

(3≥𝑘 distr) if 𝜑 ∧𝜓 is unsatisfiable, 3≥𝑘 (𝜑∨𝜓 ) ≡
∨
𝑘=𝑘1+𝑘2 (3≥𝑘1𝜑 ∧3≥𝑘2𝜓 ).

Notice that the two disjuncts 𝜑 ∧𝜓 and 𝜑 ∧ ¬𝜓 in the right-hand side of (guess) are such that their
conjunction is unsatisfiable, enabling us to use (3≥𝑘 distr).

We manipulate each 3≥𝑘 𝑗 𝜓 𝑗 ∈ maxGM (𝜑) separately. Let 𝑗 ∈ [1, 𝑛]. Consider the set of formulae
G = C∧ (𝜓1, . . . ,𝜓 𝑗−1,𝜓 𝑗+1, . . . ,𝜓𝑛). By propositional reasoning and by applying (guess) 𝑛 − 1 times:

3≥𝑘 𝑗 𝜓 𝑗 ≡ 3≥𝑘 𝑗
∨
(𝜒1∧···∧𝜒 𝑗−1∧𝜒 𝑗+1∧···∧𝜒𝑛 ) ∈G

(
𝜒1 ∧ · · · ∧ 𝜒 𝑗−1 ∧𝜓 𝑗 ∧ 𝜒 𝑗+1 ∧ · · · ∧ 𝜒𝑛

)
.

Let D be the set of functions 𝑑 : G → [0, 𝑘 𝑗 ] assigning to each formula of G a number in [0, 𝑘 𝑗 ],
such that 𝑘 𝑗 =

∑
𝛾 ∈G 𝑑 (𝛾). By relying on (3≥𝑘 distr), we obtain 3≥𝑘 𝑗 𝜓 𝑗 ≡ 𝜓 ′𝑗 where

𝜓 ′𝑗
def
=

∨
𝑑∈D

∧
(𝜒1∧···∧𝜒 𝑗−1∧𝜒 𝑗+1∧···∧𝜒𝑛 )=𝛾 ∈G 3≥𝑑 (𝛾 )

(
𝜒1 ∧ . . . 𝜒 𝑗−1 ∧𝜓 𝑗 ∧ 𝜒 𝑗+1 ∧ · · · ∧ 𝜒𝑛

)
.

Let 𝜑 ′ be the formula obtained from 𝜑 by replacing with 𝜓 ′𝑗 every occurrence of 3≥𝑘 𝑗 𝜓 𝑗 not
appearing under the scope of graded modalities. By definition of G and D, the formula 𝜑 ′ satisfies
all the expected properties. □

Lemma 3.3. Let 𝜑 in GML. There is a GML formula 𝜑 ′ in disjoint form such that 𝜑 ′ ≡ 𝜑 .

Proof. Use Lemma 3.2 bottom-up, from formulae in gm(md(𝜑)−1, 𝜑) to formulae in gm(0, 𝜑). □

When discussing the exponential-size model property forML( ), we are interested in the size
of the smallest pointed forest satisfying a GML formula already given in disjoint form. To this
end, we need to introduce one last notion: the branching degree of a formula. Let 𝜑 be a formula
GML, with maxGM (𝜑) = {3≥𝑘1 𝜓1, . . . ,3≥𝑘𝑛 𝜓𝑛}. We define bd(0, 𝜑) def

= 𝑘1 + · · · + 𝑘𝑛 and, for all
𝑚 ≥ 0, bd(𝑚 + 1, 𝜑) def= max{bd(𝑚,𝜓 ) | 3≥𝑘 𝜓 ∈ maxGM (𝜑)}. Hence, bd(𝑚,𝜑) can be understood as
the maximal bd(0,𝜓 ) for some subformula𝜓 occurring at the modal depth𝑚 within 𝜑 . We write
maxbd (𝜑) def= max{bd(𝑚,𝜑) | 𝑚 ∈ [0,md(𝜑)]} for the branching degree of 𝜑 .

Lemma 3.4. Every satisfiable GML formula 𝜑 in disjoint form is satisfied by a pointed forest with
at most (maxbd (𝜑) + 1)md(𝜑 ) worlds.

Proof. The proof follows with a straightforward induction on the modal degree of 𝜑 .
base case: md(𝜑) = 0. In this case, 𝜑 is a Boolean combination of atomic propositions, and thus

the satisfaction of 𝜑 can be witnessed on a pointed forest with one single world (i.e. the
satisfaction of 𝜑 only depends on the atomic propositions satisfied by the current world).

induction step: md(𝜑) = 𝑑 + 1. By propositional reasoning, there is a GML formula 𝜑 ′ in disjoint
form such that 𝜑 ≡ 𝜑 ′ and 𝜑 ′ is a disjunction of conjunctions of possibly negated formulae
from maxGM (𝜑) ∪ maxPC (𝜑). Since 𝜑 is satisfiable and 𝜑 ≡ 𝜑 ′, one of the disjuncts of 𝜑 ′ must
be satisfiable. Let 𝜒 be such a disjunct, which is a conjunction of the form:

𝜒 = 3≥𝑘1𝜓1 ∧ . . . ∧3≥𝑘𝑛𝜓𝑛 ∧ ¬3≥ 𝑗1𝜓 ′1 ∧ . . . ∧ ¬3≥ 𝑗𝑚𝜓 ′𝑚 ∧ 𝐿1 ∧ · · · ∧ 𝐿𝑟 ,
where {3≥𝑘𝑖𝜓𝑖 | 𝑖 ∈ [1, 𝑛]}∪{3≥ 𝑗𝑖𝜓 ′𝑖 | 𝑖 ∈ [1,𝑚]} ⊆ maxGM (𝜑) and 𝐿1, . . . , 𝐿𝑟 are literals built
upon maxPC (𝜑). Since maxGM (𝜒) ⊆ maxGM (𝜑) we have maxbd (𝜒) ≤ maxbd (𝜑), md(𝜒) ≤ md(𝜑)
and 𝜒 is in disjoint form. Without loss of generality, we can assume each 𝑘𝑖 , with 𝑖 ∈ [1, 𝑛],
to be at least 1. Indeed, formulae of the form 3≥0 𝜓 are valid and can be replaced with ⊤.
From the satisfiability of 𝜒 , we conclude that for all 𝑖 ∈ [1, 𝑛] and 𝑟 ∈ [1,𝑚] if 𝜓𝑖 ≡ 𝜓 ′𝑟
then 𝑘𝑖 < 𝑗𝑟 . We consider a set R = {3≥𝑘1𝛾1, . . . ,3≥𝑘𝑞𝛾𝑞} of representative formulae for
{3≥𝑘1𝜓1, . . . ,3≥𝑘𝑛𝜓𝑛}, i.e. R is a subset of {3≥𝑘1𝜓1, . . . ,3≥𝑘𝑛𝜓𝑛} such that for every 𝑖 ∈
[1, 𝑛], there is exactly one 𝑗 ∈ [1, 𝑞] such that𝜓𝑖 ≡ 𝛾 𝑗 , and in that case �̃� 𝑗 ≥ 𝑘𝑖 . Since 𝜒 is in
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disjoint form and satisfiable and each 𝑘𝑖 (𝑖 ∈ [1, 𝑛]) is assumed to be at least 1, we conclude
that every formula in R is satisfiable, and for all 𝑖 ≠ 𝑗 ∈ [1, 𝑞], 𝛾𝑖 ∧ 𝛾 𝑗 is unsatisfiable. Then,
constructing a model for 𝜒 becomes straightforward: by induction hypothesis, for every 𝑖 ∈
[1, 𝑞] there is a pointed forest (𝔐𝑖 ,𝑤𝑖 ) with at most (maxbd (𝛾𝑖 )+1)md(𝛾𝑖 ) worlds that satisfy𝛾𝑖 .
Let us pick �̃�𝑖 copies (𝔐1,𝑖 ,𝑤1,𝑖 ), . . . , (𝔐𝑘𝑖 ,𝑖

,𝑤
𝑘𝑖 ,𝑖
) of the pointed forest (𝔐𝑖 ,𝑤𝑖 ), constructed

over distinct sets of worlds. For all 𝑖 ∈ [1,𝑚] and 𝑐 ∈ [1, �̃�𝑖 ], let 𝔐𝑐,𝑖 = (𝑊𝑐,𝑖 , 𝑅𝑐,𝑖 ,𝑉𝑐,𝑖 ). Let us
consider the finite forest𝔐 = (𝑊,𝑅,𝑉 ) defined as
• 𝑊 def

= {𝑤} ∪
⋃
𝑖∈[1,𝑞 ]

⋃
𝑐∈[1,𝑘𝑖 ]𝑊𝑐,𝑖 , where𝑤 is a fresh world not appearing in any𝑊𝑐,𝑖 ,

• 𝑅 = {(𝑤,𝑤𝑐,𝑖 ) | 𝑖 ∈ [1,𝑚], 𝑐 ∈ [1, �̃�𝑖 ]} ∪
⋃
𝑖∈[1,𝑞 ]

⋃
𝑐∈[1,𝑘𝑖 ] 𝑅𝑐,𝑖 ,

• for every atomic proposition 𝑝 appearing in 𝜑 , for every 𝑖 ∈ [1, 𝑞], 𝑐 ∈ [1, �̃�𝑖 ] and𝑤 ′ ∈𝑊𝑐,𝑖 ,
𝑤 ′ ∈ 𝑉 (𝑝) if and only if𝑤 ′ ∈ 𝑉𝑐,𝑖 (𝑝),
• for every 𝑝 ∈ maxPC (𝜑),𝑤 ∈ 𝑉 (𝑝) if and only if 𝑝 occurs positively in 𝐿1 ∧ · · · ∧ 𝐿𝑟 .
We have𝔐,𝑤 |= 𝜒 . Indeed, 𝔐,𝑤 |= 𝐿1 ∧ · · · ∧ 𝐿𝑟 holds by definition of 𝑉 , whereas𝔐,𝑤 |=
3≥𝑘1𝜓1∧· · ·∧3≥𝑘𝑛𝜓𝑛 holds directly from the definition ofR togetherwith the definition of the
various (𝔐𝑐,𝑖 ,𝑤𝑐,𝑖 ) with 𝑖 ∈ [1, 𝑞] and 𝑐 ∈ [1, �̃�𝑖 ]. Similarly,𝔐,𝑤 |= ¬3≥ 𝑗1𝜓 ′1∧. . .∧¬3≥ 𝑗𝑚𝜓 ′𝑚
holds by definition ofR together with the satisfiability of 𝜒 , which implies that for all 𝑖 ∈ [1, 𝑛]
and 𝑟 ∈ [1,𝑚] if𝜓𝑖 ≡ 𝜓 ′𝑟 then 𝑘𝑖 < 𝑗𝑟 .
Space-wise, by definition of R, ∑𝑞

𝑖=1 �̃�𝑖 ≤
∑𝑛
𝑖=1 𝑘𝑖 ≤ bd(0, 𝜒) ≤ maxbd (𝜑). Let |𝑊𝑖 | be the

number of worlds in 𝔐𝑖 . The number of worlds in𝑊 is

|𝑊 | = 1 +∑𝑞

𝑖=1 �̃�𝑞 · |𝑊𝑖 | ≤ 1 +∑𝑞

𝑖=1 �̃�𝑖 · (maxbd (𝛾𝑖 ) + 1)md(𝜒𝑖 )

≤ 1 + (maxbd (𝜑) + 1)md(𝜑 )−1 ·∑𝑞

𝑖=1 �̃�𝑖

≤ 1 + (maxbd (𝜑) + 1)md(𝜑 )−1 · maxbd (𝜑) ≤ (maxbd (𝜑) + 1)md(𝜑 ) □

3.2 ML( ) is as expressive as GML

Let 𝜑1, 𝜑2 be GML formulae such that 𝜑1 ∧ 𝜑2 is in disjoint form. We show that there is a GML
formula𝜓 such that 𝜑1 𝜑2 ≡ 𝜓 . To do so, we take a slight detour through Presburger arithmetic
interpreted on the set of natural numbersN, see e.g., [29, 44] for details. We characterise the formula
𝜑1 𝜑2 by using linear arithmetic constraints for the number of successors. Then, we take advantage
of basic properties of Presburger arithmetic to eliminate quantifiers, and obtain a GML formula.
Below, the variables x, y, z, . . ., possibly decorated and occurring in formulae, are from Presburger
arithmetic and therefore they are interpreted by natural numbers. We write 𝜒 (x1, . . . , x𝑛) for a
formula in Presburger arithmetic 𝜒 with free variables x1, . . . , x𝑛 .

Let 𝜑 be in GML such that maxPC (𝜑) ⊆ {𝑝1, . . . , 𝑝𝑚} and {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜑)} ⊆ {𝜓1, . . . ,𝜓𝑛}.
We define formulae in Presburger arithmetic that state constraints about the number of children
satisfying a formula𝜓 𝑗 ( 𝑗 ∈ [1, 𝑛]), as well as the polarity of the atomic propositions 𝑝 𝑗 ( 𝑗 ∈ [1,𝑚])
not appearing under the scope of graded modalities. In this respect, the variable x𝑗 is intended
to be interpreted as the number of children satisfying 𝜓 𝑗 , whereas with some abuse of notation
we see 𝑝 𝑗 directly as a variable. Whenever non-zero, the variable 𝑝 𝑗 shall encode the fact that
the homonymous atomic proposition is satisfied. We write 𝜑PA (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚) to denote
the quantifier-free formula of Presburger arithmetic obtained from 𝜑 by replacing with x𝑗 ≥ 𝑘
(resp. 𝑝 𝑗 ≥ 1) every occurrence of 3≥𝑘 𝜓 𝑗 (resp. 𝑝 𝑗 ) that it is not in the scope of a graded modality.
For instance, assuming that 𝜑 = ¬𝑝 ∧ (3≥5 (𝑝 ∧𝑞) ∨¬3≥4 ¬𝑝), the expression 𝜑PA (x1, x2) denotes
the formula ¬𝑝 ≥ 1 ∧ (x1 ≥ 5 ∨ ¬(x2 ≥ 4)).

Consider now formulae 𝜑1 and 𝜑2 in GML, such that the conjunction 𝜑1 ∧ 𝜑2 is in disjoint form,
maxPC (𝜑1 ∧ 𝜑2) ⊆ {𝑝1, . . . , 𝑝𝑚} and {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜑1 ∧ 𝜑2)} ⊆ {𝜓1, . . . ,𝜓𝑛}. We consider the
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formula [𝜑1, 𝜑2]PA (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚) of Presburger arithmetic defined below:

∃ y11, y21, . . . , y1𝑛, y2𝑛 (
∧𝑛
𝑗=1 x𝑗 = y1𝑗 + y2𝑗 ) ∧ 𝜑PA

1 (y11, . . . , y1𝑛, 𝑝1, . . . , 𝑝𝑚) ∧ 𝜑PA
2 (y21, . . . , y2𝑛, 𝑝1, . . . , 𝑝𝑚).

This formula states that there is a way to divide the children in two distinct sets and each set allows to
satisfy 𝜑PA

1 or 𝜑PA
2 , respectively. As Presburger arithmetic admits quantifier elimination [18, 44, 47],

there is a quantifier-free formula 𝜒 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚) equivalent to the formula [𝜑1, 𝜑2]PA. In
the next lemma, we show that thanks to the shape of the formula [𝜑1, 𝜑2]PA, the atomic formulae
appearing in 𝜒 are of the form x𝑗 ≥ 𝑘 and 𝑝 𝑗 ≥ 1, i.e. the quantifier elimination step does not
introduce ‘modulo constraints’ or constraints of the form

∑
𝑎 𝑗y𝑗 ≥ 𝑘 .

Lemma 3.5. Let 𝜑1, 𝜑2 ∈ GML s.t. 𝜑1∧𝜑2 is in disjoint form. Then [𝜑1, 𝜑2]PA (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚)
is equivalent to a quantifier-free formula 𝜒 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚) of Presburger arithmetic, whose
atomic formulae are only of the form x𝑗 ≥ 𝑘 ( 𝑗∈[1, 𝑛]), with 𝑘 ≤ gr(𝜑1)+gr(𝜑2), or 𝑝 𝑗 ≥ 1 ( 𝑗∈[1,𝑚]).

Proof. Notice that if either 𝜑PA
1 or 𝜑PA

2 is inconsistent, then 𝜒 can be defined as ⊥. In the sequel,
we assume that both 𝜑PA

1 and 𝜑PA
2 are consistent. For each 𝑖 ∈ {1, 2}, it is straightforward to establish

that there is an arithmetical formula 𝜑 ′𝑖 (y𝑖1, . . . , y𝑖𝑛, 𝑝1, . . . , 𝑝𝑚) in disjunctive normal form that is
logically equivalent to the formula 𝜑PA

𝑖 (y𝑖1, . . . , y𝑖𝑛, 𝑝1, . . . , 𝑝𝑚), and where in each disjunct of 𝜑 ′𝑖 ,
every variable y𝑖𝑗 ( 𝑗 ∈ [1, 𝑛]) occurs in at most two literals with the following three options:
• y𝑖𝑗 occurs in a unique literal of the form y𝑖𝑗 ≥ 𝑘 ,
• y𝑖𝑗 occurs in a unique (negative) literal of the form ¬(y𝑖𝑗 ≥ 𝑘), or
• y𝑖𝑗 occurs in two literals whose conjunction is y𝑖𝑗 ≥ 𝑘 ∧ ¬(y𝑖𝑗 ≥ 𝑘 ′) and, 𝑘 ′ > 𝑘 .

Above, we can guarantee that 𝑘, 𝑘 ′ ≤ gr(𝜑𝑖 ). Moreover, in each disjunct of 𝜑 ′𝑖 , every variable 𝑝 𝑗
( 𝑗 ∈ [1,𝑚]) occurs exactly once, in a (possibly negated) atomic proposition of the form 𝑝 𝑗 ≥ 1.
Using propositional reasoning and the fact that disjunction distributes over existential first-order
quantification and that the variables 𝑝 𝑗 are free, the formula [𝜑1, 𝜑2]PA (x1, . . . , x𝑛) is therefore
logically equivalent to a formula of the form∨

𝛼,𝛽

𝑃1𝛼 ∧ 𝑃2𝛽 ∧ ∃ y
1
1, y

2
1, . . . , y

1
𝑛, y

2
𝑛

(
𝐶1
𝛼 ∧𝐶2

𝛽
∧

𝑛∧
𝑗=1

x𝑗 = y1𝑗 + y2𝑗
)

where 𝑃1𝛼 ∧ 𝐶1
𝛼 (resp. 𝑃2𝛼 ∧ 𝐶2

𝛽
) is a conjunction from 𝜑 ′1 (resp. from 𝜑 ′2) and, for 𝑖 ∈ 1, 2, 𝑃𝑖𝛼 is

written with variables from {𝑝1, . . . , 𝑝𝑚} whereas𝐶𝑖𝛼 is written with variables from {y𝑖1, . . . , y𝑖𝑛}. In
order to build 𝜒 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚) from [𝜑1, 𝜑2]PA (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚), we take advantage
of quantifier elimination in PA and we explain below how this can be done. It is sufficient to explain
how to eliminate quantifiers for subformulae of the form

Ψ = ∃ y11, y21, . . . , y1𝑛, y2𝑛 (
𝑛∧
𝑗=1

x𝑗 = y1𝑗 + y2𝑗 ) ∧𝐶1
𝛼 ∧𝐶2

𝛽
.

Inductively, let 𝑗 ∈ [1, 𝑛] and suppose that by performing quantifier elimination on the quantifier
prefix ∃ y1𝑗+1, y2𝑗+1, . . . , y1𝑛, y2𝑛 , the formula Ψ is shown equivalent to ∃ y11, y21, . . . , y1𝑗 , y2𝑗 Ψ𝑗+1, with
Ψ𝑛+1 = (

∧𝑛
𝑗=1 x𝑗 = y1𝑗 + y2𝑗 ) ∧𝐶1

𝛼 ∧𝐶2
𝛽
, and the following properties hold:

(1) Ψ𝑗+1 is quantifier-free with no occurrences of the variables y1𝑗+1, y
2
𝑗+1, . . . , y

1
𝑛, y

2
𝑛 ,

(2) Ψ𝑗+1 is of the form (
∧
𝑎∈[1, 𝑗 ] x𝑎 = y1𝑎 + y2𝑎) ∧ 𝐷 ∧𝐶′1 ∧𝐶′2, where

(a) 𝐷 is a conjunction of literals built from constraints of the form x𝑗 ′ ≥ 𝑘 with 𝑗 ′ ∈ [ 𝑗, 𝑛],
(b) for each 𝑖 ∈ {1, 2}, 𝐶′𝑖 a conjunction such that for each 𝑗 ′ ∈ [1, 𝑗], y𝑖

𝑗 ′ is in at most two
literals with the following three options:
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• y𝑖
𝑗 ′ occurs in a unique literal of the form y𝑖

𝑗 ′ ≥ 𝑘 ,
• y𝑖

𝑗 ′ occurs in a unique (negative) literal of the form ¬(y𝑖
𝑗 ′ ≥ 𝑘),

• y𝑖
𝑗 ′ occurs in two literals whose conjunction is y𝑖

𝑗 ′ ≥ 𝑘1 ∧ ¬(y𝑖𝑗 ′ ≥ 𝑘2) and 𝑘2 > 𝑘1.
Now, let us show how to perform quantifier elimination of ∃ y1𝑗 ∃ y2𝑗 Ψ𝑗+1 to preserve the property
for 𝑗 − 1. First note that ∃ y1𝑗 ∃ y2𝑗 Ψ𝑗+1 is logically equivalent to

(
𝑗−1∧
𝑎=1

x𝑎 = y1𝑎 + y2𝑎) ∧ 𝐷 ∧𝐶′′1 ∧𝐶′′2 ∧ ∃ y1𝑗 ∃ y2𝑗 (x𝑗 = y1𝑗 + y2𝑗 ∧ 𝐷1 ∧ 𝐷2),

where𝐶′1 = 𝐶
′′
1 ∧𝐷1 (assuming abusively that 𝐴 ∧⊤ = 𝐴),𝐶′2 = 𝐶

′′
2 ∧𝐷2 and each variable y𝑖𝑗 does

not occur in𝐶′′𝑖 , and each 𝐷𝑖 is either ⊤, or contains at most 2 literals involving the variable y𝑖𝑗 . It is
then easy to eliminate quantifiers in ∃ y1𝑗 ∃ y2𝑗 (x𝑗 = y1𝑗 + y2𝑗 ) ∧𝐷1 ∧𝐷2. Below we treat all the cases,
depending on the value for 𝐷1 ∧ 𝐷2 leading to the formula 𝐷12 (we omit the symmetrical cases):
case ⊤ ∧ ⊤ or ¬(y1𝑗 ≥ 𝑘) ∧ ⊤: 𝐷12

def
= ⊤,

case (y1𝑗 ≥ 𝑘) ∧ ⊤ or ((y1𝑗 ≥ 𝑘) ∧ ¬(y1𝑗 ≥ 𝑘 ′)) ∧ ⊤: 𝐷12
def
= (x𝑗 ≥ 𝑘),

case ¬(y1𝑗 ≥ 𝑘) ∧ (y2𝑗 ≥ 𝑘 ′′): 𝐷12
def
= (x𝑗 ≥ 𝑘 ′′),

case (y1𝑗 ≥ 𝑘) ∧ (y2𝑗 ≥ 𝑘 ′′) or ((y1𝑗 ≥ 𝑘) ∧ ¬(y1𝑗 ≥ 𝑘 ′)) ∧ (y2𝑗 ≥ 𝑘 ′′): 𝐷12
def
= (x𝑗 ≥ 𝑘 + 𝑘 ′′),

case ((y1𝑗 ≥ 𝑘) ∧ ¬(y1𝑗 ≥ 𝑘 ′)) ∧ ((y2𝑗 ≥ 𝑘 ′′) ∧ ¬(y2𝑗 ≥ 𝑘 ′′′)): 𝐷12
def
= (x𝑗 ≥ 𝑘+𝑘 ′′)∧¬(x𝑗 ≥ 𝑘 ′+𝑘 ′′′).

It is now easy to check that the formula

∃ y11, y21, . . . , y1𝑗−1, y2𝑗−1 (
𝑗−1∧
𝑎=1

x𝑎 = y1𝑎 + y2𝑎) ∧ (𝐷 ∧ 𝐷12) ∧𝐶′′1 ∧𝐶′′2 ,

satisfies the conditions for Ψ𝑗 . By iterating the process of quantifier elimination, we get the desired
formula 𝜒 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚). From the case analysis above, notice that all the atomic formulae
of the form x𝑗 ≥ 𝑘 appearing in 𝜒 (x1, . . . , x𝑛) are such that 𝑘 ≤ gr(𝜑1) + gr(𝜑2). □

From the formula 𝜒 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚), we derive the GML formula 𝜒GML by replacing every
occurrence of x𝑗 ≥ 𝑘 by3≥𝑘 𝜓 𝑗 , and every occurrence of 𝑝 𝑗 ≥ 1 by 𝑝 𝑗 . We show that 𝜑1 𝜑2 ≡ 𝜒GML.

Lemma 3.6. Given 𝜑1 and 𝜑2 GML formulae in disjoint form, there is a GML formula 𝜒GML in
disjoint form such that 𝜒GML ≡ 𝜑1 𝜑2, gr(𝜒GML) ≤ gr(𝜑1) + gr(𝜑2), maxPC (𝜒GML) ⊆ maxPC (𝜑1 ∧ 𝜑2)
and {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜒GML)} ⊆ {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜑1 ∧ 𝜑2)}.

The assumption that 𝜑1 ∧ 𝜑2 is in disjoint form is essential to obtain 𝜑1 𝜑2 ≡ 𝜒GML. Here is a
simple counter-example. The formula [𝜑1, 𝜑2]PA (x1, x2) obtained from 3≥1 𝑝 3≥1 𝑞 is defined as
∃ y11, y21, y12, y22 (x1 = y11 + y21) ∧ (x2 = y12 + y22) ∧ (y11 ≥ 1) ∧ (y22 ≥ 1). Obviously, [𝜑1, 𝜑2]PA (x1, x2) is
arithmetically equivalent to (x1 ≥ 1) ∧ (x2 ≥ 1) but 3≥1 𝑝 3≥1 𝑞 . 3≥1 𝑝 ∧3≥1 𝑞. Indeed, when
𝔐,𝑤 |= 3≥1 𝑝 ∧3≥1 𝑞 and𝑤 has a unique child satisfying 𝑝 ∧ 𝑞, 𝔐,𝑤 ̸ |= 3≥1 𝑝 3≥1 𝑞.

Proof. Let maxPC (𝜑1 ∧ 𝜑2) = {𝑝1, . . . , 𝑝𝑚} and {𝜓1, . . . ,𝜓𝑛} = {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜑1 ∧ 𝜑2)}.
Consider the formula 𝜒 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚), equivalent to [𝜑1, 𝜑2]PA (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚), from
Lemma 3.5. Let 𝜒GML be the formula obtained from 𝜒 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚) by replacing every
occurrence of x𝑗 ≥ 𝑘 with 3≥𝑘 𝜓 𝑗 , and every occurrence of 𝑝 𝑗 ≥ 1 with 𝑝 𝑗 . The formula 𝜒GML

enjoys the following properties: gr(𝜒GML) ≤ gr(𝜑1) + gr(𝜑2), maxPC (𝜒GML) ⊆ maxPC (𝜑1 ∧ 𝜑2) and
{𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜒GML)} ⊆ {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜑1 ∧ 𝜑2)}. As 𝜑1 ∧ 𝜑2 is in disjoint form, the
last inclusion implies that 𝜒GML is in disjoint form.
To grasp the relationship between 𝜑𝑖 and its arithmetical counterpart 𝜑PA

𝑖 (x1, . . . , x𝑛, 𝑝1, . . . , 𝑝𝑚),
consider a finite forest𝔐𝑖 = (𝑊𝑖 , 𝑅𝑖 ,𝑉𝑖 ),𝑤 ∈𝑊𝑖 , and
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• for all 𝑗 ∈ [1, 𝑛], let 𝛽𝑖𝑗 = |{𝑤 ′ ∈𝑊𝑖 | 𝔐𝑖 ,𝑤
′ |= 𝜓 𝑗 and (𝑤,𝑤 ′) ∈ 𝑅𝑖 }|,

• for all 𝑗 ∈ [1,𝑚], if𝑤 ∈ 𝑉𝑖 (𝑝 𝑗 ) then let 𝑐𝑖𝑗 be an arbitrary number greater than 0, else let 𝑐𝑖𝑗 = 0.
We have the following equivalence

𝔐𝑖 ,𝑤 |= 𝜑𝑖 if and only if 𝜑PA
𝑖 (𝛽𝑖1, . . . , 𝛽𝑖𝑛, 𝑐𝑖1, . . . , 𝑐𝑖𝑚) is valid, (1)

where 𝜑PA
𝑖 (𝛽𝑖1, . . . , 𝛽𝑖𝑛, 𝑐𝑖1, . . . , 𝑐𝑖𝑚) is the sentence from Presburger arithmetic obtained by replacing

each variable x𝑗 (resp. 𝑝 𝑗 ) with the natural number 𝛽𝑖𝑗 (resp. 𝑐
𝑖
𝑗 ).

Let us show that 𝜑1 𝜑2 ≡ 𝜒GML. We start by showing that 𝜑1 𝜑2 ⇒ 𝜒GML is valid. Let 𝔐 =

(𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 , such that𝔐,𝑤 |= 𝜑1 𝜑2. By definition of |=, there are𝔐1,
𝔐2 such that𝔐 = 𝔐1 +𝑤 𝔐2,𝔐1,𝑤 |= 𝜑1 and𝔐2,𝑤 |= 𝜑2. Let us keep the definition of the 𝛽𝑖𝑗 ’s
and 𝑐𝑖𝑗 ’s from above, and for each 𝑗 ∈ [1, 𝑛], let 𝛼 𝑗 = |{𝑤 ′ ∈ 𝑊 | 𝔐,𝑤 ′ |= 𝜓 𝑗 and (𝑤,𝑤 ′) ∈ 𝑅}|.
Since 𝑉 is shared between 𝔐1 and 𝔐2, 𝑐1𝑗 ≥ 1 holds if and only if 𝑐2𝑗 ≥ 1. Let 𝑐 𝑗 = max(𝑐1𝑗 , 𝑐2𝑗 ).
By (1) and as 𝔐 = 𝔐1 +𝔐2 holds too, we have the following:

for all 𝑗 ∈ [1, 𝑛] 𝛼 𝑗 = 𝛽1𝑗 + 𝛽2𝑗 , for all 𝑖 ∈ {1, 2} 𝜑PA
1 (𝛽𝑖1, . . . , 𝛽𝑖𝑛, 𝑐1, . . . , 𝑐𝑚) is valid,

which implies the validity of [𝜑1, 𝜑2]PA (𝛼1, . . . , 𝛼𝑛, 𝑐1, . . . , 𝑐𝑚). Hence, 𝜒 (𝛼1, . . . , 𝛼𝑛, 𝑐1, . . . , 𝑐𝑚) is
valid. By definition of 𝜒GML together with the definitions of 𝛼 𝑗 and 𝑐 𝑗 , 𝔐,𝑤 |= 𝜒GML.

Now, we show that 𝜒GML ⇒ 𝜑1 𝜑2 is valid. Let𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 such
that 𝔐,𝑤 |= 𝜒GML. As above,
• for each 𝑗 ∈ [1, 𝑛], let 𝛼 𝑗 = |{𝑤 ′ ∈𝑊 | 𝔐,𝑤 ′ |= 𝜓 𝑗 and (𝑤,𝑤 ′) ∈ 𝑅}|.
• for all 𝑗 ∈ [1,𝑚], if𝑤 ∈ 𝑉 (𝑝 𝑗 ) then let 𝑐 𝑗 be an arbitrary number greater than 0, else let 𝑐 𝑗 = 0.

Similarly to (1), we get that 𝜒 (𝛼1, . . . , 𝛼𝑛, 𝑐1, . . . , 𝑐𝑚) is valid, and so [𝜑1, 𝜑2]PA (𝛼1, . . . , 𝛼𝑛, 𝑐1, . . . , 𝑐𝑚)
is valid. From the semantics of the formula [𝜑1, 𝜑2]PA, there are 𝛽11, 𝛽21, . . . , 𝛽1𝑛, 𝛽2𝑛 ∈ N such that

for all 𝑗 ∈ [1, 𝑛] 𝛼 𝑗 = 𝛽1𝑗 + 𝛽2𝑗 , for all 𝑖 ∈ {1, 2} 𝜑PA
1 (𝛽𝑖1, . . . , 𝛽𝑖𝑛, 𝑐1, . . . , 𝑐𝑚) is valid.

For each 𝑖 ∈ {1, 2} let us build 𝔐𝑖 such that for all 𝑗 ∈ [1, 𝑛], 𝑤 has 𝛽𝑖𝑗 children in 𝔐𝑖 , and by
construction for each such a child, its whole subtree in (𝑊,𝑅) is present in (𝑊,𝑅𝑖 ) too. Such
a division is possible because, if a child of 𝑤 contributes to the value 𝛼 𝑗 in 𝔐 (and therefore it
satisfies𝜓 𝑗 ), it cannot contribute to any value 𝛼 𝑗 ′ with 𝑗 ′ ≠ 𝑗 , thanks to the assumption that𝜓 𝑗 ∧𝜓 𝑗 ′
is unsatisfiable, given by the disjoint form of 𝜑1 ∧ 𝜑2. Hence, by construction, 𝔐 = 𝔐1 +𝑤 𝔐2.
Moreover, for any child 𝑤 ′ of 𝑤 in 𝔐𝑖 , we have 𝔐𝑖 ,𝑤

′ |= 𝜓 𝑗 if and only if 𝔐,𝑤 ′ |= 𝜓 𝑗 (for
all 𝑗 ∈ [1, 𝑛]) as the whole subtree of 𝑤 ′ in 𝔐 is present in 𝔐𝑖 . For 𝑖 ∈ {1, 2}, the validity of
𝜑PA
𝑖 (𝛽𝑖1, . . . , 𝛽𝑖𝑛, 𝑐1, . . . , 𝑐𝑚) entails, by (1),𝔐𝑖 ,𝑤 |= 𝜑𝑖 . Consequently, we get 𝔐,𝑤 |= 𝜑1 𝜑2. □

The bound on gr(𝜒GML) stated in this key lemma is essential to obtain an exponential bound
on the smallest model satisfying a formula in ML( ) (see Section 3.3). Combining Lemma 3.3
and Lemma 3.6, we conclude that GML is closed under the operator .

Theorem 3.7. ML( ) ⪯ GML. Therefore, ML( ) ≈ GML.

Proof. Let 𝜑 be a formula inML( ). As 3𝜓 ≡ 3≥1 𝜓 , we can assume that the only modalities
in 𝜑 are of the form 3≥1 or . If 𝜑 has no occurrence of , we are done. Otherwise, let 𝜓 be a
subformula of 𝜑 whose outermost connective is and the arguments are in GML, say 𝜓 = 𝜑1 𝜑2.
By Lemma 3.3 there are GML formulae 𝜑 ′1 and 𝜑

′
2 in disjoint form such that 𝜑 ′1 ≡ 𝜑1 and 𝜑 ′2 ≡ 𝜑2.

Hence, 𝜑 ′1 𝜑
′
2 ≡ 𝜓 . We apply Lemma 3.6 on 𝜑 ′1 𝜑

′
2, obtaining a formula𝜓 ′ in GML that is equivalent

to𝜓 . We have 𝜑 ≡ 𝜑 [𝜓 ← 𝜓 ′], where 𝜑 [𝜓 ← 𝜓 ′] is obtained from 𝜑 by replacing every occurrence
of𝜓 by𝜓 ′. Note that the number of occurrences of in 𝜑 [𝜓 ← 𝜓 ′] is strictly less than the number
of occurrences of in 𝜑 . By repeating such a type of replacement, eventually we obtain a formula
𝜑 ′ in GML such that 𝜑 ≡ 𝜑 ′. □
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3.3 The satisfiability problem of ML( ) is AExpPol-complete

First, we will prove the upper bound, i.e., that Sat(ML( )) is inAExpPol. To do so, the main ingredient
is to show that given a formula 𝜑 inML( ), we build 𝜑 ′ in GML such that 𝜑 ′ ≡ 𝜑 and the models
for 𝜑 ′ (if any) do not require a number of children per node more than exponential in size(𝜑). The
proof of Theorem 3.7 needs to be refined to improve the way 𝜑 ′ is computed. In particular, this
requires a more “global” strategy that does not require to put subformulae in disjoint form multiple
times. Aiming for an inductive argument on the line of Lemmata 3.2 and 3.3, we first consider the
logic L, which is a variant ofML( ) given by the grammar below:

𝜑 := 3≥𝑘 𝜓 | 𝑝 | 𝜑 𝜑 | 𝜑 ∧ 𝜑 | ¬𝜑,

where 𝑝 ∈ AP and 3≥𝑘 𝜓 is a formula in GML (abusively assumed to be in ML( ) but we know
GML ⪯ ML( )). Given 𝜑 in ML( ) or in L, we write cd(𝜑) to denote its composition degree,
i.e. the number of appearing in 𝜑 . We extend the notion of maxGM (.) to formulae in L, so that
maxGM (𝜑) def= maxGM (𝜑 [ ← ∧]), where 𝜑 [ ← ∧] is the formula obtained from 𝜑 by replacing every
occurrence of by ∧. Similarly, gm(𝑑, 𝜑) def

= gm(𝑑, 𝜑 [ ← ∧]). We say that 𝜑 in L is in disjoint
form if so is 𝜑 [ ← ∧]. Alternatively, this means that given maxGM (𝜑) = {3≥𝑘1 𝜓1, . . . ,3≥𝑘𝑛 𝜓𝑛},
�̂� = max{𝑘1, . . . , 𝑘𝑛}, the GML formula 3≥𝑘1𝜓1 ∧ · · · ∧3≥𝑘𝑛𝜓𝑛 is in disjoint form.

We start by extending Lemma 3.6 for formulae of the fragment L in disjoint form.

Lemma 3.8. Let 𝜑 be a formula of the fragment L such that maxGM (𝜑) = {3≥𝑘1𝜓1, . . . ,3≥𝑘𝑛𝜓𝑛} and
𝜑 is in disjoint form. There is aGML formula𝜓 in disjoint form such that 𝜑 ≡ 𝜓 , maxPC (𝜓 ) ⊆ maxPC (𝜑)
and maxGM (𝜓 ) ⊆ {3≥ 𝑗𝜓𝑖 | 𝑗 ∈ [0, (cd(𝜑) + 1) · gr(𝜑)] and 𝑖 ∈ [1, 𝑛]}.

Proof. By induction on cd(𝜑). If cd(𝜑) = 0, then𝜓 = 𝜑 . Otherwise, let Φ be the set of subformu-
lae of the form𝜑1 𝜑2 of𝜑 appearing not in scope of a modality . Fix𝜑1 𝜑2 inΦ. As cd(𝜑1)+cd(𝜑2) <
cd(𝜑), by induction hypothesis, there are GML formulae 𝜑 ′1, 𝜑

′
2 in disjoint form such that, for all 𝑖 ∈

{1, 2}, 𝜑𝑖 ≡ 𝜑 ′𝑖 and maxGM (𝜑 ′𝑖 ) ⊆ {3≥ 𝑗𝜓𝑖 | 𝑗 ≤ (cd(𝜑𝑖 ) + 1) · gr(𝜑𝑖 ) and 𝑖 ∈ [1, 𝑛]} and maxPC (𝜑 ′𝑖 ) ⊆
maxPC (𝜑𝑖 ). Notice that gr(𝜑 ′𝑖 ) ≤ (cd(𝜑𝑖 )+1)·gr(𝜑𝑖 ) ≤ (cd(𝜑𝑖 )+1)·gr(𝜑). By Lemma 3.6, there is a for-
mula 𝜒 in disjoint form such that 𝜒 ≡ 𝜑 ′1 𝜑 ′2, maxPC (𝜒) ⊆ maxPC (𝜑 ′1 ∧ 𝜑 ′2), gr(𝜒) ≤ gr(𝜑 ′1) + gr(𝜑 ′2),
and {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜒)} ⊆ {𝜓 | 3≥𝑘 𝜓 ∈ maxGM (𝜑 ′1 ∧ 𝜑 ′2)}. Let 3≥ 𝑗 𝛾 ∈ maxGM (𝜒). By defini-
tion, 𝛾 ∈ {𝜓1, . . . ,𝜓𝑛} and 𝑗 ≤ gr(𝜒) ≤ gr(𝜑 ′1) + gr(𝜑 ′2) ≤ (cd(𝜑1) + cd(𝜑2) + 2) · gr(𝜑) ≤
(cd(𝜑) + 1) · gr(𝜑).
Let 𝜓 be the formula obtained from 𝜑 by replacing every occurrence of 𝜑1 𝜑2 not appearing

under the scope of a modality with the equivalent formula 𝜒 , for every formula 𝜑1 𝜑2 in Φ.
The formula 𝜓 satisfies the required properties. Indeed, by definition it is equivalent to 𝜑 , and
since every 𝜒 is in disjoint form, so is 𝜓 . Clearly, maxPC (𝜓 ) ⊆ maxPC (𝜑). Lastly, the satisfaction
of maxGM (𝜓 ) ⊆ {3≥ 𝑗𝜓𝑖 | 𝑗 ≤ [0, (cd(𝜑) + 1) · �̂�] and 𝑖 ∈ [1, 𝑛]} stems from the fact that all the
formulae 𝜒 equivalent to some formula in Φ satisfy this same property. □

Applying adequately the transformation from Lemma 3.8 to a formula in ML( ), i.e. by con-
sidering maximal subformulae of the fragment L, allows us to get a logically equivalent GML
formula having exponential size models by Lemma 3.4. We extend the notion of branching degree
to formulae in L, so that bd(𝑚,𝜑) def= bd(𝑚,𝜑 [ ← ∧]).

Lemma 3.9. Every satisfiable 𝜑 in ML( ) is satisfied by a pointed forest of size in 2𝑂 (size(𝜑 ) ) .

Proof. Let 𝜑 be a formula in ML( ). During the proof, we see 3 as 3≥1 and assume that every
subformula of 𝜑 without occurrences of the graded modalities is a Boolean combination of atomic
propositions. This assumption is without loss of generality. Indeed, a formula𝜓 of ML( ) without
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graded modalities (thus without 3) is a formula built upon Boolean connectives, the composition
operator and atomic propositions, and is thus equivalent to𝜓 [ ← ∧].
Let 𝑚 = md(𝜑), 𝑘 = gr(𝜑), 𝑐 = cd(𝜑) and 𝑛 = max{|gm( 𝑗, 𝜑) | | 𝑗 ∈ [0,md(𝜑)]}. We reason

inductively, building a chain of equivalent formulae 𝜑0, . . . , 𝜑𝑚 where 𝜑0 = 𝜑 and, for 𝑖 ∈ [0,𝑚],
(1) md(𝜑𝑖 ) ≤ 𝑚, cd(𝜑𝑖 ) ≤ 𝑐 , all the atomic propositions in 𝜑𝑖 are from 𝜑 , and all subformulae of

𝜑𝑖 appearing under the scope of𝑚 − 𝑖 graded modalities belong to GML,
(2) for all 𝑗 ∈ [0, 𝑖] and 3≥𝑘 𝜓,3≥𝑘 ′ 𝜓

′ ∈ gm(𝑚 − 𝑗, 𝜑𝑖 ), either 𝜓 ≡ 𝜓 ′ or the formula 𝜓 ∧𝜓 ′ is
unsatisfiable (equivalently, the conjunction of all formulae in gm(𝑚− 𝑖, 𝜑𝑖 ) is in disjoint form),

(3) for all 𝑗 ∈ [𝑖 + 1,𝑚], |gm(𝑚 − 𝑗, 𝜑𝑖 ) | ≤ |gm(𝑚 − 𝑗, 𝜑) | and bd(𝑚 − 𝑗, 𝜑𝑖 ) ≤ bd(𝑚 − 𝑗, 𝜑),
(4) for every 𝑗 ∈ [0, 𝑖], |gm(𝑚 − 𝑗, 𝜑𝑖 ) | ≤ 2𝑛 · ((𝑐 + 1) ·𝑘 + 1) and bd(𝑚 − 𝑗, 𝜑𝑖 ) ≤ 2𝑛 · ((𝑐 + 1) ·𝑘)2.
Properties (1) and (2) above guarantee that each step on the chain of equivalences are in the

proper shape, i.e., without violating any syntactic condition. On the other hand, properties (3) and
(4) ensure that on each step the bounds in the formula obtained grow in a way that lead us to the
lemma’s statement, via the application of Lemma 3.4.
Precisely, the numbers𝑚, 𝑘 , 𝑐 and 𝑛 are all bounded by size(𝜑) (recall that we consider the

numbers appearing in graded modalities to be encoded in unary). Based on the properties above,
the formula 𝜑𝑚 that we obtain at the end is a GML formula in disjoint form such that maxbd (𝜑𝑚) ≤
2size(𝜑 ) · ((size(𝜑) + 1) ·size(𝜑))2,md(𝜑𝑚) ≤ size(𝜑), and therefore maxbd (𝜑𝑚) is in 2𝑂 (size(𝜑 ) ) .
As 𝜑 ≡ 𝜑𝑚 , the fact that 𝜑 is satisfied by a pointed forest of size in 2𝑂 (size(𝜑 ) ) then follows directly
from Lemma 3.4. Moreover, since GML is a fragment of ML( ), the construction of 𝜑𝑚 actually
reproves Lemma 3.3, but this time with precise bounds on the size of the equivalent GML formula
in disjoint form.

Clearly, for 𝑖 = 0, the formula 𝜑0 = 𝜑 satisfies all the expected properties (note that gm(𝑚,𝜑) = ∅
and that bd(𝜑) ≤ size(𝜑)). So, below suppose 𝑖 ≥ 1 and assume that we are provided with the
formula 𝜑𝑖−1 ≡ 𝜑 , satisfying
(1𝑖−1) md(𝜑𝑖−1) ≤ 𝑚, cd(𝜑𝑖−1) ≤ 𝑐 , all atomic propositions in 𝜑𝑖−1 are from 𝜑 , and all subformulae

of 𝜑𝑖−1 appearing under the scope of𝑚 − (𝑖 − 1) graded modalities belong to GML,
(2𝑖−1) for all 𝑗 ∈ [0, 𝑖−1] and3≥𝑘 𝜓,3≥𝑘 ′ 𝜓 ′ ∈ gm(𝑚− 𝑗, 𝜑𝑖−1), either𝜓∧𝜓 ′ is unsatisfiable or𝜓 ≡ 𝜓 ′,
(3𝑖−1) for all 𝑗 ∈ [𝑖,𝑚], |gm(𝑚 − 𝑗, 𝜑𝑖−1) | ≤ |gm(𝑚 − 𝑗, 𝜑) | and bd(𝑚 − 𝑗, 𝜑𝑖−1) ≤ bd(𝑚 − 𝑗, 𝜑),
(4𝑖−1) for every 𝑗 ∈ [0, 𝑖−1], |gm(𝑚− 𝑗, 𝜑𝑖−1) | ≤ 2𝑛 · ((𝑐+1) ·𝑘+1) and bd(𝑚− 𝑗, 𝜑𝑖−1) ≤ 2𝑛 · ((𝑐+1) ·𝑘)2.
Let us explain how we define 𝜑𝑖 . Consider the set Φ = {𝜒1, . . . , 𝜒𝑝 } of maximal subformulae of 𝜑𝑖−1
appearing under the scope of exactly𝑚− 𝑖 graded modalities. Note that if𝑚− 𝑖 = 0 then Φ = {𝜑𝑖−1},
and otherwise we have gm(𝑚 − (𝑖 + 1), 𝜑𝑖−1) = {3≥ 𝑗1 𝜒1, . . . ,3≥ 𝑗𝑝 𝜒𝑝 }. From the property (1𝑖−1),
all the formulae in Φ belong to the fragment L of ML( ). Notice that maxGM (𝜒1 ∧ · · · ∧ 𝜒𝑝 ) =
gm(𝑚 − 𝑖, 𝜑𝑖−1). Let gm(𝑚 − 𝑖, 𝜑𝑖−1) = {3≥𝑘1 𝜓1, . . . ,3≥𝑘𝑛 𝜓𝑛}. From property (2𝑖−1),𝜓1 ∧ · · · ∧𝜓𝑛
is in disjoint form. From property (3𝑖−1), 𝑛 ≤ |gm(𝑚 − 𝑖, 𝜑) | ≤ 𝑛 and bd(𝑚 − 𝑖, 𝜑𝑖−1) ≤ bd(𝑚 − 𝑖, 𝜑).
Let us consider each 3≥𝑘 𝑗 𝜓 𝑗 separately. Let 𝑗 ∈ [1, 𝑛]. Since 𝜓1 ∧ · · · ∧𝜓𝑛 is in disjoint form, so
is 3≥𝑘 𝑗 𝜓 𝑗 . Hence, applying Lemma 3.2, we conclude that 3≥𝑘 𝑗 𝜓 𝑗 ≡ 𝜓 ′𝑗 , for some GML formula
𝜓 ′𝑗 in disjoint form such that maxGM (𝜓 ′𝑗 ) ⊆ {3≥𝑘 𝜒 | 𝑘 ∈ [0, 𝑘] and 𝜒 ∈ C∧ (𝜓1, . . . ,𝜓𝑛)}. For every
ℓ ∈ [1, 𝑝], let 𝜒 ′ℓ be the formula obtained from 𝜒ℓ by substituting with𝜓 ′𝑗 each occurrence of3≥𝑘 𝑗 𝜓 𝑗
not appearing under the scope of graded modalities, for all 𝑗 ∈ [1, 𝑛]. The formula 𝜒 ′ℓ belongs
to L; moreover, 𝜒 ′ℓ ≡ 𝜒ℓ , and maxGM (𝜒 ′ℓ ) ⊆ {3≥𝑘 𝛾 | 𝑘 ∈ [0, 𝑘] and 𝛾 ∈ C∧ (𝜓1, . . . ,𝜓𝑛)}. The latter
implies that 𝜒 ′ℓ is in disjoint form. Applying Lemma 3.8, there is a GML formula 𝜒 ′′ℓ in disjoint
form such that 𝜒 ′′ℓ ≡ 𝜒 ′ℓ , maxGM (𝜒 ′′ℓ ) ⊆ {3≥ 𝑗𝛾 | 𝑗 ∈ [0, (𝑐 + 1) · 𝑘] and 𝛾 ∈ C∧ (𝜓1, . . . ,𝜓𝑛)} and
maxPC (𝜒 ′′ℓ ) ⊆ maxPC (𝜒 ′ℓ ).
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Let 𝜑𝑖 be the formula obtained from 𝜑𝑖−1 by replacing with 𝜒 ′′ℓ every occurrence of 𝜒ℓ appearing
under the scope of𝑚 − 𝑖 graded modalities, for every ℓ ∈ [1, 𝑝]. Let us analyse 𝜑𝑖 . First of all, since
𝜑𝑖 is obtained from 𝜑𝑖−1 by only substituting formulae 𝜒ℓ appearing under the scope of𝑚− 𝑖 graded
modalities with equivalent formulae 𝜒 ′′ℓ from GML, such thatmd(𝜒 ′′ℓ ) ≤ md(𝜒ℓ ), the properties (1)
and (3) hold directly from the properties (1𝑖−1) and (3𝑖−1). By definition of 𝜑𝑖 ,

gm(𝑚 − 𝑖, 𝜑𝑖 ) = maxGM (𝜒 ′′1 ∧ · · · ∧ 𝜒 ′′𝑝 ) ⊆ {3≥ 𝑗𝛾 | 𝑗 ∈ [0, (𝑐 + 1) · 𝑘] and 𝛾 ∈ C∧ (𝜓1, . . . ,𝜓𝑛)}. (†)
As𝜓1∧· · ·∧𝜓𝑛 is in disjoint form, (†) implies that 𝜒 ′′1 ∧· · ·∧𝜒 ′′𝑝 is in disjoint form. Hence, property (2)
holds. Lastly, let us look at property (4). From (†), together with property (4𝑖−1), we conclude that
for every 𝑗 ∈ [0, 𝑖 − 1], |gm(𝑚− 𝑗, 𝜑𝑖−1) | ≤ 2𝑛 · ((𝑐 + 1) ·𝑘 + 1) and bd(𝑚− 𝑗, 𝜑𝑖−1) ≤ 2𝑛 · ((𝑐 + 1) ·𝑘)2.
So, to establish (4), it is sufficient to treat the case 𝑗 = 𝑖 . Again by (†),

|gm(𝑚 − 𝑖, 𝜑𝑖 ) | ≤ |C∧ (𝜓1, . . . ,𝜓𝑛) | · ((𝑐 + 1) · 𝑘 + 1) ≤ 2𝑛 · ((𝑐 + 1) · 𝑘 + 1)

bd(𝑚 − 𝑖, 𝜑𝑖 ) ≤ |C∧ (𝜓1, . . . ,𝜓𝑛) | ·
∑(𝑐+1) ·𝑘
𝑗=0 𝑗 ≤ 2𝑛 · ((𝑐 + 1) · 𝑘)2 . □

The exponential-size model property derived in Lemma 3.9 directly leads to an AExpPol upper
bound for Sat(ML( )). The proof of the theorem is rather standard and sketched below.

Theorem 3.10. Sat(ML( )) is in AExpPol.

Proof. (sketch) Let 𝜑 be inML( ). Here we present an algorithm running in exponential-time on
size(𝜑) with an alternating Turing machine using only polynomially many alternations to decide
the satisfiability status of 𝜑 .
(1) Guess a pointed forest𝔐 = (𝑊,𝑅,𝑉 ) with root𝑤 ∈𝑊 , whose depth is bounded by md(𝜑)

and of exponential size thanks to Lemma 3.9.
(2) Return the result of checking 𝔐,𝑤 |= 𝜑 . This can be done in exponential-time using an

alternating Turing machine with a linear amount of alternations (between universal states
and existential states). To do so, one can use a standard model-checking algorithm by viewing
ML( ) as a fragment ofMSO. Recall that the standard model-checking algorithm forMSO
runs in alternating polynomial time in the size of the structure (which, in our case, has size
exponential in size(𝜑)), and uses a number of alternations that is linear in the number of
negations appearing in 𝜑 . □

It remains to establish AExpPol-hardness. We provide a logspace reduction from the satisfiability
problem for the team logic PL[~] shown AExpPol-complete in [30, Thm. 4.9].

PL[~] formulae are defined by the following grammar:

𝜑 := 𝑝 | ¤¬𝑝 | 𝜑 ∧ 𝜑 | ~𝜑 | 𝜑 ¤∨𝜑,
where 𝑝 ∈ AP and the connectives ¤¬ and ¤∨ are dotted to avoid confusion with those of ML( ).
PL[~] is interpreted on sets of (Boolean) propositional valuations over a finite subset of AP. They
are called teams and are denoted by 𝔗,𝔗1, . . . . A model for 𝜑 is a team 𝔗 over a set of propositional
variables including those occurring in 𝜑 and such that 𝔗 |= 𝜑 with:

𝔗 |= 𝑝 ⇔ for all 𝔳 ∈ 𝔗, we have 𝔳(𝑝) = ⊤;
𝔗 |= ¤¬𝑝 ⇔ for all 𝔳 ∈ 𝔗, we have 𝔳(𝑝) = ⊥;
𝔗 |= 𝜑1 ¤∨𝜑2⇔ there are 𝔗1,𝔗2 such that 𝔗 =𝔗1 ∪𝔗2, 𝔗1 |=𝜑1 and 𝔗2 |=𝜑2 .

The connectives ~ and ∧ are interpreted as the classical negation and conjunction, respectively.
Notice that, in the clause for ¤∨, the teams 𝔗1 and 𝔗2 are not necessarily disjoint.

Let us discuss the reduction from Sat(PL[~]) to Sat(ML( )). A direct encoding of a team 𝔗 into a
pointed forest (𝔐,𝑤) consists in having a correspondence between the propositional valuations
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in 𝔗 and the propositional valuations of the children of𝑤 . This would work fine if there were no
mismatch between the semantics for (disjointness of the children) and the one for ¤∨ (disjointness
not required). To handle this issue, when checking the satisfaction of 𝜑 in PL[~] with 𝑛 occurrences
of ¤∨, we impose that if a propositional valuation occurs among the children of𝑤 , then it occurs in
least 𝑛 + 1 children. This property must be maintained after applying ¤∨ several times, always with
respect to the number of occurrences of ¤∨ in the subformula of 𝜑 that is evaluated. Non-disjointness
of the teams is encoded by carefully separating the children of𝑤 having identical valuations.
We now formalise the reduction. Assume that we wish to translate 𝜑 from PL[~], written with

atomic propositions in P = {𝑝1, . . . , 𝑝𝑚} and containing at most 𝑛 occurrences of the operator ¤∨.
We introduce a set Q = {𝑞1, . . . , 𝑞𝑛+1} of auxiliary propositions disjoint from P. The elements of Q
are used to distinguish different copies of the same propositional valuation of a team. Thus, with
respect to a pointed forest (𝔐,𝑤), we require each child of𝑤 to satisfy exactly one element of Q .
This can be done with the formula

uni(Q) def= 2

𝑛+1∨
𝑖=1

(
𝑞𝑖 ∧

𝑖−1∧
𝑗=1
¬𝑞 𝑗 ∧

𝑛+1∧
𝑗=𝑖+1
¬𝑞 𝑗

)
.

We require that if a child of𝑤 satisfies a propositional valuation over (elements in) P, then there
are 𝑛 +1 children satisfying that valuation over P, each of them satisfying a distinct symbol inQ . So,
every valuation over P occurring in some child of𝑤 , occurs at least in 𝑛 + 1 children of𝑤 . However,
as the translation of the operator ¤∨ modifies the set of copies of a propositional valuation, this
property must be extended to arbitrary subsets of Q . Given ∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1], we require that
for all 𝑘 ≠ 𝑘 ′ ∈ 𝑋 , if a children of𝑤 satisfies 𝑞𝑘 , then there is a child satisfying 𝑞𝑘 ′ with the same
valuation over P. The formula cp(𝑋 ) below does the job:

cp(𝑋 ) def=
∧
𝑘≠𝑘 ′∈𝑋
¬
(
2𝑞𝑘 (3=1 𝑞𝑘 ∧ ¬(⊤ 3=1 𝑞𝑘 ∧3=1 𝑞𝑘 ′ ∧

𝑚∧
𝑗=1
(3𝑝 𝑗 ⇒ 2𝑝 𝑗 )))

)
.

Lastly, before defining the translation map 𝜏 , we describe how different copies of the same
propositional valuation are split. We introduce two auxiliary choice functions 𝔠1 and 𝔠2 that take as
arguments 𝑋 ⊆ [1, 𝑛 + 1], and 𝑛1, 𝑛2 ∈ N with |𝑋 | ≥ 𝑛1 + 𝑛2 such that for each 𝑖 ∈ {1, 2}, we have
𝔠𝑖 (𝑋,𝑛1, 𝑛2) ⊆ 𝑋 , |𝔠𝑖 (𝑋,𝑛1, 𝑛2) | ≥ 𝑛𝑖 . Moreover 𝔠1 (𝑋,𝑛1, 𝑛2) ⊎ 𝔠2 (𝑋,𝑛1, 𝑛2) = 𝑋 . The maps 𝔠1 and
𝔠2 are instrumental to decide how to split 𝑋 into two disjoint subsets respecting basic cardinality
constraints. The translation map 𝜏 is designed as follows (∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1]):

𝜏 (𝑝,𝑋 ) def= 2((∨𝑗∈𝑋 𝑞 𝑗 ) ⇒ 𝑝);
𝜏 ( ¤¬𝑝,𝑋 ) def= 2((∨𝑗∈𝑋 𝑞 𝑗 ) ⇒ ¬𝑝);
𝜏 (~𝜑,𝑋 ) def= ¬𝜏 (𝜑,𝑋 );

𝜏 (𝜑1 ∧ 𝜑2, 𝑋 ) def= 𝜏 (𝜑1, 𝑋 ) ∧ 𝜏 (𝜑2, 𝑋 );
𝜏 (𝜑1 ¤∨𝜑2, 𝑋 ) def= (𝜏 (𝜑1, 𝑋1) ∧ cp(𝑋1)) (𝜏 (𝜑2, 𝑋2) ∧ cp(𝑋2)),

where (i) |𝑋 | is greater or equal to the number of occurrences of ¤∨ in 𝜑1 ¤∨𝜑2 plus one; (ii) given
𝑛1, 𝑛2 such that 𝑛1 (resp. 𝑛2) is the number of occurrences of ¤∨ in 𝜑1 (resp. 𝜑2) plus one, for each
𝑖 ∈ {1, 2}, we have 𝔠𝑖 (𝑋,𝑛1, 𝑛2) = 𝑋𝑖 .

Lemma 3.11 below guarantees that starting with a linear number of children with the same
propositional valuation is sufficient to encode ¤∨withinML( ), hence solving the mismatch between
the two operators ¤∨ and .

Lemma 3.11. Let𝜑 be in PL[~] with𝑛 occurrences of ¤∨ and built upon 𝑝1, . . ., 𝑝𝑚 . Then,𝜑 is satisfiable
if and only if so is uni(𝑞1, . . . , 𝑞𝑛+1) ∧ cp( [1, 𝑛 + 1]) ∧ 𝜏 (𝜑, [1, 𝑛 + 1]).
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The proof of Lemma 3.11 can be found in Appendix C. TheML( ) formula involved in Lemma 3.11
has modal depth one and can be computed in logspace in the size of 𝜑 . Hence, Sat(ML( )) is already
AExpPol-hard when restricted to formulae of modal depth at most one. Together with Theorem 3.10,
this concludes the complexity analysis of Sat(ML( )).

Theorem 3.12. Sat(ML( )) is AExpPol-complete.

As we show in the next section, the complexity of ML(∗) does not collapse to modal depth
one: Sat(ML(∗)) restricted to formulae of modal depth 𝑘 is exponentially easier than Sat(ML(∗))
restricted to formulae of modal depth 𝑘 + 1.

4 ML(∗) IS TOWER-COMPLETE

This section is devoted to show that Sat(ML(∗)) is Tower-complete; i.e., it is complete for the class of
all problems of time complexity bounded by a tower of exponentials whose height is an elementary
function [49]. Given 𝑘, 𝑛 ≥ 0, we inductively define the tetration function 𝔱 as 𝔱(0, 𝑛) def= 𝑛 and
𝔱(𝑘 + 1, 𝑛) = 2𝔱 (𝑘,𝑛) . Intuitively, 𝔱(𝑘, 𝑛) defines a tower of exponentials of height 𝑘 . By 𝑘-NExpTime,
we denote the class of all problems decidable with a nondeterministic Turing machine (NTM) of
working time 𝑂 (𝔱(𝑘, 𝑝 (𝑛))) for some polynomial 𝑝 (.), on each input of length 𝑛. To show Tower-
hardness, we design a uniform elementary reduction allowing us to get 𝑘-NExpTime-hardness for
all 𝑘 greater than a certain (fixed) integer. In our case, we achieve an exponential-space reduction
from the 𝑘-NExpTime variant of the tiling problem, for all 𝑘 ≥ 2.
The tiling problem Tile𝑘 takes as input a triple TT = (T ,H ,V) where T is a finite set of tile

types and H ⊆ T × T (resp. V ⊆ T × T ) represents the horizontal (resp. vertical) matching
relation, and an initial tile type c ∈ T . A solution for the instance (TT , 𝑐) of the problem Tile𝑘 is a
mapping 𝜏 : [0, 𝔱(𝑘, 𝑛) − 1] × [0, 𝔱(𝑘, 𝑛) − 1] → T such that
(first) 𝜏 (0, 0) = c, and
(hor&vert) for all 𝑖 ∈ [0, 𝔱(𝑘, 𝑛) − 1] and 𝑗 ∈ [0, 𝔱(𝑘, 𝑛) − 2],

(𝜏 ( 𝑗, 𝑖), 𝜏 ( 𝑗 + 1, 𝑖)) ∈ H and (𝜏 (𝑖, 𝑗), 𝜏 (𝑖, 𝑗 + 1)) ∈ V .
The problem of checking whether an instance of Tile𝑘 has a solution is known to be 𝑘-NExpTime-
complete (see [51, 54]).

The reduction below from Tile𝑘 to Sat(ML(∗)) recycles ideas from [7], where Tile𝑘 is reduced
to Sat(QK𝑡 ) (see also a similar construction in [43]). Actually, in [7] the presentation uses mainly
quantified CTL over trees restricted to the next-time modality EX. To provide the adequate adapta-
tion for ML(∗), we need to solve two major issues. First, QK𝑡 admits second-order quantification,
whereas inML(∗), the second-order features are limited to the separating conjunction ∗. Second,
the second-order quantification of QK𝑡 essentially colours the nodes in the tree-like Kripke-style
structures without changing the frame (𝑊,𝑅). By contrast, the operator ∗ modifies the accessi-
bility relation, possibly making worlds that were reachable from the current world, completely
unreachable in submodels. The Tower-hardness proof for Sat(ML(∗)) becomes then much more
challenging. We would like to characterise the position on the grid encoded by a world 𝑤 by
exploiting some properties of its descendants (as done for QK𝑡 ). At the same time, we need to be
careful and only consider submodels where the world𝑤 keeps encoding the same position. In a
sense, our encoding is robust: when the operator ∗ is used to reason on submodels, we can enforce
that no world changes the position of the grid that it encodes.

4.1 Principles for enforcing 𝔱( 𝑗, 𝑛) children
In what follows, let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest. We consider two disjoint sets of atomic
propositions P = {𝑝1, . . . , 𝑝𝑛, val} and Aux = {x, y, l, s, r} (whose respective role is later defined).
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type( 𝑗), has 𝔱( 𝑗, 𝑛) children

type( 𝑗−1)

type( 𝑗−2)

Fig. 1. Schema of a model satisfying type( 𝑗) (for 𝑗 ≥ 2).

Elements from Aux are understood as auxiliary propositions. We call ax-node (resp. Aux-node)
a world satisfying the proposition ax ∈ Aux (resp. satisfying some proposition in Aux). We call
t-node a world that satisfies the formula t def

=
∧

ax∈Aux ¬ax. Every world of𝔐 is either a t-node or
an Aux-node. We say that 𝑤 ′ is a t-child of𝑤 ∈𝑊 if 𝑤 ′ ∈ 𝑅(𝑤) and 𝑤 ′ is a t-node. We define the
concepts of Aux-child and ax-child analogously. The set of t-nodes is intended to form a tree with
large numbers of children per node and to be well-balanced admitting some regularity properties
on its structure. As expected, Aux-nodes are auxiliary nodes for which removing incoming edges
simulates propositional quantification.

The key development of our reduction is given by the definition of a formula, of exponential size
in 𝑗 ≥ 1 and polynomial size in 𝑛 ≥ 1, that when satisfied by (𝔐,𝑤) forces every t-node in 𝑅𝑖 (𝑤),
where 0 ≤ 𝑖 < 𝑗 , to have exactly 𝔱( 𝑗 − 𝑖, 𝑛) t-children, each of them encoding a different number in
[0, 𝔱( 𝑗 − 𝑖, 𝑛) − 1]. As we impose that𝑤 is a t-node, it must have 𝔱( 𝑗, 𝑛) t-children. We assume 𝑛 to
be fixed throughout the section and denote this formula by type( 𝑗). From the property above, if
𝔐,𝑤 |= type( 𝑗) then for all 𝑖 ∈ [1, 𝑗−1] and all t-nodes𝑤 ′ ∈ 𝑅𝑖 (𝑤) we have 𝔐,𝑤 ′ |= type( 𝑗−𝑖).

First, let us informally describe how numbers are encoded in the model (𝔐,𝑤) satisfying type( 𝑗).
Let 𝑖 ∈ [1, 𝑗]. Given a t-node𝑤 ′ ∈ 𝑅𝑖 (𝑤), 𝐧𝑖 (𝑤 ′) denotes the number encoded by𝑤 ′. We omit the
subscript 𝑖 when it is clear from the context. When 𝑖 = 𝑗 , we represent 𝐧(𝑤 ′) by using the truth
values of the atomic propositions 𝑝1, . . . , 𝑝𝑛 . The proposition 𝑝𝑏 is responsible for the 𝑏-th bit of
the number, with the least significant bit being encoded by 𝑝1. For example, for 𝑛 = 3, we have
𝔐,𝑤 ′ |= 𝑝3 ∧ 𝑝2 ∧¬𝑝1 whenever 𝐧(𝑤 ′) = 6 (in binary, 110). The formula type(1) forces the parent
of 𝑤 ′ (i.e. is a t-node in 𝑅 𝑗−1 (𝑤)) to have exactly 2𝑛 t-children by requiring one t-child for each
possible valuation upon 𝑝1, . . . , 𝑝𝑛 . Otherwise, for 𝑖 < 𝑗 (and therefore 𝑗 ≥ 2), the number 𝐧𝑖 (𝑤 ′)
is represented by the binary encoding of the truth values of val on the t-children of 𝑤 ′ which,
since (𝔐,𝑤 ′) |= type( 𝑗 − 𝑖), are 𝔱( 𝑗 − 𝑖, 𝑛) children implicitly ordered by the number they, in turn,
encode. The essential property of type( 𝑗) is therefore the following: the numbers encoded by the
t-children of a t-node𝑤 ′′ ∈ 𝑅𝑖 (𝑤), represent positions in the binary representation of the number
𝐧𝑖 (𝑤 ′′). Thanks to this property, the formula type( 𝑗) forces 𝑤 to have exactly 𝔱( 𝑗, 𝑛) children,
all encoding different numbers in [0, 𝔱( 𝑗, 𝑛) − 1]. This is roughly represented in Figure 1, where
“1” stands for val being true whereas “0” stands for val being false. To characterise these trees
inML(∗), we simulate second-order quantification by using Aux-nodes. Informally, we require a
pointed forest (𝔐,𝑤) satisfying type( 𝑗) to be such that

(i) every t-node𝑤 ′ ∈ 𝑅(𝑤) has exactly one x-child, and one (different) y-child. These nodes do
not satisfy any other auxiliary proposition;

(ii) for every 𝑖 ≥ 2, every t-node𝑤 ′ ∈ 𝑅𝑖 (𝑤) has exactly five Aux-children, one for each ax ∈ Aux.
We can simulate second-order existential quantification on t-nodes with respect to the symbol
ax ∈ Aux by using the operator ∗ in order to remove edges leading to ax-nodes. Then, we evaluate
whether a property holds on the resulting model where a t-node “satisfies” ax ∈ Aux if it has a
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18 Bednarczyk, Demri, Fervari & Mansutti

child satisfying ax. To better emphasise the need to move along t-nodes, given a formula 𝜑 , we
write ⟨t⟩𝜑 for the formula 3(t ∧ 𝜑). This formula is a relativised version of 3 that only considers
t-nodes. Dually, [t]𝜑 def

= 2(t ⇒ 𝜑). ⟨t⟩𝑖 and [t]𝑖 are also defined as expected.
Let us start to formalise this encoding. Let 𝑗 ≥ 1. First, we restrict ourselves to models where

every t-node reachable in at most 𝑗 steps does not have two Aux-children satisfying the same
proposition. Moreover, these Aux-nodes have no children and only satisfy exactly one ax ∈ Aux.
We express this condition with the formula init( 𝑗) below:

init( 𝑗) def= ⊞𝑗
∧

ax∈Aux

( (
t⇒ ¬(3ax ∗3ax)

)
∧2

(
ax⇒ 2⊥ ∧

∧
bx∈Aux\{ax}

¬bx
) )
,

where ⊞0𝜑 def
= 𝜑 and ⊞𝑚+1𝜑 def

= 𝜑 ∧2 ⊞𝑚 (𝜑).
In the following statements and proofs, let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest,𝑤 ∈𝑊 and 𝑗 ≥ 1.
Lemma 4.1. 𝔐,𝑤 |= init( 𝑗) if and only if for every 0 ≤ 𝑖 ≤ 𝑗 ,𝑤 ′ ∈ 𝑅𝑖 (𝑤) and ax ∈ Aux,
(1) if 𝔐,𝑤 ′ |= t then for all 𝑤 ′1,𝑤

′
2 ∈ 𝑅(𝑤 ′), if 𝔐,𝑤 ′1 |= ax and 𝔐,𝑤 ′2 |= ax then 𝑤 ′1 = 𝑤

′
2 (i.e.

at most one child of𝑤 ′ satisfies ax);
(2) for every𝑤 ′′ ∈ 𝑅(𝑤 ′), if 𝔐,𝑤 ′′ |= ax, then 𝑅(𝑤 ′′) = ∅ (i.e.𝑤 ′′ does not have children) and it

cannot be that 𝔐,𝑤 ′′ |= bx for some bx ∈ Aux syntactically different from ax (i.e. among the
propositions in Aux,𝑤 ′′ only satisfies ax).

Moreover, given𝔐′ ⊑ 𝔐, 𝔐′,𝑤 |= init( 𝑗).
Proof. The proof is straightforward (and hence here only sketched). Indeed, the statement “for

every 0 ≤ 𝑖 ≤ 𝑗 , every 𝑤 ′ ∈ 𝑅𝑖 (𝑤) and every ax ∈ Aux” is captured by the prefix ⊞𝑗
∧

ax∈Aux of
init( 𝑗). Then, (1) corresponds to the conjunct t ⇒ ¬(3ax ∗3ax) whereas (2) corresponds to the
conjunct 2

(
ax⇒ 2⊥ ∧∧bx∈Aux\{ax}¬bx

)
. □

Among the models ((𝑊,𝑅,𝑉 ),𝑤) satisfying init( 𝑗), we define the ones satisfying type( 𝑗)
described below (see similar conditions in [7, Section IV]):
(sub𝑗 ) every t-node in 𝑅(𝑤) satisfies type( 𝑗 − 1);
(zero𝑗 ) there is a t-node �̃� ∈ 𝑅(𝑤) such that 𝐧(�̃�) = 0;
(uniq𝑗 ) distinct t-nodes in 𝑅(𝑤) encode different numbers;
(compl𝑗 ) for every t-node𝑤1 ∈ 𝑅(𝑤) with 𝐧(𝑤1) < 𝔱( 𝑗, 𝑛) − 1, there is a t-node𝑤2 ∈ 𝑅(𝑤) such

that 𝐧(𝑤2) = 𝐧(𝑤1) + 1;
(aux) 𝑤 is a t-node, every t-node in 𝑅(𝑤) has one x-child and one y-child, and every t-node in

𝑅2 (𝑤) has three children satisfying l, r and s, respectively.
We define type(0) def= ⊤, and for 𝑗 ≥ 1, type( 𝑗) is defined as

type( 𝑗) def= sub( 𝑗) ∧ zero( 𝑗) ∧ uniq( 𝑗) ∧ compl( 𝑗) ∧ aux,
where each conjunct expresses its homonymous property. The formulae sub( 𝑗), aux and zero( 𝑗)
are defined as

sub( 𝑗) def= [t]type( 𝑗 − 1);
aux def

= t ∧ [t] (3x ∗3y) ∧ [t]2 (3l ∗3s ∗3r);
zero(1) def= ⟨t⟩

∧
𝑏∈[1,𝑛]¬𝑝𝑏 ;

zero( 𝑗 + 1) def= ⟨t⟩[t]¬val.
The challenge is therefore how to express uniq( 𝑗) and compl( 𝑗), in order to guarantee that the

numbers encoded by the children of𝑤 span all over [0, 𝔱( 𝑗, 𝑛) − 1]. The structural properties ex-
pressed by type( 𝑗) lead to strong constraints, which permits to control the effects of the separating
conjunction ∗ when submodels are built. This is a key point in designing type( 𝑗) as it helps us to
control which edges are lost when taking a submodel.
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4.2 Nominals, forks and number comparisons

In order to define uniq( 𝑗) and compl( 𝑗) (completing the definition of type( 𝑗)), we introduce
auxiliary formulae, characterising classes of models that emerge naturally when trying to capture
the semantics of (uniq𝑗 ) and (compl𝑗 ).
Let us consider a finite forest 𝔐 = (𝑊,𝑅,𝑉 ) and 𝑤 ∈ 𝑊 . A first ingredient is given by the

concept of local nominals, borrowed from [7]. We say that ax ∈ Aux is a (local) nominal for the
depth 𝑖 ≥ 1 if there is exactly one t-node𝑤 ′ ∈ 𝑅𝑖 (𝑤) having an ax-child. In this case,𝑤 ′ is said to
be the world that corresponds to the local nominal ax. The following formula states that ax is a
local nominal for the depth 𝑖:

nom𝑖 (ax) def= ⟨t⟩𝑖3ax ∧
𝑖−1∧
𝑘=0
[t]𝑘¬

(
⟨t⟩𝑖−𝑘3ax ∗ ⟨t⟩𝑖−𝑘3ax

)
.

Lemma 4.2. Let ax ∈ Aux and 0 < 𝑖 ≤ 𝑗 ∈ N. Suppose𝔐,𝑤 |= init( 𝑗). Then,𝔐,𝑤 |= nom𝑖 (ax) if
and only if ax is a local nominal for the depth 𝑖 .

The proof is direct by applying the semantics of the formula nom𝑖 (ax), and is given in Appendix D.
We define the formula:

@𝑖
ax𝜑

def
= ⟨t⟩𝑖 (3ax ∧ 𝜑),

which, under the hypothesis that ax is a local nominal for the depth 𝑖 , states that 𝜑 holds on the
t-node that corresponds to ax.

Lemma 4.3. Let ax ∈ Aux and 0 < 𝑖 ≤ 𝑗 ∈ N. Suppose 𝔐,𝑤 |= init( 𝑗) ∧ nom𝑖 (ax). Then,
𝔐,𝑤 |= @𝑖

ax𝜑 iff𝔐,𝑤 ′ |= 𝜑 , where𝑤 ′ is the world corresponding to the nominal ax for the depth 𝑖 .

Proof. Both directions are straightforward. As we are working under the hypothesis that
𝔐,𝑤 |= init( 𝑗) ∧ nom𝑖 (ax), by Lemma 4.2, ax is a nominal for the depth 𝑖 . In the following, let𝑤 ′
be the world in 𝑅𝑖 (𝑤) corresponding to the nominal ax (i.e.𝑤 ′ has an ax-child).
(⇒): Suppose 𝔐,𝑤 |= @𝑖

ax𝜑 . By definition, there is 𝑤 ′′ ∈ 𝑅𝑖 (𝑤) such that 𝔐,𝑤 ′′ |= 3ax ∧ 𝜑 .
Since ax is a nominal for the depth 𝑖 , we conclude that𝑤 ′ = 𝑤 ′′ and hence𝔐,𝑤 ′′ |= 𝜑 .
(⇐): Suppose that 𝑤 ′ is such that 𝔐,𝑤 ′ |= 𝜑 . By definition, 𝑤 ′ is the world corresponding to

the nominal ax (for the depth 𝑖). Hence 𝔐,𝑤 ′ |= 3ax. Since 𝑤 ′ ∈ 𝑅𝑖 (𝑤), by 𝔐,𝑤 |= init( 𝑗) we
conclude that there is a path of t-nodes from𝑤 to𝑤 ′, of length 𝑖 . Thus,𝔐,𝑤 |= ⟨t⟩𝑖 (3ax∧𝜑). □

Moreover, we define nom𝑖 (ax≠bx) def= nom𝑖 (ax) ∧ nom𝑖 (bx) ∧ ¬@𝑖
ax3bx, which states that ax and

bx are two nominals for the depth 𝑖 with respect to two distinct t-nodes.

Lemma 4.4. Let ax ≠ bx ∈ Aux and 0 < 𝑖 ≤ 𝑗 ∈ N. Suppose 𝔐,𝑤 |= init( 𝑗). Then, 𝔐,𝑤 |=
nom𝑖 (ax≠bx) iff ax and bx are nominals for the depth 𝑖 , corresponding to two different worlds.

Proof. (⇒): Suppose 𝔐,𝑤 |= nom𝑖 (ax≠bx). By Lemma 4.2, ax and bx are nominals for depth
𝑖 . Let𝑤ax (resp.𝑤bx) be the world in 𝑅𝑖 (𝑤) corresponding to the nominal ax (resp. bx). Note that
𝔐,𝑤bx |= 3bx. By𝔐,𝑤 |= ¬@𝑖

ax3bx and Lemma 4.3, we get𝔐,𝑤ax ̸ |= 3bx. Thus,𝑤ax ≠ 𝑤bx.
(⇐): This direction is analogous and simply relies on Lemmata 4.2 and 4.3. □

As a second ingredient, we introduce the notion of fork that is a specific type of models naturally
emerging when trying to compare the numbers 𝐧(𝑤1) and 𝐧(𝑤2) of two worlds 𝑤1,𝑤2 ∈ 𝑅𝑖 (𝑤)
(e.g. when checking whether 𝐧(𝑤1) = 𝐧(𝑤2) or 𝐧(𝑤2) = 𝐧(𝑤1) + 1 holds). Given 𝑗 ≥ 𝑖 ≥ 1 we
introduce the formula fork𝑖𝑗 (ax, bx) that is satisfied by (𝔐,𝑤) if and only if:
• ax and bx are nominals for the depth 𝑖 .
• 𝑤 has exactly two t-children, say𝑤𝑈 and𝑤𝐷 .
• For every 𝑘 ∈ [1, 𝑖 − 1], both 𝑅𝑘 (𝑤𝑈 ) and 𝑅𝑘 (𝑤𝐷 ) contain exactly one t-child.
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.𝑤

typelsr ( 𝑗−𝑖)

typelsr ( 𝑗−𝑖)

ax

bx

𝑖

Fig. 2. Schema of a pointed forest (𝔐,𝑤) satisfying fork𝑖
𝑗
(ax, bx).

• The only t-node in 𝑅𝑖−1 (𝑤𝑈 ), say 𝑤ax, corresponds to the nominal ax. The only t-node in
𝑅𝑖−1 (𝑤𝐷 ), say𝑤bx, corresponds to the nominal bx.
• If 𝑖 < 𝑗 , then (𝔐,𝑤ax) and (𝔐,𝑤bx) satisfy

typelsr ( 𝑗 − 𝑖) def= type( 𝑗 − 𝑖) ∧ [t] (3l ∧3s ∧3r).
It should be noted that, whenever (𝔐,𝑤) satisfies the formula fork𝑖𝑗 (ax, bx), we witness two paths
of length 𝑖 , both starting at 𝑤 and leading to 𝑤ax and 𝑤bx, respectively. Worlds in this path may
have Aux-children. Figure 2 schematises a model satisfying fork𝑖𝑗 (ax, bx).
Since the definition of fork𝑖𝑗 (ax, bx) is recursive on 𝑖 and 𝑗 (due to type( 𝑗 − 𝑖)), we postpone its
formal definition to the next two sections where we treat the base cases for 𝑖 = 𝑗 and the inductive
case for 𝑗 > 𝑖 separately.
The last auxiliary formulae are [ax< bx]𝑖𝑗 and [bx=ax+1] 𝑗 . Under the hypothesis that (𝔐,𝑤)

satisfies fork𝑖𝑗 (ax, bx), the formula [ax< bx]𝑖𝑗 is satisfied whenever the two (distinct) worlds
𝑤ax,𝑤bx ∈ 𝑅𝑖 (𝑤) corresponding to the nominals ax and bx are such that 𝐧(𝑤ax) < 𝐧(𝑤bx).
Similarly, under the hypothesis that (𝔐,𝑤) satisfies fork1𝑗 (ax, bx), the formula [bx = ax+1] 𝑗 is
satisfied whenever 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1 holds. Both formulae are recursively defined, with base
cases for 𝑖 = 𝑗 and 𝑗 = 1, respectively.
For the base case, we define the formulae fork𝑗

𝑗
(ax, bx) and [ax< bx] 𝑗

𝑗
(for arbitrary 𝑗 ), as

well as [bx = ax+1]1. From these formulae, we are then able to define uniq(1) and compl(1),
which completes the characterisation of type(1) and typelsr (1). Afterwards, we consider the case
1 ≤ 𝑖 < 𝑗 and 𝑗 ≥ 2, and define fork𝑖𝑗 (ax, bx), [ax< bx]𝑖𝑗 , [bx = ax+1] 𝑗 , as well as uniq( 𝑗) and
compl( 𝑗), by only relying on formulae that are already defined (by inductive reasoning).

4.3 Formal semantics of the inductively defined formulae used for type( 𝑗)
Let us summarise the expected semantics of the formulae introduced to define type( 𝑗), and whose
definition is inductive. Let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest,𝑤 ∈𝑊 , 1 ≤ 𝑖 ≤ 𝑗 and ax ≠ bx ∈ Aux.
Formula fork𝑖𝑗 (ax, bx): Suppose 𝔐,𝑤 |= init( 𝑗).

𝔐,𝑤 |= fork𝑖𝑗 (ax, bx) if and only if
(i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖;
(ii) one of these two paths ends on a world (say𝑤ax) corresponding to the nominal ax whereas

the other ends on a world (say𝑤bx) corresponding to the nominal bx;
(iii) if 𝑖 < 𝑗 then (𝔐,𝑤ax) and (𝔐,𝑤bx) satisfy typelsr ( 𝑗−𝑖) def= type( 𝑗−𝑖)∧ [t] (3l∧3s∧3r).

Formula [ax< bx]𝑖𝑗 : Suppose 𝔐,𝑤 |= init( 𝑗) ∧ fork𝑖𝑗 (ax, bx).
𝔐,𝑤 |= [ax< bx]𝑖𝑗 if and only if there are two distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅𝑖 (𝑤) such that
𝑤ax corresponds to the nominal ax,𝑤bx corresponds to the nominal bx and 𝐧(𝑤ax) < 𝐧(𝑤bx).

Formula [bx = ax+1] 𝑗 : Suppose𝔐,𝑤 |= init( 𝑗) ∧ fork1𝑗 (ax, bx).
𝔐,𝑤 |= [bx = ax+1] 𝑗 if and only if there are two distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅(𝑤) s.t. 𝑤ax

corresponds to the nominal ax,𝑤bx corresponds to the nominal bx and 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1.

, Vol. 1, No. 1, Article . Publication date: May 2023.



On Composing Finite Forests with Modal Logics 21

Formula uniq( 𝑗): Suppose 𝔐,𝑤 |= init( 𝑗) ∧ sub( 𝑗) ∧ aux.
𝔐,𝑤 |= uniq( 𝑗) if and only if (𝔐,𝑤) satisfies (uniq𝑗 ), i.e. distinct t-nodes in 𝑅(𝑤) encode
different numbers.

Formula compl( 𝑗): Suppose 𝔐,𝑤 |= init( 𝑗) ∧ sub( 𝑗) ∧ aux.
𝔐,𝑤 |= compl( 𝑗) if and only if (𝔐,𝑤) satisfies (compl𝑗 ), i.e. for every t-node𝑤1 ∈ 𝑅(𝑤), if
𝐧(𝑤1) < 𝔱( 𝑗, 𝑛) − 1 then 𝐧(𝑤2) = 𝐧(𝑤1) + 1 for some t-node𝑤2 ∈ 𝑅(𝑤).

Formula type( 𝑗): Suppose 𝔐,𝑤 |= init( 𝑗).
𝔐,𝑤 |= type( 𝑗) if and only if (𝔐,𝑤) satisfies (sub𝑗 ), (zero𝑗 ), (uniq𝑗 ), (compl𝑗 ) and (aux).

The formulae sub( 𝑗), aux and zero( 𝑗) ( 𝑗 ≥ 1) are also required in order to define correctly
type( 𝑗). However their definition and proof of correctness are straightforward. Hence we omit the
proofs, and simply state the expected semantics of these formulae. It should be noted that a formal
proof of zero( 𝑗) relies on type( 𝑗 − 1), which (as we will see multiple times in the next sections),
we can assume to be correctly defined by inductive hypothesis (on 𝑗 ).

Lemma 4.5. Let 𝑗 ≥ 1. Let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 .
• 𝔐,𝔴 |= sub( 𝑗) iff (𝔐,𝑤) satisfies (sub𝑗 ), i.e. every t-node in 𝑅(𝑤) satisfies type( 𝑗 − 1).
• 𝔐,𝔴 |= aux iff (𝔐,𝑤) satisfies (aux), i.e.𝑤 is a t-node, every t-node in 𝑅(𝑤) has one x-child
and one y-child, and every t-node in 𝑅2 (𝑤) has three children satisfying l, r and s, respectively.
• Suppose 𝔐,𝔴 |= sub( 𝑗). 𝔐,𝑤 |= zero( 𝑗) iff (𝔐,𝑤) satisfies (zero𝑗 ), i.e. there is a t-node
�̃� ∈ 𝑅(𝑤) s.t. 𝐧(�̃�) = 0.

We now prove the correctness of the formulae listed before Lemma 4.5, starting from the base
case where 𝑗 = 1 or 𝑖 = 𝑗 , to then show the proof for 1 ≤ 𝑖 < 𝑗 .

4.4 Base cases: 𝑖 = 𝑗 or 𝑗 = 1
In what follows, we consider a finite forest𝔐 = (𝑊,𝑅,𝑉 ) and a world𝑤 . Following its informal
description, we have

fork 𝑗
𝑗
(ax, bx) def= 3=2t ∧ [t] ⊞𝑗−2 (t ⇒ 3=1t) ∧ nom𝑗 (ax≠bx),

where ⊞𝑗𝜑 def
= ⊤ for 𝑗 < 0. We recall that t and 3=2t are defined as

t =
∧

ax∈Aux ¬ax, 3=1t = 3t ∧ ¬(3t ∗3t), 3=2t = (3t ∗3t) ∧ ¬(3t ∗3t ∗3t).

Lemma 4.6. Let ax ≠ bx ∈ Aux, 𝑗 ≥ 1. Suppose 𝔐,𝑤 |= init( 𝑗). Then, 𝔐,𝑤 |= fork𝑗
𝑗
(ax, bx) iff

(1) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑗 , ending in two
t-nodes (say𝑤1 and𝑤2);

(2) 𝑤1 (resp.𝑤2) corresponds to the nominal ax (resp. bx) for the depth 𝑗 .

Proof. (⇒): Suppose 𝔐,𝑤 |= fork𝑗
𝑗
(ax, bx). By 𝔐,𝑤 |= 3=2t,𝑤 has exactly two t-children (let

us say 𝑤 ′1 and 𝑤
′
2). Then, by 𝔐,𝑤 |= [t] ⊞𝑗−2 (t⇒3=1t), it is easy to show that there is exactly

one path of t-nodes of length 𝑗 − 1, starting in 𝑤 ′1 (resp. 𝑤
′
2) and ending in a t-node 𝑤1 ∈ 𝑅 𝑗 (𝑤)

(resp. 𝑤2 ∈ 𝑅 𝑗 (𝑤)). Then, the property (1) of the statement is verified. The property (2) of the
statement follows by simply applying Lemma 4.4.
(⇐): This direction is straightforward. In short, from (1), 𝔐,𝑤 |= 3=2t ∧ [t] ⊞𝑗−2 (t⇒3=1t),

whereas from (2) together with Lemma 4.4 we have 𝔐,𝑤 |= nom𝑗 (ax≠bx). □

As previously explained, in the base case, the number 𝐧(𝑤 ′) encoded by a t-node𝑤 ′ ∈ 𝑅 𝑗 (𝑤) is
represented by the truth values of 𝑝1, . . . , 𝑝𝑛 . Then, the formula [ax< bx] 𝑗

𝑗
is defined as

[ax< bx] 𝑗
𝑗
def
=

𝑛∨
𝑢=1

(
@𝑗

ax¬𝑝𝑢 ∧@
𝑗

bx𝑝𝑢 ∧
𝑛∧

𝑣=𝑢+1
(@𝑗

ax𝑝𝑣 ⇔ @𝑗

bx𝑝𝑣)
)
.
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The satisfaction of (𝔐,𝑤) |= fork𝑗
𝑗
(ax, bx) enforces that the distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅 𝑗 (𝑤)

corresponding to ax and bx satisfy 𝐧(𝑤ax) < 𝐧(𝑤bx), which can be shown by using standard
properties about bit vectors. Intuitively, the formula states that there is a bit (encoded by 𝑝𝑢 ) which
is set to 0 in the binary encoding of 𝐧(𝑤ax) but is set to 1 in the binary encoding of 𝐧(𝑤bx), whereas
every successive bit (encoded by 𝑝𝑣 with 𝑣 > 𝑢) is set to 1 in 𝐧(𝑤ax) iff it is set to 1 also in 𝐧(𝑤bx).

Lemma 4.7. Let ax ≠ bx ∈ Aux and 𝑗 ≥ 1. Suppose 𝔐,𝑤 |= init( 𝑗) ∧ fork𝑗
𝑗
(ax, bx). Then,

𝔐,𝑤 |= [ax< bx] 𝑗
𝑗
if and only if there are two distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅 𝑗 (𝑤) such that 𝑤ax

corresponds to the nominal ax,𝑤bx corresponds to the nominal bx and 𝐧(𝑤ax) < 𝐧(𝑤bx).

Proof. Let 𝑥,𝑦 be natural numbers represented in binary by using 𝑛 bits. Let us denote with 𝑥𝑖
(resp. 𝑦𝑖 ) the 𝑖-th bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑥 < 𝑦 if and only if
(A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥𝑖 = 0 and 𝑦𝑖 = 1;
(B) for every position 𝑗 > 𝑖 , 𝑥 𝑗 = 1⇔ 𝑦 𝑗 = 1.

The formula [ax< bx] 𝑗
𝑗
uses exactly this characterisation in order to state that 𝐧(𝑤ax) < 𝐧(𝑤bx).

In the following, since we are working under the hypothesis that𝔐,𝑤 |= init( 𝑗)∧fork𝑗
𝑗
(ax, bx),

let𝑤ax (resp.𝑤bx) be the world corresponding to the nominal ax (resp. bx), w.r.t. the depth 𝑗 .
(⇒): Suppose 𝔐,𝑤 |= [ax< bx] 𝑗

𝑗
. Then there is 𝑢 ∈ [1, 𝑛] such that

𝔐,𝑤 |= @𝑗
ax¬𝑝𝑢 ∧@

𝑗

bx 𝑝𝑢 ∧
𝑛∧

𝑣=𝑢+1
(@𝑗

ax 𝑝𝑣 ⇔ @𝑗

bx 𝑝𝑣).

By Lemma 4.3 and𝔐,𝑤 |= @𝑗
ax¬𝑝𝑢 ∧@

𝑗

bx 𝑝𝑢 , we conclude that𝔐,𝑤ax |= ¬𝑝𝑢 and𝔐,𝑤bx |= 𝑝𝑢 .
Hence, the 𝑢-th bit is 0 in the number encoded by𝑤ax, whereas it is 1 in the number encoded by
𝑤bx, as required by (A). Similarly, by Lemma 4.3 and 𝔐,𝑤 |= ∧

𝑣∈[𝑢+1,𝑛] (@
𝑗
ax 𝑝𝑣 ⇔ @𝑗

bx 𝑝𝑣), we
conclude that for every 𝑣 ∈ [𝑢 + 1, 𝑛], 𝔐,𝑤ax |= 𝑝𝑣 if and only if 𝔐,𝑤bx |= 𝑝𝑣 . This corresponds to
the property (B) above, leading to 𝐧(𝑤ax) < 𝐧(𝑤bx).

(⇐): This direction follows similar arguments (backwards). □

The formula [bx = ax+1]1 uses similar arithmetical properties. It is defined as

[bx = ax+1]1 def
=

𝑛∨
𝑢=1

(
@1

ax (¬𝑝𝑢 ∧
𝑢−1∧
𝑣=1

𝑝𝑣) ∧@1
bx (𝑝𝑢 ∧

𝑢−1∧
𝑣=1
¬𝑝𝑣) ∧

𝑛∧
𝑣=𝑢+1
(@1

ax𝑝𝑣⇔@1
bx𝑝𝑣)

)
.

Assuming (𝔐,𝑤) |= fork11 (ax, bx), this formula states that the two distinct t-nodes 𝑤ax,𝑤bx ∈
𝑅(𝑤) corresponding to ax and bx are such that 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1. As done for [ax< bx] 𝑗

𝑗
, this

formula states that there must be a bit (encoded by 𝑝𝑢 ) which is set to 0 in the binary encoding of
𝐧(𝑤ax) but is set to 1 in the binary encoding of 𝐧(𝑤bx); and that every successive bit (encoded by
𝑝𝑣 with 𝑣 > 𝑢) is set to 1 in 𝐧(𝑤ax) if and only if it is set to 1 also in 𝐧(𝑤bx). However, differently
from [ax< bx] 𝑗

𝑗
, this formula also requires that every bit before 𝑝𝑢 (encoded by 𝑝𝑣 with 𝑣 < 𝑢) is

set to 1 in the binary encoding of 𝐧(𝑤ax) but is set to 0 in the binary encoding of 𝐧(𝑤bx).

Lemma 4.8. Let ax ≠ bx ∈ Aux and𝔐,𝑤 |= init(1)∧fork11 (ax, bx). Then,𝔐,𝑤 |= [bx = ax+1]1
if and only if there are two distinct t-nodes𝑤ax,𝑤bx ∈ 𝑅(𝑤) such that𝑤ax corresponds to the nominal
ax,𝑤bx corresponds to the nominal bx and 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1.

Proof. The proof uses standard properties of numbers encoded in binary. Let 𝑥,𝑦 be two natural
numbers that can be represented in binary by using 𝑛 bits. Let us denote with 𝑥𝑖 (resp. 𝑦𝑖 ) the 𝑖-th
bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑦 = 𝑥 + 1 if and only if
(A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥𝑖 = 0 and 𝑦𝑖 = 1;
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(B) for every position 𝑗 > 𝑖 , 𝑥 𝑗 = 1⇔ 𝑦 𝑗 = 1;
(C) for every position 𝑗 < 𝑖 , 𝑥 𝑗 = 1 and 𝑦 𝑗 = 0.

Notice that (A) and (B) are as in the characterisation of 𝑥 < 𝑦 given in Lemma 4.7. The formula
[bx = ax+1]1 uses exactly this characterisation in order to state that 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1.
Since we are working under the hypothesis that 𝔐,𝑤 |= init(1) ∧ fork11 (ax, bx), there are

two distinct worlds 𝑤ax and 𝑤bx corresponding to the two nominals ax and bx for the depth 1,
respectively. Then, the proof of this lemma follows closely the proof of Lemma 4.7, and enforcing
(C) by means of the subformula @1

ax (¬𝑝𝑢∧
∧
𝑣∈[1,𝑢−1]𝑝𝑣) ∧@1

bx (𝑝𝑢∧
∧
𝑣∈[1,𝑢−1]¬𝑝𝑣). □

To define uniq(1), we first recall that a model satisfying type(1) satisfies the formula aux and
hence every t-node in 𝑅(𝑤) has two children, one x-node and one y-node. The idea is to use these
two Aux-children and to take advantage of ∗ in order to state that it is not possible to find a submodel
of𝔐 such that𝑤 has only two distinct children𝑤x and𝑤y corresponding to the nominals x and
y, respectively, and such that 𝐧(𝑤x) = 𝐧(𝑤y). In a sense, the operator ∗ simulates a second-order
quantification on x and y. Let [x= y]11

def
= ¬([x< y]11 ∨ [y< x]11). The corresponding formula is

uniq(1) def= ¬
(
⊤ ∗ (fork11 (x, y) ∧ [x= y]11)

)
.

Lemma 4.9. Suppose𝔐,𝑤 |= init(1) ∧ aux. Then,𝔐,𝑤 |= uniq(1) if and only if (𝔐,𝑤) satisfies
(uniq1), i.e. distinct t-nodes in 𝑅(𝑤) encode different numbers.

Proof. (⇒): Contrapositively, suppose that there are two distinct t-nodes𝑤x and𝑤y encoding
the same number. Since𝔐,𝑤 |= init(1)∧aux, every world in 𝑅(𝑤) has exactly one child satisfying
x and exactly one (different) child satisfying y. Let us then consider the submodel 𝔐′ = (𝑊,𝑅1,𝑉 )
where 𝑅1 (𝑤) = {𝑤x,𝑤y}, 𝑅1 (𝑤x) = {𝑤1} and 𝑅1 (𝑤y) = {𝑤2}, so that 𝑤1 satisfies x whereas 𝑤2
satisfies y. By Lemma 4.6, 𝔐′,𝑤 |= fork11 (x, y). By hypothesis, 𝐧(𝑤x) = 𝐧(𝑤y) and therefore we
also have 𝔐′,𝑤 |= [x= y]11. Thus, by definition, 𝔐,𝑤 ̸ |= uniq(1).
(⇐): Again contrapositively, suppose𝔐,𝑤 ̸ |= uniq(1) and so𝔐,𝑤 |= ⊤∗(fork11 (x, y)∧ [x= y]11).

Then, there is a submodel𝔐′ = (𝑊,𝑅1,𝑉 ) of𝔐 such that𝔐′,𝑤 |= fork11 (x, y)∧ [x= y]11. Moreover,
since the satisfaction of init(1) is preserved under submodels, we have 𝔐′,𝑤 |= init(1). We can
then apply Lemmata 4.6 and 4.7 in order to conclude that there are two distinct worlds𝑤x and𝑤y

in 𝑅′ (𝑤) such that 𝐧(𝑤x) = 𝐧(𝑤y). Since the encoding of a number (for 𝑗 = 1) only depends on the
satisfaction of the propositional symbols 𝑝1, . . . , 𝑝𝑛 on a certain world, we conclude that the same
property holds for 𝔐: the two worlds𝑤x and𝑤y in 𝑅(𝑤) are such that 𝐧(𝑤x) = 𝐧(𝑤y). Therefore,
(𝔐,𝑤) does not satisfy (uniq1). □

Let us now consider compl(1). As done for uniq(1), we rely on the auxiliary propositions x and
y and use the separating conjunction ∗ in order to simulate a second-order quantification. We need
to state that it is not possible to find a submodel of𝔐 that looses x-nodes from 𝑅2 (𝑤), keeps all
y-nodes, and is such that

(i) x is a local nominal for the depth 1, corresponding to a world𝑤x encoding 𝐧(𝑤x) < 2𝑛 − 1;
(ii) there is no submodel where𝑤 has two t-children,𝑤x and a second world𝑤y, such that𝑤y

corresponds to the nominal y and 𝐧(𝑤y) = 𝐧(𝑤x)+1.
Thus, compl(1) is defined as:

compl(1) def= ¬
(
2⊥ ∗

(
[t]3y ∧@1

x¬11 ∧ ¬(⊤ ∗ (fork11 (x, y) ∧ [y = x+1]1))
) )
.

The subscript “1” in the formula 11 refers to the fact that we are treating the base case of compl( 𝑗)
with 𝑗 = 1. We have 11 def

=
∧
𝑖∈[1,𝑛] 𝑝𝑖 , reflecting the encoding of 2𝑛 − 1.

Lemma 4.10. Suppose𝔐,𝑤 |= init(1)∧aux. Then,𝔐,𝑤 |= compl(1) iff (𝔐,𝑤) satisfies (compl1),
i.e. for every t-node𝑤1 ∈ 𝑅(𝑤), if 𝐧(𝑤1) < 2𝑛 −1 then 𝐧(𝑤2) = 𝐧(𝑤1) +1 for some t-node𝑤2 ∈ 𝑅(𝑤).
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Proof. (⇒): Suppose 𝔐,𝑤 |= compl(1). By definition of |=, this implies that for any 𝔐′ =
(𝑊,𝑅′,𝑉 ) submodel of 𝔐 such that 𝑅′ (𝑤) = 𝑅(𝑤), if 𝔐′,𝑤 |= [t]3y ∧ @1

x¬11, then 𝔐′,𝑤 |=
⊤ ∗ (fork11 (x, y) ∧ [y = x+1]1). Then, let us pick a t-node𝑤x ∈ 𝑅′ (𝑤) = 𝑅(𝑤) such that 𝐧(𝑤x) <
2𝑛 − 1. We show that there must be a world 𝑤y ∈ 𝑅′ (𝑤) such that 𝐧(𝑤y) = 𝐧(𝑤x) + 1. Let
us consider the submodel 𝔐′′ = (𝑊,𝑅′,𝑉 ) of 𝔐 such that for every 𝑤 ∈ 𝑊 , if 𝑤 ≠ 𝑤x then
𝑅′ (𝑤) = 𝑅(𝑤) and otherwise 𝑅′ (𝑤x) = {𝑤1} where 𝑤1 is the only Aux-child of 𝑤x (w.r.t. 𝑅)
satisfying x. Notice that 𝑤1 exists and it is unique by 𝔐,𝑤 |= init(1) ∧ aux. Moreover, 𝑤x

corresponds in 𝔐′ to the nominal x for the depth 1. Again by 𝔐,𝑤 |= init(1) ∧ aux, we conclude
that 𝔐′,𝑤 |= [t]3y. Moreover, since 𝐧(𝑤x) < 2𝑛 − 1, by Lemma 4.3 we have 𝔐′,𝑤 |= @1

x¬11.
Hence by hypothesis, 𝔐′,𝑤 |= ⊤ ∗ (fork11 (x, y) ∧ [y = x+1]1). Then, let 𝔐′′ = (𝑊,𝑅′′,𝑉 ) ⊑ 𝔐′

be such that𝔐′′,𝑤 |= fork11 (x, y) ∧ [y = x+1]1. By Lemmata 4.6 and 4.8, there is𝑤y ∈ 𝑅′′ (𝑤) such
that 𝐧(𝑤y) = 𝐧(𝑤x) + 1. Since the encoding of a number (for 𝑗 = 1) only depends on the satisfaction
of the propositional symbols 𝑝1, . . . , 𝑝𝑛 on a certain world, we conclude that the same property
holds for 𝔐. Thus, (𝔐,𝑤) satisfies (compl1).
(⇐): Suppose that (𝔐,𝑤) satisfies (compl1), and ad absurdum assume that 𝔐,𝑤 ̸ |= compl(1),

hence𝔐,𝑤 |= 2⊥∗
(
[t]3y∧@1

x¬11∧¬(⊤∗(fork11 (x, y)∧ [y = x+1]1))
)
. Then, there is a submodel

𝔐′ = (𝑊,𝑅′,𝑉 ) of𝔐 such that 𝑅′ (𝑤) = 𝑅(𝑤) and𝔐′,𝑤 |= [t]3y∧@1
x¬11∧¬(⊤∗ (fork11 (x, y) ∧

[y = x+1]1)). Notice that this formula does not enforce x to be a nominal for the depth 1, however
from 𝔐′,𝑤 |= @1

x¬11 we deduce that there is at least one t-node𝑤x such that 𝔐′,𝑤x |= 3x ∧ ¬11.
Then, 𝐧(𝑤x) < 2𝑛 − 1 and by hypothesis there is a t-node 𝑤y such that 𝐧(𝑤y) = 𝐧(𝑤x) + 1. Let
us consider now the submodel𝔐′′ = (𝑊,𝑅′′,𝑉 ) of𝔐′ where 𝑅′′ (𝑤) = {𝑤x,𝑤y}, 𝑅′′ (𝑤x) = {𝑤1}
and 𝑅′′ (𝑤y) = {𝑤2}, where 𝑤1 (resp. 𝑤2) is the only Aux-child of 𝑤x (resp. 𝑤y) that satisfies x
(resp. y). The existence of𝑤1 and𝑤2 is guaranteed by 𝔐′,𝑤x |= 3x ∧ ¬11 and 𝔐′,𝑤 |= [t]3y. By
Lemma 4.6, 𝔐′′,𝑤 |= fork11 (x, y). Moreover, as the encoding of a number (for 𝑗 = 1) only depends
on the satisfaction of the propositional symbols 𝑝1, . . . , 𝑝𝑛 on a certain world,𝔐′′,𝑤 |= [y = x+1]1.
Then, we conclude that 𝔐′,𝑤 |= ⊤ ∗ (fork11 (x, y) ∧ [y = x+1]1), in contradiction with 𝔐′,𝑤 |=
[t]3y ∧@1

x¬11 ∧ ¬(⊤ ∗ (fork11 (x, y) ∧ [y = x+1]1)). Thus, 𝔐,𝑤 |= compl(1). □

With all these definitions at hand, we conclude the definition of type(1) (and typelsr (1)), which
is established correct with respect to its specification.

Lemma 4.11. Let 𝔐,𝑤 |= init(1). We have 𝔐,𝑤 |= type(1) if and only if (𝔐,𝑤) satisfies (sub1),
(zero1), (uniq1), (compl1) and (aux).

The proof of Lemma 4.11 then follows directly from Lemmata 4.5, 4.9 and 4.10. Let us show
the satisfiability of type(1). A quick check of init(1) and the conditions (sub1), (zero1), (uniq1),
(compl1) and (aux) should convince the reader that they are simultaneously satisfiable, leading
to init(1) ∧ type(1) being satisfiable. However, in the following we provide an explicit model
satisfiying this formula.

Lemma 4.12. The formula init(1) ∧ type(1) is satisfiable.

Proof. Consider the finite forest 𝔐 = (𝑊,𝑅,𝑉 ) and a world𝑤 such that
(1) 𝑅 is the minimal set of pairs such that 𝑅(𝑤) = {𝑤0, . . . ,𝑤2𝑛−1} (where𝑤0, . . . ,𝑤2𝑛−1 are all

distinct worlds), and for every 𝑖 ∈ [0, 2𝑛 − 1], 𝑅(𝑤𝑖 ) = {𝑤x
𝑖 ,𝑤

y
𝑖
} (again,𝑤x

𝑖 ,𝑤
y
𝑖
are distinct);

(2) 𝑊 = {𝑤} ∪ 𝑅(𝑤) ∪⋃𝑤′∈𝑅 (𝑤 ) 𝑅(𝑤 ′);
(3) 𝑉 (x) = {𝑤x

0 , . . . ,𝑤
x
2𝑛−1}, 𝑉 (y) = {𝑤

y
0 , . . . ,𝑤

y
2𝑛−1} and for every 𝑖 ∈ [0, 2𝑛 − 1] and 𝑗 ∈ [1, 𝑛],

𝑤𝑖 ∈ 𝑉 (𝑝 𝑗 ) if and only if the 𝑗-th bit in the binary encoding of 𝑖 is 1.
It is easy to check that (𝔐,𝑤) satisfies init(1) as well as (sub1), (zero1), (uniq1), (compl1) and (aux).
Thus, by Lemma 4.11 𝔐,𝑤 |= init(1) ∧ type(1). □
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4.5 Inductive case: 1 ≤ 𝑖 < 𝑗

We now need to define the inductive cases for the corresponding formulae, and prove their correct-
ness. As an implicit inductive hypothesis used to prove that the formulae arewell-defined, we assume
that [bx = ax+1] 𝑗 ′ and type( 𝑗 ′) are already defined for every 𝑗 ′ < 𝑗 , whereas fork𝑖

′
𝑗 ′ (ax, bx), and

[ax< bx]𝑖′
𝑗 ′ are already defined for all 1 ≤ 𝑖′ ≤ 𝑗 ′ such that 𝑗 ′ − 𝑖′ < 𝑗 − 𝑖 . Therefore, we define:

fork𝑖𝑗 (ax, bx) def= fork𝑖𝑖 (ax, bx) ∧ [t]𝑖typelsr ( 𝑗 − 𝑖).
It is easy to see that this formula is well-defined: fork𝑖𝑖 (ax, bx) is from the base case, whereas
typelsr ( 𝑗−𝑖) is defined by inductive hypothesis, since we have 𝑗 − 𝑖 < 𝑗 .

Assuming that type( 𝑗) is correctly defined, with semantics as in Section 4.3, the following result
roughly states that the encoding of numbers is preserved under submodels.

Lemma 4.13. Let 0 ≤ 𝑖 ≤ 𝑗 with 𝑗 ≥ 2. Let 𝔐 = (𝑊,𝑅,𝑉 ) and 𝑤 ∈ 𝑊 be such that 𝔐,𝑤 |=
init( 𝑗) ∧type( 𝑗). Consider a world𝑤 ′ ∈ 𝑅𝑖 (𝑤) and a number𝑚 ∈ [0, 𝔱( 𝑗 −𝑖, 𝑛) −1]. Lastly, suppose
𝔐′ ⊑ 𝔐 such that𝔐′,𝑤 ′ |= type( 𝑗 − 𝑖). Then,

𝐧 𝑗−𝑖 (𝑤 ′) =𝑚 w.r.t. (𝔐,𝑤 ′) if and only if 𝐧 𝑗−𝑖 (𝑤 ′) =𝑚 w.r.t. (𝔐′,𝑤 ′).

Proof. The proof is rather straightforward. From the semantics of type( 𝑗), with respect to any
of the two models (𝔐,𝑤 ′) or (𝔐′,𝑤 ′), 𝐧 𝑗−𝑖 (𝑤 ′) is encoded by using
(1) the t-nodes reachable from𝑤 ′ in at most 𝑗 − 𝑖 steps;
(2) the {x, y}-nodes reachable from𝑤 ′ in exactly 2 steps;
(3) the Aux-nodes reachable from𝑤 ′ in at least 3 steps and at most 𝑗 − 𝑖 + 1 steps.

Let 𝔐′ = (𝑊,𝑅1,𝑉 ). From 𝔐′,𝑤 ′ |= type( 𝑗 − 𝑖) we can show that the accessibility to all these
nodes is preserved between (𝔐,𝑤 ′) and (𝔐′,𝑤 ′), leading to the result (or rather, that losing the
accessibility to any of these nodes leads to a model not satisfying type( 𝑗 − 𝑖)). Indeed,
(1) suppose that there is a t-node𝑤 ∈ 𝑅𝑘 (𝑤 ′), with 𝑘 ∈ [1, 𝑗 − 𝑖], not in 𝑅𝑘1 (𝑤 ′). Let𝑤1 be the

parent of𝑤 in 𝑅. Then in particular,𝑤1 ∈ 𝑅𝑘−1 (𝑤 ′) and (𝑤1,𝑤) ∈ 𝑅. Since𝑤 ∉ 𝑅𝑘1 (𝑤 ′), we
conclude that (𝔐′,𝑤1) does not satisfy (compl𝑗 ) and therefore 𝔐′,𝑤1 ̸ |= type( 𝑗 − 𝑖 − 𝑘).
Then, (𝔐′,𝑤 ′) cannot satisfy (sub𝑗 ), in contradiction with 𝔐′,𝑤 ′ |= type( 𝑗 − 𝑖);

(2) suppose that one {x, y}-node in 𝑅2 (𝑤 ′) is not in 𝑅21 (𝑤 ′). Then trivially (𝔐′,𝑤 ′) cannot satisfy
(aux), in contradiction with 𝔐′,𝑤 ′ |= type( 𝑗);

(3) similarly, suppose that one Aux-node in 𝑅𝑘 (𝑤 ′), where 𝑘 ∈ [3, 𝑗 − 𝑖 + 1], is not in 𝑅21 (𝑤 ′).
Then again (𝔐′,𝑤 ′) cannot satisfy (aux), in contradiction with 𝔐′,𝑤 ′ |= type( 𝑗). □

With this technical lemma at hand, we are now able to show the correctness of fork𝑖𝑗 (ax, bx).

Lemma 4.14. Let ax ≠ bx ∈ Aux, 1 ≤ 𝑖 < 𝑗 , and𝔐,𝑤 |= init( 𝑗). Then,𝔐,𝑤 |= fork𝑖𝑗 (ax, bx) if
and only if the conditions below hold:

(i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖 ;
(ii) one of these two paths ends on a world (say𝑤ax) corresponding to the nominal ax whereas the

other ends on a world (say𝑤bx) corresponding to the nominal bx;
(iii) (𝔐,𝑤ax) and (𝔐,𝑤bx) satisfy typelsr ( 𝑗 − 𝑖) def= type( 𝑗 − 𝑖) ∧ [t] (3l ∧3s ∧3r).

Proof. Recall that fork𝑖𝑗 (ax, bx) is defined as fork𝑖𝑖 (ax, bx) ∧ [t]𝑖typelsr ( 𝑗 − 𝑖). We have:
• 𝔐,𝑤 |= fork𝑖𝑖 (ax, bx) if and only if (by Lemma 4.6)
(i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑗 ;
(ii) one of these two paths ends on a world corresponding to the nominal ax whereas the other

ends on a world corresponding to the nominal bx.
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Fig. 3. Schema of a model satisfying lsr( 𝑗).

• Let 𝑤ax,𝑤bx ∈ 𝑅𝑖 (𝑤), since 𝔐,𝑤 |= [t]𝑖typelsr ( 𝑗 − 𝑖) we get 𝔐,𝑤 ′ |= typelsr ( 𝑗 − 𝑖), for
𝑤 ′ ∈ {𝑤ax,𝑤bx}, which proves (iii), concluding the proof. □

Consider now [ax< bx]𝑖𝑗 . Assuming 𝔐,𝑤 |= fork𝑖𝑗 (ax, bx), we wish to express 𝐧(𝑤ax) < 𝐧(𝑤bx)
for the two distinct worlds𝑤ax,𝑤bx ∈ 𝑅𝑖 (𝑤) corresponding to the nominals ax and bx, respectively.
As 𝑖 < 𝑗 , 𝐧(𝑤ax) (resp. 𝐧(𝑤bx)) is encoded using the truth value of val on the t-children of 𝑤ax

(resp.𝑤bx). To rely on arithmetical properties of binary numbers used to define [ax< bx] 𝑗
𝑗
, we need

to find two partitions 𝑃ax = {𝐿ax, 𝑆ax, 𝑅ax} and 𝑃bx = {𝐿bx, 𝑆bx, 𝑅bx}, one for the t-children of𝑤ax and
another one for those of𝑤bx such that:

(LSR): Given 𝑏 ∈ {ax, bx}, 𝑃𝑏 splits the t-children as follows:
• there is a t-child 𝑠𝑏 of𝑤𝑏 such that 𝑆𝑏 = {𝑠𝑏};
• 𝐧(𝑙) > 𝐧(𝑠𝑏) > 𝐧(𝑟 ), for every 𝑟 ∈ 𝑅𝑏 and 𝑙 ∈ 𝐿𝑏 .

(LESS): 𝑃ax and 𝑃bx are constrained so that the intended relation < between the two numbers can
be satisfied:
• 𝐧(𝑠ax) = 𝐧(𝑠bx), 𝔐, 𝑠ax |= ¬val and𝔐, 𝑠bx |= val;
• for every 𝑙ax ∈ 𝐿ax and 𝑙bx ∈ 𝐿bx, if 𝐧(𝑙ax) = 𝐧(𝑙bx) then𝔐, 𝑙ax |= val iff 𝔐, 𝑙bx |= val.

Above, ‘L’ stands for ‘left’, ‘R’ stands for ‘right’ and ‘S’ stands for ‘selected bit’. As the numbers
are encoded in binary with the least significant bit on the right, by way of example, the numbers
associated to nodes in 𝑅ax are strictly smaller than the number associated to the unique node in 𝑆ax.
It is important to notice that these conditions essentially revolve around the numbers encoded

by t-children, which will be compared using the already defined (by inductive reasoning) formulae
[ax< bx]𝑖′

𝑗 ′ , where 𝑗
′ − 𝑖′ < 𝑗 − 𝑖 . Since the semantics of [ax< bx]𝑖𝑗 is given under the hypothesis

that 𝔐,𝑤 |= fork𝑖𝑗 (ax, bx), we can assume that every child of 𝑤ax and 𝑤bx has all the possible
Aux-children. Then, we rely on the auxiliary propositions in {l, s, r} in order to mimic the reasoning
done in (LSR) and (LESS).

We start by considering the constraints involved in (LSR) and we express them with the formula
lsr( 𝑗) to be defined, which is satisfied by a pointed forest (𝔐 = (𝑊,𝑅,𝑉 ),𝑤) whenever:
• (𝔐,𝑤) satisfies type( 𝑗).
• Every t-child of𝑤 has exactly one {l, s, r}-child, and only one of these t-children (say𝑤 ′)
has an s-child.
• Every t-child of𝑤 that has an l-child (resp. r-child) encodes a number greater (resp. smaller)
than 𝐧(𝑤 ′).

Despite this formula being defined in terms of type( 𝑗), we only rely on lsr( 𝑗 − 𝑖) (which is defined
by inductive reasoning) in order to define [ax< bx]𝑖𝑗 . Figure 3 sketches a model satisfying lsr( 𝑗).
The definition of lsr( 𝑗) follows closely its specification:
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lsr( 𝑗) def= type( 𝑗) ∧ [t]3=1 (l ∨ s ∨ r) ∧ nom1 (s) ∧ ¬(⊤ ∗ (fork1𝑗 (s, l) ∧ ¬[s< l]1𝑗 ))
∧ ¬(⊤ ∗ (fork1𝑗 (s, r) ∧ ¬[r< s]1𝑗 )) .

Lemma 4.15. Let 1 ≤ 𝑖 < 𝑗 . Suppose 𝔐,𝑤 |= init( 𝑗). Then, 𝔐,𝑤 |= lsr( 𝑗 − 𝑖) if and only if
(1) 𝔐,𝑤 |= type( 𝑗 − 𝑖);
(2) every t-node in 𝑅(𝑤) has exactly one Aux-child satisfying an atomic proposition from {l, s, r};
(3) exactly one t-node in 𝑅(𝑤) (say𝑤s) has an Aux-child satisfying s;
(4) given𝑤 ′ ∈ 𝑅(𝑤),𝑤 ′ has an Aux-child satisfying l if and only if 𝐧(𝑤 ′) > 𝐧(𝑤s);
(5) given𝑤 ′ ∈ 𝑅(𝑤),𝑤 ′ has an Aux-child satisfying r if and only if 𝐧(𝑤 ′) < 𝐧(𝑤s).

Proof. This proof is rather straightforward. The definition of lsr( 𝑗 − 𝑖) is reproduced below:

type( 𝑗 − 𝑖) ∧ [t]3=1 (l ∨ s ∨ r) ∧ nom1 (s)∧

¬(⊤ ∗ (fork1𝑗−𝑖 (s, l) ∧ ¬[s< l]1𝑗−𝑖 )) ∧ ¬(⊤ ∗ (fork1𝑗−𝑖 (s, r) ∧ ¬[r< s]1𝑗−𝑖 )) .
Then, we provide the following analysis.
• The first, second and third conjuncts of lsr( 𝑗 − 𝑖) directly realise requirements (1), (2) and
(3).
• The fourth conjunct of lsr( 𝑗 − 𝑖) realises the requirement (4). Indeed, suppose𝔐,𝑤 |= ¬(⊤∗
(fork1𝑗−𝑖 (s, l) ∧ ¬[s< l]1𝑗−𝑖 )). Then, for all submodels 𝔐′ ⊑ 𝔐, if 𝔐′,𝑤 |= fork1𝑗−𝑖 (s, l)
then𝔐′,𝑤 |= [s< l]1𝑗−𝑖 . Let𝑤 ′ ∈ 𝑅(𝑤) be such that𝑤 ′ has an Aux-child satisfying l. Then by
Lemma 4.14, 𝔐,𝑤 |= fork1𝑗−1 (s, l) and as a consequence 𝔐,𝑤 |= [s< l]1𝑗−𝑖 . Let us consider
𝔐′ = (𝑊,𝑅′,𝑊 ) obtained from 𝔐 by removing from 𝑅 every pair (𝑤1,𝑤2) ∈ 𝑅 such that
– 𝑤1 and𝑤2 are t-nodes;
– (𝑤1,𝑤2) does not belong to the path from𝑤 to𝑤s, nor to the path from𝑤 to𝑤 ′;
– (𝑤1,𝑤2) does not belong to any path starting from𝑤s or𝑤 ′.
Then, we can show that 𝔐′,𝑤 |= fork1𝑗−𝑖 (s, l) and thus, by hypothesis, 𝔐′,𝑤 |= [s< l]1𝑗−𝑖 .
By the induction hypothesis, from [s< l]1𝑗−𝑖 we conclude that 𝐧(𝑤 ′) > 𝐧(𝑤s) with respect
to (𝔐′,𝑤). Now, from 𝔐′,𝑤 |= fork1𝑗−𝑖 (s, l) we also conclude that 𝔐′,𝑤s |= type( 𝑗 − 𝑖)
and𝔐′,𝑤 ′ |= type( 𝑗 − 𝑖). Then, by Lemma 4.13, 𝐧(𝑤 ′) > 𝐧(𝑤s) also holds with respect to
(𝔐,𝑤). The other direction is analogous.
• The fifth conjunct of lsr( 𝑗 − 𝑖) realises the requirement (5). The proof is similar to the one
for the requirement (4), just above. □

Then, we have the ingredients to define the formula [ax< bx]𝑖𝑗 as follows:

[ax< bx]𝑖𝑗 def
= ⊤ ∗

(
nom𝑖 (ax≠bx) ∧ [t]𝑖lsr( 𝑗 − 𝑖) ∧ S𝑖𝑗 (ax, bx) ∧ L𝑖𝑗 (ax, bx)

)
,

where S𝑖𝑗 (ax, bx) and L𝑖𝑗 (ax, bx) check the first and second condition in (LESS), respectively. In
particular, by defining [ax= bx]𝑖𝑗

def
= ¬([ax< bx]𝑖𝑗 ∨ [bx< ax]𝑖𝑗 ), we have

S𝑖𝑗 (ax, bx) def= ⊤ ∗
(
fork𝑖+1𝑗 (x, y) ∧@𝑖

ax⟨t⟩(3s ∧3x)
∧@𝑖

bx⟨t⟩(3s ∧3y) ∧ [x= y]𝑖+1𝑗 ∧@𝑖+1
x ¬val ∧@𝑖+1

y val
)

L𝑖𝑗 (ax, bx) def= ¬
(
⊤ ∗

(
fork𝑖+1𝑗 (x, y) ∧@𝑖

ax⟨t⟩(3l ∧3x) ∧@𝑖
bx⟨t⟩(3l ∧3y)

∧ [x= y]𝑖+1𝑗 ∧¬(@𝑖+1
x val⇔ @𝑖+1

y val)
) )
.

Both fork𝑖+1𝑗 (x, y) and [x= y]𝑖+1𝑗 used in these formulae are defined recursively. The formula
S𝑖𝑗 (ax, bx) states that there is a submodel 𝔐′ ⊑ 𝔐 such that
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I. 𝔐′,𝑤 |= fork𝑖+1𝑗 (x, y);
II. 𝑠ax corresponds to the nominal x at depth 𝑖 + 1;
III. 𝑠bx corresponds to the nominal y at depth 𝑖 + 1;

IV. 𝐧(𝑠ax) = 𝐧(𝑠bx),
V. 𝔐, 𝑠ax ̸ |= val, and
VI. 𝔐, 𝑠bx |= val.

The enumeration I-VI refers to the conjuncts in the formula.
S𝑖𝑗 (ax, bx) correctly models the first condition of (LESS). Regarding L𝑖𝑗 (ax, bx) and (LESS), a

similar analysis can be performed. We define LS𝑖𝑗 (ax, bx)
def
= L𝑖𝑗 (ax, bx) ∧ S𝑖𝑗 (ax, bx).

Let us consider [bx = ax+1] 𝑗 . Under the hypothesis that 𝔐,𝑤 |= fork𝑖𝑗 (ax, bx), this formula
must express 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1 for the two (distinct) worlds 𝑤ax,𝑤bx ∈ 𝑅𝑖 (𝑤). Then, as done
for defining [ax< bx]𝑖𝑗 , we take advantage of arithmetical properties on binary numbers and we
search for two partitions 𝑃ax = {𝐿ax, 𝑆ax, 𝑅ax} and 𝑃bx = {𝐿bx, 𝑆bx, 𝑅bx} of the t-children of𝑤ax and
𝑤bx, respectively, such that 𝑃ax and 𝑃bx satisfy (LSR) as well as the condition below:
(PLUS): 𝑃ax and 𝑃bx have the arithmetical properties of the successor relation:

• 𝑃ax and 𝑃bx satisfy (LESS);
• for every 𝑟ax ∈ 𝑅ax, we have𝔐, 𝑟ax |= val;
• for every 𝑟bx ∈ 𝑅bx, we have𝔐, 𝑟ax ̸ |= val,

where 𝑆ax = {𝑠ax} and 𝑆bx = {𝑠bx}, as required by (LSR).
The definition of [bx = ax+1] 𝑗 is similar to [ax< bx]𝑖𝑗 :

[bx = ax+1] 𝑗 def
= ⊤∗

(
nom1 (ax≠bx) ∧ [t]lsr( 𝑗 − 1) ∧ LS1𝑗 (ax, bx) ∧ R(ax, bx)

)
,

where R(ax, bx) def= @1
ax [t] (3r⇒ val) ∧@1

bx [t] (3r⇒ ¬val) captures the last two conditions
of (PLUS). We prove a technical lemma that will help us with the proof of correctness of [ax< bx]𝑖𝑗
and [bx = ax+1] 𝑗 stated in Lemma 4.17 and Lemma 4.18 below.

Lemma 4.16. Let ax ≠ bx ∈ Aux and 1 ≤ 𝑖 < 𝑗 . Suppose that (𝔐,𝑤) is such that 𝑅𝑖 (𝑤) =
{𝑤ax,𝑤bx} for some t-nodes𝑤ax and𝑤bx in𝑊 , and these two worlds satisfy the conditions of lsr( 𝑗−𝑖),
that is, for every 𝑏 ∈ {ax, bx},
(A) 𝔐,𝑤𝑏 |= type( 𝑗 − 𝑖);
(B) every t-node in 𝑅(𝑤𝑏) has exactly one Aux-child satisfying an atomic proposition from {l, s, r};
(C) exactly one t-node in 𝑅(𝑤𝑏) (say𝑤𝑏,s) has an Aux-child satisfying s;
(D) given𝑤 ′ ∈ 𝑅(𝑤𝑏),𝑤 ′ has an Aux-child satisfying l if and only if 𝐧(𝑤 ′) > 𝐧(𝑤𝑏,s);
(E) given𝑤 ′ ∈ 𝑅(𝑤𝑏),𝑤 ′ has an Aux-child satisfying r if and only if 𝐧(𝑤 ′) < 𝐧(𝑤𝑏,s).

Then,

I. 𝔐,𝑤 |= S𝑖𝑗 (ax, bx) if and only if 𝐧(𝑤ax,s) = 𝐧(𝑤bx,s), 𝔐,𝑤ax,s |= ¬val and𝔐,𝑤bx,s |= val;
II. 𝔐,𝑤 |= L𝑖𝑗 (ax, bx) if and only if ( 𝔐,𝑤ax,l |= val iff 𝔐,𝑤bx,l |= val), for all 𝑤ax,l ∈ 𝑅(𝑤ax)

and𝑤bx,l ∈ 𝑅(𝑤bx) s.t. 𝐧(𝑤ax,l) > 𝐧(𝑤ax,s), 𝐧(𝑤bx,l) > 𝐧(𝑤bx,s) and 𝐧(𝑤ax,l) = 𝐧(𝑤bx,l).
III. If 𝑖 = 1 then, 𝔐,𝑤 |= R(ax, bx) if and only if
• for every world𝑤ax,r ∈ 𝑅(𝑤ax), if 𝐧(𝑤ax,r) < 𝐧(𝑤ax,s) then 𝔐,𝑤ax,r |= val;
• for every world𝑤bx,r ∈ 𝑅(𝑤bx), if 𝐧(𝑤bx,r) < 𝐧(𝑤bx,s) then 𝔐,𝑤bx,r |= ¬val.

See the proof in Appendix E.

Lemma 4.17. Let ax ≠ bx ∈ Aux and 1 ≤ 𝑖 < 𝑗 . Suppose 𝔐,𝑤 |= init( 𝑗) ∧ fork𝑖𝑗 (ax, bx). Then,
𝔐,𝑤 |= [ax< bx]𝑖𝑗 if and only if there are two distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅𝑖 (𝑤) such that 𝑤ax

corresponds to the nominal ax,𝑤bx corresponds to the nominal bx and 𝐧(𝑤ax) < 𝐧(𝑤bx).

See the proof in Appendix F.
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Lemma 4.18. Let ax ≠ bx ∈ Aux and 1 ≤ 𝑖 < 𝑗 . Suppose 𝔐,𝑤 |= init( 𝑗) ∧ fork1𝑗 (ax, bx). Then,
𝔐,𝑤 |= [bx = ax+1] 𝑗 if and only if there are two distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅(𝑤) such that 𝑤ax

corresponds to the nominal ax,𝑤bx corresponds to the nominal bx and 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1.

Proof. We recall the definition of [bx = ax+1] 𝑗 :
[bx = ax+1] 𝑗 def

= ⊤∗
(
nom1 (ax≠bx) ∧ [t]lsr( 𝑗 − 1) ∧ S1𝑗 (ax, bx) ∧ L1𝑗 (ax, bx) ∧ R(ax, bx)

)
.

As in Lemma 4.8, the proof uses standard properties of numbers encoded in binary. Again, let 𝑥,𝑦
be two natural numbers that can be represented in binary by using 𝑛 bits. Let us denote with 𝑥𝑖
(resp. 𝑦𝑖 ) the 𝑖-th bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑦 = 𝑥 + 1 if and only if
(A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥𝑖 = 0 and 𝑦𝑖 = 1;
(B) for every position 𝑗 > 𝑖 , 𝑥 𝑗 = 0⇔ 𝑦 𝑗 = 0;
(C) for every position 𝑗 < 𝑖 , 𝑥 𝑗 = 1 and 𝑦 𝑗 = 0.

The formula [bx = ax+1] 𝑗 uses this characterisation to state that 𝐧(𝑤bx) = 𝐧(𝑤ax) + 1.
One can see that the formula [bx = ax+1] 𝑗 can be obtained (syntactically) from the formula
[ax< bx]1𝑗

def
= ⊤ ∗ (nom1 (ax ≠ bx) ∧ [t]𝑖lsr( 𝑗 − 1) ∧ S1𝑗 (ax, bx) ∧ L1𝑗 (ax, bx)) by simply adding

the conjunct R(ax, bx) to the right of L1𝑗 (ax, bx). Then, it is easy to see that the proof of this
lemma follows very closely the structure of the proof of Lemma 4.17. Indeed, to prove (A) and
(B) we essentially rely on Lemma 4.16 (I and II), whereas (C) is shown using the third point of
Lemma 4.16. □

To define uniq( 𝑗) and compl( 𝑗), we rely on fork𝑖𝑗 (ax, bx), [ax< bx]𝑖𝑗 and [bx = ax+1] 𝑗 .

uniq( 𝑗) def= ¬
(
⊤ ∗ (fork1𝑗 (x, y) ∧ [x= y]1𝑗 )

)
compl( 𝑗) def= ¬

(
2⊥ ∗

(
[t] (typelsr ( 𝑗 − 1) ∧3y) ∧ nom1 (x) ∧@1

x¬1𝑗∧

¬
(
⊤ ∗ (fork1𝑗 (x, y) ∧ [y = x+1] 𝑗 )

) ))
,

where 1𝑗 def= [t]val reflects the encoding of 𝔱( 𝑗, 𝑛)−1 for 𝑗 > 1. Themain difference between compl(1)
and compl( 𝑗) ( 𝑗 > 1) is that the conjunct [t]3y of compl(1) is replaced by [t] (typelsr ( 𝑗 −1) ∧3y)
in compl( 𝑗), as needed to correctly evaluate fork1𝑗 (x, y). Indeed, the difference between fork11 (x, y)
and fork1𝑗 (x, y) is precisely that the latter requires [t]typelsr ( 𝑗 − 1). The definition of type( 𝑗) is
now complete.

Lemma 4.19. Let 𝑗 ≥ 2. Suppose 𝔐,𝑤 |= init( 𝑗) ∧ aux. Then, 𝔐,𝑤 |= uniq( 𝑗) if and only if
(𝔐,𝑤) satisfies (uniq𝑗 ), i.e. distinct t-nodes in 𝑅(𝑤) encode different numbers.

Proof. As in Lemma 4.9, but using Lemma 4.17 on the inductive formula [x= y]1𝑗 . □

Lemma 4.20. Let 𝑗 ≥ 2. Suppose 𝔐,𝑤 |= init( 𝑗) ∧ aux. Then, 𝔐,𝑤 |= compl( 𝑗) if and only if
(𝔐,𝑤) satisfies (compl𝑗 ), i.e. for every t-node𝑤1 ∈ 𝑅(𝑤), if 𝐧(𝑤1) < 𝔱( 𝑗, 𝑛)−1 then 𝐧(𝑤2) = 𝐧(𝑤1)+1
for some t-node𝑤2 ∈ 𝑅(𝑤).

Proof. As in Lemma 4.10, but using Lemma 4.18 and the formula typelsr ( 𝑗 − 1) in order to
properly evaluate fork1𝑗 (x, y). □

Finally, we can state the correctness of the definition of type( 𝑗).

Lemma 4.21. Let 𝔐,𝑤 |= init( 𝑗). We have 𝔐,𝑤 |= type( 𝑗) if and only if (𝔐,𝑤) satisfies (sub𝑗 ),
(zero𝑗 ), (uniq𝑗 ), (compl𝑗 ) and (aux).

Proof. It follows directly from Lemmata 4.5, 4.19 and 4.20. □
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The size of type( 𝑗) is exponential in 𝑗 > 1 and polynomial in 𝑛 ≥ 1. As its size is elementary,
we can use this formula as a starting point to reduce Tile𝑘 .

We finish this section by showing that the formulae init( 𝑗) and type( 𝑗) are (simultaneously)
satisfiable, i.e., there exists a pointed forest 𝔐,𝑤 such that 𝔐,𝑤 |= init( 𝑗) ∧ type( 𝑗). This result
is useful in the next section, as we will need to show that a model encoding a grid actually exists.

Lemma 4.22. Let 𝑗 ≥ 2. init( 𝑗) ∧ type( 𝑗) is satisfiable.

Proof. Let 𝑗 ≥ 2. By induction on 𝑗 , we suppose that init( 𝑗 − 1) ∧ type( 𝑗 − 1) is satisfiable
(we already treated the base case for 𝑗 = 1 in Lemma 4.12). Let us consider 𝑤0, . . . ,𝑤𝔱 ( 𝑗,𝑛)−1
distinct worlds. By the induction hypothesis, we can construct 𝔱( 𝑗, 𝑛) models 𝔐𝑖 = (𝑊𝑖 , 𝑅𝑖 ,𝑉𝑖 )
(𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1]), so that 𝑤𝑖 ∈ 𝑊𝑖 and 𝔐𝑖 ,𝑤𝑖 |= init( 𝑗 − 1) ∧ type( 𝑗 − 1). W.l.o.g. we can
assume, for each two distinct 𝑖, 𝑖′ ∈ [0, 𝔱( 𝑗, 𝑛) − 1],𝑊𝑖 ∩𝑊𝑖′ = ∅. Similarly, we can assume that
each𝔐𝑖 is minimal, i.e. for every𝔐′ ⊑ 𝔐𝑖 different from𝔐′,𝔐′,𝑤𝑖 ̸ |= init( 𝑗 − 1) ∧ type( 𝑗 − 1).
This implies that 𝑤𝑖 does not have any Aux-children, and every t-node in 𝑅𝑖 (𝑤𝑖 ) does not have
{l, s, r}-children (as these two properties are not guaranteed by (aux)).
Let 𝑤 be a fresh world not appearing in the aforementioned models. Similarly, for every 𝑖 ∈
[0, 𝔱( 𝑗, 𝑛) − 1], let𝑤x

𝑖 and𝑤
y
𝑖
be fresh worlds. Lastly, we also introduce, for every world𝑤 ∈ 𝑅𝑖 (𝑤𝑖 ),

three (distinct) new worlds𝑤l
𝑤
,𝑤s

𝑤
and𝑤r

𝑤
.

Then, let us consider the model𝔐 = (𝑊,𝑅,𝑉 ) defined as follows:
(1) 𝑊 def

= {𝑤}∪𝑊𝑖∪{𝑤x
𝑖 ,𝑤

y
𝑖
| 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛)−1]}∪{𝑤

𝑤l ,𝑤𝑤s ,𝑤𝑤r , | 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛)−1],𝑤 ∈ 𝑅𝑖 (𝑤𝑖 )}
(2) 𝑅def

= {(𝑤,𝑤0), . . . , (𝑤,𝑤𝔱 ( 𝑗,𝑛)−1)} ∪
⋃
𝑖∈[0,𝔱 ( 𝑗,𝑛)−1] 𝑅𝑖 ∪ {(𝑤𝑖 ,𝑤x

𝑖 ), (𝑤𝑖 ,𝑤
y
𝑖
) | 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1]}

∪ {(𝑤,𝑤
𝑤l ), (𝑤,𝑤𝑤s ), (𝑤,𝑤𝑤r ), | 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1],𝑤 ∈ 𝑅𝑖 (𝑤𝑖 )}

(3) 𝑉 is such that
• for every 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1], 𝑝 ∈ AP and every 𝑤 ′ ∈ 𝑅2𝑖 (𝑤𝑖 ), 𝑤 ′ ∈ 𝑉 (𝑝) if and only if
𝑤 ′ ∈ 𝑉𝑖 (𝑝). Hence, w.r.t. (𝔐,𝑤), the evaluations w.r.t. worlds in 𝑅3𝑖 (𝑤) ∩𝑊𝑖 is unchanged
compared to the one in (𝔐𝑖 ,𝑤𝑖 ).
• For every 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1] and every 𝑤 ′ ∈ 𝑅𝑖 (𝑤𝑖 ), 𝑤 ′ ∈ 𝑉 (val) if and only if w.r.t.
(𝔐𝑖 ,𝑤𝑖 ), the 𝐧(𝑤 ′)-bit in the binary representation of 𝑖 is 1. Notice that this will lead to
𝐧(𝑤𝑖 ) = 𝑖 .
• For every 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1] and ax ∈ Aux, 𝑤x

𝑖 ∈ 𝑉 (ax) if and only if ax = x. Similarly,
𝑤

y
𝑖
∈ 𝑉 (ax) if and only if ax = y. Thus, every𝑤x

𝑖 is a x-node, whereas every𝑤
y
𝑖
is a y-node.

• For every ax ∈ Aux,𝑤 ∉ 𝑉 (ax) and for every 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1],𝑤𝑖 ∉ 𝑉 (ax). Moreover, for
every𝑤 ∈ 𝑅𝑖 (𝑤𝑖 ),𝑤 ∉ 𝑉 (ax) (notice that, by minimality,𝑤 is a t-node also in𝔐𝑖 ). Thus,
𝑤 ,𝑤𝑖 and𝑤 (as above) are all t-nodes.
• For every ax ∈ Aux, 𝑤 ∉ 𝑉 (ax) and for every 𝑖 ∈ [0, 𝔱( 𝑗, 𝑛) − 1] and 𝑤 ∈ 𝑅𝑖 (𝑤𝑖 ), (1)
𝑤l
𝑤
∈ 𝑉 (ax) iff ax = l, (2)𝑤s

𝑤
∈ 𝑉 (ax) iff ax = s, (3)𝑤r

𝑤
∈ 𝑉 (ax) iff ax = r. Hence, every

𝑤l
𝑤
,𝑤s

𝑤
and𝑤r

𝑤
(as above) is a l-node, s-node and r-node, respectively.

We can check that (𝔐,𝑤) satisfies init( 𝑗) as well as (sub𝑗 ), (zero𝑗 ), (uniq𝑗 ), (compl𝑗 ) and (aux).
Thus, by Lemma 4.21, 𝔐,𝑤 |= init( 𝑗) ∧ type( 𝑗). □

4.6 Tiling a grid [0, 𝔱(𝑘, 𝑛) − 1] × [0, 𝔱(𝑘, 𝑛) − 1]
In this section we explain how to use previous developments to define a uniform reduction from
Tile𝑘 , for every 𝑘 ≥ 2. Several adaptations are needed to encode smoothly the grid, but the hardest
part was the design of the formula type( 𝑗), which we already achieved in the previous section.

As usual, in the following let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and consider𝑤 ∈𝑊 .
Let 𝑘 ≥ 2 and let (TT , c) be an instance of Tile𝑘 , where TT = (T ,H ,V) and c ∈ T (see

Section 4.1 for a formal definition). Recall that a solution for (TT , c) w.r.t. Tile𝑘 is a map 𝜏 :
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𝑤

(𝔱 (𝑘,𝑛) − 1, 𝔱 (𝑘,𝑛) − 1) )
(0, 0)

1H , 1V 1H , 1V 1H , 1V 0H , 0V 0H , 0V 0H , 0V

Fig. 4. Schema of a model satisfying gridTT (𝑘) (for 𝑘 ≥ 2).

[0, 𝔱(𝑘, 𝑛) − 1]×[0, 𝔱(𝑘, 𝑛) − 1]→T satisfying (first) and (hor&vert). W.l.o.g. we assume T is also
understood as a set of atomic propositions, disjoint from {𝑝1, . . . , 𝑝𝑛, val}∪Aux used in the definition
of type( 𝑗). We construct a formula tilingTT,c (𝑘) that is satisfiable iff (TT , c) as a solution.

Let us first describe how to represent a grid [0, 𝔱(𝑘, 𝑛) − 1]2 in the pointed forest (𝔐,𝑤). We use
the same ideas needed in order to define type(𝑘), but with some minor modifications. As previously
stated, if 𝔐,𝑤 |= type(𝑘) then given a t-node 𝑤 ′ ∈ 𝑅(𝑤), the number 𝐧(𝑤 ′) ∈ [0, 𝔱(𝑘, 𝑛) − 1]
is encoded using the t-children of 𝑤 ′, where the numbers encoded by these children represent
positions in the binary encoding of 𝐧(𝑤 ′). Instead of being a single number, a position in the grid
is a pair of numbers (ℎ, 𝑣) ∈ [0, 𝔱(𝑘, 𝑛) − 1]2. Hence, in a model (𝔐,𝑤) satisfying tilingTT,c (𝑘)
we require that 𝑤 ′ ∈ 𝑅(𝑤) encodes two numbers 𝐧H (𝑤 ′) and 𝐧V (𝑤 ′), and say that 𝑤 ′ encodes
the position (ℎ, 𝑣) if and only if 𝐧H (𝑤 ′) = ℎ and 𝐧V (𝑤 ′) = 𝑣 . Since both numbers are from
[0, 𝔱(𝑘, 𝑛) − 1], the same amount of t-children as in type(𝑘) can be used in order to encode both
𝐧H (𝑤 ′) and 𝐧V (𝑤 ′). Thus, we rely on the formula type(𝑘 − 1) to force 𝑤 ′ to have the correct
amount of t-children, by requiring it to hold in (𝔐,𝑤 ′). Similarly to what is done previously for
type( 𝑗) ( 𝑗 ≥ 2), we encode the numbers 𝐧H (𝑤 ′) and 𝐧V (𝑤 ′) by using the truth value, on the
t-children of𝑤 ′, of two new atomic propositions valH and valV , respectively. Then, we use similar
formulae to zero(𝑘), uniq(𝑘) and compl(𝑘) to state that 𝑤 witnesses exactly one child for each
position in the grid. Once the grid is encoded, the tiling conditions are enforced rather easily.
Figure 4 schematises a pointed forest satisfying a formula gridTT (𝑘) that properly encodes the
[0, 𝔱(𝑘, 𝑛) −1]2 grid. The actual grid is drawn in the picture to illustrate the intended meaning of the
worlds in 𝑅(𝑤). As mentioned earlier, each world𝑤 ′ ∈ 𝑅(𝑤) encodes two numbers, corresponding
to the respective horizontal and vertical coordinates of the grid. So, dotted arrows connect𝑤 with
exactly one world for each position of the grid (for simplicity, we only draw some of these arrows).
Thus,𝑤 has 𝔱(𝑘, 𝑛)2 children. These children must satisfy type(𝑘−1), therefore they have 𝔱(𝑘−1, 𝑛)
children that represent pairs of numbers via valH and valV , as described before. In the picture the
values 1H and 0H stand for valH being true and false, respectively (similarly for 1V and 0V w.r.t.
valV ). For instance, in the rightmost child of𝑤 all “bits” are set to 0, both for horizontal and for
vertical position, so it corresponds to the initial position (0, 0) of the grid. Similarly, in the leftmost
child, by setting all “bits” to 1 we encode the position (𝔱(𝑘, 𝑛) − 1, 𝔱(𝑘, 𝑛) − 1) of the grid.
Now we introduce the formula gridTT (𝑘) that characterises the set of models encoding the
[0, 𝔱(𝑘, 𝑛) − 1]2 grid. A model (𝔐 = (𝑊,𝑅,𝑉 ),𝑤) satisfying gridTT (𝑘) is such that:

(zeroTT,𝑘 ) there is a t-node �̃� in 𝑅(𝑤) that encodes the position (𝐧H (�̃�), 𝐧V (�̃�)) = (0, 0);
(uniqTT,𝑘 ) for all two distinct t-nodes𝑤1,𝑤2 ∈ 𝑅(𝑤), 𝐧H (𝑤1) ≠ 𝐧H (𝑤2) or 𝐧V (𝑤1) ≠ 𝐧V (𝑤2);
(complTT,𝑘 ) for every t-node𝑤1 ∈ 𝑅(𝑤),

• if 𝐧H (𝑤1) < 𝔱(𝑘, 𝑛) − 1 then there is a t-node𝑤2 ∈ 𝑅(𝑤) such that 𝐧H (𝑤2) = 𝐧H (𝑤1) + 1
and 𝐧V (𝑤2) = 𝐧V (𝑤1);
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• if 𝐧V (𝑤1) < 𝔱(𝑘, 𝑛) − 1 then there is a t-node𝑤2 ∈ 𝑅(𝑤) such that 𝐧V (𝑤2) = 𝐧V (𝑤1) + 1
and 𝐧H (𝑤2) = 𝐧H (𝑤1);

(init/sub/aux) (𝔐,𝑤) satisfies init(𝑘), sub(𝑘) and aux.
It is easy to see that, with these conditions, (𝔐,𝑤) correctly encodes the grid. The definition of
gridTT (𝑘) follows rather closely the definition of type( 𝑗). It is defined as

gridTT (𝑘) def= zeroTT (𝑘) ∧ uniqTT (𝑘) ∧ complTT (𝑘) ∧ init(𝑘) ∧ sub(𝑘) ∧ aux,

where each conjunct expresses the homonymous property above. To define the first three conjuncts
of gridTT (𝑘) (hence completing its definition) we start by defining the formulae [ax 𝐷

= bx]𝑘 and
[bx 𝐷

= ax+1]𝑘 , where 𝐷 ∈ {H ,V}. These formulae will be defined similarly to [ax= bx]1
𝑘
and

[bx = ax+1]𝑘 . Given a pointed model (𝔐,𝑤) (with𝔐 = (𝑊,𝑅,𝑉 )) satisfying fork1
𝑘
(ax, bx), and

the two t-nodes𝑤ax,𝑤bx ∈ 𝑅(𝑤) corresponding to the nominals ax and bx, respectively,
[ax 𝐷

= bx]𝑘 states that 𝐧𝐷 (𝑤ax) = 𝐧𝐷 (𝑤bx); [bx 𝐷
= ax+1]𝑘 states that 𝐧𝐷 (𝑤bx) = 𝐧𝐷 (𝑤ax) + 1.

To encode [ax 𝐷
= bx]𝑘 we simply require that for all two t-children𝑤ax ∈ 𝑅(𝑤ax) and𝑤bx ∈ 𝑅(𝑤bx),

if 𝐧𝐷 (𝑤ax) = 𝐧𝐷 (𝑤bx) then𝑤ax and𝑤bx agree on the satisfaction of val𝐷 . The following formula
expresses this property (whose correctness is proved immediately after its definition):

[ax 𝐷
= bx]𝑘 def

= ¬
(
⊤ ∗ (fork2

𝑘
(x, y) ∧@1

ax⟨t⟩3x ∧@1
bx⟨t⟩3y ∧ [x= y]2

𝑘
∧ ¬(@2

xval𝐷 ⇔ @2
yval𝐷 ))

)
.

Lemma 4.23. Let ax ≠ bx ∈ Aux and 𝑘 ≥ 2. Suppose 𝔐,𝑤 |= init(𝑘) ∧ fork1
𝑘
(ax, bx). Then,

𝔐,𝑤 |= [ax 𝐷
= bx]𝑘 if and only if there are two distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅(𝑤) such that 𝑤ax

corresponds to the nominal ax,𝑤bx corresponds to the nominal bx and 𝐧𝐷 (𝑤ax) = 𝐧𝐷 (𝑤bx).

Proof. This proof is similar to the one of Lemma 4.16 (II). Since𝔐,𝑤 |= init(𝑘)∧fork1
𝑘
(ax, bx),

by Lemma 4.14 there are two worlds𝑤ax and𝑤bx in 𝑅(𝑤) corresponding to the nominals (for the
depth 1) ax and bx, respectively.
(⇒): Suppose 𝔐,𝑤 |= [ax 𝐷

= bx]𝑘 . Then, for every 𝔐′ = (𝑊,𝑅1,𝑉 ), if 𝔐′ ⊑ 𝔐 and 𝔐′,𝑤 |=
fork2

𝑘
(x, y) ∧@1

ax⟨t⟩3x ∧@1
bx⟨t⟩3y ∧ [x= y]2

𝑘
then 𝔐′,𝑤 |= @2

xval𝐷 ⇔ @2
yval𝐷 . Now, from

𝔐,𝑤 |= fork1
𝑘
(ax, bx) we have𝔐,𝑤ax |= type(𝑘 − 1) and𝔐,𝑤bx |= type(𝑘 − 1) (notice that then,

all the worlds in 𝑅(𝑤ax) ∪ 𝑅(𝑤bx) satisfy type(𝑘 − 2)). Thus, let us consider two arbitrary worlds
𝑤x and𝑤y such that
• 𝑤x ∈ 𝑅(𝑤ax) and𝑤y ∈ 𝑅(𝑤bx);
• 𝐧𝑘−1 (𝑤x) = 𝐧𝑘−1 (𝑤y).

We show that𝔐,𝑤x |= val𝐷 if and only if𝔐,𝑤y |= val𝐷 , thus concluding that 𝐧𝐷 (𝑤ax) = 𝐧𝐷 (𝑤bx).
Let us consider the finite forest𝔐′ = (𝑊,𝑅1,𝑉 ) where 𝑅1 is obtained from 𝑅 by removing every
edge (𝑤𝑏,𝑤 ′) ∈ 𝑅 where 𝑏 ∈ {ax, bx}, and 𝑤 ′ is a t-node different from 𝑤x and 𝑤y. We also
remove the edge (𝑤x,𝑤

′) ∈ 𝑅 where 𝑤 ′ is the only y-child of 𝑤x, as well as (𝑤y,𝑤
′′) where 𝑤 ′′

is the only x-child of 𝑤y. The existence of these nodes is guaranteed by 𝔐,𝑤ax |= type(𝑘 − 1)
and𝔐,𝑤bx |= type(𝑘 − 1). By Lemma 4.14, we have𝔐′,𝑤 |= fork2

𝑘
(x, y), where𝑤x corresponds

to the nominal (at depth 2) x, whereas 𝑤y corresponds to the nominal (at depth 2) y. Moreover,
Lemma 4.14 ensures that 𝔐,𝑤x |= type(𝑘 − 2) and 𝔐,𝑤y |= type(𝑘 − 2), hence by Lemma 4.13
we conclude that𝑤x (resp.𝑤y) encodes the same number w.r.t. (𝔐,𝑤) and (𝔐′,𝑤). Again from
the definition of 𝑅1 it is easy to see that 𝔐′,𝑤 |= @1

ax⟨t⟩3x ∧@1
bx⟨t⟩3y. Lastly, by hypothesis

on 𝑤x and 𝑤y, together with Lemma 4.17 and that [x= y]2
𝑘
is equal to ¬([x< y]2

𝑘
∨ [y< x]2

𝑘
) by

definition, we conclude that 𝔐′,𝑤 |= [x= y]2
𝑘
. Thus, by hypothesis, 𝔐′,𝑤 |= @2

xval𝐷 ⇔ @2
yval𝐷 ,

concluding the proof.
(⇐): This direction is proved analogously by mainly relying on Lemma 4.17 and Lemma 4.13. □
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The formula [bx 𝐷
= ax+1]𝑘 can be defined by slightly modifying the formula [bx = ax+1]𝑘 .

We start by defining the formulae L[𝐷]𝑘 (ax, bx), S[𝐷]𝑘 (ax, bx) and R[𝐷] (ax, bx) with semantics
similar to L1

𝑘
(ax, bx), S1

𝑘
(ax, bx) and R(ax, bx), respectively, but where, for a given t-node in 𝑅2 (𝑤),

we are interested in the satisfaction of val𝐷 instead of val. For example, the formula S[𝐷]𝑘 (ax, bx)
is defined as

S[𝐷]𝑘 (ax, bx) def= ⊤ ∗
(
fork2

𝑘
(x, y) ∧@1

ax⟨t⟩(3s ∧3x) ∧
@1

bx⟨t⟩(3s ∧3y) ∧ [x= y]2
𝑘
∧@2

x¬val𝐷 ∧@2
yval𝐷

)
,

i.e., by replacing the two last conjuncts of S1
𝑘
(ax, bx), @2

x¬val and @2
yval with @2

x¬val𝐷 and
@2

yval𝐷 , respectively. Similarly, L[𝐷]𝑘 (ax, bx) is defined from L1
𝑘
(ax, bx) by replacing the last

conjunct of this formula, i.e.¬(@2
xval⇔ @2

yval), by¬(@2
xval𝐷 ⇔ @2

yval𝐷 ). Lastly, R[𝐷] (ax, bx)
is defined from R(ax, bx) by replacing every occurrence of val by val𝐷 . The formula [bx 𝐷

= ax+1]𝑘
is then defined as follows:

[bx 𝐷
= ax+1]𝑘 def

= ⊤ ∗
(
nom1 (ax≠bx) ∧ [t]lsr(𝑘 − 1) ∧ L[𝐷]𝑘 (ax, bx) ∧ S[𝐷]𝑘 (ax, bx) ∧ R[𝐷] (ax, bx)

)
.

Lemma 4.24. Let ax ≠ bx ∈ Aux and 𝑘 ≥ 2. Suppose 𝔐,𝑤 |= init(𝑘) ∧ fork1
𝑘
(ax, bx). Then,

𝔐,𝑤 |= [bx 𝐷
= ax+1]𝑘 if and only if there are two distinct t-nodes 𝑤ax,𝑤bx ∈ 𝑅(𝑤) such that 𝑤ax

corresponds to the nominal ax,𝑤bx corresponds to the nominal bx and 𝐧𝐷 (𝑤bx) = 𝐧𝐷 (𝑤ax) + 1.

Proof. The proof unfolds as the proofs of Lemmata 4.8 and 4.18. □

We are now ready to define the formulae zeroTT (𝑘), uniqTT (𝑘) and complTT (𝑘), achieving the
conditions (zeroTT,𝑘 ), (uniqTT,𝑘 ) and (complTT,𝑘 ), respectively. All these formulae follow closely the
definitions of zero(𝑘), uniq(𝑘) and compl(𝑘) of the previous sections, hence we refer to these
latter formulae for an informal description on how they work. The formula zeroTT (𝑘) is defined as:

zeroTT (𝑘) def= ⟨t⟩([t] (¬valH ∧ ¬valV)) .

Lemma 4.25. 𝔐,𝑤 |= zeroTT (𝑘) if and only if (𝔐,𝑤) satisfies (zeroTT,𝑘 ).

Proof. The proof is direct, by definition of zeroTT (𝑘) and how (0, 0) is encoded in the grid. □

The formula uniqTT (𝑘) is defined from uniq(𝑘) by replacing [x= y]1
𝑘
with [x H= y]𝑘 ∧ [xV= y]𝑘 :

uniqTT (𝑘) = ¬
(
⊤ ∗ (fork1

𝑘
(x, y) ∧ [x H= y]𝑘 ∧ [xV= y]𝑘 )

)
.

Lemma 4.26. Let 𝑘 ≥ 2. Suppose 𝔐,𝑤 |= init(𝑘) ∧ aux. Then, 𝔐,𝑤 |= uniq(𝑘) if and only if
(𝔐,𝑤) satisfies (uniqTT,𝑘 ), i.e. distinct t-nodes in 𝑅(𝑤) encode different pairs of numbers.

Proof. This lemma is proven as Lemma 4.9 and Lemma 4.19, by relying on Lemma 4.23 in order to
show that, given two distinct worlds𝑤x and𝑤y corresponding to nominals (for the depth 1) x and y,
respectively, [x H= y]𝑘 ∧ [xV= y]𝑘 holds if and only if 𝐧H (𝑤x) = 𝐧H (𝑤y) and 𝐧V (𝑤x) = 𝐧V (𝑤y). □

Lastly, complTT (𝑘) def= compl[H]TT (𝑘) ∧ compl[V]TT (𝑘) where

compl[H]TT (𝑘) def= ¬
(
2⊥ ∗

(
[t] (typelsr (𝑘−1) ∧3y) ∧ nom1 (x)∧

@1
x¬1H𝑘 ∧ ¬

(
⊤ ∗ (fork1𝑗 (x, y) ∧ [y H= x+1]𝑘 ∧ [xV= y]𝑘 )

) ))
,

and compl[V]TT (𝑘) is defined from compl[H]TT (𝑘) by replacing 1H
𝑘
, [y H= x+1]𝑘 and [xV= y]𝑘 with

1V
𝑘
, [yV= x+1]𝑘 and [x H= y]𝑘 , respectively. Here, 1𝐷𝑘 (𝐷 ∈ {H ,V}) is defined as [t]val𝐷 , and hence

it is satisfied by the t-nodes𝑤 ′ ∈ 𝑅(𝑤) such that 𝐧𝐷 (𝑤 ′) = 𝔱(𝑘, 𝑛) − 1.
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Lemma 4.27. Let 𝑘 ≥ 2. Suppose𝔐,𝑤 |= init(𝑘) ∧aux.𝔐,𝑤 |= complTT (𝑘) if and only if (𝔐,𝑤)
satisfies (complTT,𝑘 ). More precisely,
(1) 𝔐,𝑤 |= compl[H]TT (𝑘) if and only if for every t-node 𝑤1 ∈ 𝑅(𝑤), if 𝐧H (𝑤1) < 𝔱(𝑘, 𝑛) − 1

then there is a t-node𝑤2 ∈ 𝑅(𝑤) such that 𝐧H (𝑤2) = 𝐧H (𝑤1) + 1 and 𝐧V (𝑤2) = 𝐧V (𝑤1);
(2) 𝔐,𝑤 |= compl[V]TT (𝑘) if and only if for every t-node 𝑤1 ∈ 𝑅(𝑤), if 𝐧V (𝑤1) < 𝔱(𝑘, 𝑛) − 1

then there is a t-node𝑤2 ∈ 𝑅(𝑤) such that 𝐧H (𝑤2) = 𝐧H (𝑤1) and 𝐧V (𝑤2) = 𝐧V (𝑤1) + 1.

Proof. Both (1) and (2) are proved as Lemma 4.10 and Lemma 4.20, with the sole difference that
we rely on Lemma 4.23 and Lemma 4.24 in order to show that, given two distinct worlds𝑤x and𝑤y

corresponding to nominals (for the depth 1) x and y, respectively, [y H= x+1]𝑘 ∧ [xV= y]𝑘 holds if and
only if 𝐧H (𝑤x) = 𝐧H (𝑤y) + 1 and 𝐧V (𝑤x) = 𝐧V (𝑤y) (in the proof of 1). Similarly, (in the proof of
2) [yV= x+1]𝑘 ∧ [x H= y]𝑘 holds if and only if 𝐧H (𝑤x) = 𝐧H (𝑤y) and 𝐧V (𝑤x) = 𝐧V (𝑤y) + 1. □

This concludes the definition of gridTT (𝑘). It is proved correct in the following lemma.

Lemma 4.28. 𝔐,𝑤 |= gridTT (𝑘) if and only if (𝔐,𝑤) satisfies (zeroTT,𝑘 ), (uniqTT,𝑘 ), (complTT,𝑘 )
and (init/sub/aux).

Proof. Directly from Lemmata 4.1, 4.5 and 4.25 to 4.27. □

Corollary 4.29. The formula gridTT (𝑘) is satisfiable.

Proof. (sketch) The satisfiability of gridTT (𝑘) can be established by Lemma 4.28 as (zeroTT,𝑘 ),
(uniqTT,𝑘 ), (complTT,𝑘 ) and (init/sub/aux) can be simultaneously satisfied. A model satisfying these
constraints can be defined similarly to what is done in Lemma 4.22. The main difference is that now
the root shall have 𝔱(𝑘, 𝑛)2 children (one for each position of the grid) satisfying type(𝑘 − 1). □

We can now proceed to the encoding of the tiling conditions (first) and (hor&vert). Given a
model (𝔐 = (𝑊,𝑅,𝑉 ),𝑤) satisfying gridTT (𝑘), the existence of a solution for (TT , c), w.r.t. Tile𝑘 ,
can be expressed with the following conditions:
(oneTT ) every t-node in 𝑅(𝑤) satisfies exactly one tile in T ;
(firstTT,c) for all �̃�∈ 𝑅(𝑤), if 𝐧H (�̃�)=𝐧V (�̃�)=0 then �̃� ∈ 𝑉 (c);
(horTT ) for all 𝑤1,𝑤2 ∈ 𝑅(𝑤), if 𝐧H (𝑤2) = 𝐧H (𝑤1) + 1 and 𝐧V (𝑤2) = 𝐧V (𝑤1) then there is

(c1, c2) ∈ H such that𝑤1 ∈ 𝑉 (c1) and𝑤2 ∈ 𝑉 (c2);
(vertTT ) for all 𝑤1,𝑤2 ∈ 𝑅(𝑤), if 𝐧V (𝑤2) = 𝐧V (𝑤1) + 1 and 𝐧H (𝑤2) = 𝐧H (𝑤1) then there is

(c1, c2) ∈ V such that𝑤1 ∈ 𝑉 (c1) and𝑤2 ∈ 𝑉 (c2).
Then, the formula tilingTT,c (𝑘) can be defined as

tilingTT,c (𝑘) def= gridTT (𝑘) ∧ oneTT ∧ firstTT,c (𝑘) ∧ horTT (𝑘) ∧ vertTT (𝑘),
where the last four conjuncts express the homonymous property above. Given the toolkit of
formulae introduced up to now, these four formulae are easy to define. The formula oneTT is simply
defined as [t]∨c1∈T (c1 ∧

∧
c2∈T ¬c2). Similarly, firstTT,c (𝑘) is also straightforward to define:

firstTT,c (𝑘) def= [t]
(
[t] (¬valH ∧ ¬valV) ⇒ c

)
.

Notice that, in this formula, we use the fact that the t-node𝑤 ′ ∈ 𝑅(𝑤) encoding (0, 0) is the only
one, among the t-children of𝑤 , satisfying [t] (¬valH ∧ ¬valV).

Lemma 4.30. Let 𝑘 ≥ 2 and suppose 𝔐,𝑤 |= gridTT (𝑘). Then,
I. 𝔐,𝑤 |= oneTT if and only if (𝔐,𝑤) satisfies (oneTT );
II. 𝔐,𝑤 |= firstTT,c (𝑘) if and only if (𝔐,𝑤) satisfies (firstTT,c).

Proof. Both I and II are easily proven directly from the definition of oneTT and firstTT,c (𝑘). □
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For the formula horTT (𝑘), we essentially state that there cannot be two t-nodes𝑤1,𝑤2 ∈ 𝑅(𝑤)
such that 𝑤2 encodes the position (𝐧H (𝑤1) + 1, 𝐧V (𝑤1)) and 𝑤1 ∈ 𝑉 (c1), 𝑤2 ∈ 𝑉 (c2) does not
hold for any (c1, c2) ∈ H . In formula:

horTT (𝑘) def= ¬
(
⊤ ∗

(
fork1

𝑘
(x, y) ∧ [y H= x+1]𝑘 ∧ [xV= y]𝑘 ∧ ¬

∨
(c1,c2 ) ∈H (@1

xc1 ∧@1
yc2)

) )
.

Lastly, vertTT (𝑘) is defined as horTT (𝑘), but replacingH byV and vice-versa:

vertTT (𝑘) def= ¬
(
⊤ ∗

(
fork1

𝑘
(x, y) ∧ [yV= x+1]𝑘 ∧ [x H= y]𝑘 ∧ ¬

∨
(c1,c2 ) ∈V (@1

xc1 ∧@1
yc2)

) )
.

Lemma 4.31. Let 𝑘 ≥ 2 and suppose 𝔐,𝑤 |= gridTT (𝑘). Then,
I. 𝔐,𝑤 |= horTT (𝑘) if and only if (𝔐,𝑤) satisfies (horTT );
II. 𝔐,𝑤 |= vertTT (𝑘) if and only if (𝔐,𝑤) satisfies (vertTT ).

See the proof in Appendix G. This concludes the definition of tilingTT,c (𝑘).

Lemma 4.32. 𝔐,𝑤 |= tilingTT,c (𝑘) if and only if (𝔐,𝑤) satisfies (zeroTT,𝑘 ), (uniqTT,𝑘 ), (complTT,𝑘 ),
(init/sub/aux), (oneTT ), (firstTT,c), (horTT ) and (vertTT ).

Proof. Directly from Lemmata 4.28, 4.30 and 4.31. □

We can now prove Lemma 4.33 (shown below), leading directly to Theorem 4.34.

Lemma 4.33. Let 𝑘 ≥ 2 and let (TT , c) be an instance of Tile𝑘 , where TT = (T ,H ,V) and c ∈ T .
Then, (TT , c) is a solution for Tile𝑘 iff the formula tilingTT,c (𝑘) is satisfiable.

The proof can be found in Appendix H. It should be noticed that the reduction from tiling to
Sat(ML(∗)) we provided is (only) exponential in 𝑘 . Therefore, with this last lemma at hand, we can
finally conclude with the intended result in this section.

Theorem 4.34. Sat(ML(∗)) is Tower-complete.

Summing up, unlikeML( ) whose complexity is AExpPol-complete (so, below ExpSpace), the
satisfiability problem for ML(∗) is Tower-complete, which does not correspond to an elementary
class. However, as we will see in the next section, ML(∗) is surprisingly strictly less expressive
than ML( ). Note also that related Tower-hard logics can be found in [39].

5 ML(∗) STRICTLY LESS EXPRESSIVE THAN GML

Below, we study the expressivity of ML(∗). We establish the inclusion ML(∗) ⪯ GML (Section 5.1)
and then prove its strictness (Section 5.2). The former result takes advantage of the notion of
g-bisimulation, i.e. the underlying structural indistinguishability relation of GML, studied in [22].
This notion is instrumental in the proofs but for the sake of conciseness, the statements in the body
of the paper are stated in terms of modal equivalence. To showML(∗) ≺ GML, we define an ad hoc
notion of Ehrenfeucht-Fraïssé games forML(∗), see e.g. [35] for classical definitions and [15, 20]
for similar approaches, and design a GML formula that cannot be expressed in ML(∗).

5.1 ML(∗) is at most as expressive as GML

To establish thatML(∗) ⪯ GML, we proceed as in Section 3.2. In fact, by Lemma 2.2, given 𝜑1, 𝜑2
in GML, the formula 𝜑1 ∗ 𝜑2 is equivalent to (𝜑1 𝜑2). Moreover, we know that given 𝜑1, 𝜑2 in
GML, 𝜑1 𝜑2 is equivalent to some formula in GML, as shown in Section 3. So, to prove that ML(∗)
⪯ GML by applying the proof schema of Theorem 3.7, it is sufficient to show that given 𝜑 in GML,
there is𝜓 in GML such that 𝜑 ≡ 𝜓 . To do so, we rely on the indistinguishability relation of GML,
called g-bisimulation [22].
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Formal definitions about g-bisimulation are recalled in Appendix I but are not required in this
section. Nevertheless, let us recall that a g-bisimulation is a refinement of the classical back-and-
forth conditions of a bisimulation (see e.g. [10]), tailored towards capturing graded modalities. It
relates models with similar structural properties, but up to parameters𝑚,𝑘 ∈ N responsible for the
modal degree and the graded rank, respectively. The following invariance result holds: g-bisimilar
models are modally equivalent in GML (up to formulae of modal degree𝑚 and graded rank at
most 𝑘). For simplicity, we present the construction of the above-mentioned formula𝜓 by directly
using the notion of modal equivalence, without going explicitly through g-bisimulations. The
notion of g-bisimulation is used explicitely in the proofs developed in the appendices.
Given𝑚,𝑘 ∈ N and P ⊆fin AP, we write GML[𝑚,𝑘, P] to denote the set of GML formulae 𝜓

having md(𝜓 ) ≤ 𝑚, gr(𝜓 ) ≤ 𝑘 and propositional variables from P. It is known that GML[𝑚,𝑘, P]
is finite up to logical equivalence [22]. Given pointed forests (𝔐,𝑤) and (𝔐′,𝑤 ′), we write
(𝔐,𝑤) ≡P

𝑚,𝑘
(𝔐′,𝑤 ′) whenever (𝔐,𝑤) and (𝔐′,𝑤 ′) are GML[𝑚,𝑘, P]-indistinguishable, i.e. for

every𝜓 in GML[𝑚,𝑘, P],𝔐,𝑤 |= 𝜓 iff𝔐′,𝑤 ′ |= 𝜓 . We write T P (𝑚,𝑘) to denote the quotient set
induced by the equivalence relation ≡P

𝑚,𝑘
. As GML[𝑚,𝑘, P] is finite up to logical equivalence, we

get that T P (𝑚,𝑘) is a finite set.
To establish that GML is closed under , we show that there is a function 𝔣 : N2 → N such that

for all𝑚,𝑘 ∈ N and P ⊆fin AP, if two models are in the same equivalence class of ≡P
𝑚,𝔣 (𝑚,𝑘 ) , then

they satisfy the same formulae of the form 𝜑 , where 𝜑 is in GML[𝑚,𝑘, P]. Then, we can conclude
that 𝜑 is equivalent to a formula in GML[𝑚, 𝔣(𝑚,𝑘), P], see the proof of Lemma 5.2. Similar ideas
are followed in [24, 26, 38]. As we are not interested in the size of the equivalent formula, we can
simply use the cardinality of T P (𝑚,𝑘) in order to inductively define a suitable function:

𝔣(0, 𝑘) def= 𝑘 , 𝔣(𝑚 + 1, 𝑘) def= 𝑘 · ( |T P (𝑚, 𝔣(𝑚,𝑘)) | + 1).
In conformity with the results in Section 4, the map 𝔣 can be shown to be a non-elementary function.
To prove that 𝔣 satisfies the required properties, we start by showing a technical lemma which
essentially formalises a simulation argument on the relation ≡P

𝑚,𝔣 (𝑚,𝑘 ) with respect to the submodel
relation. By taking submodels as with the operator, equivalence in GML is preserved.

Lemma 5.1. Consider (𝔐,𝑤) ≡P
𝑚,𝔣 (𝑚,𝑘 ) (𝔐

′,𝑤 ′) where𝑚,𝑘 ∈ N, P ⊆fin AP, 𝔐 = (𝑊,𝑅,𝑉 ) and
𝔐′ = (𝑊 ′, 𝑅′,𝑉 ′). Let 𝑅1 ⊆ 𝑅. There is 𝑅′1 ⊆ 𝑅′ such that ((𝑊,𝑅1,𝑉 ),𝑤) ≡P𝑚,𝑘 ((𝑊

′, 𝑅′1,𝑉
′),𝑤 ′) and

if 𝑅1 (𝑤) = 𝑅(𝑤), then 𝑅′1 (𝑤 ′) = 𝑅′ (𝑤 ′).

Intuitively, Lemma 5.1 states that given two models satisfying the same formulae up to the
parameters𝑚 and 𝔣(𝑚,𝑘), we can extract submodels satisfying the same formulae up to𝑚 and 𝑘
(reduced graded rank). This allows us to conclude that if 𝜑 is in GML, there is some GML formula
equivalent to 𝜑 (Lemma 5.2). In other words, the operator can be eliminated to obtain a GML
formula. The last condition about 𝑅1 (𝑤) = 𝑅(𝑤) will serve in the proof of Lemma 5.2, as it allows
us to capture the semantics of , by preserving the children of the world𝑤 ′.

The proof of Lemma 5.1 is in Appendix J and goes by induction on𝑚. It relies on the properties
of g-bisimulations [22] to define a binary relation↔ between the worlds of 𝑅(𝑤) and 𝑅′ (𝑤 ′). Every
𝑤1 ↔ 𝑤 ′1 is such that (𝔐,𝑤1) ≡P𝑚−1,𝔣 (𝑚−1,𝑘 ) (𝔐

′,𝑤 ′1). The operator does not necessarily preserve
the children of𝑤1 and𝑤 ′1, so that the induction hypothesis, naturally defined from the statement
of Lemma 5.1, is applied onmodels where the condition𝑅1 (𝑤1) = 𝑅(𝑤1) may not hold.We show that
for all 𝑅1 ⊆ 𝑅, it is possible to construct 𝑅′1 ⊆ 𝑅′ such that, for all𝑤1 ↔ 𝑤 ′1, ((𝑊,𝑅1,𝑉 ),𝑤1) ≡P𝑚−1,𝑘
((𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′1). The result is then lifted to ((𝑊,𝑅1,𝑉 ),𝑤) ≡P𝑚,𝑘 ((𝑊

′, 𝑅′1,𝑉
′),𝑤 ′) in Lemma 5.2,

again thanks to the properties of the g-bisimulation. The proof of this lemma is in Appendix K.

Lemma 5.2. For every 𝜑 ∈ GML[𝑚,𝑘, P] there is𝜓 ∈ GML[𝑚, 𝔣(𝑚,𝑘), P] such that 𝜑 ≡ 𝜓 .
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Game on [(𝔐1=(𝑊1, 𝑅1,𝑉1 ), 𝑤1 ) , (𝔐2=(𝑊2, 𝑅2,𝑉2 ), 𝑤2 ) , (𝑚,𝑠, P)].
if there is 𝑝 ∈ P such that 𝑤1 ∈ 𝑉1 (𝑝 ) iff 𝑤2 ∉ 𝑉2 (𝑝 ) then the spoiler wins.
else the spoiler chooses 𝑖 ∈ {1, 2} and plays on 𝔐𝑖 . The duplicator replies on 𝔐𝑗 where 𝑗 ≠ 𝑖 . The spoiler must choose
one of the following moves, otherwise the duplicator wins:
modal move: if𝑚 ≥ 1 and 𝑅𝑖 (𝑤𝑖 ) ≠ ∅ then the spoiler can choose to play a modal move by selecting an element
𝑤′
𝑖
∈ 𝑅𝑖 (𝑤𝑖 ) . Then,
• the duplicator must reply with a 𝑤′

𝑗
∈ 𝑅 𝑗 (𝑤𝑗 ) (else, the spoiler wins);

• the game continues on [(𝔐1, 𝑤
′
1 ) , (𝔐2, 𝑤

′
2 ) , (𝑚 − 1, 𝑠, P)].

spatial move: if 𝑠 ≥ 1 then the spoiler can choose to play a spatial move by selecting two finite forests𝔐1
𝑖
and𝔐2

𝑖
such

that 𝔐1
𝑖
+𝔐2

𝑖
= 𝔐𝑖 . Then,

• the duplicator replies with two finite forests 𝔐1
𝑗
and 𝔐2

𝑗
such that 𝔐1

𝑗
+𝔐2

𝑗
= 𝔐𝑗 ;

• The game continues on [(𝔐𝑘
1 , 𝑤1 ) , (𝔐𝑘

2 , 𝑤2 ) , (𝑚,𝑠 − 1, P)], where 𝑘 ∈ {1, 2} is chosen by the spoiler.
Fig. 5. Ehrenfeucht-Fraïssé games for ML(∗)

Hence, Lemma 5.2 together with Lemma 2.2 and Theorem 3.7 entail ML(∗) ⪯ GML.

Lemma 5.3. ML(∗) ⪯ GML.

Proof. Let 𝜑 be in ML(∗). As 3𝜓 ≡ 3≥1 𝜓 , we can replace every occurrence of the modality 3

appearing in 𝜑 with the modality 3≥1 . Moreover, by Lemma 2.2, we can replace every subformula
of the form𝜓 ∗ 𝜒 with the formula (𝜓 𝜒). In this way, we obtain a formula 𝜑 ′ that is equivalent
to 𝜑 and where all the modalities are of the form 3≥1 , and . If 𝜑 ′ has no occurrence of or , we
are done. Otherwise, let𝜓 be a subformula of 𝜑 ′ of the form (𝜑1 𝜑2) where 𝜑1 and 𝜑2 are in GML.
• By Theorem 3.7, there is a formula𝜓 ′ in GML such that𝜓 ′ ≡ 𝜑1 𝜑2.
• By Lemma 5.2, there is a formula𝜓 ′′ in GML such that𝜓 ′′ ≡ 𝜓 ′.

We have 𝜑 ′ ≡ 𝜑 ′ [𝜓 ← 𝜓 ′′], where 𝜑 ′ [𝜓 ← 𝜓 ′′] is obtained from 𝜑 ′ by replacing every occurrence
of𝜓 by𝜓 ′′. Note that the number of occurrences of and in 𝜑 ′ [𝜓 ← 𝜓 ′′] is strictly less than the
number of occurrences of and in 𝜑 ′. By repeating such a type of replacement, we eventually
obtain a formula 𝜑 ′′ in GML such that 𝜑 ′ ≡ 𝜑 ′′. Indeed, all the occurrences of and only appear
as instances of the pattern (𝜓 𝜒). Hence, we get a formula in GML logically equivalent to 𝜑 . □

5.2 Showing ML(∗) ≺ GML with EF games for ML(∗)
We tackle the problem of showing thatML(∗) is strictly less expressive than GML. To do so, we
adapt the notion of Ehrenfeucht-Fraïssé games (EF games, in short) [35] to ML(∗), which gives us
the corresponding structural equivalence between models that are logically indistinguishable. With
this definition at hand, we design a GML formula that is not expressible inML(∗): we will find two
models that are indistinguishable forML(∗) but distinguishable for GML . We writeML(∗) [𝑚, 𝑠, P]
for the set of formulae 𝜑 of ML(∗) having md(𝜑) ≤ 𝑚, at most 𝑠 nested ∗, and atomic propositions
from P ⊆fin AP. It is easy to see thatML(∗) [𝑚, 𝑠, P] is finite up to logical equivalence.
We introduce the EF games forML(∗). A game is played between two players: the spoiler and

the duplicator . A game state is a triple made of two pointed forests (𝔐,𝑤) and (𝔐′,𝑤 ′) and a rank
(𝑚, 𝑠, P), where𝑚, 𝑠 ∈ N and P ⊆fin AP. The goal of the spoiler is to show that the two models
are different. The goal of the duplicator is to counter the spoiler and to show that the two models
are similar. Two models are different whenever there is 𝜑 ∈ ML(∗) [𝑚, 𝑠, P] that is satisfied by
only one of the two models. The EF games forML(∗) are formally defined in Figure 5. The exact
correspondence between the game and the logic is formalised in Lemma 5.4.
Using the standard definitions in [35], the duplicator has a winning strategy for the game
((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)) if she can play in a way that guarantees her to win regardless of how
the spoiler plays. When this is the case, we write (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′). Similarly, the spoiler has a
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winning strategy, written (𝔐,𝑤)0P𝑚,𝑠 (𝔐′,𝑤 ′), if he can play in a way that guarantees him to win,
regardless of how the duplicator plays. Lemma 5.4 guarantees that the games are well-defined.

Lemma 5.4. (𝔐,𝑤)0P𝑚,𝑠 (𝔐′,𝑤 ′) iff there is 𝜑 ∈ ML(∗) [𝑚, 𝑠, P] s.t. 𝔐,𝑤 |= 𝜑 and 𝔐′,𝑤 ′ ̸ |= 𝜑 .

Lemma 5.4 is proven with standard arguments from [35] (see the details in [9, Page 46]). For
instance the left-to-right direction, i.e. the completeness of the game, is by induction on the rank
(𝑚, 𝑠, P). Thanks to the EF games, we characterise a notion of model equivalence for ML(∗). Then,
by designing a formula𝜑 that distinguishes twoML(∗) equivalent models, we are able to find aGML
formula that is not expressible inML(∗). By Lemma 2.1 and asML( ) ≈ GML, such a formula is
necessary of modal degree at least 2. Happily, 𝜑 = 3=2 3=1 ⊤ does the job and cannot be expressed
in ML(∗). For the proof, we show that for every rank (𝑚, 𝑠, P), there are two structures (𝔐,𝑤)
and (𝔐′,𝑤 ′) such that (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′), 𝔐,𝑤 |= 𝜑 and 𝔐′,𝑤 ′ ̸ |= 𝜑 . The inexpressibility of 𝜑
then stems from Lemma 5.4. The two structures are represented below ((𝔐,𝑤) on the left).

𝑤

. . . . . .

≥ 2𝑠 + 1 ≥ 2𝑠−1 (𝑠 + 1) (𝑠 + 2) + 1

≈P𝑚,𝑠

𝑤 ′

. . . . . .

≥ 2𝑠 + 1 ≥ 2𝑠−1 (𝑠 + 1) (𝑠 + 2) + 1

In the following, we say that a world has type 𝑖 if it has 𝑖 children. As one can see in the figure
above, children of the current worlds 𝑤 and 𝑤 ′ are of three types: 0, 1 or 2. When the spoiler
performs a spatial move in the game, a world of type 𝑖 can take, in the submodels, a type between
0 and 𝑖 . That is, the number of children of a world weakly monotonically decreases when taking
submodels. This monotonicity, together with the finiteness of the game, lead to bounds on the
number of children of each type, over which the duplicator is guaranteed to win. For instance, the
bound for worlds of type 2 is given by the value 2𝑠 (𝑠 + 1) (𝑠 + 2), where 𝑠 is the number of spatial
moves in the game. In the two presented pointed forests, one child of type 0 and one of type 2 are
added with respect to these bounds, so that the duplicator can make up for the different numbers
of children of type 1.

Lemma 5.5. ML(∗) cannot characterise the class of pointed models satisfying 3=2 3=1 ⊤.

Proof. (sketch) As usual, the non-expressivity of 3=2 3=1 ⊤ is shown by proving that for every
rank (𝑚, 𝑠, P) there are two structures (𝔐,𝑤) and (𝔐′,𝑤 ′) such that (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′), and
𝔐,𝑤 |= 3=2 3=1 ⊤whereas𝔐′,𝑤 ′ ̸ |= 3=2 3=1 ⊤. The proof follows by establishing two properties
of ≈P𝑚,𝑠 , named below (A) and (B). We start with some preliminary definitions. Let𝔐 = (𝑊,𝑅,𝑉 )
be a finite forest and𝑤 ∈𝑊 . We denote with 𝑅(𝑤)=𝑖 the set of worlds in 𝑅(𝑤) having type 𝑖 , i.e.
{𝑤1 ∈ 𝑅(𝑤) | |𝑅(𝑤1) | = 𝑖}. During the proof, we only use pointed forests (𝔐,𝑤) satisfying the
following properties:

I 𝑉 (𝑝) = ∅ for every 𝑝 ∈ AP;
II 𝑅(𝑤)=0, 𝑅(𝑤)=1 and 𝑅(𝑤)=2 form a partition of 𝑅(𝑤);
III 𝑅3 (𝑤) = ∅, i.e. the set of worlds reachable from𝑤 in at least three steps is empty.

Below, we represent schematically the models satisfying the properties I, II and III.
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𝑤

. . . . . . . . .

𝑅 (𝑤 )=0 𝑅 (𝑤 )=1 𝑅 (𝑤 )=2

The first property of ≈P𝑚,𝑠 is presented below (see its proof in Appendix L).

Property (A). Consider a rank (𝑚, 𝑠, P) and let (𝔐 = (𝑊,𝑅,𝑉 ),𝑤) and (𝔐′ = (𝑊 ′, 𝑅′,𝑉 ′),𝑤 ′)
be two pointed forests satisfying I, II and III and such that
• min( |𝑅(𝑤)=0 |, 2𝑠 ) = min( |𝑅′ (𝑤 ′)=0 |, 2𝑠 );
• min( |𝑅(𝑤)=1 |, 2𝑠 (𝑠 + 1)) = min( |𝑅′ (𝑤 ′)=1 |, 2𝑠 (𝑠 + 1)); and
• min( |𝑅(𝑤)=2 |, 2𝑠−1 (𝑠 + 1) (𝑠 + 2)) = min( |𝑅′ (𝑤 ′)=2 |, 2𝑠−1 (𝑠 + 1) (𝑠 + 2)).

Then, (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′).

As worlds in our models do not satisfy any propositional symbol, the spoiler cannot win because
of distinct propositional valuations. The proof is by cases on𝑚 and on the moves done by the
spoiler, and by induction on 𝑠 . The only significant case to be dealt with corresponds to the case
𝑠 ≥ 1 and the spoiler decides to perform a spatial move.

By relying on (A), the second property (B) can be established (see its proof in Appendix M).

Property (B). Consider a rank (𝑚, 𝑠, P) and let (𝔐 = (𝑊,𝑅,𝑉 ),𝑤) and (𝔐′ = (𝑊 ′, 𝑅′,𝑉 ′),𝑤 ′)
be two pointed forests satisfying I, II and III and such that
• |𝑅(𝑤)=0 | ≥ 2𝑠 + 1 and |𝑅′ (𝑤 ′)=0 | ≥ 2𝑠 + 1;
• |𝑅(𝑤)=1 | = 2 and |𝑅′ (𝑤 ′)=1 | = 1; and
• |𝑅(𝑤)=2 | ≥ 2𝑠−1 (𝑠 + 1) (𝑠 + 2) + 1 and |𝑅′ (𝑤 ′)=2 | ≥ 2𝑠−1 (𝑠 + 1) (𝑠 + 2) + 1.

Then, (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′).

Obviously, (A) and (B) are quite close. The first condition of (B) satisfies the first condition
of (A). Similarly, the third condition of (B) satisfies the third condition of (A). However, the second
condition of (B) does not satisfy the second condition of (A) and this is the crucial difference.
It is also worth noticing that (B) implies the statement of the lemma, as 𝔐,𝑤 |= 3=2 3=1 ⊤

whereas 𝔐′,𝑤 ′ ̸ |= 3=2 3=1 ⊤. Indeed, ad absurdum suppose that such an ML(∗) formula 𝜑 exists.
Let𝑚 be its modal degree, 𝑠 be its maximal number of imbricated ∗ and P be the set of propositional
variables occurring in 𝜑 . Let us consider two pointed forests (𝔐1,𝑤1) and (𝔐2,𝑤2) such that
𝔐1,𝑤1 |= 3=2 3=1 ⊤,𝔐2,𝑤2 ̸ |= 3=2 3=1 ⊤ and satisfying the conditions in (B). This would lead to
a contradiction, as (𝔐1,𝑤1) and (𝔐2,𝑤2) are supposed to satisfy 𝜑 (or not) equivalently. □

We conclude by noticing that ML(∗) is more expressive than ML. Indeed, the formula 3⊤ ∗3⊤
distinguishes the following two models, which are bisimilar (as the valuations at every world are
empty) and hence indistinguishable in ML [53]:

0

Theorem 5.6. ML ≺ ML(∗) ≺ GML ≈ ML( ).

Proof. ByML(∗) ⪯ GML, Lemma 5.5 and Theorem 3.7. □

, Vol. 1, No. 1, Article . Publication date: May 2023.



40 Bednarczyk, Demri, Fervari & Mansutti

Trees

𝑇 := 0 | n[𝑇 ] | 𝑇 𝑇

Semantics

𝑇 |= ⊤ always holds
𝑇 |= 0 iff 𝑇 ≡ 0

𝑇 |= n[𝜑] iff ∃𝑇 ′ s.t. 𝑇 ≡ n[𝑇 ′] and 𝑇 ′ |= 𝜑
𝑇 |= 𝜑 𝜓 iff ∃𝑇1,𝑇2 s.t. 𝑇 ≡ 𝑇1 𝑇2,𝑇1 |= 𝜑 and 𝑇2 |= 𝜓

Structural eqivalence
• 𝑇 0 ≡ 𝑇
• 𝑇1 ≡ 𝑇2⇒ 𝑇2 ≡ 𝑇1
• 𝑇1 ≡ 𝑇2, 𝑇2 ≡ 𝑇3 ⇒ 𝑇1 ≡ 𝑇3
• 𝑇1 𝑇2 ≡ 𝑇2 𝑇1
• (𝑇1 𝑇2) 𝑇3 ≡ 𝑇1 (𝑇2 𝑇3)
• 𝑇1 ≡ 𝑇2 ⇒ 𝑇1 𝑇 ≡ 𝑇2 𝑇
• 𝑇1 ≡ 𝑇2 ⇒ n[𝑇1] ≡ n[𝑇2]

Fig. 6. Interpretation and semantics of SAL( ).

6 ML( ) AND STATIC AMBIENT LOGIC

Static ambient logic (SAL) is a formalism proposed to reason about spatial properties of concurrent
processes specified in the ambient calculus [17]. In [14], the satisfiability and validity problems for a
very expressive fragment of SAL are shown to be decidable and conjectured to be in PSpace (see [14,
Section 6]). We invalidate this conjecture (under standard complexity-theoretic assumptions) by
showing that the intensional fragment of SAL (see [36]), herein denoted SAL( ), is already AExpPol-
complete. More precisely, we design semantically faithful reductions between Sat(ML( )) and
Sat(SAL( )) (in both directions), leading to the above-mentioned result by Theorem 3.12. In [8],
these results are shown with respect to Kripke-like structures that can be shown isomorphic to the
syntactical trees historically used in ambient calculus. Here, we provide the reductions directly on
these syntactical trees. Let us start by introducing SAL( ). This correspondence between SAL( )
and ML( ) is rather intuitive but a presentation of the complete formal developments could be
too long to be included herein due to space restrictions. However, the proofs can be found in the
preliminary report [9] (the complete version of [8] with its proofs) and in Mansutti’s PhD thesis [40].

Let Σ be a countably infinite set of ambient names. The formulae of SAL( ) are built from:
𝜑 := ⊤ | 0 | n[𝜑] | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝜑 𝜑,

where n ∈ Σ. SAL( ) is interpreted on edge-labelled finite trees: syntactical objects equipped with
a structural equivalence relation ≡. We denote with TSAL the set of these finite trees. The grammar
used to construct these structures, their structural equivalence as well as the satisfaction relation |=
for SAL( ) are provided in Figure 6 (the cases for ∧ and ¬ being omitted). We will also use

∑
𝑖∈𝐼 𝑇𝑖 ,

for a given set of indices 𝐼 = {𝑖1, . . . , 𝑖𝑚}, as an abbreviation of 𝑇𝑖1 𝑇𝑖2 . . . 𝑇𝑖𝑚 .
Obviously SAL( ) andML( ) are strongly related, but how close? For example, n[𝜑] ⊤ can be

seen as a relativised version of 3 of the form 3(n ∧ 𝜑). To formalise this intuition, we borrow the
syntax from Hennesy-Milner logic (HML) [31] and define the formula ⟨n⟩𝜑 def

= n[𝜑] ⊤ and its dual
[n]𝜑 def

= ¬⟨n⟩¬𝜑 . Below, w.l.o.g. we assume Σ = AP (for the sake of clarity).

6.1 From Sat(SAL( )) to Sat(ML( )).
The reduction from Sat(SAL( )) to Sat(ML( )) is quite simple as SAL( ) is essentially interpreted
on finite trees where each world satisfies a single propositional variable (its ambient name). Let
𝑇 ∈ TSAL be a tree built with ambient names from P⊆finAP, 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and
𝑤 ∈𝑊 . We say that (𝔐,𝑤) encodes 𝑇 if and only if:

(1) every𝑤 ′ ∈ 𝑅∗ (𝑤) satisfies at most one symbol in P;
(2) there is 𝔣 : 𝑊 → TSAL such that 𝔣(𝑤) ≡ 𝑇 and for all 𝑤 ′ ∈ 𝑅∗ (𝑤), we have 𝔣(𝑤 ′) ≡∑𝐾

𝑖=1 n𝑖 [𝔣(𝑤𝑖 )] where {𝑤1, . . . ,𝑤𝐾 } = 𝑅(𝑤 ′) and𝑤𝑖 ∈ 𝑉 (n𝑖 ) for all 1 ≤ 𝑖 ≤ 𝐾 .
It is easy to verify that every tree in TSAL has an encoding. The figure just below depicts a tree 𝑇

(on the left) and one of its possible encodings as a finite forest (on the right).
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0

0 0

n 1
n2

n 3
n4

n1
n2

n3 n4

Given a formula 𝜑 of SAL( ), we define its translation 𝜏 (𝜑) in ML( ). The translation 𝜏 is
homomorphic for Boolean connectives and ⊤, and otherwise it is inductively defined as follows:
𝜏 (0) def= 2⊥; 𝜏 (𝜑 𝜓 ) def= 𝜏 (𝜑) 𝜏 (𝜓 ); 𝜏 (n[𝜑]) def= 3(n ∧ 𝜏 (𝜑)) ∧ ¬(3⊤ 3⊤).

The following lemma states that the translation is correct.

Lemma 6.1. If (𝔐,𝑤) encodes𝑇 ∈ TSAL then for every 𝜑 in SAL( ) we have𝑇 |= 𝜑 iff𝔐,𝑤 |= 𝜏 (𝜑).
The proof can be achieved with an easy structural induction and therefore we omit it herein. So,

we can complete the reduction.

Theorem 6.2. Let 𝜑 be in SAL( ) built over P ⊆fin AP and 𝑝 ∉ P. 𝜑 is satisfiable if and only if
𝜏 (𝜑) ∧∧𝑖∈[1,size(𝜑 ) ] 2

𝑖
∨

n∈P∪{𝑝 }
(
n ∧∧m∈ (P∪{𝑝 })\{n} ¬m

)
is satisfiable.

Proof. Suppose 𝜑 satisfiable. Then, there is 𝑇 such that 𝑇 |= 𝜑 . In general, it could be that 𝑇
contains ambient names that do not appear in 𝜑 . However, we can assume that there is only one
name in𝑇 that does not appear in 𝜑 and that name is 𝑝 (as in the statement of this theorem). Indeed,
this assumption relies on the following property of static ambient logic.

Lemma 6.3 ([14], Lemma 8). Let 𝑝 and 𝑞 be two ambient names not appearing in 𝜑 . Then,𝑇 |= 𝜑 iff
𝑇 [𝑝 ← 𝑞] |= 𝜑 , where𝑇 [𝑝 ← 𝑞] is the tree obtained from𝑇 by replacing every occurrence of 𝑝 with 𝑞.

Let (𝔐,𝑤) be a pointed forest, where 𝔐 = (𝑊,𝑅,𝑉 ), encoding of 𝑇 (it always exists). From
Lemma 6.1, 𝔐,𝑤 |= 𝜏 (𝜑). Let us recall the properties of the encoding of 𝑇 by a model (𝔐,𝑤):
(1) every world in𝑊 satisfies at most one propositional symbol in P;
(2) there is a function 𝔣 from𝑊 to TSAL such that 𝔣(𝑤) ≡ 𝑇 and for every𝑤 ′ ∈ 𝑅∗ (𝑤), we have

𝔣(𝑤 ′) ≡ ∑
𝑖∈[1,𝐾 ] n𝑖 [𝔣(𝑤𝑖 )] where {𝑤1, . . . ,𝑤𝐾 } = 𝑅(𝑤 ′) and for all 𝑖 ∈ [1, 𝐾],𝑤𝑖 ∈ 𝑉 (n𝑖 ).

The first property together with the last part of the second property imply that every world
reachable in at least one step from𝑤 satisfies exactly one propositional symbol of P. Then,

𝔐,𝑤 |=
size(𝜑 )∧
𝑖=1

2𝑖
∨

n∈P∪{𝑝 }

(
n ∧

∧
m∈ (P∪{𝑝 })\{n}

¬m
)
.

Conversely, suppose 𝜓 = 𝜏 (𝜑) ∧ ∧size(𝜑 )
𝑖=1 2𝑖

∨
n∈P∪{𝑝 }

(
n ∧ ∧

m∈ (P∪{𝑝 })\{n} ¬m
)
satisfiable. To

prove the result it is sufficient to show that there is a pair (𝔐,𝑤) encoding a tree 𝑇 that satisfies𝜓 .
Indeed, if this is the case then by𝔐,𝑤 |= 𝜏 (𝜑) we obtain𝑇 |= 𝜑 by Lemma 6.1. As𝜓 is satisfiable, we
know that there is a forest 𝔐 = (𝑊,𝑅,𝑉 ) and a world𝑤 ∈𝑊 such that 𝔐,𝑤 |= 𝜓 . It is important
to notice that, as in Theorem 6.5, we can get rid of all the parts beyond md(𝜑), so we can ensure
that as 𝔐,𝑤 |= 𝜓 , then it is an encoding of some 𝑇 , and therefore, 𝑇 |= 𝜑 . □

6.2 From Sat(ML( )) to Sat(SAL( )).
One of the main challenges in order to obtain a polynomial-time reduction from Sat(ML( )) to
Sat(SAL( )), is to understand how to encode a finite set of propositional symbols. This problem
arises since Kripke-style finite forests can satisfy multiple atomic propositions at each world,
whereas each ambient of an information tree only satisfies exactly one atomic proposition: its
ambient name. To solve this, it is crucial to deal with two issues: we need to avoid an exponential
blow up in the representation, and we have to maintain information about the children of a node.
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We solve both issues by representing a propositional symbol 𝑝 as a particular ambient, and copying
enough times the ambient encoding 𝑝 . Let P ⊆fin AP and 𝑛 ∈ N>0, where N>0 denotes the set of
positive natural numbers. Let𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 . Let rel and ap be two
ambient names not in P. The ambient name rel encodes the relation 𝑅 whereas ap can be seen as
a container for propositional variables holding on the current world. We say that 𝑇 ∈ TSAL is an
encoding of (𝔐,𝑤) with respect to P and 𝑛 if and only if
(1) every ambient name in 𝑇 is from P ∪ {rel, ap};
(2) there is a function 𝔣 from𝑊 to TSAL s.t. 𝔣(𝑤) ≡ 𝑇 and for each𝑤 ′ ∈ 𝑅∗ (𝑤) there is𝑚 ≥ 𝑛 s.t.

𝔣(𝑤 ′) ≡
( 𝑚∑︁
𝑖=1

ap[
∑︁
𝑝∈P

𝑤′∈𝑉 (𝑝 )

𝑝 [0]]
) ∑︁

𝑤′′∈𝑅 (𝑤′ )
rel[𝔣(𝑤 ′′)] .

The figure below shows on the right a possible encoding of the model on the left.

𝑤
{𝑝1, . . . , 𝑝𝑙 }

𝑤1
. . .

𝑤𝑘

𝔣(𝑤)

𝔣(𝑤𝑘 ) 0 0 0 0

. . . 𝑚 . . .
times

𝔣(𝑤1)
. . .. . .. . .

ap

ap

𝑝 1𝑝 1
𝑝
𝑙

𝑝
𝑙re

lre
l

It is easy to verify that (𝔐,𝑤) always admits such an encoding. We define the translation of 𝜑 ,
written 𝜏 (𝜑), into SAL( ). It is homomorphic for Boolean connectives and ⊤, 𝜏 (𝑝) def= ⟨ap⟩⟨p⟩⊤ and
otherwise it is inductively defined (using the notation from HML):

𝜏 (3𝜑) def= ⟨rel⟩𝜏 (𝜑); 𝜏 (𝜑 𝜓 ) def=
(
𝜏 (𝜑) ∧ ⟨ap⟩≥size(𝜑 )⊤

) (
𝜏 (𝜓 ) ∧ ⟨ap⟩≥size(𝜓 )⊤

)
,

where ⟨n⟩≥𝑘𝜑 is the graded modality defined as ⊤ for 𝑘 = 0, otherwise (⟨n⟩𝜑) ⟨n⟩≥𝑘−1𝜑 . In the
translation of , the model of SAL( ) has to be split in such a way that both subtrees contain enough
ap ambients to correctly answer to the formula ⟨ap⟩⟨p⟩⊤. It is easy to see that the size of 𝜏 (𝜑) is
quadratic in size(𝜑).

Lemma 6.4. Let𝔐 be a finite forest and𝑤 be one of its worlds. Let P ⊆fin AP and 𝑛 ∈ N>0. Let 𝑇
be an encoding of (𝔐,𝑤) w.r.t P and 𝑛. For every formula 𝜑 built over P with size(𝜑) ≤ 𝑛, we have
𝔐,𝑤 |= 𝜑 if and only if 𝑇 |= 𝜏 (𝜑).

The proof is by structural induction on 𝜑 and it is quite straightforward. Then, with this result
at hand, we can state the intended result.

Theorem 6.5. Let 𝜑 be inML( ) built over P. Then 𝜑 is satisfiable iff𝜓 below is satisfiable:

𝜓 def
= 𝜏 (𝜑) ∧

size(𝜑 )∧
𝑖=0
[rel]𝑖

(
⟨ap⟩≥size(𝜑 )⊤ ∧

∧
𝑝∈P

(
⟨ap⟩⟨p⟩⊤ ⇒ [ap]⟨p⟩⊤

)
∧ [ap]

∑︁
𝑝∈P
(𝑝 [0] ∨ 0)

)
.

As a corollary of the reductions we provided in this section, and appealing to Theorem 3.12, we
can establish the following complexity results.

Corollary 6.6. Sat(SAL( )) is AExpPol-complete. Sat(SAL) with SAL from [14] is AExpPol-hard.

7 ML(∗) AND MODAL SEPARATION LOGIC

The family of modal separation logics (MSL), combining separating and modal connectives, has
been recently introduced in [23]. Its models, inspired from the memory states used in separation
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logic (see also [19]), are Kripke-style structures𝔐 = (𝑊,𝑅,𝑉 ), where𝑊 = N and 𝑅 ⊆𝑊 ×𝑊 is
finite and functional. Hence, unlike finite forests, 𝔐 may have loops.
Among the fragments studied in [23], the modal separation logicMSL (∗,3−1) was left with a

huge complexity gap: between PSpace-hardness and a Tower upper bound. We fill this gap, by
showing that the logic is Tower-hard, by reducing Sat(ML(∗)) to Sat(MSL (∗,3−1)). Full details
of the reduction can be found in [40, Section 9.4.2].

Formulae of MSL (∗,3−1) are defined from
𝜑 := 𝑝 | 3−1𝜑 | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝜑 ∗ 𝜑 .

The satisfaction relation is as in ML(∗) for 𝑝 ∈ AP, Boolean connectives and 𝜑1 ∗ 𝜑2, otherwise
𝔐,𝑤 |= 3−1𝜑⇔ ∃𝑤 ′ s.t. (𝑤 ′,𝑤) ∈ 𝑅 and𝔐,𝑤 ′ |= 𝜑.

SinceMSL (∗,3−1) is interpreted over a finite and functional relation, 3−1 effectively works as the
3modality ofML(∗). Then, assume we want to check the satisfiability of 𝜑 inML(∗) by relying on
an algorithm for Sat(MSL (∗,3−1)). We simply need to consider the formula 𝜑 [3←3−1] obtained
from 𝜑 by replacing every occurrence of 3 by 3−1, and check if it can be satisfied by a locally
acyclic model (𝔐,𝑤) ofMSL, i.e. one where𝑤 does not belong to a loop of length ≤ md(𝜑). Notice
that given a finite forest (𝑊,𝑅,𝑉 ), the structure (𝑊,𝑅−1,𝑉 ) is locally acyclic. The next lemma
establishes the correspondence between the satisfaction of a formula in a model, in the two logics.

Lemma 7.1. Let 𝜑 in ML(∗). Let (𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 . Then, (𝑊,𝑅,𝑉 ),𝑤 |= 𝜑 in
ML(∗) if and only if (𝑊,𝑅−1,𝑉 ),𝑤 |= 𝜑 [3← 3−1] in MSL (∗,3−1).

Proof. The result is proven with a rather straightforward structural induction on 𝜑 . □

In order to provide a complete reduction from Sat(ML(∗)) to Sat(MSL (∗,3−1)), we need to
make sure that the formulae are being checked against the appropriate class of models. Notice
that in ML(∗), only the worlds that are reachable from the current one in at most md(𝜑) steps are
relevant for the satisfiability of 𝜑 (see Lemma A.1 in Appendix A). Thus, for a given formula 𝜑 , we
can restrict ourselves to the class ofMSL models in which the current point of evaluation is not
reachable by any world in more than md(𝜑) + 1 steps. The formula doing the job is (2−1)md(𝜑 )⊥,
where 2−1𝜑 def

= ¬3−1¬𝜑 , and (2−1)𝑛𝜑 with 𝑛 ∈ N is defined as expected. Then, we can conclude:

Lemma 7.2. Let 𝜑 in ML(∗), 𝜑 is satisfiable in ML(∗) if and only if 𝜑 [3← 3−1] ∧ (2−1)md(𝜑 )⊥
is satisfiable in MSL (∗,3−1).
Proof. The proof is rather straightforward, relying on Lemma 7.1. □

Hence, the results in Section 4 allow us to close the complexity gap from [23].

Corollary 7.3. Sat(MSL (∗,3−1)) is Tower-complete.

8 CONCLUSION

We have studied and compared the logicsML( ) andML(∗), two modal logics interpreted on finite
forests and featuring composition operators. We have not only characterised the expressive power
and the complexity for both logics, but also identified remarkable differences and export our results
to other logics. ML( ) is shown as expressive as GML, and its satisfiability problem is found to be
AExpPol-complete. Besides the obvious similarities betweenML( ) andML(∗), these results are
counter-intuitive: though the logicML(∗) is strictly less expressive than GML (and consequently,
thanML( )), Sat(ML(∗)) is Tower-complete. Our proof techniques go beyond what is known in the
literature. For instance, to design the Tower-hardness proof we needed substantial modifications
from the proof introduced in [7] for QK𝑡 . On the other hand, to show the expressivity inclusion of
ML(∗) within GML, we provided a novel definition of Ehrenfeucht-Fraïssé games for ML(∗).
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Lastly, our framework led to the characterisation of the satisfiability problems for two sister
logics . We proved that the satisfiability problem for the modal separation logic MSL (∗,3−1) is
Tower-complete [23]. Moreover, the satisfiability problem for the static ambient logic SAL( ) is
AExpPol-complete, solving open problems from [14, 23] and paving the way to study the complexity
of the full SAL.
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A PROOF OF LEMMA 2.1

Proof. We start the proof by stating a classical property of ML and GML which carries over to
ML(∗) andML( ). Let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 . We introduce the notation

𝑅 |≤𝑛𝑤 def
= {(𝑤 ′,𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ∈ 𝑅𝑖 (𝑤) for some 𝑖 ∈ [0, 𝑛 − 1]}.

Informally, 𝑅 |≤𝑛𝑤 is the maximal subset of 𝑅 encoding exactly a subtree rooted at 𝑤 having only
paths of length at most 𝑛. We denote with 𝑅 |𝑤 the set {(𝑤 ′,𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ⊆ 𝑅∗ (𝑤)}, i.e. the maximal
subset of 𝑅 encoding exactly a subtree rooted at𝑤 . Alternatively, 𝑅 |𝑤 =

⋃
𝑛∈N 𝑅 |≤𝑛𝑤 .

Lemma A.1. Let 𝑛 ∈ N and 𝜑 be a formula of ML( ) or ML(∗) such that md(𝜑) ≤ 𝑛. Let 𝔐 =

(𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 .𝔐,𝑤 |= 𝜑 if and only if (𝑊,𝑅 |≤𝑛𝑤 ,𝑉 ),𝑤 |= 𝜑 .

The proof is by structural induction on 𝜑 . Details are omitted as this poses no difficulty.
Now, let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and 𝑤 ∈ 𝑊 . Notice that if md(𝜑) is at most 1, by

Lemma A.1 the satisfaction of 𝜑 only depends on the set of worlds {𝑤} ∪ 𝑅(𝑤). More precisely,
𝔐,𝑤 |= 𝜑 iff (𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜑 . The same holds for formulae in ML(∗). Similarly,𝜓 def

= 𝜑 [ ← ∗]
(as in the statement) has modal degree at most 1 and again by Lemma A.1 we have𝔐,𝑤 |= 𝜓 iff
(𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜓 . To conclude the proof it is sufficient then to prove the following:

(𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜑 if and only if (𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜓 .

Notice that this result already trivially holds for md(𝜑) = 0. Indeed, in this case the satisfaction of
𝜑 and 𝜓 only depends on the satisfaction of propositional variables on the current world 𝑤 and
therefore not at all on the accessibility relation. Instead, the proof for md(𝜑) = 1 boils down to the
proof of the equivalence

(𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜑1 𝜑2 if and only if (𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜑1 ∗ 𝜑2.

depicted as follows. The statements below are equivalent.
• (𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜑1 𝜑2
• there are 𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) s.t. 𝔐1 +𝑤 𝔐2 = (𝑊,𝑅 |≤1𝑤 ,𝑉 ), 𝔐1,𝑤 |= 𝜑1
and𝔐2,𝑤 |= 𝜑2 (by definition of |=)
• there are disjoint𝑅1 and𝑅2 such that𝑅1∪𝑅2 = 𝑅 |≤1𝑤 , (𝑊,𝑅1,𝑉 ),𝑤 |= 𝜑1 and (𝑊,𝑅2,𝑉 ),𝑤 |= 𝜑2
(by definition of +𝑤 , as 𝑅 |≤1𝑤 = {𝑤} × 𝑅(𝑤))
• there are 𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) such that 𝔐1 +𝔐2 = (𝑊,𝑅 |≤1𝑤 ,𝑉 ), 𝔐1,𝑤 |=
𝜑1 and𝔐2,𝑤 |= 𝜑2 (by definition of +)
• (𝑊,𝑅 |≤1𝑤 ,𝑉 ),𝑤 |= 𝜑1 ∗ 𝜑2 (by definition of |=). □

B PROOF OF LEMMA 2.2

Proof. Let 𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and𝑤 ∈𝑊 .
For the left to right direction, suppose 𝔐,𝑤 |= 𝜑 ∗ 𝜓 . Then, by definition of |=, there are

𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) such that 𝔐1 + 𝔐2 = 𝔐, 𝔐1,𝑤 |= 𝜑 and 𝔐2,𝑤 |= 𝜓 .
By Lemma A.1 we can easily conclude that (𝑊,𝑅1 |𝑤,𝑉 ),𝑤 |= 𝜑 and (𝑊,𝑅2 |𝑤,𝑉 ),𝑤 |= 𝜓 , where
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𝑅 |𝑤 def
= {(𝑤 ′,𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ∈ 𝑅∗ (𝑤)}. Indeed, this holds as by definition, for every 𝑛 ∈ N, (𝑅 |𝑤) |≤𝑛𝑤 =

𝑅 |≤𝑛𝑤 . Now, consider the model 𝔐 = (𝑊,𝑅1 |𝑤 ∪ 𝑅2 |𝑤,𝑉 ). It is easy to see that (𝑊,𝑅1 |𝑤,𝑉 ) and
(𝑊,𝑅2 |𝑤,𝑉 ) are such that (𝑊,𝑅1 |𝑤,𝑉 ) +𝑤 (𝑊,𝑅2 |𝑤,𝑉 ) = 𝔐. Hence 𝔐,𝑤 |= 𝜑 𝜓 . Moreover by
definition 𝑅1 |𝑤 ∪ 𝑅2 |𝑤 ⊆ 𝑅 and (𝑅1 |𝑤 ∪ 𝑅2 |𝑤) (𝑤) = 𝑅(𝑤). We conclude that 𝔐,𝑤 |= (𝜑 𝜓 ).

For the right to left direction, suppose 𝔐,𝑤 |= (𝜑 𝜓 ). Then by definition of |= there is a model
𝔐 = (𝑊,𝑅,𝑉 ) such that 𝑅 ⊆ 𝑅, 𝑅(𝑤) = 𝑅(𝑤) and𝔐,𝑤 |= 𝜑 𝜓 . Again by definition of |=, there are
𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) such that 𝔐1 +𝑤 𝔐2 = 𝔐 and 𝔐1,𝑤 |= 𝜑 and 𝔐2,𝑤 |= 𝜓 .
Consider now the set 𝑅 = 𝑅 \ 𝑅. We define:

𝑅′1
def
= 𝑅1 ∪ {(𝑤 ′,𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ∉ 𝑅∗1 (𝑤)}

𝑅′2
def
= 𝑅2 ∪ (𝑅 \ 𝑅′1)

By definition, it is easy to see that 𝑅′1 |𝑤 = 𝑅1 |𝑤 and 𝑅′2 |𝑤 = 𝑅2 |𝑤 . Moreover, 𝑅′1 ∩ 𝑅′2 = ∅ and
𝑅′1 ∪ 𝑅′2 = 𝑅. Hence, again by using Lemma A.1 we can easily conclude that (𝑊,𝑅′1,𝑉 ),𝑤 |= 𝜑 and
(𝑊,𝑅′2,𝑉 ),𝑤 |= 𝜓 . From the properties of 𝑅′1 and 𝑅

′
2 expressed above, we obtain 𝔐,𝑤 |= 𝜑 ∗𝜓 . □

C PROOF OF LEMMA 3.11

Proof. The proof of Lemma 3.11 essentially consists in proving the lemmas C.1 and C.2 below.
Given P = {𝑝1, . . . , 𝑝𝑚} and a finite forest𝔐 = (𝑊,𝑅,𝑉 ), for all𝑤 ′,𝑤 ′′ ∈𝑊 , we write𝑤 ′ ≈P 𝑤 ′′

iff for all 𝑖 ∈ [1,𝑚], we have𝔐,𝑤 ′ |= 𝑝𝑖 iff𝔐,𝑤 ′′ |= 𝑝𝑖 , i.e.𝑤 ′ and𝑤 ′′ agree on the truth values of
all the propositional variables in P. As done in Section 3.3, we recall that Q = {𝑞1, . . . , 𝑞𝑛+1}.

Lemma C.1. Let ∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1] and (𝔐,𝑤) be a pointed forest such that 𝔐,𝑤 |= uni(Q).
We have𝔐,𝑤 |= cp(𝑋 ) iff for all𝑤 ′ ∈ 𝑅(𝑤) ∩ (⋃𝑘∈𝑋 𝑉 (𝑞𝑘 )), 𝑋 ⊆ {𝑘 ∈ [1, 𝑛 + 1] | there is𝑤 ′′ ∈
𝑅(𝑤) such that𝑤 ′ ≈P 𝑤 ′′ and𝔐,𝑤 ′′ |= 𝑞𝑘 }.

The second condition can be restated as follows: whenever a child of𝑤 satisfies a valuation with
respect to P and belongs to (⋃𝑘∈𝑋 𝑉 (𝑞𝑘 )), then the valuation is satisfied in a child of𝑤 satisfying
𝑞𝑘 for all 𝑘 ∈ 𝑋 . We recall that cp(𝑋 ) is defined as follows.∧

𝑘≠𝑘 ′∈𝑋
¬
(
2𝑞𝑘 (3=1 𝑞𝑘 ∧ ¬(⊤ 3=1 𝑞𝑘 ∧3=1 𝑞𝑘 ′ ∧

∧
𝑗∈[1,𝑚]

3𝑝 𝑗 ⇒ 2𝑝 𝑗 ))
)
.

Proof. In order to show the main equivalence of the statement, we proceed by showing inter-
mediate properties for subformulae of cp(𝑋 ). Actually, we shall state the properties, assuming that
their proof are by an easy verification. In what follows, we always assume that (𝔐,𝑤) be a pointed
forest such that 𝔐,𝑤 |= uni(Q).
(unicity) The first property is related to the formula uni(Q) def

= 2(∧𝑖≠𝑖′∈[1,𝑛+1] ¬(𝑞𝑖 ∧ 𝑞𝑖′ ) ∧∨
𝑖∈[1,𝑛+1] 𝑞𝑖 ), which allows us to state a unicity property. We have𝔐,𝑤 |= uni(Q) iff for all

𝑤 ′ ∈ 𝑅(𝑤), there is a unique 𝑖 ∈ [1, 𝑛 + 1] such that 𝔐,𝑤 ′ |= 𝑞𝑖 .
(uniformity) The second property is related to the subformula

∧
𝑗∈[1,𝑚]3𝑝 𝑗 ⇒ 2𝑝 𝑗 that states a

uniformity condition. We have 𝔐,𝑤 |= ∧
𝑗∈[1,𝑚]3𝑝 𝑗 ⇒ 2𝑝 𝑗 if and only if for all 𝑤 ′,𝑤 ′′ ∈

𝑅(𝑤), we have𝑤 ′ ≈P 𝑤 ′′.
(two-witnesses) Let 𝑘 ≠ 𝑘 ′ ∈ 𝑋 and 𝜓𝑘,𝑘 ′ def

= (⊤ 3=1 𝑞𝑘 ∧ 3=1 𝑞𝑘 ′ ∧
∧
𝑗∈[1,𝑚]3𝑝 𝑗 ⇒ 2𝑝 𝑗 ). We

have𝔐,𝑤 |= 𝜓𝑘,𝑘 ′ iff there are𝑤 ′ ≠ 𝑤 ′′ ∈ 𝑅(𝑤) s.t.𝔐,𝑤 ′ |= 𝑞𝑘 ,𝔐,𝑤 ′′ |= 𝑞𝑘 ′ and𝑤 ′ ≈P 𝑤 ′′.
(no-witness-1) Again, let 𝑘 ≠ 𝑘 ′ ∈ 𝑋 . We have 𝔐,𝑤 |= 3=1 𝑞𝑘 ∧ ¬𝜓𝑘,𝑘 ′ iff there is a unique

𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′ |= 𝑞𝑘 and there is no𝑤 ′′ ∈ 𝑅(𝑤) s.t. 𝔐,𝑤 ′′ |= 𝑞𝑘 ′ and𝑤 ′ ≈P 𝑤 ′′.
(no-witness-2) Finally, we have 𝔐,𝑤 |= 2𝑞𝑘 (3=1 𝑞𝑘 ∧ ¬𝜓𝑘,𝑘 ′ ) there is 𝑤 ′ ∈ 𝑅(𝑤) such that

𝔐,𝑤 ′ |= 𝑞𝑘 and there is no𝑤 ′′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′′ |= 𝑞𝑘 ′ and𝑤 ′ ≈P 𝑤 ′′.
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Consequently, 𝔐,𝑤 |= cp(𝑋 ) iff for all 𝑘 ≠ 𝑘 ′ ∈ 𝑋 , there is no 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′ |= 𝑞𝑘
and for which there is no𝑤 ′′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′′ |= 𝑞𝑘 ′ and𝑤 ′ ≈P 𝑤 ′′. Otherwise said, for all
𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′ |= 𝑞𝑘 , there is𝑤 ′′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′′ |= 𝑞𝑘 ′ and𝑤 ′ ≈P 𝑤 ′′ (P and
Q are disjoint). □

Let (𝔐,𝑤) be a pointed forest satisfying uni(Q),𝔗 be a team built upon P and ∅ ≠ 𝑋 ⊆ [1, 𝑛+1].
We write (𝔐,𝑤) ≡𝑋P 𝔗 iff the conditions below are satisfied.

(1) For all valuations 𝔳 ∈ 𝔗, for all 𝑘 ∈ 𝑋 , there is𝑤 ′ ∈ 𝑅(𝑤) such that for all 𝑖 ∈ [1,𝑚], we have
𝔐,𝑤 ′ |= 𝑝𝑖 iff 𝔳(𝑝𝑖 ) = ⊤ (written 𝔐,𝑤 ′ |= 𝔳) and 𝔐,𝑤 ′ |= 𝑞𝑘 .

(2) For all valuations 𝔳 such that (for all 𝑘 ∈ 𝑋 , there is 𝑤 ′
𝑘
∈ 𝑅(𝑤) such that 𝔐,𝑤 ′

𝑘
|= 𝔳 and

𝔐,𝑤 ′
𝑘
|= 𝑞𝑘 ), we have 𝔳 ∈ 𝔗.

Hence, when (𝔐,𝑤) ≡𝑋P 𝔗, the children of 𝑤 encodes the team 𝔗 with the property that each
encoding of 𝔳 ∈ 𝔗 is witnessed by |𝑋 | witness worlds.

Given an PL[~] formula 𝜑 , its ¤∨-weight, written w ¤∨ (𝜑), is defined as the number of occurrences
of ¤∨ in 𝜑 .

Lemma C.2. Let ∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1], (𝔐,𝑤) be a pointed forest such that𝔐,𝑤 |= uni(Q) ∧ cp(𝑋 )
and 𝔗 be a team built over P such that (𝔐,𝑤) ≡𝑋P 𝔗. For all PL[~] formula𝜓 built over P such that
w ¤∨ (𝜓 ) ≤ |𝑋 | − 1, we have 𝔗 |= 𝜓 iff𝔐,𝑤 |= 𝜏 (𝜓,𝑋 ).

Proof. The proof is by structural induction.
Base case with𝜓 = 𝑝𝑖 , 𝑖 ∈ [1,𝑚]. First, assume that 𝔗 |= 𝑝𝑖 , which means that for all valuations

𝔳 ∈ 𝔗, we have 𝔳(𝑝𝑖 ) = ⊤. Ad absurdum, suppose that there is𝑤 ′ ∈ 𝑅(𝑤) ∩ (⋃𝑘∈𝑋 𝑉 (𝑞𝑘 )),
such that 𝔐,𝑤 ′ ̸ |= 𝑝𝑖 . Let 𝔳 be the valuation over P satisfied by 𝑤 ′. As 𝔐,𝑤 |= cp(𝑋 ), by
Lemma C.1, the valuation 𝔳 is satisfied in a child of𝑤 satisfying 𝑞𝑘 for all 𝑘 ∈ 𝑋 . By (2.) in the
definition of ≡𝑋P , this implies that 𝔳 ∈ 𝔗, which leads to a contradiction. Consequently, for
all𝑤 ′ ∈ 𝑅(𝑤) ∩ (⋃𝑘∈𝑋 𝑉 (𝑞𝑘 )), we have𝔐,𝑤 ′ |= 𝑝𝑖 , which can be expressed precisely with
𝔐,𝑤 |= 2((∨𝑗∈𝑋 𝑞 𝑗 ) ⇒ 𝑝𝑖 ). Hence, 𝔐,𝑤 |= 𝜏 (𝑝𝑖 , 𝑋 ) by definition of 𝜏 . For the proof of the
other direction, we assume that 𝔐,𝑤 |= 2((∨𝑗∈𝑋 𝑞 𝑗 ) ⇒ 𝑝𝑖 ) and one can show 𝔗 |= 𝑝𝑖 by
using this time (1.). Indeed, ad absurdum, suppose that 𝔗 ̸ |= 𝑝𝑖 . So, there is a valuation 𝔳 such
that 𝔳(𝑝𝑖 ) =⊥. By (1.), for all 𝑘 ∈ 𝑋 , there is𝑤 ′𝑘 ∈ 𝑅(𝑤) such that𝔐,𝑤 ′

𝑘
̸ |= 𝑝𝑖 and𝔐,𝑤 ′

𝑘
|= 𝑞𝑘 .

Since 𝑤 ′
𝑘
∈ 𝑅(𝑤), 𝔐,𝑤 ′

𝑘
|= 𝑞𝑘 and 𝔐,𝑤 |= 2((∨𝑗∈𝑋 𝑞 𝑗 ) ⇒ 𝑝𝑖 ), we get 𝔐,𝑤 ′

𝑘
|= 𝑝𝑖 , which

leads to a contradiction.
Base case with𝜓 = ¤¬𝑝𝑖 , 𝑖 ∈ [1,𝑚]. Similar to the case𝜓 = 𝑝𝑖 .
Induction step. The cases in the induction step for which the outermost connective of𝜓 is either

∧ or ~ are by an easy verification. Let us consider the case𝜓 = 𝜓1 ¤∨𝜓2. Observe that w ¤∨ (𝜓 ) =
w ¤∨ (𝜓1) + w ¤∨ (𝜓2) + 1 and recall that w ¤∨ (𝜓 ) ≤ |𝑋 | − 1. Consequently, w ¤∨ (𝜓1) + w ¤∨ (𝜓2) + 2 ≤ |𝑋 |
and let 𝑋𝑖 = 𝔠𝑖 (𝑋, w ¤∨ (𝜓1) + 1, w ¤∨ (𝜓2) + 1) for 𝑖 ∈ {1, 2}.
Assume 𝔗 |= 𝜓1 ¤∨𝜓2. By definition of |= for PL[~], there are𝔗1 and𝔗2 such that𝔗 = 𝔗1∪𝔗2,
𝔗1 |= 𝜓1 and𝔗2 |= 𝜓2. We define𝔐1 = (𝑊,𝑅1,𝑉1) and𝔐2 = (𝑊,𝑅2,𝑉2) s.t.𝔐 = 𝔐1+𝑤𝔐2
and satisfying the conditions below (only the relevant part is explicitly specified).
• Assume 𝔳 ∈ 𝔗1 ∩ 𝔗2. As (𝔐,𝑤) ≡𝑋P 𝔗, for all 𝑘 ∈ 𝑋 , there is 𝑤 ′

𝑘
∈ 𝑅(𝑤) such that

𝔐,𝑤 ′
𝑘
|= 𝔳 and 𝔐,𝑤 ′

𝑘
|= 𝑞𝑘 . For all 𝑖 ∈ {1, 2} and 𝑘 ∈ 𝑋 , for all 𝑤 ′ ∈ 𝑅(𝑤) ∩ 𝑉 (𝑞𝑘 )

such that 𝔐,𝑤 ′ |= 𝔳, if 𝑘 ∈ 𝑋𝑖 , then (𝑤,𝑤 ′) ∈ 𝑅𝑖 by definition, otherwise (𝑤,𝑤 ′) ∈ 𝑅3−𝑖 .
For all𝑤 ′ ∈ 𝑅(𝑤) such that𝑤 ′ ∉ (⋃𝑘∈𝑋 𝑉 (𝑞𝑘 )) and𝔐,𝑤 ′ |= 𝔳, it is irrelevant whether
(𝑤,𝑤 ′) belongs to 𝑅1 or to 𝑅2.
• Assume that 𝔳 ∈ 𝔗 𝑗 \ 𝔗3− 𝑗 for some 𝑗 ∈ {1, 2}. For all𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′ |= 𝔳,
(𝑤,𝑤 ′) ∈ 𝑅 𝑗 by definition.
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One can check that𝔐1,𝑤 ≡𝑋1
P 𝔗1,𝔐2,𝑤 ≡𝑋2

P 𝔗2, w ¤∨ (𝜓1) ≤ |𝑋1 | − 1 and w ¤∨ (𝜓2) ≤ |𝑋2 | − 1.
By the induction hypothesis, we have𝔐1,𝑤 |= 𝜏 (𝜓1, 𝑋1) and𝔐2,𝑤 |= 𝜏 (𝜓2, 𝑋2). Moreover,
as𝔐,𝑤 |= cp(𝑋 ), it is also easy to check that𝔐1,𝑤 |= cp(𝑋1) and𝔐2,𝑤 |= cp(𝑋2). Hence,
𝔐,𝑤 |= (𝜏 (𝜓1, 𝑋1) ∧ cp(𝑋1)) (𝜏 (𝜓2, 𝑋2) ∧ cp(𝑋2)), i.e.𝔐,𝑤 |= 𝜏 (𝜓,𝑋 ) by definition of 𝜏 .

Assume 𝔐,𝑤 |= 𝜏 (𝜓1 ¤∨𝜓2, 𝑋 ). There are 𝔐1, 𝔐2 such that 𝔐 = 𝔐1 +𝑤 𝔐2, 𝔐1,𝑤 |=
cp(𝑋1) ∧ 𝜏 (𝜓1, 𝑋1) and 𝔐2,𝑤 |= cp(𝑋2) ∧ 𝜏 (𝜓2, 𝑋2). Let us define 𝔗1 and 𝔗2 such that
𝔗 = 𝔗1 ∪ 𝔗2, 𝔐1,𝑤 ≡𝑋1

P 𝔗1 and 𝔐2,𝑤 ≡𝑋2
P 𝔗2. Let 𝔳 ∈ 𝔗 and 𝑗 ∈ {1, 2}. We have

𝔳 ∈ 𝔗 𝑗
def⇔ for all 𝑘 ∈ 𝑋 𝑗 , there is 𝑤 ′𝑘 ∈ 𝑅 𝑗 (𝑤) such that 𝔐𝑗 ,𝑤

′
𝑘
|= 𝔳 and 𝔐𝑗 ,𝑤

′
𝑘
|= 𝑞𝑘 .

As 𝔐,𝑤 |= cp(𝑋 ) and 𝑋 = 𝑋1 ⊎ 𝑋2, one can verify that the definition of 𝔗1 and 𝔗2
is well-designed and the teams 𝔗1 and 𝔗2 satisfy the expected properties. Using that
w ¤∨ (𝜓1) + 1 ≤ |𝑋1 | and w ¤∨ (𝜓2) + 1 ≤ |𝑋2 |, by the induction hypothesis, we have 𝔗1 |= 𝜓1
and 𝔗2 |= 𝜓2. Consequently, 𝔗 |= 𝜓 . □

The proof of Lemma 3.11 can be now easily completed. Let 𝜑 be an PL[~] formula built upon
P = {𝑝1, . . . , 𝑝𝑚} with w ¤∨ (𝜑) = 𝑛 and Q = {𝑞1, . . . , 𝑞𝑛+1}.
Suppose that 𝜑 is satisfiable, meaning that there is a team 𝔗 = {𝔳1, . . . , 𝔳𝐾 } satisfying 𝜑 . Let

𝔐 = (𝑊,𝑅,𝑉 ) be the finite forest such that𝑊 = {0} ∪ [1, 𝐾] × [1, 𝑛 + 1], 𝑅 = {(0, (𝑖, 𝑗)) | (𝑖, 𝑗) ∈
[1, 𝐾] × [1, 𝑛 + 1]}, and 𝑉 is a valuation such that,
• 𝑉 (𝑞 𝑗 ) = [1, 𝐾] × { 𝑗} for all 𝑗 ∈ [1, 𝑛 + 1],
• 𝑉 (𝑝𝑠 ) = {(𝑖, 𝑗) | 𝔳𝑖 (𝑝𝑠 ) = ⊤} for all 𝑠 ∈ [1,𝑚].

One can show that𝔐,𝑤 |= uni(Q) ∧ cp( [1, 𝑛 + 1]) and𝔐,𝑤 ≡[1,𝑛+1]P 𝔗. As w ¤∨ (𝜑) = | [1, 𝑛 + 1] | − 1
(= 𝑛), by Lemma C.2, we have 𝔐,𝑤 |= 𝜏 (𝜑, [1, 𝑛 + 1]).

Conversely, suppose that uni(Q) ∧ cp( [1, 𝑛 + 1]) ∧ 𝜏 (𝜑, [1, 𝑛 + 1]) is satisfiable, meaning that
there is a pointed forest (𝔐,𝑤) satisfying it with 𝔐 = (𝑊,𝑅,𝑉 ). We define the team 𝔗 such that
for all valuations 𝔳 built over P, 𝔳 belongs to 𝔗 iff there is 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐,𝑤 ′ |= 𝑞𝑘 for
some 𝑘 ∈ [1, 𝑛 + 1] and 𝔐,𝑤 ′ |= 𝔳. Again, one can check that 𝔐,𝑤 ≡[1,𝑛+1]P 𝔗 (here we use the
fact the𝔐,𝑤 |= uni(Q) ∧ cp( [1, 𝑛 + 1])) and by Lemma C.2, we have 𝔗 |= 𝜑 . □

D PROOF OF LEMMA 4.2

Proof. Recall that nom𝑖 (ax) is defined as follows:
nom𝑖 (ax) def= ⟨t⟩𝑖3ax ∧

∧
𝑘∈[0,𝑖−1]

[t]𝑘¬
(
⟨t⟩𝑖−𝑘3ax ∗ ⟨t⟩𝑖−𝑘3ax

)
.

(⇒): Suppose 𝔐,𝑤 |= nom𝑖 (ax). By definition of |= and the relativised modality ⟨t⟩, there
exists a path of t-worlds𝑤1,𝑤2, . . . ,𝑤𝑖 , such that𝑤𝑅𝑤1𝑅𝑤2 . . . 𝑅𝑤𝑖 , and there exists𝑤 ′ such that
(𝑤𝑖 ,𝑤 ′) ∈ 𝑅 and𝔐,𝑤 ′ |= ax. The second conjunct of nom𝑖 (ax) guarantees that there is only one
such paths, leading to𝑤𝑖 being a nominal for the depth 𝑖 . Indeed, suppose ad absurdum that there is a
second world𝑤 ′𝑖 ∈ 𝑅𝑖 (𝑤), distinct from𝑤𝑖 , such that𝔐,𝑤 ′𝑖 |= 3ax. Since𝔐,𝑤 |= init( 𝑗),𝑤 ′𝑖 must
be a t-node and there must be a path of t-worlds𝑤 ′1,𝑤

′
2, . . . ,𝑤

′
𝑖 such that𝑤𝑅𝑤 ′1𝑅𝑤

′
2 . . . 𝑅𝑤

′
𝑖 . Then,

there must be 𝑘 ∈ [0, 𝑖 − 1] such that for every 𝑗 ≤ 𝑘 ,𝑤 𝑗 = 𝑤
′
𝑗 , and for every 𝑙 ∈ [ 𝑗 + 1, 𝑖],𝑤𝑙 ≠ 𝑤 ′𝑙 .

By considering the pointed forest (𝔐,𝑤𝑘 ), we can easily show that𝔐,𝑤𝑘 |= ⟨t⟩𝑖−𝑘3ax∗ ⟨t⟩𝑖−𝑘3ax.
This implies that 𝔐,𝑤 |= ⟨t⟩𝑘

(
⟨t⟩𝑖−𝑘3ax ∗ ⟨t⟩𝑖−𝑘3ax

)
, in contradiction with the second conjunct

of nom𝑖 (ax). Hence,𝑤 ′𝑖 cannot be distinct from𝑤𝑖 .
(⇐): This direction is analogous. Suppose that𝔐,𝑤 |= init( 𝑗) and ax is a nominal for the depth

𝑖 . By definition, there is a unique t-world𝑤 ′ in 𝑅𝑖 (𝑤) having a child satisfying ax. Since𝔐,𝑤 |=
init( 𝑗), the path from𝑤 to𝑤 ′ must only witness t-nodes. Hence𝔐,𝑤 |= ⟨t⟩𝑖3ax. Moreover, by
the uniqueness of this path we conclude that𝔐,𝑤 |= ∧

𝑘∈[0,𝑖−1] [t]𝑘¬
(
⟨t⟩𝑖−𝑘3ax ∗ ⟨t⟩𝑖−𝑘3ax

)
also

holds. Thus, 𝔐,𝑤 |= nom𝑖 (ax). □
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E PROOF OF LEMMA 4.16

Proof. We prove each item.

(Proof of I) We recall that S𝑖𝑗 (ax, bx) is defined as
⊤∗

(
fork𝑖+1𝑗 (x, y)∧@𝑖

ax⟨t⟩(3s∧3x) ∧@𝑖
bx⟨t⟩(3s∧3y)∧ [x= y]𝑖+1𝑗 ∧@𝑖+1

x ¬val∧@𝑖+1
y val

)
.

(⇒): Suppose 𝔐,𝑤 |= S𝑖𝑗 (ax, bx). By unfolding the definition above, there exists 𝔐′ =

(𝑊,𝑅1,𝑉 ), such that 𝔐′ ⊑ 𝔐 and:
(a) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖 + 1;
(b) one of these two paths ends on a world (say𝑤x) corresponding to the nominal x whereas

the other ends on a world (say𝑤y) corresponding to the nominal y;
(c) there is a t-world𝑤ax ∈ 𝑅𝑖1 (𝑤) corresponding to the nominal ax s.t.𝔐′,𝑤ax |= ⟨t⟩(3s ∧

3x);
(d) there is a t-world𝑤bx ∈ 𝑅𝑖1 (𝑤) corresponding to the nominal bx s.t.𝔐′,𝑤bx |= ⟨t⟩(3s ∧

3y);
(e) 𝔐′,𝑤 |= [x= y]𝑖+1𝑗 ;
(f) 𝔐′,𝑤x |= ¬val and 𝔐′,𝑤y |= val.
Let 𝑤ax,s ∈ 𝑅1 (𝑤ax) and 𝑤bx,s ∈ 𝑅1 (𝑤bx) be such that they are the only t-children of 𝑤ax

and 𝑤bx respectively, having a child satisfying s (notice they exist due to the hypothesis
(𝐶)). Notice by item (b) above, there exists𝑤 ′ ∈ 𝑅1 (𝑤ax) such that 𝔐′,𝑤 ′ |= t and 𝔐′,𝑤 ′ |=
3s ∧ 3x. Since 𝑤ax,s is the only child of 𝑤ax having an s-child, then 𝑤ax,s = 𝑤 ′, and as a
consequence 𝔐′,𝑤ax,s |= 3x. The same argument can be applied by using item (c) above
in order to get𝔐′,𝑤bx,s |= 3y. By item (a) and (b) above, we have that𝑤x and𝑤y must be
the unique t-worlds at distance 𝑖 + 1 of𝑤 having x and y children, respectively. Therefore,
we have necessarily 𝑤ax,s = 𝑤x and 𝑤bx,s = 𝑤y, so 𝔐,𝑤ax,s |= ¬val and 𝔐,𝑤bx,s |= val as
wanted (by using item (f) above).
Finally, by applying the induction hypothesis on item (e), together with Lemma 4.13, we get
𝐧(𝑤ax,s) = 𝐧(𝑤bx,s), which concludes the proof of this direction.
(⇐): For this direction, we can use a similar argument backwards.

(Proof of II) We recall that L𝑖𝑗 (ax, bx) is defined as

¬
(
⊤ ∗

(
fork𝑖+1𝑗 (x, y) ∧@𝑖

ax⟨t⟩(3l ∧3x) ∧@𝑖
bx⟨t⟩(3l ∧3y)

∧ [x= y]𝑖+1𝑗 ∧¬(@𝑖+1
x val⇔ @𝑖+1

y val)
) )
.

Notice also that by definition of the satisfaction relation |=, we have that 𝔐,𝑤 |= L𝑖𝑗 (ax, bx)
if and only if for all 𝔐′ = (𝑊,𝑅1,𝑉 ) such that 𝔐′ ⊑ 𝔐, we have

𝔐′,𝑤 |= (fork𝑖+1𝑗 (x, y) ∧@𝑖
ax⟨t⟩(3l ∧3x) ∧@𝑖

bx⟨t⟩(3l ∧3y) ∧ [x= y]𝑖+1𝑗 ) ⇒
(@𝑖+1

x val⇔ @𝑖+1
y val)

(⇒): Suppose 𝔐,𝑤 |= L𝑖𝑗 (ax, bx). Then, for all 𝔐′ = (𝑊,𝑅1,𝑉 ) such that 𝔐′ ⊑ 𝔐, if the
following conditions hold

(a) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖 + 1;
(b) one of these two paths ends on a world (say𝑤x) corresponding to the nominal x whereas

the other ends on a world (say𝑤y) corresponding to the nominal y;
(c) there is a t-world𝑤ax ∈ 𝑅𝑖1 (𝑤) corresponding to the nominal ax s.t.𝔐′,𝑤ax |= ⟨t⟩(3l ∧

3x);
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(d) there is a t-world𝑤bx ∈ 𝑅𝑖1 (𝑤) corresponding to the nominal bx s.t.𝔐′,𝑤bx |= ⟨t⟩(3l ∧
3y);

(e) 𝔐′,𝑤 |= [x= y]𝑖+1𝑗 ;
then, it follows that

(f) 𝔐′,𝑤x |= val if and only if 𝔐′,𝑤y |= val.
By hypothesis, there exist𝑤ax,𝑤bx at distance 𝑖 from𝑤 corresponding to nominals ax and
bx, respectively. Let𝑤ax,l ∈ 𝑅(𝑤ax) and𝑤bx,l ∈ 𝑅(𝑤bx) be such that 𝐧(𝑤ax,l) > 𝐧(𝑤ax,s) and
𝐧(𝑤bx,l) > 𝐧(𝑤bx,s). If we are able to satisfy all the conditions a.–e. above, we can conclude
what we want. Suppose 𝐧(𝑤ax,l) = 𝐧(𝑤bx,l). By the induction hypothesis, together with
Lemma 4.13, we get 𝔐,𝑤 |= [x= y]𝑖+1𝑗 . Also, since by hypothesis 𝔐,𝑤𝑏 |= type( 𝑗 − 𝑖), for
𝑤𝑏 ∈ {𝑤ax,𝑤bx}, then it is easy to check that the remaining conditions above are satisfied.
Therefore we can conclude𝔐′,𝑤x |= val iff 𝔐′,𝑤y |= val.
(⇐): The other direction uses similar steps backwards.

(Proof of III) We recall that R(ax, bx) def= @1
ax [t] (3r⇒ val) ∧@1

bx [t] (3r⇒ ¬val).
(⇒): Suppose𝔐,𝑤 |= R(ax, bx). By unfolding the definition above, there exist two distinct
t-nodes𝑤ax,𝑤bx ∈ 𝑅(𝑤), corresponding to nominals ax and bx respectively, such that:

(a) 𝔐,𝑤ax |= [t] (3r⇒ val), and
(b) 𝔐,𝑤bx |= [t] (3r⇒ ¬val).
By item (𝐶) in the hypothesis, we know that there is exactly one t-node in 𝑅(𝑤ax) (say𝑤ax,s)
having an Aux-child satisfying s. Let 𝑤ax,r ∈ 𝑅(𝑤ax) be such that 𝐧(𝑤ax,r) < 𝐧(𝑤ax,s). By
item (𝐸) in the hypothesis, there exists𝑤 ′ ∈ 𝑅(𝑤ax,r) such that𝔐,𝑤 ′ |= r, so𝔐,𝑤ax,r |= 3r.
As a consequence, by the item (a) above, we have 𝔐,𝑤ax,r |= val.
By applying the same reasoning with𝑤bx,r ∈ 𝑅(𝑤bx) such that 𝐧(𝑤bx,r) < 𝐧(𝑤bx,s), and the
item (b) above, we get 𝔐,𝑤bx,r |= ¬val.
(⇐): This direction uses similar arguments (backwards). □

F PROOF OF LEMMA 4.17

Proof. Recall that [ax< bx]𝑖𝑗 is defined as

⊤ ∗ (nom𝑖 (ax≠bx) ∧ [t]𝑖lsr( 𝑗 − 𝑖) ∧ S𝑖𝑗 (ax, bx) ∧ L𝑖𝑗 (ax, bx)).

As in Lemma 4.7, the proof uses standard properties of numbers encoded in binary. Again, let 𝑥,𝑦
be two natural numbers that can be represented in binary by using 𝑛 bits. Let us denote with 𝑥𝑖
(resp. 𝑦𝑖 ) the 𝑖-th bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑥 < 𝑦 if and only if
(A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥𝑖 = 0 and 𝑦𝑖 = 1;
(B) for every position 𝑗 > 𝑖 , 𝑥 𝑗 = 0⇔ 𝑦 𝑗 = 0.

The formula [ax< bx]𝑖𝑗 uses exactly this characterisation in order to state that 𝐧(𝑤ax) < 𝐧(𝑤bx).
Suppose𝔐,𝑤 |= init( 𝑗) ∧ fork𝑖𝑗 (ax, bx). From Lemma 4.14, in (𝔐,𝑤) it holds that
(i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖;
(ii) one of these two paths ends on a world (say𝑤ax) corresponding to the nominal ax whereas

the other ends on a world (say𝑤bx) corresponding to the nominal bx;
(iii) (𝔐,𝑤ax) and (𝔐,𝑤bx) satisfy typelsr ( 𝑗 − 𝑖) def= type( 𝑗 − 𝑖) ∧ [t] (3l ∧3s ∧3r).

To complete the proof, we prove each direction separately.
(⇒): Suppose𝔐,𝑤 |= [ax< bx]𝑖𝑗 . Then, by definition of the satisfaction relation |=, there exists

𝔐′ = (𝑊,𝑅′,𝑉 ), such that𝔐′ ⊑ 𝔐 and
𝔐′,𝑤 |= nom𝑖 (ax≠bx) ∧ [t]𝑖lsr( 𝑗 − 𝑖) ∧ S𝑖𝑗 (ax, bx) ∧ L𝑖𝑗 (ax, bx).
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Then, from (i)–(iii), we can conclude that in (𝔐′,𝑤), the two worlds𝑤ax and𝑤bx (corresponding to
the nominals ax and bx in (𝔐,𝑤)) are exactly the ones responsible for the satisfaction of nom𝑖 (ax≠
bx). Moreover, from𝔐′,𝑤 |= [t]𝑖lsr( 𝑗 − 𝑖) and Lemma 4.15, we have𝔐′,𝑤ax |= type( 𝑗 − 𝑖). Then,
by Lemma 4.13 we conclude that 𝑤ax encodes the same number w.r.t. (𝔐,𝑤) and (𝔐′,𝑤). The
same property holds for 𝑤bx, since again by 𝔐′,𝑤 |= [t]𝑖lsr( 𝑗 − 𝑖) and Lemma 4.15, we have
𝔐′,𝑤bx |= type( 𝑗 − 𝑖). Lastly, again from Lemma 4.15,

(1) every t-node in 𝑅′ (𝑤ax) and 𝑅′ (𝑤bx) has exactly one Aux-child satisfying an atomic proposi-
tion from {l, s, r};

(2) exactly one t-node in 𝑅′ (𝑤ax) (say𝑤ax,s) has an Aux-child satisfying s. Similarly, exactly one
t-node in 𝑅′ (𝑤bx) (say𝑤bx,s) has an Aux-child satisfying s;

(3) given 𝑤ax,l ∈ 𝑅′ (𝑤ax) (resp. 𝑤bx,l ∈ 𝑅′ (𝑤bx)), it has an Aux-child satisfying l if and only if
𝐧(𝑤ax,l) > 𝐧(𝑤ax,s) (resp. 𝐧(𝑤bx,l) > 𝐧(𝑤bx,s)).

Recall that the number 𝐧(𝑤ax) (resp. 𝐧(𝑤bx)) is represented by the binary encoding of the truth
values of val on the t-children of 𝑤ax (resp. 𝑤bx) which, since (𝔐′,𝑤ax) |= type( 𝑗 − 𝑖) (resp.
(𝔐′,𝑤bx) |= type( 𝑗 − 𝑖)), are 𝔱( 𝑗 − 𝑖, 𝑛) children implicitly ordered by the number they, in turn,
encode. As (𝔐′,𝑤) satisfies the hypothesis of Lemma 4.16, from𝔐′,𝑤 |= S𝑖𝑗 (ax, bx) ∧ L𝑖𝑗 (ax, bx)
we conclude that

• 𝐧(𝑤ax,s) = 𝐧(𝑤bx,s),𝔐,𝑤ax,s |= ¬val and𝔐,𝑤bx,s |= val. Thus, in the binary representation
of 𝐧(𝑤ax), the 𝐧(𝑤ax,s)th-bit is 0, whereas in the binary representation of 𝐧(𝑤bx), it is 1.
Hence, the property (A) of numbers encoded in binary holds for 𝐧(𝑤ax) and 𝐧(𝑤bx);
• for all worlds 𝑤ax,l ∈ 𝑅(𝑤ax) and 𝑤bx,l ∈ 𝑅(𝑤bx) such that 𝐧(𝑤ax,l) > 𝐧(𝑤ax,s) and
𝐧(𝑤bx,l) > 𝐧(𝑤bx,s), if 𝐧(𝑤ax,l) = 𝐧(𝑤bx,l) then

𝔐,𝑤ax,l |= val if and only if 𝔐,𝑤bx,l |= val.
Thus, the binary representation of 𝐧(𝑤ax) and 𝐧(𝑤bx), is the same when restricted to the
bits that are more significant than 𝐧(𝑤ax,s) (which is equal to 𝐧(𝑤bx,s) by the previous case).
Hence, the property (B) is also verified by 𝐧(𝑤ax) and 𝐧(𝑤bx).

Directly, we then conclude that 𝐧(𝑤ax) < 𝐧(𝑤bx).
(⇐): This direction is proven analogously by essentially relying on Lemma 4.16 (I and II). □

G PROOF OF LEMMA 4.31

Proof. We show the proof for I, the one for II being analogous. Recall that (horTT ) stands for:
∀𝑤1,𝑤2 ∈ 𝑅(𝑤), if 𝐧H (𝑤2) = 𝐧H (𝑤1) + 1 and 𝐧V (𝑤2) = 𝐧V (𝑤1) then there is (c1, c2) ∈ H s.t.

𝑤1 ∈ 𝑉 (c1) and𝑤2 ∈ 𝑉 (c2).
Suppose 𝔐,𝑤 |= gridTT (𝑘). Then in particular every world𝑤 ′ ∈ 𝑅(𝑤) encodes a pair of numbers
(𝐧H (𝑤), 𝐧V (𝑤)) ∈ [0, 𝔱(𝑘, 𝑛) − 1]2.
(⇒): Suppose𝔐,𝑤 |= horTT (𝑘). Then, by definition, for every𝔐′ ⊑ 𝔐, if𝔐′,𝑤 |= fork1

𝑘
(x, y)∧

[y H= x+1]𝑘 ∧ [xV= y]𝑘 then 𝔐′,𝑤 |= ∨
(c1,c2 ) ∈H (@1

xc1 ∧@1
yc2). Consider now two worlds𝑤x,𝑤y ∈

𝑅(𝑤) such that 𝐧H (𝑤y) = 𝐧H (𝑤x) + 1 and 𝐧V (𝑤y) = 𝐧V (𝑤x). Notice that𝔐 at𝑤x and𝔐 at𝑤y

satisfy type(𝑘 − 1), by definition of gridTT (𝑘). Let𝔐′ = (𝑊,𝑅1,𝑉 ) be the submodel of𝔐 where
𝑅1 is defined from 𝑅 by removing the following pairs of worlds:

• (𝑤,𝑤 ′) ∈ 𝑅 where𝑤 ′ is different from𝑤x and𝑤y;
• (𝑤x,𝑤

′′) ∈ 𝑅 where𝑤 ′′ is the only Aux-child of𝑤x satisfying y (this world exists as𝔐,𝑤x |=
type(𝑘 − 1), then it satisfies init(𝑘 − 1) and aux);
• (𝑤y,𝑤

′′′) ∈ 𝑅 where𝑤 ′′′ is the only Aux-child of𝑤y satisfying x (again, this world exists as
𝔐,𝑤y |= type(𝑘 − 1), then it satisfies init(𝑘 − 1) and aux).
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We can easily check that the pointed forest (𝔐′,𝑤) satisfies fork1
𝑘
(x, y), where𝑤x and𝑤y corre-

spond to two nominals (for the depth 1) x and y, respectively. Thus, 𝔐′,𝑤x |= type(𝑘 − 1) and
𝔐′,𝑤y |= type(𝑘 −1). Therefore, by Lemma 4.13 (which can be easily extended in order to consider
pairs of numbers described with valH and valV , instead of a single number described with val),
we conclude that𝑤x and𝑤y keep encoding the same two pairs of numbers when 𝔐 is modified to
𝔐′. Then, since by hypothesis 𝐧H (𝑤y) = 𝐧H (𝑤x) + 1 and 𝐧V (𝑤y) = 𝐧V (𝑤x), by Lemmata 4.23
and 4.24 we conclude that𝔐′,𝑤 |= [y H= x+1]𝑘 ∧ [xV= y]𝑘 . Then, by hypothesis 𝔐,𝑤 |= horTT (𝑘),
we conclude that𝔐′,𝑤 |= ∨

(c1,c2 ) ∈H (@1
xc1 ∧@1

yc2). Thus, there must be a pair (c1, c2) ∈ H such
that𝔐′,𝑤 |= @1

xc1 ∧@1
yc2. Since𝑤x (resp.𝑤y) corresponds to the nominal (for the depth 1) x (resp.

y), we conclude that𝔐,𝑤x |= c1 and𝔐,𝑤y |= c2. By definition, this implies that (𝔐,𝑤) satisfies
(horTT ).

(⇐): This direction is rather straightforward and, analogously to the left-to-right direction, relies
on Lemmata 4.13, 4.23 and 4.24. Briefly, suppose that (𝔐,𝑤) satisfies (horTT ) and, ad absurdum,
assume that𝔐,𝑤 ̸ |= horTT (𝑘). Therefore,

𝔐,𝑤 |= ⊤ ∗
(
fork1

𝑘
(x, y) ∧ [y H= x+1]𝑘 ∧ [xV= y]𝑘 ∧ ¬

∨
(c1,c2 ) ∈H (@1

xc1 ∧@1
yc2)

)
.

Then, there is a submodel 𝔐′ = (𝑊,𝑅,𝑉 ) of 𝔐 such that 𝔐′,𝑤 |= fork1
𝑘
(x, y) ∧ [y H= x+1]𝑘 ∧

[xV= y]𝑘 ∧ ¬
∨
(c1,c2 ) ∈H (@1

xc1 ∧@1
yc2). By 𝔐′,𝑤 |= fork1

𝑘
(x, y) we conclude that there are two

worlds 𝑤x and 𝑤y corresponding to two nominals (depth 1) x and y, respectively. Moreover, by
Lemma 4.13, these worlds encode the same two numbers w.r.t. (𝔐,𝑤) and (𝔐′,𝑤). From 𝔐′,𝑤 |=
[y H= x+1]𝑘 ∧ [xV= y]𝑘 and the fact that (𝔐,𝑤) satisfies (horTT ), together with Lemmata 4.23 and 4.24
we conclude that there is a pair (c1, c2) ∈ H such that𝑤x ∈ 𝑉 (c1) and𝑤y ∈ 𝑉 (c2). However, this
contradicts𝔐′,𝑤 |= ¬∨(c1,c2 ) ∈H (@1

xc1 ∧@1
yc2). Thus, 𝔐,𝑤 |= horTT (𝑘). □

H PROOF OF LEMMA 4.33

Proof. (⇒): Suppose that (TT , c) has a solution 𝜏 : [0, 𝔱(𝑘, 𝑛) − 1]2 → T . Let𝔐 = (𝑊,𝑅,𝑉 ) and
𝑤 ∈𝑊 be such that 𝔐,𝑤 |= gridTT (𝑘) (such a pointed forest exists by Corollary 4.29). We slightly
modify 𝑉 so that the resulting model still satisfies gridTT (𝑘), but also satisfies (oneTT ), (firstTT,c),
(horTT ) and (vertTT ). This can be done rather straightforwardly. Indeed, since𝔐,𝑤 |= gridTT (𝑘), by
Lemma 4.28 every t-node𝑤 ′ ∈ 𝑅(𝑤) encodes a pair of numbers (𝐧H (𝑤 ′), 𝐧V (𝑤 ′)) ∈ [0, 𝔱(𝑘, 𝑛)−1].
Then, let us consider the model 𝔐′ = (𝑊,𝑅,𝑉 ′) such that

(1) for every 𝑝 ∈ AP \ T , 𝑉 ′ (𝑝) = 𝑉 (𝑝). This property leads to 𝔐′,𝑤 |= gridTT (𝑘), since
gridTT (𝑘) is written with propositional symbols not appearing in T .

(2) for every c ∈ T and𝑤 ′ ∈ 𝑅(𝑤),𝑤 ′ ∈ 𝑉 (c) if and only if 𝜏 (𝐧H (𝑤 ′), 𝐧V (𝑤 ′)) = c.
The second condition allows us to conclude that (𝔐′,𝑤) satisfies (oneTT ), (firstTT,c), (horTT ) and
(vertTT ). Indeed, (oneTT ) holds as 𝜏 is functional; (firstTT,c) holds as 𝜏 satisfies (first); whereas
(horTT ) and (vertTT ) hold as 𝜏 satisfies (hor&vert). Thus, (𝔐′,𝑤) |= tilingTT,c (𝑘) and therefore
tilingTT,c (𝑘) is satisfiable.
(⇐): Suppose tilingTT,c (𝑘) satisfiable and let 𝔐 = (𝑊,𝑅,𝑉 ) and 𝑤 ∈ 𝑊 such that 𝔐,𝑤 |=

tilingTT,c (𝑘). Let us consider the relation 𝜏 ⊆ [0, 𝔱(𝑘, 𝑛) − 1] × [0, 𝔱(𝑘, 𝑛) − 1] × T defined as
(𝑖, 𝑗, c′) ∈ 𝜏 if and only if there is𝑤 ′ ∈ 𝑅(𝑤) such that 𝐧H (𝑤 ′) = 𝑖 , 𝐧V (𝑤 ′) = 𝑗 and𝑤 ′ ∈ 𝑉 (c′).
Directly by Lemma 4.32 we have that:

I. from (uniqTT,𝑘 ) and (oneTT ), 𝜏 is (possibly weakly) functional in its first two components, i.e.
for every (𝑖, 𝑗) ∈ [0, 𝔱(𝑘, 𝑛) − 1]2 there is at most one c′ such that (𝑖, 𝑗, c′) ∈ 𝜏 ;

II. from (zeroTT,𝑘 ) and (complTT,𝑘 ), 𝜏 is total (hence not weakly functional), i.e. cannot be that
there is (𝑖, 𝑗) ∈ [0, 𝔱(𝑘, 𝑛) − 1]2 such that for every c′ ∈ T , (𝑖, 𝑗, c′) ∉ 𝜏 . Together with I, this
means that 𝜏 is a map;
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III. from (firstTT,c), (0, 0, c) ∈ 𝜏 ;
IV. from (horTT ) and (vertTT ), for all 𝑖 ∈ [0, 𝔱(𝑘, 𝑛) −1] and 𝑗 ∈ [0, 𝔱(𝑘, 𝑛) −2], (𝜏 ( 𝑗, 𝑖), 𝜏 ( 𝑗 +1, 𝑖)) ∈
H and (𝜏 (𝑖, 𝑗), 𝜏 (𝑖, 𝑗 + 1)) ∈ V .

Therefore, we conclude that 𝜏 is a solution for Tile𝑘 . □

I REMINDER ABOUT G-BISIMULATION

Let 𝔐 = (𝑊,𝑅,𝑉 ) and 𝔐′ = (𝑊 ′, 𝑅′,𝑉 ′) be two finite forests. Let 𝑚 ∈ N, 𝑘 ∈ N>0 and P ⊆fin
AP. A g-bisimulation up to (𝑚,𝑘, P) between 𝔐 and 𝔐′ is a sequence of 𝑚 + 1 𝑘-uples Z0 =

(Z0
1 ,Z0

2 , . . . ,Z0
𝑘
), . . . ,Z𝑚 = (Z𝑚1 ,Z𝑚2 , . . . ,Z𝑚𝑘 ) satisfying:

init: Z0
1 is not empty and for every 𝑖 ∈ [1, 𝑘] and 𝑗 ∈ [0,𝑚],Z 𝑗

𝑖
⊆ P(𝑊 ) × P(𝑊 ′);

refine: for every 𝑖 ∈ [1, 𝑘] and 𝑗 ∈ [1,𝑚],Z 𝑗

𝑖
⊆ Z 𝑗−1

𝑖
;

size: if 𝑋Z 𝑗

𝑖
𝑌 then |𝑋 | = |𝑌 | = 𝑖;

atoms: if {𝑤}Z0
1 {𝑤 ′} then for every 𝑝 ∈ P,𝑤 ∈ 𝑉 (𝑝) if and only if𝑤 ′ ∈ 𝑉 ′ (𝑝);

m-forth: if {𝑤}Z 𝑗+1
1 {𝑤 ′} and𝑋⊆𝑅(𝑤)with |𝑋 |∈[1, 𝑘], then there is𝑌⊆𝑅′ (𝑤 ′) such that𝑋Z

𝑗

|𝑋 |𝑌 ;
m-back: if {𝑤}Z 𝑗+1

1 {𝑤 ′} and𝑌⊆𝑅′ (𝑤 ′) with |𝑌 |∈[1, 𝑘], then there is𝑋⊆𝑅(𝑤) such that𝑋Z
𝑗

|𝑌 |𝑌 ;
g-forth: if 𝑋Z 𝑗

𝑖
𝑌 and𝑤 ∈ 𝑋 , then there is𝑤 ′ ∈ 𝑌 such that {𝑤}Z 𝑗

1 {𝑤 ′};
g-back: if 𝑋Z 𝑗

𝑖
𝑌 and𝑤 ′ ∈ 𝑌 , then there is𝑤 ∈ 𝑋 such that {𝑤}Z 𝑗

1 {𝑤 ′}.
We write 𝔐,𝑤 ⇆P

𝑚,𝑘
𝔐′,𝑤 ′ and we say that the two models are g-bisimilar whenever there is

a g-bisimulation up to (𝑚,𝑘, P) between𝔐 and𝔐′, sayZ0, . . . ,Z𝑚 , such that {𝑤}Z𝑚1 {𝑤 ′}. We
write Γ(𝔐,𝑤)P

𝑚,𝑘
to denote the set of formulae in GML of rank (𝑚,𝑘) and with propositional

symbols from P that are satisfied in 𝔐,𝑤 , i.e. Γ(𝔐,𝑤)P
𝑚,𝑘

def
= {𝜓 ∈ GML[𝑚,𝑘, P] | 𝔐,𝑤 |= 𝜓 }.

We write T P (𝑚,𝑘) to denote the quotient set induced by the equivalence relation⇆P
𝑚,𝑘

. Let us
summarise the main results from [22].

Proposition I.1 ([22]). (1) Γ(𝔐,𝑤)P
𝑚,𝑘

contains finitely many non-equivalent formulae.
(2) 𝔐,𝑤 ⇆P

𝑚,𝑘
𝔐′,𝑤 ′ if and only if Γ(𝔐,𝑤)P

𝑚,𝑘
= Γ(𝔐′,𝑤 ′)P

𝑚,𝑘
.

(3) ⇆P
𝑚,𝑘

is a finite index equivalence relation. T P (𝑚,𝑘) is finite.

So, ≡P
𝑚,𝑘

and⇆P
𝑚,𝑘

are identical relations (see the definitions for ≡P
𝑚,𝑘

and GML[𝑚,𝑘, P] in Sec-
tion 5.1) and there is a finite set {𝜒1, . . . , 𝜒𝑄 } ⊆ GML[𝑚,𝑘, P] such that
• 𝜒1 ∨ · · · ∨ 𝜒𝑄 is valid, and each 𝜒𝑖 is satisfiable,
• for all 𝑖 ≠ 𝑗 ∈ [1, 𝑄], 𝜒𝑖 ∧ 𝜒 𝑗 is unsatisfiable,
• (𝔐,𝑤) ≡P

𝑚,𝑘
(𝔐′,𝑤 ′) iff there is 𝑖 such that (𝔐,𝑤) |= 𝜒𝑖 and (𝔐′,𝑤 ′) |= 𝜒𝑖 .

Hence, 𝜒𝑖 characterises one equivalence class of ≡P𝑚,𝑘 (or equivalently of⇆P
𝑚,𝑘

).
In what follows, recall that 𝑅 |𝑤 def

= {(𝑤 ′,𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ⊆ 𝑅∗ (𝑤)}.

Lemma I.2. Let𝑚 ∈ N, 𝑘 ∈ N>0 and P ⊆fin AP. Let𝔐 = (𝑊,𝑅,𝑉 ) be a finite forest and let𝑤 ∈𝑊 .
Then, 𝔐,𝑤 ⇆P

𝑚,𝑘
(𝑊,𝑅 |𝑤,𝑉 ),𝑤 .

Proof. As⇆P
𝑚,𝑘

is an equivalence relation (Proposition I.1.3), it is reflexive and hence𝔐,𝑤 ⇆P
𝑚,𝑘

𝔐,𝑤 . There is therefore a g-bisimulation up to (𝑚,𝑘, P) between 𝔐 and itself, say Z0, . . . ,Z𝑚
whereZ𝑖 = (Z𝑖

1, . . . ,Z𝑖
𝑘
) for every 𝑖 ∈ [0,𝑚], such that {𝑤}Z𝑚1 {𝑤}. Consider now the restriction

of Z𝑖
𝑗 , where 𝑖 ∈ [0,𝑚] and 𝑗 ∈ [1, 𝑘], to those sets where every element is reachable from 𝑤 .

Formally, we define Ẑ𝑖
𝑗
= {(𝑋,𝑌 ) ∈ Z𝑖

𝑗 | 𝑋 ∪ 𝑌 ⊆ 𝑅∗ (𝑤)}. It is easy to show that Ẑ0, . . . , Ẑ𝑚 ,
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10 Bednarczyk, Demri, Fervari & Mansutti

where Ẑ𝑖 = (Ẑ𝑖
1, . . . , Ẑ𝑖

𝑘
) for every 𝑖 ∈ [0,𝑚], is a g-bisimulation up to (𝑚,𝑘, P) between𝔐 and

(𝑊,𝑅 |𝑤,𝑉 ). As {𝑤}Ẑ𝑚1 {𝑤} by definition, we conclude that 𝔐,𝑤 ⇆P
𝑚,𝑘
(𝑊,𝑅 |𝑤,𝑉 ),𝑤 . □

J PROOF OF LEMMA 5.1

In the following, we denote with T P (𝑚,𝑘) the set T P (𝑚, 𝔣(𝑚,𝑘)). Then, notice that T P (𝑚,𝑘) =
T P (0, 𝑘) for 𝑚 = 0, and otherwise (𝑚 ≥ 1) T P (𝑚,𝑘) = T P (𝑚,𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1)). Since
T P′ (𝑚′, 𝑘 ′) is finite for all𝑚′, 𝑘 ′ and finite P′, T P (𝑚,𝑘) is well-defined and finite. Lemma 5.1 can
be reformulated using T P (𝑚,𝑘) as follows.
Lemma Let𝑚,𝑘 ∈ N and P ⊆fin AP. Let (𝔐,𝑤), (𝔐′,𝑤 ′) be pointed forests such that𝔐 = (𝑊,𝑅,𝑉 )
and𝔐′ = (𝑊 ′, 𝑅′,𝑉 ′). If {(𝔐,𝑤), (𝔐′,𝑤 ′)} ⊆ T for some T ∈ T P (𝑚,𝑘), then for every 𝑅1 ⊆ 𝑅 there
is 𝑅′1 ⊆ 𝑅′ such that ((𝑊,𝑅1,𝑉 ),𝑤) ≡P𝑚,𝑘 ((𝑊

′, 𝑅′1,𝑉
′),𝑤 ′), and if 𝑅1 (𝑤) = 𝑅(𝑤) then 𝑅′1 (𝑤 ′) =

𝑅′ (𝑤 ′).

Proof. In the case 𝑘 = 0, any formula in GML[𝑚, 0, P] is equivalent to a formula in the proposi-
tional calculus built over propositional variables in P as 3≥0 𝜓 is logically equivalent to ⊤. Hence,
the lemma trivially holds.
Otherwise (𝑘 ≥ 1), we prove semantically the lemma as ≡P

𝑚,𝑘
and⇆P

𝑚,𝑘
are identical relations.

The proof is by induction on the modal depth𝑚. The induction step is articulated in three steps:
(I) definition and proof of various properties of the two models,
(II) definition of a strategy to reduce 𝑅′ to 𝑅′1 that closely follows the relationship between 𝑅 and

𝑅1 with respect to the children of𝑤 and,
(III) a proof that the relation 𝑅′1 is such that (𝑊,𝑅1,𝑉 ),𝑤 ⇆P

𝑚,𝑘
(𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′. By construction,

we also obtain that if 𝑅1 (𝑤) = 𝑅(𝑤) then 𝑅′1 (𝑤 ′) = 𝑅′ (𝑤 ′).
Let us begin with the base case.
Base case:𝑚 = 0. The base case is straightforward from the following property of g-bisimulations.

When 𝑚 = 0, given 𝔐 = (𝑊,𝑅,𝑉 ), 𝑅1 ⊆ 𝑅, 𝑤 ∈ 𝑊 and �̂� ∈ N, we have 𝔐,𝑤 ⇆P
0,𝑘

(𝑊,𝑅1,𝑉 ),𝑤 . This statement holds as it can be easily shown that the set of relationsZ0 =

(Z0
1 , . . . ,Z0

𝑘
) whereZ0

1 = {(𝑤,𝑤)} andZ0
𝑗 = ∅ for 𝑗 ∈ [2, �̂�] satisfies all the requirements

for being a g-bisimulation.
Then, with respect to the statement of the lemma, by definition, we have (𝑊,𝑅1,𝑉 ),𝑤 ⇆P

0,𝑘
𝔐,𝑤 . Now, by definition T P (0, 𝑘) = T P (0, 𝑘) and by hypothesis there is T ∈ T P (0, 𝑘) such
that {(𝔐,𝑤), (𝔐′,𝑤 ′)} ⊆ T. By definition of T P (0, 𝑘), we have

𝔐,𝑤 ⇆P
0,𝑘 𝔐′,𝑤 ′ .

As⇆P
0,𝑘 is an equivalence relation, we conclude (𝑊,𝑅1,𝑉 ),𝑤 ⇆P

0,𝑘 𝔐′,𝑤 ′ and therefore it is
sufficient to take 𝑅′1

def
= 𝑅′ to end the proof. Note that in this case, 𝑅′1 (𝑤 ′) = 𝑅′ (𝑤 ′) holds too.

Induction case. In particular, we have𝑚 > 1 and T P (𝑚,𝑘) = T P (𝑚,𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1)).
Moreover, by hypothesis there exists T ∈ T P (𝑚,𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1)) such that

{(𝔐,𝑤), (𝔐′,𝑤 ′)} ⊆ T.

By definition, we have

𝔐,𝑤 ⇆P
𝑚,𝑘 · ( |T P (𝑚−1,𝑘 ) |+1) 𝔐

′,𝑤 ′ .

Let us explain the main idea of the proof. Let us pick one child𝑤1 of𝑤 in 𝔐. Obviously, the
pointed forest (𝔐,𝑤1) belongs to a specific equivalence class T ∈ T P (𝑚 − 1, 𝑘). The effect of
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reducing 𝑅 to 𝑅1 is that𝑤1, together with the updated model, “jumps”2 to an equivalence class
T1 ∈ T P (𝑚 − 1, 𝑘). Obviously, (𝔐,𝑤1) already belongs to a class in T P (𝑚 − 1, 𝑘). However
(from the statement of the lemma), we are only interested in T P (𝑚 − 1, 𝑘) when considering
𝑅1, whereas we focus on T P (𝑚 − 1, 𝑘) when studying 𝑅. To prove the result, we have to
show that there is a child𝑤 ′1 of𝑤

′ in 𝔐′ so that (𝔐′,𝑤 ′1) is in the same equivalence class T
of (𝔐,𝑤1) and to show that it is possible to update 𝑅′ to make𝑤 ′1 (together with the updated
model) “jump” to the equivalence class T1. However, we need to do this for all the children
of 𝑤 and 𝑤 ′, respecting the constraints of being a g-bisimulation. The key step is to show
that the graded rank 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1) is all we need to find enough children in 𝑅′ (𝑤 ′)
and to be able to construct a relation 𝑅′1 so that the resulting models are g-bisimilar up to
(𝑚,𝑘, P). Let us now formalise the proof, which requires some intermediate steps that are
below highlighted .
We start by considering a single equivalence class T ∈ T P (𝑚 − 1, 𝑘) (in fact, our proof is
done modularly on these classes). We introduce the two following sets:
• 𝑅(𝑤) |T def

= {𝑤1 ∈ 𝑅(𝑤) | (𝔐,𝑤1) ∈ T}.
• 𝑅′ (𝑤 ′) |T def

= {𝑤 ′1 ∈ 𝑅′ (𝑤 ′) | (𝔐′,𝑤 ′1) ∈ T}.
It is fairly simple to see that the following property holds:

(★): min( |𝑅(𝑤) |T |, 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1)) = min( |𝑅′ (𝑤 ′) |T |, 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1))
Indeed, ad absurdum, suppose that

(†): |𝑅(𝑤) |T | < 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1) and |𝑅(𝑤) |T | < |𝑅′ (𝑤 ′) |T |
The other case |𝑅′ (𝑤 ′) |T | < 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1) and |𝑅′ (𝑤 ′) |T | < |𝑅(𝑤) |T | is analogous
and therefore its treatment is omitted below. Since it holds by hypothesis that

𝔐,𝑤 ⇆P
𝑚,𝑘 · ( |T P (𝑚−1,𝑘 ) |+1) 𝔐

′,𝑤 ′,

there is a g-bisimulation up to (𝑚,𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1), P) between 𝔐 and 𝔐′, say
Z0, . . . ,Z𝑚 , such that {𝑤}Z𝑚1 {𝑤 ′}.
• From (m-back), by taking 𝑌 as a subset of 𝑅′ (𝑤 ′) |T such that

|𝑌 | = min( |𝑅′ (𝑤 ′) |T |, 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1)),
it must hold that there is a subset 𝑋 ⊆ 𝑅(𝑤) such that 𝑋Z𝑚−1|𝑌 | 𝑌 .
• From (size), |𝑋 | = |𝑌 |. Hence, by (†) there must be a world𝑤2 ∈ 𝑋 such that (𝔐,𝑤2) ∉ T.
• From (g-forth), there is𝑤 ′2 ∈ 𝑌 such that {𝑤2}Z𝑚−11 {𝑤 ′2}.
• As {𝑤2}Z𝑚−11 {𝑤 ′2}, from the definition of g-bisimulation it holds that

𝔐,𝑤2 ⇆
P
𝑚−1,𝑘 · ( |T P (𝑚−1,𝑘 ) |+1) 𝔐

′,𝑤 ′2.
• Again by definition of g-bisimulation, it is easy to see that if two models are in the same
equivalence class w.r.t.⇆P

𝑚′,𝑘 ′ then they are in the same equivalence class w.r.t.⇆P
𝑚′,𝑘 ′′

for every 𝑘 ′′ ≤ 𝑘 ′. Therefore 𝔐,𝑤2 ⇆
P
𝑚−1,𝑘 · ( |T P (𝑚−2,𝑘 ) |+1) 𝔐

′,𝑤 ′2. Notice that the set of
equivalence classes induced by⇆P

𝑚−1,𝑘 · ( |T P (𝑚−2,𝑘 ) |+1) is T P (𝑚 − 1, 𝑘). We conclude that
(𝔐,𝑤2) and (𝔐′,𝑤 ′2) belong to the same class in T P (𝑚 − 1, 𝑘). However, this leads to a
contradiction as we have𝑤2 ∉ T and𝑤 ′2 ∈ T (where T ∈ T P (𝑚 − 1, 𝑘)).

This concludes the proof of (★).
Given an equivalence class T′ in T P (𝑚 − 1, 𝑘), we define the set below

𝑅1 (𝑤) |T▶T′ def= 𝑅(𝑤) |T ∩ 𝑅1 (𝑤) |T′ .

2We always put the word “jump” in quotes as it is used in an informal way.
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Following the proof idea presented above, a world 𝑤1 ∈ 𝑅1 (𝑤) |T▶T′ is a child of 𝑤 such
that (𝔐,𝑤1) is in the class T and “jumps” to the class T′ when updating the accessibility
relation from 𝑅 to 𝑅1. In what follows, we denote with 𝑅 |𝑤1 the restriction of 𝑅 to those
worlds reachable from𝑤1, i.e. the set {(𝑤2,𝑤3) ∈ 𝑅 | {𝑤2,𝑤3} ⊆ 𝑅∗ (𝑤1)}, as defined in the
statement of Lemma I.2. We also consider similar restrictions for 𝑅′ and 𝑅′1. We are interested
in the following key property:

(★★): for all𝑤1 ∈ 𝑅1 (𝑤) |T▶T′ and𝑤 ′1 ∈ 𝑅′ (𝑤 ′) |T there is 𝑅′1,𝑤′1 ⊆ 𝑅
′ |𝑤′1

such that (𝑊,𝑅1 |𝑤1 ,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝑤′1
,𝑉 ′),𝑤 ′1

Let us prove (★★). By definition, we have 𝑤1 ∈ 𝑅(𝑤) |T and 𝑤 ′1 ∈ 𝑅′ (𝑤 ′) |T. Therefore,
{(𝔐,𝑤1), (𝔐′,𝑤 ′1)} ⊆ T ∈ T P (𝑚 − 1, 𝑘). By Lemma I.2, it follows that (𝑊,𝑅 |𝑤1 ,𝑉 ),𝑤1 and
(𝑊 ′, 𝑅′ |𝑤′1 ,𝑉

′),𝑤 ′1 are also in T. Moreover, by definition 𝑅1 |𝑤1 ⊆ 𝑅 |𝑤1 . Then, we can use the
induction hypothesis (notice that the modal degree is now𝑚 − 1) to conclude that there
is 𝑅′1,𝑤′1 ⊆ 𝑅

′ |𝑤′1 such that (𝑊,𝑅1 |𝑤1 ,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝑤′1
,𝑉 ′),𝑤 ′1, concluding the proof

of (★★). This intermediate result gives us an important information: every single “jump”
(as informally expressed above) done while updating the accessibility relation of 𝔐 can
be mimicked by updating 𝔐′. An important missing piece is proving that all jumps can
be simultaneously mimicked. In order to prove this, we start by considering the following
partition of 𝑅(𝑤) |T:

𝑅(𝑤)T▶𝑅1
def
= {𝑅1 (𝑤) |T▶T′ | T′ ∈ T P (𝑚 − 1, 𝑘)} ∪ {𝑅(𝑤) |T \ 𝑅1 (𝑤)}.

Informally, 𝑅(𝑤)T▶𝑅1 partitions the children of 𝑤 in 𝑅(𝑤) |T in different sets depending on
what is the set T′ ∈ T P (𝑚 − 1, 𝑘) they “jump” to. One additional set, i.e. 𝑅(𝑤) |T \ 𝑅1 (𝑤),
contains all the children of 𝑤 in 𝑅(𝑤) |T that are lost when updating 𝑅 to 𝑅1. To be com-
pletely formal, let us first prove that 𝑅(𝑤)T▶𝑅1 is a partition of 𝑅(𝑤) |T. Indeed, 𝑅(𝑤) |T can
be written as (𝑅(𝑤) |T ∩ 𝑅1 (𝑤)) ∪ (𝑅(𝑤) |T \ 𝑅1 (𝑤)). Moreover, by definition of T P (𝑚 − 1, 𝑘)
as the quotient set of ⇆P

𝑚−1,𝑘 , we have 𝑅1 (𝑤) =
⋃

T′∈TP (𝑚−1,𝑘 ) 𝑅1 (𝑤) |T′ . Lastly, 𝑅(𝑤) |T ∩⋃
T′∈TP (𝑚−1,𝑘 ) 𝑅1 (𝑤) |T′ is equivalent to

⋃
T′∈TP (𝑚−1,𝑘 ) (𝑅(𝑤) |T ∩ 𝑅1 (𝑤) |T′ ), which leads to

the definition of the partition 𝑅(𝑤)T▶𝑅1 from the definition of 𝑅1 (𝑤) |T▶T′ together with the
remaining component 𝑅(𝑤) |T \𝑅1 (𝑤). The figure below presents schematically the results we
have shown so far, only considering the children of𝑤 in 𝑅(𝑤) |T (on the left) and the children
of𝑤 ′ in 𝑅′ (𝑤 ′) |T (on the right).To work towards the definition of 𝑅′1 (as in the statement of the

𝑤 𝑤 ′

T T

T▶T1 T▶T2 ... T▶T|TP (𝑚−1,𝑘 ) |

{𝑅1 (𝑤 ) |T▶T′ | T′ ∈ TP (𝑚 − 1, 𝑘 ) }

𝑅 (𝑤 ) |T \ 𝑅1 (𝑤 )

(★): if |𝑅 (𝑤 ) |T | < 𝑘 · ( |T P (𝑚 − 1, 𝑘 ) | + 1) then
there are |𝑅 (𝑤 ) |T | children, otherwise there
are at least 𝑘 · ( |T P (𝑚 − 1, 𝑘 ) | + 1) children.

lemma), we now deal with the children in 𝑅′ (𝑤 ′) |T and find suitable subsets of 𝑅′1 in order to
define a partition of 𝑅′ (𝑤 ′) |T that is similar to 𝑅(𝑤)T▶𝑅1 (where “similar” here means that, later,
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wewill be able to construct a g-bisimulation using this partition). More precisely, we show that:
(★★★): it is possible to construct a family of sets

𝑅′ (𝑤 ′) |T;T′ for every T′ ∈ T P (𝑚 − 1, 𝑘)
GT

satisfying the following properties.
(1) For every T′ ∈ T P (𝑚 − 1, 𝑘),𝑅′ (𝑤 ′) |T;T′ is a set of pairs (𝑅′1,𝑤′1 ,𝑤

′
1) s.t.𝑤 ′1 ∈ 𝑅′ (𝑤 ′) |T,

𝑅′1,𝑤′1
⊆𝑅′, ((𝑊 ′, 𝑅′1,𝑤′1 ,𝑉

′),𝑤 ′1) ∈ T′, and for all (𝑤 ′2,𝑤 ′3) ∈ 𝑅′1,𝑤′1 , {𝑤
′
2,𝑤

′
3} ⊆ 𝑅′

∗ (𝑤 ′1).
(2) GT ⊆ 𝑅′ (𝑤 ′) |T.
(3) Every 𝑤 ′1 ∈ 𝑅′ (𝑤 ′) |T appears in exactly one set among 𝑅′ (𝑤 ′) |T;T′ (for all T′ ∈
T P (𝑚 − 1, 𝑘)) and GT. Then, these sets underlie a partition of 𝑅′ (𝑤 ′) |T.

(4) For every T′ ∈ T P (𝑚 − 1, 𝑘), min( |𝑅1 (𝑤) |T▶T′ |, 𝑘) = min( |𝑅′ (𝑤 ′) |T;T′ |, 𝑘).
(5) min( |𝑅(𝑤) |T \ 𝑅1 (𝑤) |, 𝑘) = min( |GT |, 𝑘).

Let us informally explain these properties (apart from the second and third properties, which
are self-explanatory). The first property basically requires us to modify 𝑅′ so that the children
of 𝑅′ (𝑤 ′) |T “jumps” to specific sets in T P (𝑚 − 1, 𝑘), in line with the developments that lead
to the proof of (★★). Instead, the set GT is dedicated to those worlds that should be made
unaccessible from𝑤 ′. The updates to 𝑅′ cannot be arbitrary, and this is where the fourth and
fifth properties come into play. These properties impose cardinality constraints on the sets
we construct, in line with the graded rank 𝑘 that is used in the equivalence relation⇆P

𝑚,𝑘
.

For example, suppose that for a given set T′ we have |𝑅1 (𝑤) |T▶T′ | < 𝑘 . Then, we need to
select exactly |𝑅1 (𝑤) |T▶T′ | children in 𝑅′ (𝑤 ′) |T and modify 𝑅′ so that all of them can be used
to define the set 𝑅′ (𝑤 ′) |T;T′ . If instead |𝑅1 (𝑤) |T▶T′ | ≥ 𝑘 , it is possible to select an arbitrary
amount of children from 𝑅′ (𝑤 ′) |T, as long as they are at least 𝑘 . Again, after selecting these
children we need to modify 𝑅′ so that they define the set 𝑅′ (𝑤 ′) |T;T′ . To comply with these
two last properties we rely on (★). The proof of (★★★) distinguishes two cases (which are
very similar in substance):
• |𝑅(𝑤) |T | < 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1). By (★) it follows that |𝑅′ (𝑤 ′) |T | = |𝑅(𝑤) |T |. This case
is the easiest one. Consider a bijection 𝔣 : 𝑅(𝑤) |T → 𝑅′ (𝑤 ′) |T. Then define GT as the set
{𝔣(𝑤1) | 𝑤1 ∈ 𝑅(𝑤) |T \ 𝑅1 (𝑤)}. By doing this, trivially the second and fifth properties
required by (★★★) are satisfied. In order to define the sets of the form 𝑅′ (𝑤 ′) |T;T′ , we start
by an initialisation to the empty set ∅ and then we populate them. Iteratively, for every T′ ∈
T P (𝑚 − 1, 𝑘) and every𝑤1 ∈ 𝑅1 (𝑤) |T▶T′ , consider 𝔣(𝑤1). By (★★), there is𝑅′1,𝔣 (𝑤1 ) ⊆ 𝑅

′ |𝔣 (𝑤1 )

such that (𝑊,𝑅1 |𝑤1 ,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝔣 (𝑤1 ) ,𝑉
′), 𝔣(𝑤1). By Lemma I.2, it follows that

(𝑊,𝑅1,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝔣 (𝑤1 ) ,𝑉
′), 𝔣(𝑤1) and therefore ((𝑊 ′, 𝑅′1,𝔣 (𝑤1 ) ,𝑉

′), 𝔣(𝑤1)) ∈
T′. Then, add to 𝑅′ (𝑤 ′) |T;T′ the pair (𝑅′1,𝔣 (𝑤1 ) , 𝔣(𝑤1)). Notice that this pair satisfies the
constraints required in the first property of (★ ★ ★). After the iterations over all T′ ∈
T P (𝑚 − 1, 𝑘) and over all 𝑤1 ∈ 𝑅1 (𝑤) |T▶T′ , the construction is completed. As we are
guided by the bijection 𝔣, we obtain that every 𝑤 ′1 ∈ 𝑅′ (𝑤 ′) |T appears in exactly one
set among 𝑅′ (𝑤 ′) |T;T′ for some T′ ∈ T P (𝑚 − 1, 𝑘) or in GT (condition 3 of (★ ★ ★)).
Moreover (again thanks to the bijection 𝔣) it holds that for every T′ ∈ T P (𝑚 − 1, 𝑘),
|𝑅′ (𝑤 ′) |T;T′ | = |𝑅1 (𝑤) |T▶T′ |, which implies condition 4 of (★★★). Hence, (★★★) is proved.
• |𝑅(𝑤) |T | ≥ 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1). By (★), it follows that |𝑅′ (𝑤 ′) |T | ≥ 𝑘 ·( |T P (𝑚 − 1, 𝑘) |+
1) too. For this case, it is easy to show that there is a set in the partition 𝑅(𝑤)T▶𝑅1 of 𝑅(𝑤) |T
that has cardinality at least 𝑘 . Indeed, ad absurdum, suppose all the sets in 𝑅(𝑤)T▶𝑅1 are

, Vol. 1, No. 1, Article . Publication date: May 2023.



14 Bednarczyk, Demri, Fervari & Mansutti

of cardinality less than 𝑘 . As 𝑅(𝑤)T▶𝑅1 partitions 𝑅(𝑤) |T and it contains |T P (𝑚 − 1, ) | + 1
sets (where the +1 refers to the set 𝑅(𝑤) |T \ 𝑅1 (𝑤)) this would imply that |𝑅(𝑤) |T | ≤
(𝑘 − 1) · ( |T P (𝑚 − 1, 𝑘) | + 1). This leads to a contradiction as by definition |T P (𝑚 − 1, 𝑘) | ≤
|T P (𝑚 − 1, 𝑘) | and we are in the case where |𝑅(𝑤) |T | ≥ 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1). Hence,
let Ω be a set in 𝑅(𝑤)T▶𝑅1 that has at least 𝑘 elements.
For the construction, we initialise all the sets 𝑅′ (𝑤 ′) |T;T′ and GT to the empty set ∅ and we
show how to populate them. Moreover, we introduce an auxiliary set Δ which is initially
equal to 𝑅′ (𝑤 ′) |T and keeps track of which elements of this latter set have not been already
used in the construction (and are hence available). The set Δ can be understood as a copy
of 𝑅′ (𝑤 ′) |T with unmarked elements and marked elements. Unmarked elements are the
worlds yet to be handled by the algorithm. Iteratively,

(1) consider some T′ ∈ T P (𝑚 − 1, 𝑘) s.t. 𝑅1 (𝑤) |T▶T′ ≠ Ω and that was not already treated;
(2) select 𝛽 = min( |𝑅1 (𝑤) |T▶T′ |, 𝑘) worlds𝑤 ′1, . . . ,𝑤 ′𝛽 from the pool of available worlds Δ.
(3) As in the previous case of the proof, by (★★) we have that for each 𝑖 ∈ [1, 𝛽] there is

𝑅′1,𝑤′
𝑖

⊆ 𝑅′ |𝑤′
𝑖
such that for every𝑤1 ∈ 𝑅1 (𝑤) |T▶T′ it holds that

(𝑊,𝑅1 |𝑤1 ,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝑤′
𝑖

,𝑉 ′),𝑤 ′𝑖 .
By Lemma I.2, it follows also that (𝑊,𝑅1,𝑉 ),𝑤1 ⇆

P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝑤′
𝑖

,𝑉 ′),𝑤 ′𝑖 and therefore
((𝑊 ′, 𝑅′1,𝑤′

𝑖

,𝑉 ′),𝑤 ′𝑖 ) ∈ T′. Then, define the set 𝑅′ (𝑤 ′) |T;T′ as
{(𝑅′1,𝑤′

𝑖

,𝑤 ′𝑖 ) | 𝑖 ∈ [1, 𝛽]}.
Notice that by construction this set satisfies the first and fourth properties of (★★★).

(4) Remove𝑤 ′1, . . . ,𝑤
′
𝛽
from Δ (they will not be used in the successive iterations).

After this iterative construction, only two sets still need to be handled: Ω and𝑅(𝑤) |T\𝑅1 (𝑤).
In the case these two sets are different, we proceed as follows.

(1) We start by considering 𝑅(𝑤) |T \ 𝑅1 (𝑤), and we select 𝛽 = min( |𝑅(𝑤) |T \ 𝑅1 (𝑤) |, 𝑘)
worlds, say𝑤 ′1, . . . ,𝑤

′
𝛽
from the pool of available worlds Δ.

(2) We define GT as {𝑤 ′1, . . . ,𝑤 ′𝛽 } and remove these worlds from Δ. By construction, GT
satisfies the second and fifth properties of (★★★).

(3) We consider Ω. A few things should be noted now.
• There is T′ ∈ T P (𝑚 − 1, 𝑘) such that Ω = 𝑅1 (𝑤) |T▶T′ , and by definition of Ω, we have
|𝑅1 (𝑤) |T▶T′ | ≥ 𝑘 .
• At this point of the construction, we dealt with |T P (𝑚 − 1, 𝑘) | of the |T P (𝑚 − 1, 𝑘) | + 1
sets needed for the construction. For each of these sets we used at most 𝑘 new worlds
of 𝑅′ (𝑤 ′) |T. Hence, as |𝑅′ (𝑤 ′) |T | ≥ 𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1) and |T P (𝑚 − 1, 𝑘) | ≥
|T P (𝑚 − 1, 𝑘) |, we conclude that Δ has at least 𝑘 elements.

(4) Consider the set Δ. By (★★) we have that for each𝑤 ′1 ∈ Δ there is 𝑅′1,𝑤′1 ⊆ 𝑅
′ |𝑤′1 such that

for every𝑤1 ∈ 𝑅1 (𝑤) |T▶T′ it holds that
(𝑊,𝑅1 |𝑤1 ,𝑉 ),𝑤1 ⇆

P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝑤′1
,𝑉 ′),𝑤 ′1.

By Lemma I.2, it follows that (𝑊,𝑅1,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝑤′1
,𝑉 ′),𝑤 ′1 and therefore

((𝑊 ′, 𝑅′1,𝑤′1 ,𝑉
′),𝑤 ′1) ∈ T′. Then, define the set 𝑅′ (𝑤 ′) |T;T′ as {(𝑅′1,𝑤′1 ,𝑤

′
1) | 𝑤 ′1 ∈ Δ}. By

construction, this set satisfies the first and fourth properties of (★★★) (recall that both
𝑅′ (𝑤 ′) |T;T′ and 𝑅1 (𝑤) |T▶T′ have at least 𝑘 elements, see the previous point).

(5) Empty Δ as every remaining world in it is now used. We completed the construction in
the case of Ω ≠ 𝑅(𝑤) |T \ 𝑅1 (𝑤).
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In the case Ω = 𝑅(𝑤) |T \ 𝑅1 (𝑤), the construction is trivially completed by adding to GT
every world in Δ. Notice that for the same considerations done before (point 3 of the
construction for Ω ≠ 𝑅(𝑤) |T \ 𝑅1 (𝑤)) it holds that Δ has at least 𝑘 elements. Hence, GT
satisfies both the second and the fifth properties of (★★★). Again, as a last step, we empty
Δ as every remaining world is now used.
During the definition of the construction, we already detailed why the first, second, fourth
and fifth properties of (★★★) are satisfied. The same holds true for the third one, as we
relied on the set Δ to never use twice the same world, and at the end of the construction Δ
was always empty.

Therefore (★★★) holds. A last note about this construction: from the first and third properties
of (★★★), in particular that “for all (𝑤 ′2,𝑤 ′3) ∈ 𝑅′1,𝑤′1 , {𝑤

′
2,𝑤

′
3} ⊆ 𝑅′

∗ (𝑤 ′1)}”, it is easy to see
that for all (𝑅′1,𝑤′1 ,𝑤

′
1) ∈ 𝑅′ (𝑤 ′) |T;T1 and (𝑅′1,𝑤′2 ,𝑤

′
2) ∈ 𝑅′ (𝑤 ′) |T;T2 with 𝑤 ′1 ≠ 𝑤

′
2, we have

𝑅′1,𝑤′1
∩ 𝑅′1,𝑤′2 = ∅. Keeping this in mind, we are now ready to construct 𝑅′1.

We consider every T ∈ T P (𝑚 − 1, 𝑘) and apply (★★★) to construct the sets 𝑅′ (𝑤 ′) |T;T′ (for
every T′ ∈ T P (𝑚 − 1, 𝑘)) and GT. We then define 𝑅′1 as

𝑅′1
def
=

⋃
T∈T P (𝑚−1,𝑘 )
T′∈TP (𝑚−1,𝑘 )

(𝑅′1,𝑤′1
,𝑤′1 ) ∈𝑅′ (𝑤′ ) |T;T′

{(𝑤 ′,𝑤 ′1)} ∪ 𝑅′1,𝑤′1 .

Clearly. we have that 𝑅′1 ⊆ 𝑅1. Moreover, from the properties of (★★★), it holds that for every
𝑤 ′1 ∈ 𝑅′1 (𝑤), 𝑅′1 |𝑤′1 = 𝑅

′
1,𝑤′1

. In order to conclude the proof, we need to show that

(1) (𝑊,𝑅1,𝑉 ),𝑤 ⇆P
𝑚,𝑘
(𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′;

(2) if 𝑅1 (𝑤) = 𝑅(𝑤) then 𝑅′1 (𝑤 ′) = 𝑅′ (𝑤 ′).

Let us first prove (2) by using the fifth property of (★★★). Suppose 𝑅1 (𝑤) = 𝑅(𝑤) and hence 𝑅(𝑤) \
𝑅1 (𝑤) = ∅. It is easy to see that 𝑅(𝑤) \𝑅1 (𝑤) can also be written as

⋃
T∈T P (𝑚−1,𝑘 ) (𝑅(𝑤) |T \𝑅1 (𝑤)).

We conclude that |𝑅(𝑤) |T \ 𝑅1 (𝑤) | = 0 for every T ∈ T P (𝑚 − 1, 𝑘). Similarly, 𝑅′ (𝑤 ′) \ 𝑅′1 (𝑤 ′)
can be shown to be equivalent to

⋃
T∈T P (𝑚−1,𝑘 ) (𝑅′ (𝑤 ′) |T \ 𝑅′1 (𝑤 ′)). Notice that for every T ∈

T P (𝑚 − 1, 𝑘), a world𝑤 ′1 ∈ 𝑅′ (𝑤 ′) |T \ 𝑅′1 (𝑤 ′) cannot be inside a pair of 𝑅′ (𝑤 ′) |T;T′ (for any T′ ∈
T P (𝑚 − 1, 𝑘)). Indeed, if this was the case, then (𝑤 ′,𝑤 ′1) ∈ 𝑅′1 (see definition of 𝑅′1) in contradiction
with 𝑤 ′1 ∈ 𝑅′ (𝑤 ′) |T \ 𝑅′1 (𝑤 ′). Then 𝑤 ′1 ∈ GT and we conclude that 𝑅′ (𝑤 ′) |T \ 𝑅′1 (𝑤 ′) = GT and
𝑅′ (𝑤 ′) \ 𝑅′1 (𝑤 ′) =

⋃
T∈T P (𝑚−1,𝑘 ) GT. By construction, every world 𝑤 ′1 ∈ 𝑅′ (𝑤) can appear in at

most one set in {GT | T′ ∈ T P (𝑚 − 1, 𝑘)} and hence |𝑅′ (𝑤 ′) \ 𝑅′1 (𝑤 ′) | =
∑

T∈T P (𝑚−1,𝑘 ) |GT |. We
can now apply the fifth property of (★★★), i.e.

min( |𝑅(𝑤) |T \ 𝑅1 (𝑤) |, 𝑘) = min( |GT |, 𝑘)
so that together with 𝑘 ≥ 1 (see the beginning of the proof) and |𝑅(𝑤) |T \ 𝑅1 (𝑤) | = 0 leads to
|𝑅′ (𝑤 ′) \ 𝑅′1 (𝑤 ′) | = 0. As by definition 𝑅′1 (𝑤 ′) ⊆ 𝑅′ (𝑤 ′), this ends the proof of (2).
In order to conclude the proof, let us prove (1) and this is done by constructing a g-bisimulation
Z0, . . . ,Z𝑚 up to (𝑚,𝑘, P) between (𝑊,𝑅1,𝑉 ) and (𝑊 ′, 𝑅′1,𝑉 ′) such that {𝑤}Z𝑚1 {𝑤 ′}. Here, we
iteratively construct the g-bisimulation starting from the setsZ 𝑗

1 = {(𝑤,𝑤 ′)} (for every 𝑗 ∈ [0,𝑚]).
During the construction we make sure to always preserve the satisfaction of the conditions (init),
(refine), (size) and (atoms). Notice that these conditions hold for our initial sequence of relations. In
particular, (atoms) holds as by hypothesis there is T ∈ T P (𝑚,𝑘 · ( |T P (𝑚 − 1, 𝑘) | + 1)) such that
{(𝔐,𝑤), (𝔐′,𝑤 ′)} ⊆ T and hence𝔐,𝑤 ⇆P

𝑚,𝑘 · ( |T P (𝑚−1,𝑘 ) |+1) 𝔐
′,𝑤 ′. The construction can be split

into four steps:
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m-forth-step: Let 𝑋 ⊆ 𝑅1 (𝑤) be a set such that |𝑋 | ∈ [1, 𝑘]. As required by the condition (m-
forth), we want to pair this set with a suitable subset 𝑌 ⊆ 𝑅′1 (𝑤) of cardinality |𝑋 | so that it is
possible to then satisfy the conditions (g-forth) and (g-back). Let us consider the partition of𝑋
defined as {𝑋T▶T′ | T ∈ T P (𝑚 − 1, 𝑘) and T′ ∈ T P (𝑚 − 1, 𝑘)} where 𝑋T▶T′ = 𝑋 ∩𝑅1 (𝑤) |T▶T′ .
We consider the set 𝑅′ (𝑤 ′) |T;T′ and select |𝑋T▶T′ | worlds appearing in one of its pairs
(which are of the form (𝑅′1,𝑤′1 ,𝑤

′
1)). Let 𝑌T;T′ be the set of these selected worlds. By (★★★)

this set is guaranteed to exist and is such that every world 𝑤 ′1 in it is also in 𝑅′1 (𝑤 ′). Let
𝑌 =

⋃
T∈T P (𝑚−1,𝑘 ),T′∈TP (𝑚−1,𝑘 ) 𝑌T;T′ . It is easy to see that |𝑋 | = |𝑌 |. For every 𝑗 ∈ [0,𝑚 − 1]

we add (𝑋,𝑌 ) toZ 𝑗

|𝑋 | .
m-back-step: Let 𝑌 ⊆ 𝑅′1 (𝑤) be a set such that |𝑌 | ∈ [1, 𝑘]. Let us follow the condition

(m-back) symmetrically to what was done for the condition (m-forth) in the previous
step of the construction. Let us first consider the partition of 𝑌 defined as {𝑌T;T′ | T ∈
T P (𝑚 − 1, 𝑘) and T′ ∈ T P (𝑚 − 1, 𝑘)} where

𝑌T;T′ = 𝑌 ∩ {𝑤 ′1 | (𝑅′1,𝑤′1 ,𝑤
′
1) ∈ 𝑅′ (𝑤 ′) |T;T′ for some 𝑅′1,𝑤′1 }.

We select a subset 𝑋T▶T′ of 𝑅1 (𝑤) |T▶T′ having cardinality |𝑌T;T′ |, which is guaranteed to
exist by (★★★). Let 𝑋 =

⋃
T∈T P (𝑚−1,𝑘 ),T′∈TP (𝑚−1,𝑘 ) 𝑋T▶T′ . It is easy to see that |𝑌 | = |𝑋 |. For

every 𝑗 ∈ [0,𝑚 − 1] we add (𝑋,𝑌 ) toZ 𝑗

|𝑌 | .
g-forth-step: From the first two steps of the construction, the set Z 𝑗

𝑖
was updated with new

pairs (𝑋,𝑌 ) where every element in 𝑋 is from 𝑅1 (𝑤) and every element of 𝑌 is from 𝑅′1 (𝑤).
Consider then one of these pairs (𝑋,𝑌 ) and let 𝑤1 ∈ 𝑋 . There is T ∈ T P (𝑚 − 1, 𝑘) and
T′ ∈ T P (𝑚 − 1, 𝑘) such that𝑤1 ∈ 𝑅1 (𝑤) |T▶T′ . By construction (first and second steps above),
there is𝑤 ′1 ∈ 𝑌 such that for some𝑅′1,𝑤′1 ⊆ 𝑅

′
1 it holds that (𝑅′1,𝑤′1 ,𝑤

′
1) ∈ 𝑅′ (𝑤 ′) |T;T′ . Again, by

applying (★★★) we obtain that (𝑊,𝑅1,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘 (𝑊

′, 𝑅1,𝑤′1 ,𝑉
′),𝑤 ′1. Since by definition

𝑅′1,𝑤′1
= 𝑅′1 |𝑤′1 and from Lemma I.2 we obtain (𝑊,𝑅1,𝑉 ),𝑤1 ⇆

P
𝑚−1,𝑘 (𝑊

′, 𝑅′1,𝑉
′),𝑤 ′1. Then, let

K0, . . . ,K𝑚−1 be the g-bisimulation up to (𝑚 − 1, 𝑘, P) between (𝑊,𝑅1,𝑉 ) and (𝑊 ′, 𝑅′1,𝑉 ′)
such that {𝑤1}K𝑚−11 {𝑤 ′1}. For every 𝑖 ∈ [1, 𝑘] and every 𝑗 ∈ [0,𝑚−1], updateZ

𝑗

𝑖
toZ 𝑗

𝑖
∪K 𝑗

𝑖
.

g-back-step: Symmetrically to the previous point of the construction, let us consider again a
pair (𝑋,𝑌 ) introduced by one of the two steps (m-forth-step) and (m-back-step). Let𝑤 ′1 ∈ 𝑌 .
Then there is T ∈ T P (𝑚 − 1, 𝑘) and T′ ∈ T P (𝑚 − 1, 𝑘) and 𝑅′1,𝑤′1 ⊆ 𝑅

′
1 such that (𝑅′1,𝑤′1 ,𝑤

′
1) ∈

𝑅′ (𝑤 ′) |T;T′ . By construction (steps (m-forth-step) and (m-back-step)), there is𝑤1 ∈ 𝑋 such
that𝑤1 ∈ 𝑅′ (𝑤) |T▶T′ . Then by (★★★), we obtain that (𝑊,𝑅1,𝑉 ),𝑤1 ⇆

P
𝑚−1,𝑘 (𝑊

′, 𝑅1,𝑤′1 ,𝑉
′),𝑤 ′1.

Again, by definition 𝑅′1,𝑤′1 = 𝑅′1 |𝑤′1 and from Lemma I.2 we obtain (𝑊,𝑅1,𝑉 ),𝑤1 ⇆
P
𝑚−1,𝑘

(𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′1. Then, let K0, . . . ,K𝑚−1 be the g-bisimulation up to (𝑚 − 1, 𝑘, P) between
(𝑊,𝑅1,𝑉 ) and (𝑊 ′, 𝑅′1,𝑉 ′) such that {𝑤1}K𝑚−11 {𝑤 ′1}. For every 𝑖 ∈ [1, 𝑘] and every 𝑗 ∈
[0,𝑚 − 1], updateZ 𝑗

𝑖
toZ 𝑗

𝑖
∪ K 𝑗

𝑖
.

It is simple to see that this construction leads to a sequence of relations Z0, . . . ,Z𝑚 that is a
g-bisimulation up to (𝑚,𝑘, P) between (𝑊,𝑅1,𝑉 ) and (𝑊 ′, 𝑅′1,𝑉 ′) such that {𝑤}Z𝑚1 {𝑤 ′}. Indeed,
the conditions (init), (refine), (size) and (atoms) hold at any point during the construction. For the
other condition, let (𝑋,𝑌 ) be a pair in someZ 𝑗

𝑖
. If it was not introduced by the first two steps of the

construction, then (𝑋,𝑌 ) is a member of some set K 𝑗

𝑖
⊆ Z 𝑗

𝑖
that is used in a g-bisimulation whose

elements are all used to constructZ0, . . . ,Z𝑚 (third and fourth point of the proof). Hence, w.r.t.
(𝑋,𝑌 ) no condition can be violated. If instead (𝑋,𝑌 ) is added to the g-bisimulation during the first
and second point of the construction, then by construction it is easy to check that it satisfies all the
conditions. Therefore (𝑊,𝑅1,𝑉 ),𝑤 ⇆P

𝑚,𝑘
(𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′, which ends the proof of the lemma. □
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K PROOF OF LEMMA 5.2

Proof. If 𝑘 = 0, then the proof is by an easy verification as the formula 𝜑 from the statement
is logically equivalent to a formula from the propositional calculus (each subformula 3≥0 𝜓 is
logically equivalent to ⊤). Otherwise (𝑘 ≥ 1), let 𝑘+ = 𝑘 × (|T P (𝑚 − 1, 𝑘) | +1). As, ≡P

𝑚,𝑘+ and⇆
P
𝑚,𝑘+

are identical relations, there is a finite set {𝜒1, . . . , 𝜒𝑄 } ⊆ GML[𝑚,𝑘+, P] such that
• 𝜒1 ∨ · · · ∨ 𝜒𝑄 is valid, and each 𝜒𝑖 is satisfiable,
• for all 𝑖 ≠ 𝑗 ∈ [1, 𝑄], 𝜒𝑖 ∧ 𝜒 𝑗 is unsatisfiable,
• (𝔐,𝑤) ≡P

𝑚,𝑘+ (𝔐
′,𝑤 ′) iff there is 𝑖 such that (𝔐,𝑤) |= 𝜒𝑖 and (𝔐′,𝑤 ′) |= 𝜒𝑖 .

This is a direct consequence of Proposition I.1 containing results established in [22]. Let𝜓 be the
formula

∨{𝜒𝑖 | ∃𝔐,𝑤 s.t.𝔐,𝑤 |= 𝜒𝑖 ∧ 𝜑}. An empty disjunction is understood as ⊥.
Now, we show that𝜓 is logically equivalent to 𝜑 . Suppose that𝔐,𝑤 |= 𝜑 . As 𝜒1 ∨ · · · ∨ 𝜒𝑄 is

valid, there is 𝑖 ∈ [1, 𝑄] such that𝔐,𝑤 |= 𝜒𝑖 . Therefore 𝜒𝑖 occurs in𝜓 and consequently,𝔐,𝑤 |= 𝜓 .
Conversely, suppose that 𝔐,𝑤 |= 𝜓 with 𝔐 = (𝑊,𝑅,𝑉 ). So, there is 𝜒𝑖 occuring in𝜓 such that

𝔐,𝑤 |= 𝜒𝑖 and there exist a model 𝔐′ = (𝑊 ′, 𝑅′,𝑉 ′) and𝑤 ′ ∈𝑊 ′ such that 𝔐′,𝑤 ′ |= 𝜒𝑖 ∧ 𝜑 . So,
(𝔐,𝑤) ≡P

𝑚,𝑘+ (𝔐
′,𝑤 ′). By the definition of the satisfaction relation |=, there is 𝑅′1 ⊆ 𝑅′ such that

𝑅′1 (𝑤 ′) = 𝑅′ (𝑤 ′) and (𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′ |= 𝜑 . All the assumptions of Lemma 5.1 apply and therefore,
there is 𝑅1 ⊆ 𝑅 such that 𝑅1 (𝑤) = 𝑅(𝑤), (𝑊,𝑅1,𝑉 ),𝑤 ⇆P

𝑚,𝑘
(𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′ and (𝑊,𝑅1,𝑉 ),𝑤 ≡P𝑚,𝑘

(𝑊 ′, 𝑅′1,𝑉 ′),𝑤 ′. As 𝜑 belongs to GML[𝑚,𝑘, P], we also get that (𝑊,𝑅1,𝑉 ),𝑤 |= 𝜑 . But then by
definition of |=, we conclude that 𝔐,𝑤 |= 𝜑 . □

L PROOF OF (A) FOR LEMMA 5.5

Let us start by stating a few properties. Let us consider two models 𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 =

(𝑊,𝑅2,𝑉 ) such that 𝔐1 +𝔐2 = 𝔐. We pinpoint three important properties of the models we are
considering.
S1: Every world in 𝑅(𝑤)=0 is either in 𝑅1 (𝑤)=0 or 𝑅2 (𝑤)=0;
S2: Every world 𝑤1 ∈ 𝑅(𝑤)=1 is in 𝑅1 (𝑤)=0, 𝑅2 (𝑤)=0, 𝑅1 (𝑤)=1 or in 𝑅2 (𝑤)=1. Indeed, suppose
(𝑤,𝑤1) ∈ 𝑅𝑖 (for some 𝑖 ∈ {1, 2}). If 𝑤1 is in the domain of the same relation 𝑅𝑖 then
𝑤1 ∈ 𝑅𝑖 (𝑤)=1. Otherwise (𝑤1 is in the domain of 𝑅3−𝑖 ) then𝑤1 ∈ 𝑅𝑖 (𝑤)=0.

S3: Every world in 𝑅(𝑤)=2 is in 𝑅1 (𝑤)=0, 𝑅2 (𝑤)=0, 𝑅1 (𝑤)=1, 𝑅2 (𝑤)=1, 𝑅1 (𝑤)=2 or 𝑅2 (𝑤)=2. The
justification is similar to the one given above for 𝑅(𝑤)=1.

First, as worlds in our models do not satisfy any propositional symbol, the spoiler cannot win
because of distinct propositional valuations. The proof is by cases on𝑚 and on the moves done by
the spoiler, and by induction on 𝑠 . First, suppose𝑚 = 0. Then it is easy to see that the duplicator
has a winning strategy. Indeed, as𝑚 = 0, the spoiler cannot play the modal move and therefore
cannot change the current worlds 𝑤 and 𝑤 ′. Then, after 𝑠 spatial moves the game will be in the
state (𝔐1,𝑤) and (𝔐′1,𝑤 ′) w.r.t. the rank (0, 0, P). From I we conclude that the duplicator wins.

Suppose now𝑚 ≥ 1 and the spoiler decides to perform a modal move. Notice that, in particular,
this case also takes care of the case where 𝑠 = 0 and the spoiler is forced to play a modal move.
Moreover, suppose that the spoiler chooses (𝔐,𝑤) (the case where it picks (𝔐′,𝑤 ′) is analogous).
We have to distinguish the following situations.
• Suppose that the spoiler chooses a world𝑤1 ∈ 𝑅(𝑤)=0. Then |𝑅(𝑤)=0 | ≥ 1 and by hypothesis
min( |𝑅(𝑤)=0 |, 2𝑠 ) = min( |𝑅′ (𝑤 ′)=0 |, 2𝑠 ), it follows that |𝑅′ (𝑤 ′)=0 | ≥ 1. It is then sufficient
for the duplicator to choose𝑤1 ∈ 𝑅′ (𝑤 ′)=0 to guarantee him a victory, as the subtrees rooted
in𝑤1 and𝑤 ′1 are isomorphic.
• Suppose that the spoiler chooses a world𝑤1 ∈ 𝑅(𝑤)=1. Then |𝑅(𝑤)=1 | ≥ 1 and by hypothesis
min( |𝑅(𝑤)=1 |, 2𝑠 (𝑠 + 1)) = min( |𝑅′ (𝑤 ′)=1 |, 2𝑠 (𝑠 + 1)), it follows that |𝑅′ (𝑤 ′)=1 | ≥ 1. Then
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again, it is sufficient for the duplicator to choose𝑤1 ∈ 𝑅′ (𝑤 ′)=1 to guarantee him a victory,
as the subtrees rooted in𝑤1 and𝑤 ′1 are isomorphic.
• Suppose that the spoiler chooses a world 𝑤1 ∈ 𝑅(𝑤)=2. Then |𝑅(𝑤)=2 | ≥ 1 and by hypoth-
esis min( |𝑅(𝑤)=2 |, 2𝑠−1 (𝑠 + 1) (𝑠 + 2)) = min( |𝑅′ (𝑤 ′)=2 |, 2𝑠−1 (𝑠 + 1) (𝑠 + 2)), it follows that
|𝑅′ (𝑤 ′)=2 | ≥ 1 (notice here that 2𝑠−1 (𝑠 + 1) (𝑠 + 2) = 1 for 𝑠 = 0). Then again, it is sufficient
for the duplicator to choose𝑤1 ∈ 𝑅′ (𝑤 ′)=2 to guarantee him a victory, as the subtrees rooted
in𝑤1 and𝑤 ′1 are isomorphic.

As stated before, the case where the spoiler decides to perform a modal move also captures the
base case of the induction on 𝑠 . Then, it remains to show the case where 𝑠 ≥ 1 and the spoiler
decides to do a spatial move. Again suppose that the spoiler chooses (𝔐,𝑤) (the case where it picks
(𝔐′,𝑤 ′) is analogous). It then picks two structures𝔐1 = (𝑊,𝑅1,𝑉 ) and𝔐2 = (𝑊,𝑅2,𝑉 ) such that
𝔐1 +𝔐2 = 𝔐. Notice that these two structures are such that both (𝔐1,𝑤) and (𝔐2,𝑤) satisfy I,
II and III, as it is easy to see that these three properties are all preserved when taking submodels.
The duplicator has now to pick two structures𝔐′1 = (𝑊 ′, 𝑅′1,𝑉 ′) and𝔐′2 = (𝑊 ′, 𝑅′2,𝑉 ′) such that
𝔐′1 +𝔐′2 = 𝔐′ while guaranteeing him a victory. It does so by constructing 𝑅′1 and 𝑅

′
2 as follows

(from the empty set):

Split of 𝑅′ (𝑤)=0. We introduce the sets
𝑅1 (𝑤) |0▶0 def

= 𝑅1 (𝑤)=0 ∩ 𝑅(𝑤)=0
𝑅2 (𝑤) |0▶0 def

= 𝑅2 (𝑤)=0 ∩ 𝑅(𝑤)=0 .
It is easy to see that these sets are pairwise disjoint. From (S1) it follows that

𝑅(𝑤)=0 = (𝑅1 (𝑤)=0 ∩ 𝑅(𝑤)=0) ∪ (𝑅2 (𝑤)=0 ∩ 𝑅(𝑤)=0).
The duplicator starts by partitioning 𝑅′ (𝑤)=0 into two sets 𝑍1 and 𝑍2 according to the
cardinalities of the two components of 𝑅(𝑤)=0 highlighted above, namely the two sets
𝑅1 (𝑤)=0 ∩ 𝑅(𝑤)=0 and 𝑅2 (𝑤)=0 ∩ 𝑅(𝑤)=0.
• Suppose that |𝑅1 (𝑤) |0▶0 | < 2𝑠−1 and |𝑅2 (𝑤) |0▶0 | < 2𝑠−1. Hence, |𝑅(𝑤)=0 | < 2𝑠 and by
hypothesis |𝑅′ (𝑤 ′)=0 | = |𝑅(𝑤)=0 |. Then the split of 𝑅′ (𝑤)=0 into 𝑍1 and 𝑍2 is made so that
|𝑍1 | = |𝑅1 (𝑤) |0▶0 | and |𝑍2 | = |𝑅2 (𝑤) |0▶0 |.
• Suppose that there is 𝑖 ∈ {1, 2} such that |𝑅𝑖 (𝑤) |0▶0 | < 2𝑠−1 and |𝑅 𝑗 (𝑤) |0▶0 | ≥ 2𝑠−1, where
𝑗 = 3 − 𝑖 is the index of the other set. Then the split of 𝑅′ (𝑤)=0 into 𝑍𝑖 and 𝑍 𝑗 is made so
that |𝑍𝑖 | = |𝑅𝑖 (𝑤) |0▶0 |. Notice that by hypothesis on the cardinality of 𝑅′ (𝑤)=0 it holds that
|𝑍 𝑗 | ≥ 2𝑠−1 (otherwise min( |𝑅(𝑤)=0 |, 2𝑠 ) ≠ min( |𝑅′ (𝑤 ′)=0 |, 2𝑠 )).
• Suppose that |𝑅1 (𝑤) |0▶0 | ≥ 2𝑠−1 and |𝑅2 (𝑤) |0▶0 | ≥ 2𝑠−1. Then the split of 𝑅′ (𝑤)=0 into 𝑍1
and 𝑍2 is made so that |𝑍1 | = 2𝑠−1. Notice that by hypothesis on the cardinality of 𝑅′ (𝑤)=0
it holds that |𝑍 𝑗 | ≥ 2𝑠−1.

For each𝑤 ′1 ∈ 𝑍1, the duplicator adds (𝑤 ′,𝑤 ′1) to 𝑅′1. For each𝑤 ′2 ∈ 𝑍2, it adds (𝑤 ′,𝑤 ′2) to 𝑅′2.
Notice that by construction the two sets introduced are always such that
Z1: min( |𝑅1 (𝑤) |0▶0 |, 2𝑠−1) = min( |𝑍1 |, 2𝑠−1)
Z2: min( |𝑅2 (𝑤) |0▶0 |, 2𝑠−1) = min( |𝑍2 |, 2𝑠−1).

Split of 𝑅′ (𝑤)=1. We introduce the following sets:
𝑅1 (𝑤) |1▶0 def

= 𝑅1 (𝑤)=0 ∩ 𝑅(𝑤)=1 𝑅2 (𝑤) |1▶0 def
= 𝑅2 (𝑤)=0 ∩ 𝑅(𝑤)=1

𝑅1 (𝑤) |1▶1 def
= 𝑅1 (𝑤)=1 ∩ 𝑅(𝑤)=1 𝑅2 (𝑤) |1▶1 def

= 𝑅2 (𝑤)=1 ∩ 𝑅(𝑤)=1.
It is easy to see that these sets are pairwise disjoint. From (S2) it follows that

𝑅(𝑤)=1 = 𝑅1 (𝑤) |1▶0 ∪ 𝑅2 (𝑤) |1▶0 ∪ 𝑅1 (𝑤) |1▶1 ∪ 𝑅2 (𝑤) |1▶1 .
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The duplicator starts by partitioning 𝑅′ (𝑤)=1 into four sets 𝑍 ′1, 𝑍 ′2,𝑂1 and𝑂2 according to the
cardinalities of the four sets above (‘Z’ for ‘zero’, ‘O’ for ’one’). In order to shorten the presenta-
tion, instead of concretely make explicit all the cases as we did in the previous point of the con-
struction, we treat them “schematically”. LetX = {𝑅1 (𝑤) |1▶0, 𝑅2 (𝑤) |1▶0, 𝑅1 (𝑤) |1▶1, 𝑅2 (𝑤) |1▶1}
and let 𝔣 be the bijection

𝔣(𝑅1 (𝑤) |1▶0) def= 𝑍 ′1, 𝔣(𝑅2 (𝑤) |1▶0) def= 𝑍 ′2 𝔣(𝑅1 (𝑤) |1▶1) def= 𝑂1, 𝔣(𝑅2 (𝑤) |1▶1) def= 𝑂2.
Moreover, we define (B stands for “bound”)

B(𝑅1 (𝑤) |1▶0) def
= B(𝑅2 (𝑤) |1▶0) def

= 2𝑠−1

B(𝑅1 (𝑤) |1▶1) def
= B(𝑅2 (𝑤) |1▶1) def

= 2𝑠−1𝑠 .
So, these definitions (actually notations) are helpful at the metalevel. Besides, notice that,
from 𝑠 ≥ 1, it holds that 2𝑠−1 and 2𝑠−1𝑠 are both at least 1.
• Suppose that for every set 𝑆 ∈ X it holds that |𝑆 | < B(𝑆). Then, since it holds that

|𝑅(𝑤)=1 | = |𝑅1 (𝑤) |1▶0 | + |𝑅2 (𝑤) |1▶0 | + |𝑅1 (𝑤) |1▶1 | + |𝑅2 (𝑤) |1▶1 |
it holds that |𝑅(𝑤)=1 | < 2𝑠−1 + 2𝑠−1 + 2𝑠−1𝑠 + 2𝑠−1𝑠 = 2𝑠 (𝑠 + 1) and therefore by hypothesis
we conclude that |𝑅(𝑤)=1 | = |𝑅′ (𝑤 ′)=1 |. Then, the split of 𝑅′ (𝑤 ′)=1 into 𝑍 ′1, 𝑍 ′2, 𝑂1 and 𝑂2
is made so that for every 𝑆 ∈ X, |𝔣(𝑆) | = |𝑆 |.
• Suppose instead that there is 𝑆 ∈ X such that |𝑆 | ≥ B(𝑆). Then, the split of 𝑅′ (𝑤 ′)=1 into
𝑍 ′1, 𝑍

′
2,𝑂1 and𝑂2 can be made so that for every 𝑆 ∈ X \ {𝑆}, |𝔣(𝑆) | = min( |𝑆 |,B(𝑆)). From

the hypothesis
min( |𝑅(𝑤)=1 |, 2𝑠 (𝑠 + 1)) = min( |𝑅′ (𝑤 ′)=1 |, 2𝑠 (𝑠 + 1))

we conclude that this construction can be effectively made and it is such that |𝔣(𝑆) | ≥ B(𝑆).
For each𝑤 ′1 ∈ 𝑍 ′1, the duplicator adds (𝑤 ′,𝑤 ′1) to 𝑅′1 and the only element of 𝑅′ |𝑤′1 to 𝑅

′
2. For

each𝑤 ′2 ∈ 𝑍 ′2, it adds (𝑤 ′,𝑤 ′2) to 𝑅′2 and the only element of 𝑅′ |𝑤′2 to 𝑅
′
1. For each𝑤

′
1 ∈ 𝑂1, it

adds (𝑤 ′,𝑤 ′1) and the only element of 𝑅′ |𝑤′1 to 𝑅
′
1. Lastly, for each𝑤

′
2 ∈ 𝑂2, it adds (𝑤 ′,𝑤 ′2)

and the only element of 𝑅′ |𝑤′2 to 𝑅
′
2. Notice that by construction the four sets introduced are

always such that
Z11: min( |𝑅1 (𝑤) |1▶0 |, 2𝑠−1) = min( |𝑍 ′1 |, 2𝑠−1)
Z21: min( |𝑅2 (𝑤) |1▶0 |, 2𝑠−1) = min( |𝑍 ′2 |, 2𝑠−1)
O1: min( |𝑅1 (𝑤) |1▶1 |, 2𝑠−1𝑠) = min( |𝑂1 |, 2𝑠−1𝑠)
O2: min( |𝑅2 (𝑤) |1▶1 |, 2𝑠−1𝑠) = min( |𝑂2 |, 2𝑠−1𝑠)
or, more schematically, for every 𝑆 ∈ X, min( |𝑆 |,B(𝑆)) = min( |𝔣(𝑆) |,B(𝑆)).

Split of 𝑅′ (𝑤)=2. Similarly to the previous steps, we introduce the following sets:
𝑅1 (𝑤) |2▶0 def

= 𝑅1 (𝑤)=0 ∩ 𝑅(𝑤)=2 𝑅2 (𝑤) |2▶0 def
= 𝑅2 (𝑤)=0 ∩ 𝑅(𝑤)=2

𝑅1 (𝑤) |2▶1 def
= 𝑅1 (𝑤)=1 ∩ 𝑅(𝑤)=2 𝑅2 (𝑤) |2▶1 def

= 𝑅2 (𝑤)=1 ∩ 𝑅(𝑤)=2
𝑅1 (𝑤) |2▶2 def

= 𝑅1 (𝑤)=2 ∩ 𝑅(𝑤)=2 𝑅2 (𝑤) |2▶2 def
= 𝑅2 (𝑤)=2 ∩ 𝑅(𝑤)=2 .

It is easy to see that these sets are pairwise disjoint. From (S3) it follows that
𝑅(𝑤)=2 = 𝑅1 (𝑤) |2▶0 ∪ 𝑅2 (𝑤) |2▶0 ∪ 𝑅1 (𝑤) |2▶1 ∪ 𝑅2 (𝑤) |2▶1 ∪ 𝑅1 (𝑤) |2▶2 ∪ 𝑅2 (𝑤) |2▶2

The duplicator starts by partitioning 𝑅′ (𝑤)=2 into six sets 𝑍 ′′1 , 𝑍 ′′2 ,𝑂 ′1,𝑂 ′2,𝑇1 and𝑇2 according
to the cardinalities of the six sets above (‘T’ for ‘two’). Again, to shorten the presentation we
introduce the set

X = {𝑅1 (𝑤) |2▶0, 𝑅2 (𝑤) |2▶0, 𝑅1 (𝑤) |2▶1, 𝑅2 (𝑤) |2▶1, 𝑅1 (𝑤) |2▶2, 𝑅2 (𝑤) |2▶2},
and the bijection 𝔣 such that

𝔣(𝑅1 (𝑤) |2▶0) def= 𝑍 ′′1 , 𝔣(𝑅2 (𝑤) |2▶0) def= 𝑍 ′′2 𝔣(𝑅1 (𝑤) |2▶1) def= 𝑂 ′1,
𝔣(𝑅2 (𝑤) |2▶1) def= 𝑂 ′2, 𝔣(𝑅1 (𝑤) |2▶2) def= 𝑇1, 𝔣(𝑅2 (𝑤) |2▶2) def= 𝑇2.
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Moreover, we define
B(𝑅1 (𝑤) |2▶0) def

= B(𝑅2 (𝑤) |2▶0) def
= 2𝑠−1

B(𝑅1 (𝑤) |2▶1) def
= B(𝑅2 (𝑤) |2▶1) def

= 2𝑠−1𝑠
B(𝑅1 (𝑤) |2▶2) def

= B(𝑅2 (𝑤) |2▶2) def
= 2𝑠−2𝑠 (𝑠 + 1)

Notice that, from 𝑠 ≥ 1, it holds that 2𝑠−1, 2𝑠−1𝑠 and 2𝑠−2𝑠 (𝑠 + 1) are all at least 1.
• Suppose that for every set 𝑆 ∈ X it holds that |𝑆 | < B(𝑆). Then, since |𝑅(𝑤)=2 | is

|𝑅1 (𝑤) |2▶0 | + |𝑅2 (𝑤) |2▶0 | + |𝑅1 (𝑤) |2▶1 | + |𝑅2 (𝑤) |2▶1 | + |𝑅1 (𝑤) |2▶2 | + |𝑅2 (𝑤) |2▶2 |
it holds that

|𝑅(𝑤)=2 | < 2 × 2𝑠−1 + 2 × 2𝑠−1𝑠 + 2 × 2𝑠−2𝑠 (𝑠 + 1) = 2𝑠−1 (𝑠 + 1) (𝑠 + 2)
and therefore by hypothesis we conclude that |𝑅(𝑤)=2 | = |𝑅′ (𝑤 ′)=2 |. Then, the split of
𝑅′ (𝑤 ′)=2 into 𝑍 ′′1 , 𝑍 ′′2 , 𝑂 ′1, 𝑂 ′2, 𝑇1 and 𝑇2 is made so that for every 𝑆 ∈ X, |𝔣(𝑆) | = |𝑆 |.
• Suppose instead that there is 𝑆 ∈ X such that |𝑆 | ≥ B(𝑆). Then, the split of 𝑅′ (𝑤 ′)=2 into
𝑍 ′′1 , 𝑍

′′
2 ,𝑂

′
1,𝑂

′
2,𝑇1 and𝑇2 is made so that for every 𝑆 ∈ X \ 𝑆 , |𝔣(𝑆) | = min( |𝑆 |,B(𝑆)). From

the hypothesis
min( |𝑅(𝑤)=2 |, 2𝑠−1 (𝑠 + 1) (𝑠 + 2)) = min( |𝑅′ (𝑤 ′)=2 |, 2𝑠−1 (𝑠 + 1) (𝑠 + 2))

we conclude that this construction can be effectively made and it is such that |𝔣(𝑆) | ≥ B(𝑆).
Then, the duplicator updates 𝑅′1 and 𝑅

′
2 as follows:

• For each𝑤 ′1 ∈ 𝑍 ′′1 , the duplicator adds (𝑤 ′,𝑤 ′1) to 𝑅′1 and the two elements of 𝑅′ |𝑤′1 to 𝑅
′
2.

• For each𝑤 ′2 ∈ 𝑍 ′′2 , it adds (𝑤 ′,𝑤 ′2) to 𝑅′2 and the two elements of 𝑅′ |𝑤′2 to 𝑅
′
1.

• For each 𝑤 ′1 ∈ 𝑂 ′1, it adds (𝑤 ′,𝑤 ′1) and one of the two elements of 𝑅′ |𝑤′1 to 𝑅
′
1. The other

element of 𝑅′ |𝑤′1 is assigned to 𝑅′2.
• For each 𝑤 ′2 ∈ 𝑂 ′2, it adds (𝑤 ′,𝑤 ′2) and one of the two elements of 𝑅′ |𝑤′2 to 𝑅

′
2. The other

element of 𝑅′ |𝑤′2 is assigned to 𝑅′1.
• For each𝑤 ′1 ∈ 𝑇1, it adds (𝑤 ′,𝑤 ′1) to 𝑅′1 and the two elements of 𝑅′ |𝑤′1 to 𝑅

′
1.

• For each𝑤 ′2 ∈ 𝑇2, it adds (𝑤 ′,𝑤 ′2) to 𝑅′2 and the two elements of 𝑅′ |𝑤′2 to 𝑅
′
2.

Notice that by construction the six sets introduced are always such that
Z12: min( |𝑅1 (𝑤) |2▶0 |, 2𝑠−1) = min( |𝑍 ′′1 |, 2𝑠−1)
Z22: min( |𝑅2 (𝑤) |2▶0 |, 2𝑠−1) = min( |𝑍 ′′2 |, 2𝑠−1)
O11: min( |𝑅1 (𝑤) |2▶1 |, 2𝑠−1𝑠) = min( |𝑂 ′1 |, 2𝑠−1𝑠)
O21: min( |𝑅2 (𝑤) |2▶1 |, 2𝑠−1𝑠) = min( |𝑂 ′2 |, 2𝑠−1𝑠)
T1: min( |𝑅1 (𝑤) |2▶2 |, 2𝑠−2𝑠 (𝑠 + 1)) = min( |𝑇1 |, 2𝑠−2𝑠 (𝑠 + 1))
T2: min( |𝑅2 (𝑤) |2▶2 |, 2𝑠−2𝑠 (𝑠 + 1)) = min( |𝑇2 |, 2𝑠−2𝑠 (𝑠 + 1))
or, more schematically, for every 𝑆 ∈ X, min( |𝑆 |,B(𝑆)) = min( |𝔣(𝑆) |,B(𝑆)).

After these steps, since (𝔐′,𝑤 ′) satisfies II and III, every element (𝑤 ′1,𝑤 ′2) ∈ 𝑅′ such that 𝑤 ′1 ∈
𝑅′∗ (𝑤) has been assigned to either 𝑅′1 or 𝑅

′
2. Duplicator then concludes the construction of𝔐′1 and

𝔐′2 by assigning the remaining elements of 𝑅′ (i.e. the pairs (𝑤 ′1,𝑤 ′2) ∈ 𝑅′ such that𝑤 ′1 ∉ 𝑅
′∗ (𝑤))

to either 𝑅′1 or 𝑅
′
2 (for example, it can put all these elements in 𝑅′1). The two models 𝔐′1 and 𝔐′2

are now defined and they trivially satisfy I, II and III (as they are submodels of𝔐′). Moreover, by
construction it is easy to verify that:

• 𝑅′1 (𝑤 ′)=0 = 𝑍1 + 𝑍 ′1 + 𝑍 ′′1
• 𝑅′1 (𝑤 ′)=1 = 𝑂1 +𝑂 ′1
• 𝑅′1 (𝑤 ′)=2 = 𝑇1
• for every 𝑛 > 2, 𝑅′1 (𝑤 ′)=𝑛 = ∅

• 𝑅′2 (𝑤 ′)=0 = 𝑍2 + 𝑍 ′2 + 𝑍 ′′2
• 𝑅′2 (𝑤 ′)=1 = 𝑂2 +𝑂 ′2
• 𝑅′2 (𝑤 ′)=2 = 𝑇2
• for every 𝑛 > 2, 𝑅′2 (𝑤 ′)=𝑛 = ∅
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Indeed, we specifically built 𝑅′1 and 𝑅
′
2 so that these properties (which we later refer to with (†):)

hold. Now, we end the proof of (A) by showing that for all 𝑖 ∈ {1, 2},
zero: min( |𝑅𝑖 (𝑤)=0 |, 2𝑠−1) = min( |𝑅′𝑖 (𝑤 ′)=0 |, 2𝑠−1);
one: min( |𝑅𝑖 (𝑤)=1 |, 2𝑠−1𝑠) = min( |𝑅′𝑖 (𝑤 ′)=1 |, 2𝑠−1𝑠);
two: min( |𝑅𝑖 (𝑤)=2 |, 2𝑠−2𝑠 (𝑠 + 1)) = min( |𝑅′𝑖 (𝑤 ′)=2 |, 2𝑠−2𝑠 (𝑠 + 1)).
Indeed, once these three properties are shown we can apply the induction hypothesis to con-
clude that (𝔐1,𝑤) ≈P𝑚,𝑠−1 (𝔐′1,𝑤 ′) and (𝔐2,𝑤) ≈P𝑚,𝑠−1 (𝔐′2,𝑤 ′) and therefore, the play de-
scribed with the construction above leads to a winning strategy for the duplicator on the game
((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)), i.e. (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′). The proof of these three properties is quite
easy (each case is similar to the others). Let 𝑖 ∈ {1, 2}. By using the definitions given during the
construction of 𝑅′1 and 𝑅

′
2 it holds that

• 𝑅𝑖 (𝑤)=0 = 𝑅𝑖 (𝑤) |0▶0 ∪ 𝑅𝑖 (𝑤) |1▶0 ∪ 𝑅𝑖 (𝑤) |2▶0, and by definition for all 𝑗, 𝑘 ∈ [0, 2] such that
𝑗 ≠ 𝑘 it holds that 𝑅𝑖 (𝑤) | 𝑗▶0 ∩ 𝑅𝑖 (𝑤) |𝑘▶0 = ∅.
• 𝑅𝑖 (𝑤)=1 = 𝑅𝑖 (𝑤) |1▶1 ∪ 𝑅𝑖 (𝑤) |2▶1, and by definition 𝑅𝑖 (𝑤) |1▶1 ∩ 𝑅𝑖 (𝑤) |2▶1 = ∅.
• 𝑅𝑖 (𝑤) |=2 = 𝑅𝑖 (𝑤) |2▶2.

In what follows, we refer to these three properties with (‡):.
proof of (zero). By (‡), it holds that |𝑅𝑖 (𝑤)=0 | = |𝑅𝑖 (𝑤) |0▶0 | + |𝑅𝑖 (𝑤) |1▶0 | + |𝑅𝑖 (𝑤) |2▶0 |. We divide

the proof into two cases. For the first case, suppose |𝑅𝑖 (𝑤) |0▶0 | < 2𝑠−1, |𝑅𝑖 (𝑤) |1▶0 | < 2𝑠−1
and |𝑅𝑖 (𝑤) |2▶0 | < 2𝑠−1. Then,

(1) |𝑍𝑖 | = |𝑅𝑖 (𝑤) |0▶0 | (by (Z1) or (Z2), depending on whether 𝑖 = 1 or 𝑖 = 2)
(2) |𝑍 ′𝑖 | = |𝑅𝑖 (𝑤) |1▶0 | (by (Z11)/(Z21))
(3) |𝑍 ′′𝑖 | = |𝑅𝑖 (𝑤) |1▶0 | (by (Z12)/(Z22))
(4) |𝑅′𝑖 (𝑤 ′)=0 | = |𝑅𝑖 (𝑤) |0▶0 | + |𝑅𝑖 (𝑤) |1▶0 | + |𝑅𝑖 (𝑤) |1▶0 | (from (1), (2) and (3), by (†))
(5) |𝑅′𝑖 (𝑤 ′)=0 | = |𝑅𝑖 (𝑤)=0 | (from 4, by (‡)).
Otherwise, suppose that there is a set among 𝑅𝑖 (𝑤) |0▶0, 𝑅𝑖 (𝑤) |1▶0 and 𝑅𝑖 (𝑤) |2▶0 whose
cardinality is at least 2𝑠−1. Then from (Z1)/(Z2), (Z11)/(Z21) or (Z12)/(Z22) (depending on
whether 𝑖 = 1 or 𝑖 = 2 and on which set has at least 2𝑠−1 elements) there is a set among 𝑍𝑖 ,
𝑍 ′𝑖 and 𝑍

′′
𝑖 that has cardinality 2𝑠−1. Then, by (†) and (‡) we have that 𝑅𝑖 (𝑤)=0 and 𝑅′𝑖 (𝑤 ′)=0

have both more than 2𝑠−1 elements.
proof of (one). By (‡), it holds that |𝑅𝑖 (𝑤)=1 | = |𝑅𝑖 (𝑤) |1▶1 | + |𝑅𝑖 (𝑤) |2▶1 |. We divide the proof into

two cases. First, suppose |𝑅𝑖 (𝑤) |1▶1 | < 2𝑠−1𝑠 and |𝑅𝑖 (𝑤) |2▶1 | < 2𝑠−1𝑠 . Then,
(1) |𝑂𝑖 | = |𝑅𝑖 (𝑤) |1▶1 | (by (O1) or (O2), depending on whether 𝑖 = 1 or 𝑖 = 2)
(2) |𝑂 ′𝑖 | = |𝑅𝑖 (𝑤) |2▶1 | (by (O11)/(O21))
(3) |𝑅′𝑖 (𝑤 ′)=1 | = |𝑅𝑖 (𝑤) |1▶1 | + |𝑅𝑖 (𝑤) |2▶1 | (from (1) and (2), by (†))
(4) |𝑅′𝑖 (𝑤 ′)=1 | = |𝑅𝑖 (𝑤)=1 | (from 3, by (‡)).
Otherwise, suppose that there is a set among 𝑅𝑖 (𝑤) |1▶1 and 𝑅𝑖 (𝑤) |2▶1 whose cardinality is at
least 2𝑠−1𝑠 . Then from (O1)/(O2) or (O11)/(O21) (depending on whether 𝑖 = 1 or 𝑖 = 2 and on
which set has at least 2𝑠−1𝑠 elements) there is a set among 𝑂𝑖 , 𝑂 ′𝑖 that has cardinality 2𝑠−1𝑠 .
Then, by (†) and (‡) we have that 𝑅𝑖 (𝑤)=1 and 𝑅′𝑖 (𝑤 ′)=1 have both more than 2𝑠−1𝑠 elements.

proof of (two). By (‡), it holds that |𝑅𝑖 (𝑤)=2 | = |𝑅𝑖 (𝑤) |2▶2 |. Again we divide the proof into two
cases. First, suppose |𝑅𝑖 (𝑤) |2▶2 | < 2𝑠−2𝑠 (𝑠 + 1). Then,

(1) |𝑇𝑖 | = |𝑅𝑖 (𝑤) |2▶2 | (by (T1) or (T2), depending on whether 𝑖 = 1 or 𝑖 = 2)
(2) |𝑅′𝑖 (𝑤 ′)=2 | = |𝑅𝑖 (𝑤) |2▶2 | (from (1), by (†))
(3) |𝑅′𝑖 (𝑤 ′)=2 | = |𝑅𝑖 (𝑤)=2 | (from 2, by (‡)).
Otherwise, suppose that |𝑅𝑖 (𝑤) |2▶2 |, and hence |𝑅𝑖 (𝑤)=2 |, is at least 2𝑠−2𝑠 (𝑠 + 1). Then,

(1) |𝑇𝑖 | ≥ 2𝑠−2𝑠 (𝑠 + 1) (by (T1)/(T2))
(2) |𝑅′𝑖 (𝑤 ′)=2 | ≥ 2𝑠−2𝑠 (𝑠 + 1) (from (1), by (†)).
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M PROOF OF (B) FOR LEMMA 5.5

The two finite forests of the statement are schematically represented below, with (𝔐,𝑤) on the
left and (𝔐′,𝑤 ′) on the right.

𝑤

. . . . . .

≥ 2𝑠 + 1 ≥ 2𝑠−1 (𝑠 + 1) (𝑠 + 2) + 1

𝑤 ′

. . . . . .

≥ 2𝑠 + 1 ≥ 2𝑠−1 (𝑠 + 1) (𝑠 + 2) + 1

The proof of (B) is shown by cases on𝑚, 𝑠 and on the moves done by the spoiler. As in the proof
of (A), if𝑚 = 0 then the duplicator has a winning strategy as after 𝑠 spatial moves the game will be
in the state (𝔐1,𝑤) and (𝔐′1,𝑤 ′) (notice that𝑤 and𝑤 ′ do not change, since𝑚 = 0) w.r.t. the rank
(0, 0, P). From I, we conclude that the duplicator wins.
Now, suppose𝑚 ≥ 1 and the spoiler decides to perform a modal move. Notice that, in particular,

this case also takes care of the case where 𝑠 = 0 and the spoiler is forced to play a modal move.
Moreover, suppose that the spoiler chooses (𝔐,𝑤) (the case where it picks (𝔐′,𝑤 ′) is analogous).
Then, suppose that the spoiler chooses a world 𝑤1 ∈ 𝑅(𝑤)=𝑛 for some 𝑛 ∈ {0, 1, 2}. It is then
sufficient for the duplicator to choose𝑤 ∈ 𝑅′ (𝑤 ′)=𝑛 (which is a non-empty set by hypothesis) to
guarantee him a victory, as the subtrees rooted in𝑤1 and𝑤 ′1 are isomorphic.

It remains to show the strategy for the duplicator when the spoiler decides to perform a spatial
move (and therefore 𝑠 ≥ 1). The proof distinguishes several cases depending on the structure
choosen by the spoiler.

The spoiler picks (𝔐,𝑤). Notice that then the spoiler chooses the structure such that |𝑅(𝑤)=1 | =
2 and the duplicator has to reply in the structure (𝔐′,𝑤 ′), where we recall that |𝑅′ (𝑤 ′)=1 | = 1.
The idea is to make up for this discrepancy by using an element of 𝑅′ (𝑤 ′)=2. Let us see how.
For a moment, consider the model obtained from 𝔐′ by removing from 𝑅′ exactly one
pair (𝑤 ′1,𝑤 ′2) where𝑤 ′1 is a world of 𝑅′ (𝑤 ′)=2. Formally, we are interested in a model𝔐′ =
(𝑊 ′, 𝑅′,𝑉 ′) such that 𝑅′ = 𝑅′\{(𝑤 ′1,𝑤 ′2)}where (𝑤 ′1,𝑤 ′2) ∈ 𝑅′ and𝑤 ′1 ∈ 𝑅′ (𝑤 ′)=2. If the game
was played on (𝔐,𝑤) and (𝔐′,𝑤 ′) w.r.t. (𝑚, 𝑠, P) then it is clear that the duplicator would
have a winning strategy. Indeed, both (𝔐,𝑤) and (𝔐′,𝑤 ′) satisfy I, II and III. Moreover,
• |𝑅(𝑤)=0 | and |𝑅′ (𝑤 ′)=0 | are both at least 2𝑠 . Notice that by definition 𝑅′ (𝑤 ′)=0 = 𝑅′ (𝑤 ′)=0.
• |𝑅(𝑤)=1 | = 2 and |𝑅′ (𝑤 ′)=1 | = 2. Here, by definition 𝑅′ (𝑤 ′)=1 = 𝑅′ (𝑤 ′)=1 ∪ {𝑤 ′1}.
• |𝑅(𝑤)=2 | and |𝑅′ (𝑤 ′)=2 | are both at least 2𝑠−1 (𝑠 + 1) (𝑠 + 2). Here, by definition 𝑅′ (𝑤 ′)=2 =
𝑅′ (𝑤 ′)=2 \ {𝑤 ′1}.

These properties allow us to apply (A) and conclude that (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′). In particular,
in this game, if the spoiler picks (𝔐,𝑤) and chooses𝔐1 = (𝑊,𝑅1,𝑉 ) and𝔐2 = (𝑊,𝑅2,𝑉 )
such that𝔐1+𝔐2 = 𝔐, then the duplicator can apply the strategy described in (A) in order to
construct two structures 𝔐′1 = (𝑊 ′, 𝑅′1,𝑉 ′) and 𝔐′2 = (𝑊 ′, 𝑅′2,𝑉 ′) such that𝔐′1 +𝔐′2 = 𝔐′

and for every 𝑖 ∈ {1, 2}:
• min( |𝑅𝑖 (𝑤)=0 |, 2𝑠−1) = min( |𝑅′

𝑖
(𝑤 ′)=0 |, 2𝑠−1);

• min( |𝑅𝑖 (𝑤)=1 |, 2𝑠−1𝑠) = min( |𝑅′
𝑖
(𝑤 ′)=1 |, 2𝑠−1𝑠);

• min( |𝑅𝑖 (𝑤)=2 |, 2𝑠−2𝑠 (𝑠 + 1)) = min( |𝑅′
𝑖
(𝑤 ′)=2 |, 2𝑠−2𝑠 (𝑠 + 1)).

Notice that these properties, which we later refer to with (††): are exactly (zero), (one) and
(two) in the proof of (A).
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Let us see how to use these pieces of information to derive a strategy for the duplicator
in the original game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)). As the spoiler chooses (𝔐,𝑤), it selects
𝔐1 and 𝔐2 such that 𝔐1 +𝔐2 = 𝔐. Consider the two structures 𝔐′1 = (𝑊 ′, 𝑅′1,𝑉 ′) and
𝔐′2 = (𝑊 ′, 𝑅′2,𝑉 ′) choosen by the duplicator following the strategy, discussed above, for the
game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)) in the case when the spoiler chooses (𝔐,𝑤) and again
selects𝔐1 and𝔐2. In particular these structures satisfy (††). Moreover, the two forests𝔐′1
and 𝔐′2 are such that 𝔐′1 +𝔐′2 = 𝔐 and therefore 𝑅′1 ∪ 𝑅′2 = 𝑅′ = 𝑅′ \ {(𝑤 ′1,𝑤 ′2)} where
(𝑤 ′1,𝑤 ′2) ∈ 𝑅′ and𝑤 ′1 ∈ 𝑅′ (𝑤 ′)=2. We distinguish two cases.
• If𝑤 ′1 ∈ 𝑅′1 (𝑤 ′) then in the original game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)), the duplicator replies
to 𝔐1 and 𝔐2 with the two forests 𝔐′1 = (𝑊 ′, 𝑅′1,𝑉 ′) and 𝔐′2 = (𝑊 ′, 𝑅′2,𝑉 ′) such that
𝑅′1 = 𝑅

′
1 and 𝑅

′
2 = 𝑅

′
2 ∪ {(𝑤 ′1,𝑤 ′2)}.

• Otherwise𝑤 ′1 ∈ 𝑅′2 (𝑤 ′) and in the game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)) the duplicator replies
to 𝔐1 and 𝔐2 with the two forests 𝔐′1 = (𝑊 ′, 𝑅′1,𝑉 ′) and 𝔐′2 = (𝑊 ′, 𝑅′2,𝑉 ′) such that
𝑅′1 = 𝑅

′
1 ∪ {(𝑤 ′1,𝑤 ′2)} and 𝑅′2 = 𝑅′2.

In both cases, as the pair (𝑤 ′,𝑤 ′1) is in one relation between 𝑅′1 and 𝑅
′
2 whereas (𝑤 ′1,𝑤 ′2)

is in the other relation, the world 𝑤 ′1 effectively behaves like if it was a member of the set
𝑅′ (𝑤 ′)=1 instead of 𝑅′ (𝑤 ′)=2, exactly as in the case of 𝑅′. In particular, it is easy to see that
for 𝑖 ∈ {1, 2}:

|𝑅′𝑖 (𝑤 ′)=0 | = |𝑅′𝑖 (𝑤 ′)=0 | |𝑅′𝑖 (𝑤 ′)=1 | = |𝑅′𝑖 (𝑤 ′)=1 | |𝑅′𝑖 (𝑤 ′)=2 | = |𝑅′𝑖 (𝑤 ′)=2 |
Hence, by (††) we have that
• min( |𝑅𝑖 (𝑤)=0 |, 2𝑠−1) = min( |𝑅′𝑖 (𝑤 ′)=0 |, 2𝑠−1);
• min( |𝑅𝑖 (𝑤)=1 |, 2𝑠−1𝑠) = min( |𝑅′𝑖 (𝑤 ′)=1 |, 2𝑠−1𝑠);
• min( |𝑅𝑖 (𝑤)=2 |, 2𝑠−2𝑠 (𝑠 + 1)) = min( |𝑅′𝑖 (𝑤 ′)=2 |, 2𝑠−2𝑠 (𝑠 + 1)).
Moreover, 𝔐1, 𝔐2, 𝔐′1 and 𝔐′2 all satisfy I, II and III (as they are submodels of 𝔐 or 𝔐′),
we can apply (A) and conclude that (𝔐1,𝑤) ≈P𝑚,𝑠−1 (𝔐′1,𝑤 ′) and (𝔐2,𝑤) ≈P𝑚,𝑠−1 (𝔐′2,𝑤 ′).
Therefore, the play we just described leads to a winning strategy for the duplicator on the
game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)), under the hypothesis that the spoiler chooses (𝔐,𝑤).

The spoiler picks (𝔐′,𝑤 ′). Then, the spoiler chooses the structure such that |𝑅′ (𝑤 ′)=1 | = 1 and
the duplicator has to reply in the structure (𝔐,𝑤) where |𝑅(𝑤)=1 | = 2. The proof is very
similar to the previous case, but instead of choosing an element of 𝑅′ (𝑤 ′)=2 to make up for
the discrepancy between |𝑅(𝑤)=1 | and |𝑅′ (𝑤 ′)=1 |, the duplicator manipulates the additional
element in 𝑅(𝑤)=1 so that it becomes a member of 𝑅1 (𝑤)=0 or 𝑅2 (𝑤)=0. Let us formalise this
strategy.
For a moment, consider the model obtained from 𝔐 by removing from 𝑅 exactly one pair
(𝑤1,𝑤2) where𝑤1 is a world of 𝑅(𝑤)=1. Formally, we are interested in a model𝔐 = (𝑊,𝑅,𝑉 )
such that 𝑅 = 𝑅 \ {(𝑤1,𝑤2)} where (𝑤1,𝑤2) ∈ 𝑅 and𝑤1 ∈ 𝑅(𝑤)=1. If the game was played on
(𝔐,𝑤) and (𝔐′,𝑤 ′) w.r.t. (𝑚, 𝑠, P) then it is clear than the duplicator would have a winning
strategy. Indeed, both (𝔐,𝑤) and (𝔐′,𝑤 ′) satisfy I, II and III. Moreover,
• |𝑅(𝑤)=0 | and |𝑅′ (𝑤 ′)=0 | are both at least 2𝑠 . Here, by definition, 𝑅(𝑤)=0 = 𝑅(𝑤)=0 ∪ {𝑤1}.
• |𝑅(𝑤)=1 | = 1 and |𝑅′ (𝑤 ′)=1 | = 1. Here, by definition 𝑅(𝑤)=1 = 𝑅(𝑤)=1 \ {𝑤1}.
• |𝑅(𝑤)=2 | and |𝑅′ (𝑤 ′)=2 | are both at least 2𝑠−1 (𝑠 + 1) (𝑠 + 2). Here, by definiton 𝑅(𝑤)=2 =

𝑅(𝑤)=2.
These properties allow us to apply (A) and conclude that (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′). In par-
ticular, in this game, if the spoiler picks (𝔐′,𝑤 ′) and chooses 𝔐′1 = (𝑊 ′, 𝑅′1,𝑉 ′) and
𝔐′2 = (𝑊 ′, 𝑅′2,𝑉 ′) such that 𝔐′1 +𝔐′2 = 𝔐′, then the duplicator can apply the strategy
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described in (A). Two structures 𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) are constructed such
that𝔐1 +𝔐2 = 𝔐 and for every 𝑖 ∈ {1, 2}:
• min( |𝑅𝑖 (𝑤)=0 |, 2𝑠−1) = min( |𝑅′𝑖 (𝑤 ′)=0 |, 2𝑠−1);
• min( |𝑅𝑖 (𝑤)=1 |, 2𝑠−1𝑠) = min( |𝑅′𝑖 (𝑤 ′)=1 |, 2𝑠−1𝑠);
• min( |𝑅𝑖 (𝑤)=2 |, 2𝑠−2𝑠 (𝑠 + 1)) = min( |𝑅′𝑖 (𝑤 ′)=2 |, 2𝑠−2𝑠 (𝑠 + 1)).
Again, notice that these properties, which we later refer to with (‡‡), are exactly (zero),
(one) and (two) in the proof of (A). Let us see how to use these pieces of information to
derive a strategy for the duplicator in the original game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)). As the
spoiler chooses (𝔐′,𝑤 ′), it selects𝔐′1 and𝔐′2 such that𝔐′1 +𝔐′2 = 𝔐′. Consider the two
structures 𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) choosen by the duplicator following the
strategy, discussed above, for the game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)) in the case when the
spoiler chooses (𝔐′,𝑤 ′) and again select𝔐′1 and𝔐′2. In particular these structures satisfy
(‡‡). Moreover, the two forests 𝔐1 and 𝔐2 are such that 𝔐1 + 𝔐2 = 𝔐 and therefore
𝑅1 ∪ 𝑅2 = 𝑅 = 𝑅 \ {(𝑤1,𝑤2)} where (𝑤1,𝑤2) ∈ 𝑅 and𝑤1 ∈ 𝑅(𝑤)=1. We distinguish two cases.
• If𝑤1 ∈ 𝑅1 (𝑤) then in the original game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)), the duplicator replies
to 𝔐′1 and 𝔐′2 with the two structures 𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) such that
𝑅1 = 𝑅1 and 𝑅2 = 𝑅2 ∪ {(𝑤1,𝑤2)}.
• Otherwise𝑤1 ∈ 𝑅2 (𝑤) and in the game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)) the duplicator replies
to 𝔐′1 and 𝔐′2 with the two structures 𝔐1 = (𝑊,𝑅1,𝑉 ) and 𝔐2 = (𝑊,𝑅2,𝑉 ) such that
𝑅1 = 𝑅1 ∪ {(𝑤1,𝑤2)} and 𝑅2 = 𝑅2.

In both cases, as the pair (𝑤,𝑤1) is in one relation between 𝑅1 and 𝑅2 whereas (𝑤1,𝑤2) is in
the other relation, the world𝑤1 effectively behaves as if it was a member of the set 𝑅(𝑤)=0
instead of 𝑅(𝑤)=1, exactly as in the case of 𝑅. In particular, it is easy to see that for 𝑖 ∈ {1, 2}:

|𝑅𝑖 (𝑤)=0 | = |𝑅𝑖 (𝑤)=0 | |𝑅𝑖 (𝑤)=1 | = |𝑅𝑖 (𝑤)=1 | |𝑅𝑖 (𝑤)=2 | = |𝑅𝑖 (𝑤)=2 |
Hence, by (‡‡) we have
• min( |𝑅𝑖 (𝑤)=0 |, 2𝑠−1) = min( |𝑅′𝑖 (𝑤 ′)=0 |, 2𝑠−1);
• min( |𝑅𝑖 (𝑤)=1 |, 2𝑠−1𝑠) = min( |𝑅′𝑖 (𝑤 ′)=1 |, 2𝑠−1𝑠);
• min( |𝑅𝑖 (𝑤)=2 |, 2𝑠−2𝑠 (𝑠 + 1)) = min( |𝑅′𝑖 (𝑤 ′)=2 |, 2𝑠−2𝑠 (𝑠 + 1)).
Moreover, 𝔐1, 𝔐2, 𝔐′1 and 𝔐′2 all satisfy I, II and III (as they are submodels of 𝔐 or 𝔐′),
we can apply (A) and conclude that (𝔐1,𝑤) ≈P𝑚,𝑠−1 (𝔐′1,𝑤 ′) and (𝔐2,𝑤) ≈P𝑚,𝑠−1 (𝔐′2,𝑤 ′).
Therefore, the play we just described leads to a winning strategy for the duplicator on the
game ((𝔐,𝑤), (𝔐′,𝑤 ′), (𝑚, 𝑠, P)), under the hypothesis that the spoiler chooses (𝔐′,𝑤 ′).

As we constructed a strategy for the duplicator in both cases where the spoiler picks (𝔐,𝑤) and
(𝔐′,𝑤 ′), we have that (𝔐,𝑤) ≈P𝑚,𝑠 (𝔐′,𝑤 ′) and therefore (B) holds.
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