Conflict-driven ASP Solving: Overview

1. Motivation
2. Preliminaries
3. Boolean constraints
4. Nogoods from logic programs
Outline

1 Motivation
2 Preliminaries
3 Boolean constraints
4 Nogoods from logic programs
Motivation of Conflict-driven ASP Solving

- **Goal** Approach to computing stable models of logic programs, based on concepts from
 - Constraint Processing (CP) and
 - Satisfiability Testing (SAT)
- **Idea** View inferences in ASP as unit propagation on nogoods
- **Benefits:**
 - A uniform constraint-based framework for different kinds of inferences in ASP
 - Advanced techniques from the areas of CP and SAT
 - Highly competitive implementation
1 Motivation
2 Preliminaries
3 Boolean constraints
4 Nogoods from logic programs
Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values \textit{true}, \textit{false},
and \textit{unknown}
Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values \textit{true}, \textit{false}, and \textit{unknown}

- **Representation:** \(\langle T, F \rangle\), where
 - \(T\) is the set of all \textit{true} atoms and
 - \(F\) is the set of all \textit{false} atoms
 - Truth of atoms in \(A \setminus (T \cup F)\) is \textit{unknown}
Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false, and unknown

- **Representation:** \(\langle T, F \rangle \), where
 - \(T \) is the set of all true atoms and
 - \(F \) is the set of all false atoms
 - Truth of atoms in \(A \setminus (T \cup F) \) is unknown

- **Properties:**
 - \(\langle T, F \rangle \) is conflicting if \(T \cap F \neq \emptyset \)
 - \(\langle T, F \rangle \) is total if \(T \cup F = A \) and \(T \cap F = \emptyset \)
Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values \textit{true}, \textit{false}, and \textit{unknown}

- **Representation:** \langle T, F \rangle, where
 - \(T \) is the set of all \textit{true} atoms and
 - \(F \) is the set of all \textit{false} atoms
 - Truth of atoms in \(A \setminus (T \cup F) \) is \textit{unknown}

- **Properties:**
 - \langle T, F \rangle \text{ is conflicting} if \(T \cap F \neq \emptyset \)
 - \langle T, F \rangle \text{ is total} if \(T \cup F = A \) and \(T \cap F = \emptyset \)

- **Definition:** For \langle T_1, F_1 \rangle \text{ and } \langle T_2, F_2 \rangle, define
 - \langle T_1, F_1 \rangle \sqsubseteq \langle T_2, F_2 \rangle \text{ iff } T_1 \subseteq T_2 \text{ and } F_1 \subseteq F_2
 - \langle T_1, F_1 \rangle \sqcup \langle T_2, F_2 \rangle = \langle T_1 \cup T_2, F_1 \cup F_2 \rangle
Outline

1 Motivation

2 Preliminaries
 - Partial Interpretations
 - Unfounded Sets

3 Boolean constraints

4 Nogoods from logic programs
 - Nogoods from program completion
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation.
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation.

- A set $U \subseteq \text{atom}(P)$ is an **unfounded set** of P wrt $\langle T, F \rangle$.
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation.

- A set $U \subseteq \text{atom}(P)$ is an unfounded set of P wrt $\langle T, F \rangle$.

 Intuitively, $\langle T, F \rangle$ is what we already know about P.

 - Rules satisfying Condition 1 are not usable for further derivations.
 - Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in U require an(other) atom in U to be true.
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq \text{atom}(P)$ is an unfounded set of P wrt $\langle T, F \rangle$

- if we have for each rule $r \in P$ such that $\text{head}(r) \in U$

• Rules satisfying Condition 1 are not usable for further derivations
• Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in U require an(other) atom in U to be true
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq \text{atom}(P)$ is an unfounded set of P wrt $\langle T, F \rangle$

- if we have for each rule $r \in P$ such that $\text{head}(r) \in U$ either
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation.

- A set $U \subseteq \text{atom}(P)$ is an unfounded set of P wrt $\langle T, F \rangle$.

- If we have for each rule $r \in P$ such that $\text{head}(r) \in U$ either
 1. $\text{body}(r)^+ \cap F \neq \emptyset$ or $\text{body}(r)^- \cap T \neq \emptyset$.

Intuitively, $\langle T, F \rangle$ is what we already know about P.

Rules satisfying Condition 1 are not usable for further derivations.

Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in U require an(other) atom in U to be true.
Unfounded sets

Let P be a normal logic program, and let (T, F) be a partial interpretation

- A set $U \subseteq \text{atom}(P)$ is an unfounded set of P wrt (T, F)

- if we have for each rule $r \in P$ such that $\text{head}(r) \in U$

 either

 1. $\text{body}(r)^+ \cap F \neq \emptyset$ or $\text{body}(r)^- \cap T \neq \emptyset$

 2. $\text{body}(r)^+ \cap U \neq \emptyset$
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation.

- A set $U \subseteq \text{atom}(P)$ is an unfounded set of P wrt $\langle T, F \rangle$.

- If we have for each rule $r \in P$ such that $\text{head}(r) \in U$ either
 1. $\text{body}(r)^+ \cap F \neq \emptyset$ or $\text{body}(r)^- \cap T \neq \emptyset$ or
 2. $\text{body}(r)^+ \cap U \neq \emptyset$

- Rules satisfying Condition 1 are not usable for further derivations.
Unfounded sets

Let P be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation.

- A set $U \subseteq \text{atom}(P)$ is an unfounded set of P wrt $\langle T, F \rangle$.

- if we have for each rule $r \in P$ such that $\text{head}(r) \in U$ either

 1. $\text{body}(r)^+ \cap F \neq \emptyset$ or $\text{body}(r)^- \cap T \neq \emptyset$ or
 2. $\text{body}(r)^+ \cap U \neq \emptyset$

- Rules satisfying Condition 1 are not usable for further derivations.
- Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in U require an(other) atom in U to be true.
Example

\[P = \left\{ \begin{array}{c c}
 a & \leftrightarrow & b \\
 b & \leftrightarrow & a
\end{array} \right\} \]
Example

\[P = \{ \begin{array}{c} a \leftrightarrow b \\ b \leftrightarrow a \end{array} \} \]

- \(\emptyset \) is an unfounded set (by definition)
Example

\[P = \{ a \leftrightarrow b, b \leftrightarrow a \} \]

- \(\emptyset \) is an unfounded set (by definition)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \(\{a\} \) is an unfounded set of \(P \) wrt \(\langle \emptyset, \{b\} \rangle \)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \{b\}, \emptyset \rangle \)
- \(\{a, b\} \) is an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \(\{a, b\} \) is an unfounded set of \(P \) wrt any partial interpretation
Example

\[P = \left\{ \begin{array}{c} a \\ b \end{array} \right\} \left\{ \begin{array}{c} b \\ a \end{array} \right\} \]

- \emptyset is an unfounded set (by definition)
- \{a\} is not an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \{a\} is an unfounded set of \(P \) wrt \(\langle \emptyset, \{b\} \rangle \)
- \{a\} is an unfounded set of \(P \) wrt any partial interpretation
Example

\(P = \left\{ \begin{array}{c c}
 a & \leftrightarrow b \\
 b & \leftrightarrow a
\end{array} \right\} \)

- \(\emptyset \) is an unfounded set (by definition)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \(\{a\} \) is an unfounded set of \(P \) wrt \(\langle \emptyset, \{b\} \rangle \)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \{b\}, \emptyset \rangle \)
Example

\[P = \{ \begin{array}{c|c|c} a & b \\ \hline b & a \end{array} \} \]

- \emptyset is an unfounded set (by definition)
- \{a\} is not an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \{a\} is an unfounded set of \(P \) wrt \(\langle \emptyset, \{b\} \rangle \)
- \{a\} is not an unfounded set of \(P \) wrt \(\langle \{b\}, \emptyset \rangle \)
- Analogously for \{b\}
Example

\[P = \{ a \leftarrow b, b \leftarrow a \} \]

- \(\emptyset \) is an unfounded set (by definition)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \(\{a\} \) is an unfounded set of \(P \) wrt \(\langle \emptyset, \{b\} \rangle \)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \{b\}, \emptyset \rangle \)
- \(\{a, b\} \) is an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
Example

\[P = \begin{cases}
 a & \leftrightarrow b \\
 b & \leftrightarrow a
\end{cases} \]

- \(\emptyset \) is an unfounded set (by definition)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \(\{a\} \) is an unfounded set of \(P \) wrt \(\langle \emptyset, \{b\} \rangle \)
- \(\{a\} \) is not an unfounded set of \(P \) wrt \(\langle \{b\}, \emptyset \rangle \)

- \(\{a, b\} \) is an unfounded set of \(P \) wrt \(\langle \emptyset, \emptyset \rangle \)
- \(\{a, b\} \) is an unfounded set of \(P \) wrt any partial interpretation
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence
 $$(\sigma_1, \ldots, \sigma_n)$$
 of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

- T_v expresses that v is true and F_v that it is false
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$ of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$
 - T_v expresses that v is true and F_v that it is false
 - The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T_v} = F_v$ and $\overline{F_v} = T_v$
Assignments

• An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

$$\left(\sigma_1, \ldots, \sigma_n\right)$$

of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

• T_v expresses that v is true and F_v that it is false

• The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{T_v} = F_v$ and $\overline{F_v} = T_v$

• $A \circ \sigma$ stands for the result of appending σ to A
Assignments

• An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

$$(\sigma_1, \ldots, \sigma_n)$$

of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

• T_v expresses that v is **true** and F_v that it is **false**

• The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T_v} = F_v$ and $\overline{F_v} = T_v$

• $A \circ \sigma$ stands for the result of appending σ to A

• Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$
Assignments

• An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

$$(\sigma_1, \ldots, \sigma_n)$$

of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

• T_v expresses that v is true and F_v that it is false

• The complement, $\bar{\sigma}$, of a literal σ is defined as $\bar{T_v} = F_v$ and $\bar{F_v} = T_v$

• $A \circ \sigma$ stands for the result of appending σ to A

• Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$

• We sometimes identify an assignment with the set of its literals
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence
 $$(\sigma_1, \ldots, \sigma_n)$$
 of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

- T_v expresses that v is true and F_v that it is false

- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T_v} = F_v$ and $\overline{F_v} = T_v$

- $A \circ \sigma$ stands for the result of appending σ to A

- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$

- We sometimes identify an assignment with the set of its literals

- Given this, we access true and false propositions in A via

 $$A^T = \{v \in \text{dom}(A) \mid T_v \in A\} \quad \text{and} \quad A^F = \{v \in \text{dom}(A) \mid F_v \in A\}$$
Nogoods, solutions, and unit propagation

- A nogood is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).
A nogood is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).

An assignment \(A \) such that \(A^T \cup A^F = \text{dom}(A) \) and \(A^T \cap A^F = \emptyset \) is a solution for a set \(\Delta \) of nogoods, if \(\delta \not\subseteq A \) for all \(\delta \in \Delta \).
Nogoods, solutions, and unit propagation

- A nogood is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).

- An assignment \(A \) such that \(A^T \cup A^F = \text{dom}(A) \) and \(A^T \cap A^F = \emptyset \) is a solution for a set \(\Delta \) of nogoods, if \(\delta \nsubseteq A \) for all \(\delta \in \Delta \).

- For a nogood \(\delta \), a literal \(\sigma \in \delta \), and an assignment \(A \), we say that \(\sigma \) is unit-resulting for \(\delta \) wrt \(A \), if

 1. \(\delta \setminus A = \{\sigma\} \), and
 2. \(\bar{\sigma} \notin A \).
Nogoods, solutions, and unit propagation

- A nogood is a set \(\{ \sigma_1, \ldots, \sigma_n \} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).

- An assignment \(A \) such that \(A^T \cup A^F = \text{dom}(A) \) and \(A^T \cap A^F = \emptyset \) is a solution for a set \(\Delta \) of nogoods, if \(\delta \not\subseteq A \) for all \(\delta \in \Delta \).

- For a nogood \(\delta \), a literal \(\sigma \in \delta \), and an assignment \(A \), we say that \(\sigma \) is unit-resulting for \(\delta \) wrt \(A \), if:
 1. \(\delta \setminus A = \{ \sigma \} \) and
 2. \(\overline{\sigma} \not\in A \).

- For a set \(\Delta \) of nogoods and an assignment \(A \), unit propagation is the iterated process of extending \(A \) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\Delta \).
Outline

1. Motivation
2. Preliminaries
3. Boolean constraints
4. Nogoods from logic programs
The completion of a logic program P can be defined as follows:

\[
\{ v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \mid
\begin{aligned}
& B \in \text{body}(P), B = \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \\
\cup & \{ a \leftrightarrow v_{B_1} \lor \cdots \lor v_{B_k} \mid a \in \text{atom}(P), \text{body}(a) = \{B_1, \ldots, B_k\} \}
\end{aligned}
\]

where $\text{body}(a) = \{ \text{body}(r) \mid r \in P, \text{head}(r) = a \}$
The (body-oriented) equivalence

\[v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:
Nogoods from logic programs via program completion

- The (body-oriented) equivalence

\[v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:

1. \[v_B \rightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

is equivalent to the conjunction of

\[\neg v_B \lor a_1, \ldots, \neg v_B \lor a_m, \neg v_B \lor \neg a_{m+1}, \ldots, \neg v_B \lor \neg a_n \]

and induces the set of nogoods

\[\Delta(B) = \{ \{TB, Fa_1\}, \ldots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \ldots, \{TB, Ta_n\} \} \]
The (body-oriented) equivalence

\[v_B \iff a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:

\[a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \rightarrow v_B \]

gives rise to the nogood

\[\delta(B) = \{ F_B, T_1, \ldots, T_m, F_{m+1}, \ldots, F_n \} \]
Analogously, the (atom-oriented) equivalence

\[a \leftrightarrow v_{B_1} \lor \cdots \lor v_{B_k} \]

yields the nogoods

1. \[\Delta(a) = \{ \{F_a, T_{B_1}\}, \ldots, \{F_a, T_{B_k}\} \} \] and

2. \[\delta(a) = \{T_a, F_{B_1}, \ldots, F_{B_k}\} \]
For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{T_a, FB_1, \ldots, FB_k\} \text{ and } \{\{F_a, TB_1\}, \ldots, \{F_a, TB_k\}\}$$
Nogoods from logic programs
atom-oriented nogoods

• For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

 \[
 \begin{align*}
 x & \leftarrow y \\
 x & \leftarrow \text{not } z
 \end{align*}
 \]

 $\{Tx, F\{y\}, F\{\text{not } z\}\}$

 $\{\{Fx, T\{y\}\}, \{Fx, T\{\text{not } z\}\}\}$
atom-oriented nogoods

- For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get
 \[
 \{T_a, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{F a, TB_1\}, \ldots, \{F a, TB_k\}\}
 \]

- **Example** Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain
 \[
 \begin{array}{c}
 x \leftarrow y \\
 x \leftarrow \text{not } z
 \end{array}
 \]
 \[
 \{T x, F\{y\}, F\{\text{not } z\}\} \quad \{\{F x, T\{y\}\}, \{F x, T\{\text{not } z\}\}\}
 \]

 For nogood $\{T x, F\{y\}, F\{\text{not } z\}\}$, the signed literal
Nogoods from logic programs
atom-oriented nogoods

• For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$
\{ Ta, FB_1, \ldots, FB_k \} \quad \text{and} \quad \{ \{ Fa, TB_1 \}, \ldots, \{ Fa, TB_k \} \}
$$

• Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leftarrow y$</td>
<td>${ Tx, F{y}, F{\text{not } z}}$</td>
</tr>
<tr>
<td>$x \leftarrow \text{not } z$</td>
<td>${ {Fx, T{y}}, {Fx, T{\text{not } z}} }$</td>
</tr>
</tbody>
</table>

For nogood $\{ Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal
Nogoods from logic programs
atom-oriented nogoods

- For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get
 $$\{Ta, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$$

- **Example** Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

 $x \leftarrow y$
 $x \leftarrow \text{not } z$

 $$\{Tx, F\{y\}, F\{\text{not } z\}\} \quad \{\{Fx, T\{y\}\}, \{Fx, T\{\text{not } z\}\}\}$$

For nogood $\{Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal
- Fx is unit-resulting wrt assignment $(F\{y\}, F\{\text{not } z\})$ and
For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{Ta, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$$

Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

$$x \leftarrow y \quad \{Tx, F\{y\}, F\{\text{not } z\}\}$$
$$x \leftarrow \text{not } z \quad \{\{Fx, T\{y\}\}, \{Fx, T\{\text{not } z\}\}\}$$

For nogood $\{Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal

- Fx is unit-resulting wrt assignment $(F\{y\}, F\{\text{not } z\})$ and
Nogoods from logic programs
atom-oriented nogoods

• For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get
 \[
 \{T_a, F_{B_1}, \ldots, F_{B_k}\} \quad \text{and} \quad \{\{F_a, T_{B_1}\}, \ldots, \{F_a, T_{B_k}\}\}
 \]

• Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain
 \[
 \begin{array}{c}
 x \leftarrow y \\
 x \leftarrow \text{not } z
 \end{array}
 \begin{array}{c}
 \{T_x, F\{y\}, F\{\text{not } z\}\} \\
 \{\{F_x, T\{y\}\}, \{F_x, T\{\text{not } z\}\}\}
 \end{array}
 \]

For nogood $\{T_x, F\{y\}, F\{\text{not } z\}\}$, the signed literal
 – F_x is unit-resulting wrt assignment $(F\{y\}, F\{\text{not } z\})$ and
Nogoods from logic programs
atom-oriented nogoods

• For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{Ta, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$$

• Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

$$x \leftarrow y \quad \{Tx, F\{y\}, F\{\text{not } z\}\}$$
$$x \leftarrow \text{not } z \quad \{\{Fx, T\{y\}\}, \{Fx, T\{\text{not } z\}\}\}$$

For nogood $\{Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal

– Fx is unit-resulting wrt assignment $(F\{y\}, F\{\text{not } z\})$ and
Nogoods from logic programs
atom-oriented nogoods

- For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{Ta, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$$

- Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

\[
\begin{array}{c}
\text{x} \leftarrow y \\
\text{x} \leftarrow \text{not } z
\end{array}
\]

\[
\{Tx, F\{y\}, F\{\text{not } z\}\} \\
\{Fx, T\{y\}, \{Fx, T\{\text{not } z\}\}\}
\]

For nogood $\{Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal
- Fx is unit-resulting wrt assignment $(F\{y\}, F\{\text{not } z\})$ and
For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{Ta, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$$

Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

<table>
<thead>
<tr>
<th>$x \leftarrow y$</th>
<th>${Tx, F{y}, F{\text{not } z}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leftarrow \text{not } z$</td>
<td>${{Fx, T{y}}, {Fx, T{\text{not } z}}}$</td>
</tr>
</tbody>
</table>

For nogood $\{Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal

- $T\{\text{not } z\}$ is unit-resulting wrt assignment $(Tx, F\{y\})$
For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{Ta, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$$

Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

<table>
<thead>
<tr>
<th>x</th>
<th>\leftarrow</th>
<th>y</th>
<th>${Tx, F{y}, F{\text{not } z}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>\leftarrow</td>
<td>$\text{not } z$</td>
<td>${{Fx, T{y}}, {Fx, T{\text{not } z}}}$</td>
</tr>
</tbody>
</table>

For nogood $\{Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal

- $T\{\text{not } z\}$ is unit-resulting wrt assignment $(Tx, F\{y\})$
For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{T_a, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{\{F_a, TB_1\}, \ldots, \{F_a, TB_k\}\}$$

Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not } z\}\}$, we obtain

$$x \leftarrow y \quad \quad \{Tx, F\{y\}, F\{\text{not } z\}\}$$

$$x \leftarrow \text{not } z \quad \quad \{\{Fx, T\{y\}\}, \{Fx, T\{\text{not } z\}\}\}$$

For nogood $\{Tx, F\{y\}, F\{\text{not } z\}\}$, the signed literal

$$T\{\text{not } z\}$$

is unit-resulting wrt assignment $(Tx, F\{y\})$
For an atom a where $\text{body}(a) = \{B_1, \ldots, B_k\}$, we get

$$\{Ta, FB_1, \ldots, FB_k\} \quad \text{and} \quad \{ \{Fa, TB_1\}, \ldots, \{Fa, TB_k\} \}$$

Example Given Atom x with $\text{body}(x) = \{\{y\}, \{\text{not} \ z\}\}$, we obtain

\[
\begin{array}{ll}
x & \leftarrow \ y \\
x & \leftarrow \ \text{not} \ z
\end{array}
\]

\[
\{ Tx, F\{y\}, F\{\text{not} \ z\} \} \quad \{ Fx, T\{y\} \}, \{ Fx, T\{\text{not} \ z\} \} \}
\]

For nogood $\{Tx, F\{y\}, F\{\text{not} \ z\}\}$, the signed literal

- $T\{\text{not} \ z\}$ is unit-resulting wrt assignment $(Tx, F\{y\})$
Nogoods from logic programs
atom-oriented nogoods

- For an atom \(a \) where \(\text{body}(a) = \{B_1, \ldots, B_k\} \), we get

\[
\{T a, F B_1, \ldots, F B_k\} \quad \text{and} \quad \{\{F a, T B_1\}, \ldots, \{F a, T B_k\}\}
\]

- Example Given Atom \(x \) with \(\text{body}(x) = \{\{y\}, \{\text{not } z\}\} \), we obtain

\[
\begin{align*}
x & \leftarrow y & \{T x, F\{y\}, F\{\text{not } z\}\} \\
x & \leftarrow \text{not } z & \{\{F x, T\{y\}\}, \{F x, T\{\text{not } z\}\}\}
\end{align*}
\]

For nogood \(\{T x, F\{y\}, F\{\text{not } z\}\} \), the signed literal

- \(T\{\text{not } z\} \) is unit-resulting wrt assignment \((T x, F\{y\})\)
For a body $B = \{a_1, \ldots, a_m, \neg a_{m+1}, \ldots, \neg a_n\}$, we get

$$\{FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n\}$$

$$\{\{TB, Fa_1\}, \ldots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \ldots, \{TB, Ta_n\}\}$$
• For a body $B = \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n\}$, we get

$$\{FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n\}$$

$$\{\{TB, Fa_1\}, \ldots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \ldots, \{TB, Ta_n\}\}$$

• Example Given Body $\{x, \text{not } y\}$, we obtain

$$\ldots \leftarrow x, \text{not } y$$

$$\ldots \leftarrow x, \text{not } y$$

$$\{F\{x, \text{not } y\}, Tx, Fy\}$$

$$\{\{T\{x, \text{not } y\}, Fx\}, \{T\{x, \text{not } y\}, Ty\}\}$$
Nogoods from logic programs
body-oriented nogoods

- For a body \(B = \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n\} \), we get

 \[
 \{FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n\} \\
 \{TB, Fa_1\}, \ldots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \ldots, \{TB, Ta_n\} \}
 \]

- **Example** Given Body \(\{x, \text{not } y\} \), we obtain

 \[
 \ldots \leftarrow x, \text{not } y \\
 \vdots \\
 \ldots \leftarrow x, \text{not } y \\
 \{F\{x, \text{not } y\}, Tx, Fy\} \\
 \{\{T\{x, \text{not } y\},Fx\}, \{T\{x, \text{not } y\},Ty\}\}
 \]

 For nogood \(\delta(\{x, \text{not } y\}) = \{F\{x, \text{not } y\}, Tx, Fy\} \), the signed literal
 - \(T\{x, \text{not } y\} \) is unit-resulting wrt assignment \((Tx, Fy)\) and
 - \(Ty \) is unit-resulting wrt assignment \((F\{x, \text{not } y\}, Tx)\)
Characterization of stable models
for tight logic programs, i.e. free of positive recursion

Let P be a logic program and

$$
\Delta_P = \{ \delta(a) \mid a \in \text{atom}(P) \} \cup \{ \delta \in \Delta(a) \mid a \in \text{atom}(P) \} \\
\cup \{ \delta(B) \mid B \in \text{body}(P) \} \cup \{ \delta \in \Delta(B) \mid B \in \text{body}(P) \}
$$
Characterization of stable models

for tight logic programs, ie. free of positive recursion

Let P be a logic program and

$$
\Delta_P = \{ \delta(a) \mid a \in \text{atom}(P) \} \cup \{ \delta \in \Delta(a) \mid a \in \text{atom}(P) \} \\
\cup \{ \delta(B) \mid B \in \text{body}(P) \} \cup \{ \delta \in \Delta(B) \mid B \in \text{body}(P) \}
$$

Theorem

Let P be a tight logic program. Then,

$X \subseteq \text{atom}(P)$ is a stable model of P iff

$X = A_T \cap \text{atom}(P)$ for a (unique) solution A for Δ_P
Summary

• Partial assignments
• Unfounded sets
• Unit resulting literals
• Unit propagation
• Nogoods via program completion
• Characterization of stable models of tight programs in terms of nogoods.
References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
doi=10.2200/S00457ED1V01Y201211AIM019.

- **See also:** http://potassco.sourceforge.net