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Zusammenfassung Typ 2

Kontextfreie Sprachen

• Beschrieben durch kontextfreie Grammatiken und Kellerautomaten

• Können mehrdeutig sein

• Können deterministisch sein (beschrieben durch deterministische Kellerautomaten
und LR(k)-Grammatiken)

• Wortproblem polynomiell, im deterministischen Fall sogar linear

• Sonstige Entscheidungsprobleme meist viel schwerer als bei regulären Sprachen

• Nicht unter allen Operationen abgeschlossen
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Turingmaschinen
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Kellerautomaten erweitern

Unmittelbar denkbare Erweiterungen von Kellerautomaten:

• Verwendung von zwei oder mehr Kellern

• Verwendung von FIFO-Speichern (Warteschlange)

• Verwendung einer endlichen Menge von Zählern

• . . .

All diese Modelle erkennen genau die Typ-0-Sprachen!

Das klassische Automatenmodell
für diese Sprachklasse ist die Turingmaschine.

Alan Turing (publ. dom.)Was kann diese Art von Automaten?
Alles, was überhaupt auf Computern machbar ist!

Church-Turing-These: Die Turingmaschine kann alle Funktionen berechnen,
die intuitiv berechenbar sind.
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Turingmaschinen – Grundideen

Wesentliche Designentscheidungen
bei der Gestaltung von Turingmaschinen (TMs):

• TMs haben eine endliche Steuerung (wie bei NFA und PDA)

• Es gibt eine unbeschränkte Menge an Speicher (wie bei PDA)

• Die TM kann in jedem Schritt ein Zeichen aus dem Speicher lesen und eines
schreiben (wie bei PDA)

• Der Lese-/Schreibzugriff ist an jeder beliebigen Speicheradresse möglich
(im Gegensatz zu PDA)

Zur praktischen Implementierung speichert die TM die aktuelle Adresse und kann
diese in jedem Schritt um eins erhöhen oder verringern

• Zur Vereinfachung wird die Eingabe einfach beim Start in den Speicher übergeben,
so dass „Lesen der Eingabe“ und „Lesen aus Speicher“ die selbe Operation sind
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Turingmaschinen – Grundideen (2)

Schematische Darstellung:

Eingabe-/Speicherband
a a a b b C D C C b D · · ·

Endliche
Steuerung

Lese-/Schreibkopf
(beweglich)

q Zustandsvariable

Übergangsfunktion:

• Eingabe: aktueller Zustand, gelesenes Zeichen

• Ausgabe: neuer Zustand, geschriebenes Zeichen, Änderung
Lese-/Schreibadresse (=̂ Bewegung Lese-/Schreibkopf)
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Speicherzugriff in TMs

Speicherverwaltung:

• Zu jedem Zeitpunkt verwendet die TM endlich viele Speicherzellen

• Speicherzellen als „Band“ von links nach rechts

• Lese-/Schreibkopf kann frei auf Band bewegt werden (pro Schritt um eine Zelle
nach links oder rechts)

• Am linken Rand kann der Kopf nicht weiter nach links bewegt werden

• Am rechten Rand des Speichers kann der Kopf nach rechts bewegt werden: dann
wird dort eine neue Speicherzelle mit dem Inhalt ␣ (Leerzeichen, Blank) angefügt

Alternative Vorstellung: Der Speicher ist ein einseitig unendlich langes Band, auf dem
am Anfang nur eine (endliche) Eingabe steht, gefolgt von unendlich vielen leeren Zellen (␣).
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Modell einer Turingmaschine, (c) Foto: Rocky Acosta, 2012, CC-By 3.0
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Definition TM

Eine (deterministische) Turingmaschine (DTM) ist ein Tupel M = ⟨Q,Σ,Γ, δ, q0, F⟩ mit
den folgenden Bestandteilen:

• Q: endliche Menge von Zuständen

• Σ: Eingabealphabet

• Γ: Arbeitsalphabet mit Γ ⊇ Σ ∪ {␣}

• δ: Übergangsfunktion, eine partielle Funktion

Q × Γ→ Q × Γ × {L, R, N}

• q0: Startzustand q0 ∈ Q

• F: Menge von akzeptierenden Endzuständen F ⊆ Q

Dabei bedeutet δ(q, a) = ⟨p, b, D⟩:
„Liest die TM in Zustand q unter dem Lese-/Schreibkopf ein a,
dann wechselt sie zu Zustand p, überschreibt das a mit b
und verschiebt den Lese-/Schreibkopf gemäß D ∈ {L, R, N}
(nach links, nach rechts, gar nicht).“
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Beispiel (1)

Wir konstruieren eine TM mit dem Eingabealphabet Σ = {0},
welche Wörter der Sprache {02i

| i ≥ 0} akzeptiert
(Ketten von 0, deren Länge eine Zweierpotenz ist)

Arbeitsweise:

(1) Laufe von links nach rechts über die Eingabe und ersetze dabei jede zweite 0
durch X

(2) Falls insgesamt nur eine 0 gefunden wird, akzeptiere

(3) Falls eine andere ungerade Zahl an 0 gefunden wird, verwirf

(4) Laufe zurück zum Anfang des Bandes

(5) Wiederhole die Schritte ausgehend von (1)
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Beispiel (2)

Wir können TMs in Diagrammen darstellen:

Ein Pfeil s1 7→ s2, D von q1 nach q2 bedeutet δ(q1, s1) = ⟨q2, s2, D⟩

Übergangsrelation zum Beispiel:

q0 q1 q2 q3

q4q5

0 7→ 0̂, R 0 7→ X, R
0 7→ 0, R

0 7→ X, R

X 7→ X, R X 7→ X, R X 7→ X, R

␣ 7→ ␣, L

X 7→ X, L
0 7→ 0, L

0̂ 7→ 0̂, R␣ 7→ ␣, N
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Arbeitsweise einer TM: Übergänge

SeiM = ⟨Q,Σ,Γ, δ, q0, F⟩ eine DTM.

Eine Konfiguration von M ist ein Wort w q v ∈ Γ∗ ◦ Q ◦ Γ∗, wobei w den Bandinhalt
vor dem Lese-/Schreibkopf, q den aktuellen Zustand und v den Bandinhalt ab dem
Lese-/Schreibkopf darstellt.

Sei w q av eine Konfiguration, mit w, v ∈ Γ∗, a ∈ Γ und q ∈ Q. Die Übergangsrelation ⊢
ist wie folgt definiert:

• Falls δ(q, a) = ⟨r, b, N⟩, dann w q av ⊢ w r bv.
• Falls δ(q, a) = ⟨r, b, R⟩

– falls v , ϵ, dann w q av ⊢ wb r v;
– falls v = ϵ, dann w q av ⊢ wb r ␣.

• Falls δ(q, a) = ⟨r, b, L⟩
– falls w = w′c mit c ∈ Γ, dann w q av ⊢ w′ r cbv;
– falls w = ϵ, dann w q av ⊢ r bv.

Mit ⊢∗ bezeichnen wir den reflexiven, transitiven Abschluss von ⊢.
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Beispiel (3)

q0 q1 q2 q3

q4q5

0 7→ 0̂, R 0 7→ X, R
0 7→ 0, R

0 7→ X, R

X 7→ X, R X 7→ X, R X 7→ X, R

␣ 7→ ␣, L

X 7→ X, L
0 7→ 0, L

0̂ 7→ 0̂, R␣ 7→ ␣, N

Übergänge bei Eingabe von 0000:

q0 0000 ⊢ 0̂ q1 000 ⊢ 0̂X q2 00 ⊢ 0̂X0 q3 0 ⊢ 0̂X0X q2 ␣ ⊢ 0̂X0 q4 X␣ ⊢

0̂X q4 0X␣ ⊢ 0̂ q4 X0X␣ ⊢ q4 0̂X0X␣ ⊢ 0̂ q1 X0X␣ ⊢ 0̂X q1 0X␣ ⊢ 0̂XX q2 X␣ ⊢

0̂XXX q2 ␣ ⊢ 0̂XX q4 X␣ ⊢ 0̂X q4 XX␣ ⊢ 0̂ q4 XXX␣ ⊢ q4 0̂XXX␣ ⊢

0̂ q1 XXX␣ ⊢ 0̂X q1 XX␣ ⊢ 0̂XX q1 X␣ ⊢ 0̂XXX q1 ␣ ⊢ 0̂XXX q5 ␣
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Arbeitsweise einer TM: Läufe

Für Eingabewort w beginnt die TM mit der Startkonfiguration q0 w.

Ein Lauf ist eine maximale Folge von Konfigurationen, die durch die Übergangsrelation
in Beziehung stehen:

• Ein Lauf kann endlich sein, wenn es für die Schlusskonfiguration keinen
Nachfolger gibt

• Ein Lauf kann unendlich sein, wenn immer neue Konfigurationen erreichbar sind

Die TM akzeptiert die Eingabe, wenn der (eindeutig bestimmte) Lauf, der mit q0 w
beginnt, endlich ist und seine letzte Konfiguration einen Endzustand beinhaltet.

Andernfalls verwirft die TM die Eingabe.
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Sprache einer TM

Die Sprache einer TM wird wie erwartet definiert:

Die von einer TM M erkannte Sprache L(M) ist die Menge aller Wörter, die von einer
TM akzeptiert werden.

Zwei Gründe für Nichtakzeptanz von Wörtern:

(1) TM hält in einem Zustand, der kein Endzustand ist

(2) TM hält nicht (Endlosschleife)

Es ist praktisch, wenn eine TM garantiert hält, da man Fall (2) meist nicht sicher
erkennen kann (man weiß nicht, ob die TM irgendwann doch noch anhält)

Eine TM ist ein Entscheider, wenn sie bei jeder Eingabe hält. Wir sagen in diesem
Fall, dass die TM die von ihr erkannte Sprache entscheidet.
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Beispiel (4)

q0 q1 q2 q3

q4q5

0 7→ 0̂, R 0 7→ X, R
0 7→ 0, R

0 7→ X, R

X 7→ X, R X 7→ X, R X 7→ X, R

␣ 7→ ␣, L

X 7→ X, L
0 7→ 0, L

0̂ 7→ 0̂, R␣ 7→ ␣, N

Diese TM entscheidet die Sprache {02i
| i ≥ 0}.
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Turingmaschinen programmieren

Beobachtung: Die detaillierte Beschreibung von TMs ist in der Regel sehr aufwändig

Abhilfe: Oft reicht die skizzenhafte Beschreibung der Arbeitsweise

Beispiel: Eine TM zur Erkennung von {aibici | i ≥ 0} arbeitet wie folgt:

(1) Ersetze, angefangen von links, Vorkommen von a durch â

(2) Immer wenn ein a ersetzt wurde, suche ein b und ersetze es durch b̂, suche
anschließend rechts davon ein c und ersetze es durch ĉ

(3) Gehe danach zurück zum ersten noch nicht ersetzten a und führe die Ersetzung (1) fort,
bis alle a ersetzt worden sind

(4) Akzeptiere, falls der Inhalt des Bandes die Form â∗b̂
∗
ĉ∗ hat

(5) Andernfalls oder falls eine der Ersetzungen in Schritt (2) fehlschlägt, weil es zu wenige b
oder c gibt, lehne die Eingabe ab
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Berechnung vs. Worterkennung

Wir haben TMs als Automaten zur Worterkennung definiert:

• Eingabe wird am Anfang auf Band gegeben

• TM kann (a) anhalten und die Eingabe akzeptieren, (b) anhalten und die Eingabe
ablehnen oder (c) nicht anhalten

Wie kann man TMs als allgemeines Rechenmodell verstehen?

(1) Berechnungsfragen können als Wortproblem kodiert werden.
– Eingabewörter als Kodierung beliebiger Eingaben (z.B. als Binärdatei)
– Berechnung einer Booleschen Funktion
{ Entscheidungsproblem

(2) Alternative Definition: Der Inhalt des Bandes beim Halten der TM wird als Ausgabe
interpretiert (keine Endzustände nötig).
Dann kodieren TMs partielle Funktionen Σ∗ → Γ∗ (partiell, da die TM nicht immer
anhalten muss)
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Die Church-Turing-These

Was ist mit dem intuitiven Begriff der „mechanisch berechenbaren“ Funktion gemeint?

• Gödel/Herbrand (1934): allgemeine rekursive Funktionen

• Church (1936): λ-Kalkül

• Turing (1936): Turingmaschine (ursprünglich „a-machine“)

• Kleene/Rosser/Church/Turing: Die drei Ansätze beschreiben die gleiche Klasse
von Funktionen!

Church-Turing-These: Eine Funktion ist genau dann im intuitiven Sinne berechenbar,
wenn es eine Turingmaschine gibt, die für jede mögliche Eingabe den Wert der Funkti-
on auf das Band schreibt und anschließend hält.

• Lesart 1: Vorschlag einer mathematischen Definition der intuitiven Idee von
Berechenbarkeit

• Lesart 2: „Naturgesetz“ über die Möglichkeiten und Grenzen des Rechnens an
sich
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Varianten von Turingmaschinen

Es gibt sehr viele alternative Definitionen von Turingmaschinen

• Alternative Akzeptanzbedinungen
(Ausgabe der Antwort auf Band, totale Übergangsfunktion + explizite Stoppzustände für Akzeptanz & Ablehnung, . . . )

• Alternative Bewegungsregeln (keine N-Übergänge, anderes Verhalten am Rand des Bandes, . . . )

• TMs mit beidseitig unendlichem Band

• TMs mit mehreren Bändern

• nichtdeterministische Turingmaschinen

• TMs mit wahlfreiem Speicherzugriff (RAM)

• . . .

All diese Varianten können die selben Funktionen berechnen – wenn auch zum Teil mit
unterschiedlichem Aufwand

{ Untermauerung der Church-Turing-These
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TMs mit mehreren Bändern

Die Mehrband-Turingmaschine

. . . verwendet eine vorher festgelegte Zahl k ≥ 2 von (einseitig unendlichen)
Speicherbändern

. . . erweitert die Übergangsfunktion entsprechend:

Q × Γk → Q × (Γ × {L, R, N})k

. . . erhält die Eingabe auf dem ersten Band, während die anderen anfänglich leer
sind

Wichtig: Die TM hat einen unabhängigen Lese-/Schreibkopf für jedes Band
(unterschiedliche Bewegungen/Positionen möglich)

Beispiel: Ein deterministischer PDA kann leicht durch eine 2-Band-TM simuliert wer-
den. Dabei wird vom ersten Band nur gelesen, während auf dem zweiten Band der
aktuelle Kellerinhalt gespeichert wird.
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Mehr Bänder , mehr Ausdrucksstärke

Jede Mehrband-TM ist äquivalent zu einer TM (mit einem Band).

Beweis: Es ist klar, dass eine TM durch eine Mehrband-TM simuliert werden kann,
indem einfach nur ein Band genutzt wird.

Umgekehrt können mehrere Bänder auf einem simuliert werden:

• Für jedes der k Bänder gibt es je ein endliches Wort (Bandinhalt) und eine Position
(Lese-/Schreibkopf)

• Speicherung auf einem Band:
– Bandinhalte werden hintereinander gespeichert, getrennt durch ein

Sonderzeichen #
– Steht der Kopf über einer Zelle mit Symbol s, dann wird dort stattdessen ein

markiertes Symbol ŝ gespeichert

• Die kodierte Startkonfiguration der k-Band-TM bei Eingabe a1 · · · an ist also:
#â1a2 · · · an#␣̂# · · · #␣̂#
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Mehr Bänder , mehr Ausdrucksstärke (2)

Jede Mehrband-TM ist äquivalent zu einer TM (mit einem Band).

Beweis (Fortsetzung): Mit dieser Kodierung kann die TM einzelne Schritte der
Mehrband-TM simulieren:

• Intitialisierung: Die Eingabe wird in die Kodierung der k-Band-Konfiguration
umgeschrieben

• Berechnungsschritt: Die TM läuft über das gesamte Band und liest die Symbole an
den Kopf-Positionen; die k gelesenen Symbole werden in der Zustandsinformation
kodiert; dann läuft die TM nochmals über das Band und aktualisiert alle k
Kodierungen entsprechend der Übergangsfunktion

• Falls der Speicher für ein Band erweitert werden muss (Verlassen des bisher
verwendeten Speichers nach rechts), verschiebt die TM alle darauf folgenden
Zellen entsprechend, kehrt zurück und setzt die Simulation fort
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Mehr Bänder , mehr Ausdrucksstärke (3)

Jede Mehrband-TM ist äquivalent zu einer TM (mit einem Band).

Beweis (Fortsetzung): Die skizzierte Simulation benötigt viele Zustände, um alle
relevanten Informationen zwischenspeichern zu können (Zustand der simulierten
Maschine, gelesene Symbole unter den k Köpfen, Arbeitszustand bei Hilfsoperationen
wie Speicherverschiebung, . . . ).

{ Details umständlich, aber im Prinzip machbar. □

Komplexität?

• Die Zahl der Schritte zur Simulation eines Schrittes ist proportional zur
Gesamtlänge des beschriebenen Speichers

• Der maximal beschriebene Speicher pro Band ist proportional zur Zahl der bereits
berechneten Schritte

• Die Simulation von n Schritten benötigt also O(kn2) Schritte
(Sofern n nicht kürzer ist als die Eingabe w; allgemeiner: O(k n max(n, |w|)))

Markus Krötzsch, 15. Dezember 2025 Formale Systeme Folie 25 von 27



Zusammenfassung und Ausblick

Turingmaschinen (TMs) liefern ein allgemeines Modell der Berechnung

Die Church-Turing-These besagt, dass jeder Algorithmus in diesem Modell beschrieben
werden kann

Zahlreiche Varianten von TMs führen zur gleichen Ausdrucksstärke, konkret z.B.
Mehrband-TMs.

Offene Fragen:

• Wie funktionieren nichtdeterministische Turingmaschinen?

• Wo sind die Grenzen der Berechnung mit Turingmaschinen?

• Wie genau hängt das alles mit Sprachen vom Typ 1 und Typ 0 zusammen?
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Frohe Weihnachten!

S

„dorr kleene Stern“A

A

A

A

u v x y

v x

v xw
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