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Abstract

We study learning of description logic TBoxes in An-
gluin et al.’s framework of exact learning via queries.
We admit entailment queries (“is a given subsumption
entailed by the target TBox?”) and equivalence queries
(“is a given TBox equivalent to the target TBox?”), as-
suming that the signature and logic of the target TBox
are known. We present three main results: (1) TBoxes
formulated in DL-Lite with role inclusions and ELI
concepts on the right-hand side of concept inclusions
can be learned in polynomial time; (2) EL TBoxes
with only concept names on the right-hand side of con-
cept inclusions can be learned in polynomial time; and
(3) EL TBoxes cannot be learned in polynomial time.
It follows that non-polynomial time learnability of EL
TBoxes is caused by the interaction between existen-
tial restrictions on the right- and left-hand sides of con-
cept inclusions. We also show that neither entailment
nor equivalence queries alone are sufficient in cases (1)
and (2) above.

Successfully deploying a description logic (DL) in a con-
crete application requires to carefully capture the relevant
domain knowledge in a DL ontology. This is a subtle, error-
prone, and time consuming task, which is further hindered
by the fact that domain experts are rarely experts in on-
tology engineering and, conversely, ontology engineers are
often not sufficiently familiar with the domain to be mod-
eled. From its beginnings, DL research was driven by the
aim to provide various forms of support for ontology engi-
neers, assisting them in the design of high-quality ontolo-
gies. Examples include the ubiquitous task of ontology clas-
sification (Baader et al. 2003), bootstrapping ontology de-
sign from examples, data, or text (Baader and Molitor 2000;
Borchmann and Distel 2011; Ma and Distel 2013) and
checking the completeness of the modeling in a systematic
way (Baader et al. 2007).

Machine learning (ML) techniques are natural candidates
to support ontology engineering by partly automatizing the
design process, and in fact ML approaches have been pro-
posed for ontology engineering in non-DL-contexts. There,
the main focus is on mining the relevant terms of the ap-
plication domain from bodies of text and semi-structured
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data with the aim of including them in the ontology. Some
approaches also support learning of subsumptions between
the identified terms, but not between compound logical ex-
pressions based on these terms (Cimiano, Hotho, and Staab
2005; Buitelaar, Cimiano, and Magnini 2005). In the con-
text of DL ontologies, though, the main objective is to de-
velop a detailed modeling of the relevent concepts of the
domain using the logical operators provided by the DL at
hand (Voelker 2009). In this paper, we thus concentrate on
learning the full logical structure of a DL TBox. In particu-
lar, we study the foundations of learning ontologies that are
formulated in several DLs which underly the three tractable
profiles of the OWL2 ontology language.

We adopt Angluin et al.’s framework of exact learning via
queries (Angluin 1987c). In particular, we are interested in
learning a target TBox T that is formulated in a given DL
and whose signature Σ (the concept and role names that oc-
cur in T ) is also known, by posing queries to an oracle. Intu-
itively, the oracle can be thought of as a domain expert who
interacts with the learning algorithm. We consider two forms
of oracle queries:

• entailment queries: does T entail a given Σ concept in-
clusionC v D? These queries are answered by the oracle
with ‘yes’ or ’no’.

• equivalence queries: is a given Σ-TBox H (the hypothe-
sis) equivalent to T ? The oracle answers ‘yes’ if H and
T are logically equivalent and ‘no’ otherwise. It then re-
turns a Σ-inclusion C v D such that T |= C v D and
H 6|= C v D (a positive counterexample), or vice versa
(a negative counterexample).

We generally assume that the inclusions used in entailment
queries and returned by equivalence queries are of the same
form as the inclusions allowed in the target TBox. While,
in general, answering an equivalence query of the above
form can be expected to be rather challenging also for a do-
main expert and an ontology engineer, we emphasize that
the actual algorithms developed in this paper use equiva-
lence queries only in a very restricted way. In particular, our
algorithms always ensure that the hypothesis TBox H that
they maintain is a logical consequence of the target TBox T ,
and then use equivalence queries only to ask ‘is the TBoxH
learned so far complete and if not, please give me a missing
inclusion C v D’.



Following Angluin, our aim is to find (deterministic)
learning algorithms that run in polynomial time and conse-
quently also make only polynomially many oracle queries.
More precisely, we require that there is a two-variable poly-
nomial p(n,m) such that at every point of the algorithm exe-
cution, the time spent up to that point is bounded by p(n,m),
where n is the size of the target TBox T to be learned andm
is the size of the largest (positive or negative) counterexam-
ple that was returned by the oracle until the considered point
of the execution. If such an algorithm exists, then L TBoxes
are polynomial time learnable.

Within the setup laid out above, we study three different
DLs, which are significant fragments of the three profiles of
OWL2 (Motik et al. 2009). The popular description logic EL
can be viewed as a logical core of the OWL2 EL profile of
OWL2. It is known that propositional Horn formulas, which
correspond to EL TBoxes without existential restrictions,
can be learned in polynomial time when both entailment
and equivalence queries are available, but not when one of
these types of queries is disallowed (Frazier and Pitt 1993;
Angluin, Frazier, and Pitt 1992; Angluin 1987a), see also
(Arias and Balcázar 2011). We show that, in contrast, EL
TBoxes are not polynomial time learnable. The results for
the other two DLs that we study will shed some light on the
reasons for this behaviour.

The DL-Lite family of DLs underlies the OWL2 QL pro-
file of OWL2 (Calvanese et al. 2007). In many versions
of DL-Lite such as in DL-LiteR (DL-Lite with role inclu-
sions), the number of Σ-concept inclusions is polynomial
in the size of Σ. In this case, TBoxes are trivially learnable
in polynomial time, even when only entailment queries (but
no equivalence queries) are available or vice versa. We thus
consider the more interesting DL-Lite∃R dialect, that is, the
extension of DL-LiteR that allows any ELI concept on the
right-hand side of concept inclusions. Note that DL-Lite∃R
can be viewed as a logical core of OWL2 QL. Here, the
number of Σ-concept inclusions is infinite, but we are never-
theless able to establish that DL-Lite∃R TBoxes are polyno-
mial time learnable. In practice, many EL TBoxes actually
fall within (the intersection of EL and) DL-Lite∃R. We also
show that DL-Lite∃R TBoxes cannot be learned in polyno-
mial time with entailment queries alone or with equivalence
queries alone.

We then consider the fragment ELlhs of EL where only
concept names (but no compound concepts) are admitted on
the right-hand side of concept inclusions. ELlhs is a signifi-
cant fragment of the OWL2 RL profile of OWL2, and also
a fragment of datalog. We prove that ELlhs TBoxes can be
learned in polynomial time using a non-trivial extension of
Angluin’s polynomial time agorithm for learning proposi-
tional Horn theories (1992). Note that the symmetric frag-
ment ELrhs that allows only concept names on the right-
hand side of concept inclusions is a fragment of DL-Lite∃R.
Together, our results for DL-Lite∃R and ELlhs thus show that
non-polynomial time learnability of EL TBoxes is caused by
the interaction between existential restrictions on the right-
and left-hand sides of concept inclusions.

To improve readability, we first present the upper bounds

(polynomial time learnability for DL-Lite∃R and ELlhs) and
then the lower bounds. Proof details are provided in the ap-
pendix of this paper.

Related Work. In the terminology of the learning litera-
ture, entailment queries are a kind of membership queries,
which can take many different forms (Raedt 1997). Learn-
ing using membership and equivalence queries appears to
be the most successful protocol for exact learning in An-
gluin’s framework. Apart from propositional Horn formulas,
polynomial time learnable classes for this protocol include
regular sets (Angluin 1987b) and monotone DNF (Angluin
1987c). Exploring the possibilities of extending the learning
algorithm for propositional Horn formulas to (fragments) of
first-order Horn logic has been a major topic in exact learn-
ing (Reddy and Tadepalli 1999; Arias and Khardon 2002;
Arias, Khardon, and Maloberti 2007; Selman and Fern
2011). Note that ELlhs can be regarded as a fragment of first-
order (FO) Horn logic. Existing approaches to polynomial
time learning of FO Horn formulas either disallow recursion,
bound the number of individual variables per Horn clause,
or admit additional queries in the learning protocol. None of
this is the case in our setup. Also related to our work is exact
learning of schema mappings in data exchange, as recently
studied in (ten Cate, Dalmau, and Kolaitis 2012). In this and
some other studies mentioned above, membership queries
take the form of interpretations (“is a given interpretation a
model of the target theory?”). In DL, exact learning has been
studied for CLASSIC in (Frazier and Pitt 1996) where it is
shown that single CLASSIC concepts (but not TBoxes) can
be learned in polynomial time (here membership queries are
concepts). Learning single concepts using refinement oper-
ators has been studied in (Lehmann and Hitzler 2010).

Preliminaries
Let NC be a countably infinite set of concept names and NR

a countably infinite set of role names. The dialect DL-Lite∃R
of DL-Lite is defined as follows (Calvanese et al. 2007). A
role is a role name or an inverse role r− with r ∈ NR. A role
inclusion (RI) is of the form r v s, where r and s are roles. A
basic concept is either a concept name or of the form ∃r.>,
with r a role. A DL-Lite∃R concept inclusion (CI) is of the
form B v C, where B is a basic concept and C is an ELI
concept, that is, C is formed according to the rule

C,D := A | > | C uD | ∃r.C | ∃r−.C

where A ranges over NC and r ranges over NR. A DL-Lite∃R
TBox is a finite set of DL-Lite∃R CIs and RIs.1

As usual, an EL concept is an ELI concept that does
not use inverse roles, an EL concept inclusion has the
form C v D with C and D EL concepts, and a (general)
EL TBox is a finite set of EL concept inclusions (Baader,
Brandt, and Lutz 2005). We use C ≡ D as an abbrevi-
ation for the inclusions C v D and D v C. An EL
TBox T is acyclic if it consists of inclusions A v C and

1For simplicity, we consider DL-Lite without disjointness ax-
ioms. All our results also hold for the extension of DL-Lite∃R with
disjointness.



A ≡ C such that A is a concept name, no concept names
occurs more than once on the left hand side of an inclu-
sion in T , and T contains no cycles (Baader et al. 2003;
Konev et al. 2012). The semantics of concepts and TBoxes
is defined as usual in terms of interpretations (Baader et al.
2003). For a TBox T and concept inclusion C v D, we
write T |= C v D if every model I of T also satisfies
C v D. T is omitted if it is empty, that is, we then sim-
ply write |= C v D. We say that concepts C and D are
equivalent w.r.t. T and write C ≡T D if both T |= C v D
and T |= D v C; if r, s are roles, r ≡T s is defined anal-
ogously. A signature Σ is a finite set of concept and role
names. The size of a concept C, denoted with |C|, is the
length of the string that represents it, where concept names
and role names are considered to be of length one. The size
of a TBox T , denoted with |T |, is

∑
CvD∈T |C|+ |D|.

Learning DL-Lite∃R TBoxes in
Polynomial Time

We prove that DL-Lite∃R TBoxes can be learned in polyno-
mial time. The signature Σ of the target TBox T is known to
the learner. To simplify presentation, we assume that the tar-
get TBox is in named form, that is, it contains for each role
r a concept name Ar such that Ar ≡ ∃r.> ∈ T . This as-
sumption is without loss of generality since any (polynomial
time) learning algorithm for TBoxes in named form can be
transformed into one for unrestricted TBoxes: the algorithm
still uses the concept namesAr in its internal representations
(although they are no longer included in the target signature
Σ), and replaces each Ar with ∃r.> in queries to the oracle
and when ultimately returning the TBox that it has learned.

In an initial phase, the learning algorithm for DL-Lite∃R
TBoxes determines, using at most O(|Σ|2) entailment
queries, all CIs B1 v B2 with T |= B1 v B2 and B1, B2

basic concepts and the set of all RIs r v s with T |= r v s.
A concept or role inclusion is in reduced form if all ba-
sic concepts that occur in it are concept names. We assume
without further notice that all concept inclusions considered
by the learner, except those that have been determined in the
initial phase, are in reduced form. In particular, counterex-
amples returned by the oracle are immediately converted
into this form.

To formulate the learning algorithm, it is useful to iden-
tify each ELI concept C with a finite tree TC whose nodes
are labeled with sets of concept names and whose edges are
labeled with roles. In detail, if A is a concept name, then
TA has a single node d with label l(d) = {A}; if C = ∃r.D,
then TC is obtained from TD by adding a new root d0 and an
edge from d0 to the root d of TD with label l(d0, d) = r (we
then call d an r-successor of d0); if C = D1 uD2, then TC
is obtained by identifying the roots of TD1 and TD2 . Con-
versely, every tree T of the described form gives rise to an
ELI concept CT in the obvious way. We will not always
distinguish explicitly between C and its tree representation
TC which allows us to speak, for example, about the nodes
and subtrees of an ELI concept.

The following notion plays a central role in the learn-
ing algorithm. Let T be a DL-Lite∃R TBox. A DL-Lite∃R

Algorithm 1 The learning algorithm for DL-Lite∃R
1: Compute (entailment queries)

Hbasic = {r v s | T |= r v s} ∪
{B1 v B2 | T |= B1 v B2, B1, B2 basic}

2: SetHadd = ∅
3: while Equivalent (Hbasic ∪Hadd)? returns “no” do
4: Let A v C be the returned positive counterexample

for T relative toHbasic ∪Hadd
5: Find a T -essential inclusion A′ v C ′ with

Hbasic ∪Hadd 6|= A′ v C ′ (entailment queries)
6: if there is A′ v C ′′ ∈ Hadd then
7: Find T -essential inclusion A′ v C∗ such that

|= C∗ v C u C ′ (entailment queries)
8: Replace A′ v C ′′ by A′ v C∗ inHadd
9: else

10: add A′ v C ′ toHadd
11: end if
12: end while
13: SetH = Hbasic ∪Hadd.

inclusion A v C is T -essential if it is in reduced form,
T |= A v C, and the following conditions are satisfied:

1. A v C is concept saturated for T : if C ′ results from C
by adding a concept name A′ to the label of some node,
then T 6|= A v C ′.

2. A v C is role saturated for T : if C ′ results from C by
replacing a role r by a role r′ with r′ 6≡T r and T |= r′ v
r, then T 6|= A v C ′.

3. A v C is sibling-merged for T : if C ′ is the result of
identifying in C an r-successor and an s-successor of the
same node where r ≡T s, then T 6|= A v C ′.2

4. A v C is parent/child-merged for T : if d′ is an r-
successor of d in C and d′′ is an s-successor of d′ with
r− ≡T s, then T 6|= A v C ′ where C ′ results from C by
identifying d and d′′.

5. A v C is minimal for T : if d′ is an r-successor of d in C
and A′ is in the node label of d, then T 6|= A′ v ∃r.C ′
where C ′ corresponds to the subtree rooted at d′ (where
A′ 6≡T A if d is the root of C).

Note that Points 1 to 5 carefully mix conditions that ‘max-
imize’ (Points 1 and 2) and ‘minimize’ (Point 5) the con-
cept C. Points 3 and 4 are a form of maximization.

The algorithm for learning DL-Lite∃R TBoxes in named
form is given as Algorithm 1, where the implementation of
the lines marked with “(entailment queries)” requires the ex-
ecution of entailment queries as detailed below. Observe
that, in Line 4, the assumption that a positive counterexam-
ple is returned by the oracle (i.e., CI entailed by T but not
by Hbasic ∪Hadd) is justified by the construction of Hbasic
andHadd, that is, we only include inclusions entailed by the

2The node that results from the identification is then either an
r-successor or an s-successor of its parent, which is equivalent.
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Figure 1: Minimization.

target TBox T in our hypothesis TBox Hbasic ∪ Hadd and
thus, at all times, T |= Hbasic ∪ Hadd. We now show in
more detail how Lines 5 and 7 can be implemented, and that
only polynomially many entailment queries are required.
The next lemma addresses Line 5.

Lemma 1 Given a positive counterexample A v C for T
relative to Hbasic ∪ Hadd, one can construct a T -essential
such counterexample using only polynomially many entail-
ment queries in |C|+ |T |.

Proof. Let A v C be a positive counterexample for T rela-
tive to Hbasic ∪ Hadd. We may assume that A v C is in
reduced form and exhaustively apply the following rules,
which rely on posing entailment queries to the oracle:
(Concept saturation) if T |= A v C ′ and C ′ results from C
by adding a concept nameA′ to the label of some node, then
replace A v C by A v C ′.
(Role saturation) if T |= A v C ′ and C ′ results from C by
replacing a role r by a r′ with r 6≡T r′ and T |= r′ v r,
then replace A v C by A v C ′.
(Sibling merging) if T |= A v C ′ and C ′ is the result of
identifying in C an r-successor and an s-successor of the
same node where r ≡T s, then replace A v C by A v C ′.
(Parent/child merging) if d′ is an r-successor of d in C, d′′ is
an s-successor of d′ with r− ≡T s, and T |= A v C ′ where
C ′ results from C by identifying d and d′′, then replace A v
C by A v C ′.
(Minimization) if d′ is an r-successor of d, A′ is in the node
label of d, and C ′ corresponds to the subtree rooted at d′,
T |= A′ v ∃r.C ′ (plus A′ 6≡T A if d is the root of C), then
replace A v C by

(a) A′ v ∃r.C ′ ifHbasic ∪Hadd 6|= A′ v ∃r.C ′;
(b) A v C|−d′↓, where C|−d′↓ is obtained from C by removing

the subtree generated by d′ from C, otherwise.

The last rule is illustrated in Figure 1. It follows directly
from the definition of the rules that the final concept inclu-
sion is T -essential. Let us verify that it is also a positive
counterexample for T relative to Hbasic ∪ Hadd. It suffices
to show that the CI resulting from each rule application is en-
tailed by T , but not byHbasic∪Hadd. The former is straight-
forward for all five rules. Regarding the latter, in the first four
rules we have Hbasic |= C ′ v C if A v C is replaced by
A v C ′. Hence Hbasic ∪ Hadd 6|= A v C ′. In the last rule,
we have {A v C|−d′↓, A′ v ∃r.C ′} |= A v C. Thus, one
of the inclusions A v C|−d′↓ and A′ v ∃r.C ′ is not entailed
by Hbasic ∪ Hadd, and this is the CI resulting from the rule
application.

It is not hard to see that the number of rule applications is
bounded by |C|2 · |Σ|. Note that termination of the algorithm
requires the condition in the last rule that A′ 6≡T A if d is
the root of C. Otherwise, this rule could ‘replace’ A v C
by any A′ v C with A equivalent to A′ w.r.t. T . With the
mentioned condition and since all CIs are in reduced form,
each time when d is the root of C and A v C is replaced by
A′ v ∃r.C ′, then we strictly descend in subsumption order,
that is, T |= A v A′ and T 6|= A′ v A. o

The following lemma addresses Line 7.

Lemma 2 Assume that A v C1 and A v C2 are T -
essential. Then one can construct a T -essentialA v C such
that |= C v C1 u C2 using polynomially many entailment
queries in |C1|+ |C2|.

Proof. Starting withA v C1uC2, we exhaustively apply the
rule for sibling merging from above and denote the result by
A v C. Observe that sinceA v C1 andA v C2 are both T -
essential, the concept inclusion A v C1 uC2 is (i) concept-
saturated for T , (ii) role saturated for T , (iii) parent/child-
merged for T , and (iv) minimal for T . The only property
of T -essential inclusions that can fail for A v C1 u C2

is being sibling-merged for T . Now one can show that an
inclusion with properties (i)–(iv) still has those properties
after applying the rule (sibling merging) above. ThusA v C
is T -essential, as required. o

Example 3 Suppose the target TBox T is3

Prof v Academicu
∃worksFor.(∃supports.Teachingu

∃supports.Research)

Academic v ∃advisor.Academic

The algorithm first computesHbasic as

Prof v Academic Prof v ∃worksFor.>
Prof v ∃advisor.> Academic v ∃advisor.>

and then posesHbasic as the first equivalence query. Assume
that the oracle returns the positive counterexample

Prof v ∃advisor.Academic.

which is not concept saturated for T ; saturating it yields

Prof v Academic u ∃advisor.Academic

which is not minimal for T ; minimizing it yields

Academic v ∃advisor.Academic.

The above CI constitutes the new Hadd and the algorithm
asks Hbasic ∪Hadd as an equivalence query. Assume the or-
acle returns the positive counterexample

Prof v ∃worksFor.(∃supports.Teachingu
∃worksFor−.Academic)

3To facilitate presentation, we use a TBox T that is not in
named form; for this concrete example, however, named form does
not make any difference.



which is not parent/child-merged for T ; merging it results in
the following CI, which is added toHadd:

Prof v Academic u ∃worksFor.∃supports.Teaching.
For the next equivalence query, the oracle returns the posi-
tive counterexample

Prof v ∃worksFor.∃supports.Research.
Conjoining the right-hand side of this CI with that of the
existing CI for Prof in Hadd and applying sibling merging
yields the first CI from T , and the algorithm has succeeded
to learn T .

If the algorithm terminates, then it obviously has found a
TBoxHbasic∪Hadd that is logically equivalent to T . It thus
remains to show that the algorithm terminates in polynomi-
ally time. Observe that Hadd contains at most one concept
inclusion A v C for each concept name A. At each step
in the while loop, either some A v C is added to Hadd
such that no inclusion with A on the left-hand side existed
in Hadd before or an existing inclusion A v C in Hadd is
replaced by a freshA v C ′ with |= C ′ v C and 6|= C v C ′.
It is thus not hard to see that we can prove termination in
polynomial time by establishing the following lemma.

Lemma 4 The number of replacements of an existing CI
A v C inHadd is bounded polynomially in |T |.

Proof.(sketch) We first observe that, as a consequence of
the fact that A v C and its replacement A v C ′ are both
T -essential, the tree that corresponds to C is obtained from
the tree that corresponds toC ′ by removing subtrees. Let nC
denote the number of nodes in the tree representation of C
and letAT = {B | A v B ∈ Hbasic}∪{D | A ≡T B,B v
D ∈ T }. Then it suffices to prove the following

Claim. If A v C is T -essential, then nC ≤
∑
D∈AT nD.

The claim is proved in the appendix using canonical models
for DL-Lite∃R TBoxes. o

We have obtained the following main result of this section.

Theorem 5 DL-Lite∃R TBoxes are polynomial time learn-
able using entailment and equivalence queries.

In the appendix, we provide additional examples showing
that if any of the five conditions for being T -essential is re-
moved, then Algorithm 1 no longer runs in polynomial time
or does not even terminate. As an example, assume that min-
imality is omitted from the definition of being T -essential
and let T = {A v B,B v ∃r.B}. Then the oracle can
provide for the n-th equivalence query the positive coun-
terexample A v ∃rn.B, n ≥ 1. The algorithm does not
terminate.

Learning ELlhs TBoxes in Polynomial Time
We consider the restriction ELlhs of general EL TBoxes
where only concept names are allowed on the right-hand
side of concept inclusions. We assume that CIs used in en-
tailment queries and in equivalence queries and those re-
turned as counterexamples are also of this restricted form.

Our learning algorithm is a non-trivial extension of the poly-
nomial time agorithm for learning propositional Horn theo-
ries presented in (Angluin, Frazier, and Pitt 1992; Arias and
Balcázar 2011).

We first introduce some notation. An interpretation I is a
tree interpretation if the directed graph (∆I ,

⋃
r∈NR

rI) is a
tree and rI ∩ sI = ∅ for all distinct r, s ∈ NR. We gener-
ally denote the root of a tree interpretation I with ρI . The
product of two interpretations I and J is the interpretation
I × J with ∆I×J = ∆I ×∆J , (d, e) ∈ AI×J if d ∈ AI
and e ∈ AJ , and ((d, e), (d′, e′)) ∈ rI×J if (d, d′) ∈ rI

and (e, e′) ∈ rJ , for any concept name A and role name r.
Products preserve the truth of EL concept inclusions (Lutz,
Piro, and Wolter 2011):

Lemma 6 For all EL concepts C: d ∈ CI and e ∈ CJ iff
(d, e) ∈ CI×J .

One can show that the product of tree interpretations is a
disjoint union of tree interpretations. If I and J are tree
interpretations, we denote by I ×r J the tree interpretation
that is contained in I × J with root (ρI , ρJ ).

Let I,J be interpretations, d ∈ ∆I and e ∈ ∆J . A rela-
tion ∼ ⊆ ∆I ×∆J is a simulation from (I, d) to (J , e) if
the following conditions are satisfied: (i) d ∼ e; (ii) d ∈ AI
and d ∼ e implies e ∈ AJ ; (iii) (d, d′) ∈ rI and d ∼ e
implies d′ ∼ e′ for some e′ ∈ ∆J with (e, e′) ∈ rJ . We
write (I, d)⇒ (J , e) if there is a simulation from (I, d) to
(J , e) and if I and J are tree interpretations then we write
I ⇒ J as a shorthand for (I, ρI) ⇒ (J , ρJ ). Simulations
preserve the membership to EL-concepts (Lutz, Piro, and
Wolter 2011):

Lemma 7 For all EL concepts C: if d ∈ CI and (I, d) ⇒
(J , e), then e ∈ CJ .

For an EL concept C, we write IC to denote the tree inter-
pretation that is obtained by viewing C as an interpretation
in the natural way, that is, IC is the tree TC introduced in the
context of our learning algorithm for DL-Lite∃R, represented
as an interpretation. Conversely, every tree interpretation I
can be viewed as an EL concept CI in a straightforward
way.

Let T be the target TBox to be learned, and assume again
that its signature Σ is known to the learner. An interpretation
I is a T -countermodel if I 6|= T . We will now describe a
class of T -countermodels that are in a sense minimal and
central to our learning algorithm. For a tree interpretation I,
we use I|−root to denote the interpretation obtained from I
by removing the root ρI of I. For any element d of ∆I , we
use I|−d↓ to denote I with the subtree rooted at d removed. A
T -countermodel is essential if the following conditions are
satisfied:

1. I|−root |= T ;

2. I|−d↓ |= T for all d ∈ ∆I \ {ρI}.
Intuitively, Condition 1 states that I contradicts T only at
the root, that is, the only reason for why I does not satisfy T
is that for at least one CIC v A ∈ T , we have that ρI ∈ CI



Algorithm 2 The learning algorithm for ELlhs TBoxes
1: Set I to the empty sequence (of tree interpretations)
2: SetH = ∅
3: while Equivalent(H)? returns “no” do
4: Let C v A be the returned positive counterexample

for T relative toH
5: Find an essential T -countermodel I with I |= H

(entailment queries)
6: if there is a J ∈ I such that J 6⇒ (I ×r J ) and

I ×r J 6|= T then
7: Let J be the first such element of I
8: Find an essential T -countermodel J ′ ⊆ I ×r J

(entailment queries)
9: replace J in I with J ′

10: else
11: append I to I
12: end if
13: ConstructH = {CI v A | I ∈ I, T |= CI v A}

(entailment queries)
14: end while

and ρI /∈ AI . Condition 2 is a minimality condition which
states that for any such C v A (which needs not be unique),
ρI is no longer in CI if we remove any node from I.

The algorithm for learning ELlhs TBoxes is given as Al-
gorithm 2, where the implementation of the lines marked
with “(entailment queries)” requires the execution of entail-
ment queries as detailed below. It maintains a sequence I
of tree interpretations that intuitively represents the TBoxH
constructed in Line 13; however, tree interpretations are eas-
ier to work with for our purposes than the EL concepts that
they represent. In Line 8, we writeJ ′ ⊆ I×rJ as shorthand
for: J ′ is a subinterpretation of I ×rJ that is obtained from
I ×r J by removing subtrees. Note that the assumption in
Line 4 that a positive counterexample is returned is justified
by the construction of H in Lines 2 and 13, which ensures
that, at all times, T |= H.

We now provide additional details on how to realize the
three lines marked with “(entailment queries)”. Line 13 is
easiest: We simply use entailment queries to find all CIs
CI v A with I ∈ I and A a concept name from Σ. We
will later show that the length of I is bounded polynomially
in |T |, therefore polynomially many entailment queries suf-
fice. Lines 5 and 8 are addressed by Lemmas 8 and 9 below.

Lemma 8 Given a positive counterexample C v A for
T relative to H, one can construct an essential T -
countermodel I with I |= H using only polynomially many
entailment queries in |T |+ |C|.

Proof. I is constructed by applying the following rules to
I := IC .

1. Saturate I by exhaustively applying the CIs from H as
rules: if D v B ∈ H and d ∈ DI , then add d to BI .

2. Replace I by a minimal subtree of I refuting T to ad-
dress Condition 1 of essential T -countermodels: replace

I by I|d if I|d is minimal with I|d 6|= T (checked using
entailment queries), where I|d denotes the substree of I
rooted at d.

3. Exhaustively remove subtrees from I until Condition 2
of essential T -countermodels is also satisfied: if I|−d↓ 6|=
T (checked using entailment queries), then replace I by
I|−d↓.

The resulting interpretation I is as required. Details are pre-
sented in the appendix. o

Lemma 9 Given essential T -countermodels I and J with
I×J 6|= T , one can construct an essential T -countermodel
J ′ ⊆ I ×r J using only polynomially many entailment
queries in |T |+ |I|+ |J |.

Proof. Let I and J be essential T -countermodels with I ×r

J 6|= T . Set J ′ = I ×r J and then exhaustively apply
Rule 3 from the proof of Lemma 8 to J ′. Clearly, the new
J ′ is a T -countermodel. Moreover, it is essential:

(1) J ′|−root |= T : by Lemma 6, I|−root |= T and J |−root |=
T imply I|−root × J |−root |= T . Now J ′|−root can be obtained
from I|−root × J |−root by removing subtrees, and removing
subtrees clearly preserves being a model of an ELlhs TBox.

(2) J ′|−d↓ |= T for all d ∈ ∆J
′ \ {ρJ ′}: otherwise, the

subtree rooted at dwould have been removed during the con-
struction of J ′. o

Example 10 Suppose that the target TBox is

∃parent.Mouse v Mouse

∃parent.Rabbit v Rabbit

∃parent.> v Living

and assume that the oracle returns to the first equivalence
query the positive counterexample C v Living with

C = ∃parent.Mouse u ∃parent.Rabbit

IC is a T -countermodel that violates Condition 2 of being
essential which leads to its rewriting into IC′ with

C ′ = ∃parent.Mouse

(Alternatively, it could also lead to C ′ = ∃parent.Rabbit.)
The algorithm inserts IC′ into I and asks the next equiva-
lence query, to which the oracle returns D v Living with

D = ∃parent.Rabbit.

ID is an essential T -countermodel and we have IC′ 6⇒
(ID ×r IC′), where ID ×r IC′ corresponds to the concept

D′ = ∃parent.>.

ID′ is T -essential and thus it is inserted into I in place
of IC′ . At this point, the algorithm has learnt H =
{∃parent.> v Living}. The algorithm asks the next equiva-
lence query, to which the oracle returns E v Rabbit with

E = ∃parent.∃parent.Rabbit



IE violates Conditions 1 and 2 of being essential, which
leads to its rewriting into IE′ with

E′ = Living u ∃parent.Rabbit.
We have ID′ ⇒ IE′ ×r ID′ and so IE′ is appended to the
list I. At this point, the algorithm has learntH = {Living u
∃parent.Rabbit v Rabbit,∃parent.> v Living}, which is
equivalent to the TBox that consists of the second and third
CI in T . The algorithm can now proceed to learn Living u
∃parent.Mouse v Mouse.

If the algorithm terminates, then it obviously returns a TBox
H that is equivalent to the target TBox T . It thus remains to
prove that the algorithm terminates after polynomially many
steps, which is a consequence of the following lemma.

Lemma 11 Let I be a sequence computed at some point
of an execution of Algorithm 2. Then (i) the length of I is
bounded by the number of CIs in T and (ii) each interpreta-
tion in each position of I is replaced only |T | + |T |2 often
with a new interpretation.

Proof.(sketch) Assume that at each point of the execution of
the algorithm, I has the form I0, . . . , Ik for some k ≥ 0.
To establish Point (i), we closely follow (Angluin, Frazier,
and Pitt 1992) and show that (iii) for every Ii, there is a
Di v Ai ∈ T with Ii 6|= Di v Ai and (iv) if i 6= j, then
Di v Ai and Dj v Aj are not identical.

The proof of Points (iii) and (iv), in turn requires a careful
analysis of the concept inclusions in the target TBox that are
violated at the root of the T -countermodels I0, . . . , Ik.

For the proof of Point (ii), we show that |∆I | ≤ |T | for
any essential T -countermodel I and analyze the relationship
between the essential T -countermodels produced from I ×r

J when J 6⇒ (I ×r J ) (using Lemma 6 and 7). o

We have thus etablished the main result of this section.

Theorem 12 ELlhs TBoxes are polynomial time learnable
using entailment and equivalence queries.

It can again be shown that all adopted conditions are indeed
necessary. Consider for example the first condition of being
T -essential. Without it, for the target TBox T = {∃r.A v
A} the oracle can return the infinite set of positive coun-
terexamples ∃rn.A v A, n a prime number. Then the learn-
ing algorithm does not terminate.

Limits of Polynomial Time Learnability
The main result of this section is that EL TBoxes can-
not be learned in polynomial time using entailment and
equivalence queries. We also show that DL-Lite∃R TBoxes
cannot be learned in polynomial time using entailment or
equivalence queries alone. This holds for ELlhs TBoxes as
well and follows from the fact that propositional Horn the-
ories cannot be learned in polynomial time using entail-
ment or equivalence queries alone (Frazier and Pitt 1993;
Angluin, Frazier, and Pitt 1992; Angluin 1987a).

We start by proving the non-learnability result for EL
TBoxes. Our proof shows that even acyclic target TBoxes

cannot be learned in polynomial time when general EL con-
cept inclusions are admitted in entailment queries, as coun-
terexamples returned by the oracle, and in TBoxes used
as equivalence queries. On our way, we also prove non-
learnability of DL-Lite∃R TBoxes using entailment queries
only. The proof is inspired by Angluin’s lower bound for the
following abstract learning problem (1987c): a learner aims
to identify one ofN distinct sets L1, . . . , LN which have the
property that there exists a set L∩ for which Li ∩ Lj = L∩,
for any i 6= j. It is assumed that L∩ is not a valid argument
to an equivalence query. The learner can pose membership
queries “x ∈ L?” and equivalence queries “H = L?”. Then
in the worst case it takes at least N − 1 membership and
equivalence queries to exactly identify a hypothesis Li from
L1, . . . , LN . The proof proceeds as follows. At every stage
of computation, the oracle (which here should be viewed as
an adversary) maintains a set of hypotheses S, which the
learner is not able to distinguish based on the answers given
so far. Initially, S = {L1, . . . , LN}. When the learner asks a
membership query x, the oracle returns ’Yes’ if x ∈ L∩ and
’No’ otherwise. In the latter case, the (unique) Li such that
x ∈ Li is removed from S. When the learner asks an equiva-
lence queryH , the oracle returns ‘No’ and a counterexample
x ∈ L∩ ⊕H (the symmetric difference of L∩ and H). This
always exists as L∩ is not a valid query. If the counterexam-
ple x is not a member of L∩, (at most one) Li ∈ S such that
x ∈ Li is eliminated from S. In the worst case, the learner
has to reduce the cardinality of S to one to exactly identify
a hypothesis, which takes N − 1 queries.

Similarly to the method outlined above, in our proof we
maintain a set of acyclic EL TBoxes S whose members the
learning algorithm is not able to distinguish based on the
answers obtained so far. We start with S = {T1, . . . , TN},
where N is superpolynomial in the size of every TBox Ti,
and describe an oracle that responds to entailment and equiv-
alence queries. For didactic purposes, we first present a set
of acyclic TBoxes T1, . . . , TN , for which the oracle can
respond to entailment queries in the way described above
but which is polynomial time learnable when equivalence
queries are also allowed. We then show how the TBoxes can
be modified to obtain a family of acyclic TBoxes that is not
polynomial time learnable using entailment and equivalence
queries.

To present the TBoxes in S, fix two role names r and s.
For any sequence σ = σ1σ2 . . . σn with σi ∈ {r, s}, the
expression ∃σ.C stands for ∃σ1.∃σ2 . . . ∃σn.C. For every
such sequence σ, of which there areN = 2n many, consider
the acyclic EL TBox Tσ defined as

Tσ = {A v ∃σ.M uX0} ∪ T0 with
T0 = {Xi v ∃r.Xi+1 u ∃s.Xi+1 | 0 ≤ i < n}

where T0 generates a full binary tree whose edges are la-
belled with the role names r and s and with X0 at the root,
X1 at level 1 and so on. M is a concept name that ‘marks’ a
particular path in this tree given by the sequence σ. One can
use Angluin’s strategy to show that TBoxes from the set S
of all such TBoxes Tσ cannot be learned in polynomial time
using entailment queries only: notice that for no sequence
σ′ 6= σ of length n, we have Tσ |= A v ∃σ′.M . Thus an



entailment query of the form A v ∃σ.M eliminates at most
one TBox from the set of TBoxes that the learner cannot dis-
tinguish. This observation can be generalized to arbitary en-
tailment queriesC v D in EL since one can prove, similarly
to the proof of Lemma 14 below, that for any EL concept in-
clusion C v D either {A v X0} ∪ T0 |= C v D (thus
C v D is entailed by all TBoxes in S) or at most one TBox
from S entails C v D. It follows that acyclic EL TBoxes
are not polynomial time learnable using entailment queries,
only. Observe that the TBoxes Tσ are actually formulated
in DL-Lite∃R. We show in the appendix that all arguments
above are true also when entailment queries are formulated
in DL-Lite∃R (which include inverse roles) and thus obtain
the following result.

Theorem 13 DL-Lite∃R TBoxes are not polynomial time
learnable using entailment queries, only.

Interestingly, a single equivalence query is sufficient to learn
any TBox from S in two steps: given the equivalence query
{A v X0} ∪ T0, the oracle has no other option but to reveal
the target TBox Tσ as A v ∃σ.M can be found ‘inside’
every counterexample. Our strategy to rule out this option
for the oracle is to modify T1, . . . , TN in such a way that
although a TBox T∩ axiomatizing the intersection over the
set of consequences of each Ti, i ≤ N , exists, its size is
superpolynomial and so cannot be used as an equivalence
query by a polynomial time learning algorithm.

For every n > 0 and every n-tuple L = (σ1, . . . ,σn),
where every σi is a role sequence of length n as above, we
define an acyclic EL TBox TL as the union of T0 and the
following inclusions:4

A1 v ∃σ1.M uX0

B1 v ∃σ1.M uX0
. . .

An v ∃σn.M uX0

Bn v ∃σn.M uX0

A ≡ X0 u ∃σ1.M u · · · u ∃σn.M.

Let Ln be a set of n-tuples such that for 1 ≤ i ≤ n and every
L,L′ ∈ Ln with L = (σ1, . . . ,σn), L′ = (σ′1, . . . ,σ

′
n), if

σi = σ′j then L = L′ and i = j. Then for any sequence σ
of length n there exists at most one L ∈ Ln and at most one
i ≤ n such that TL |= Ai v ∃σ.M and TL |= Bi v ∃σ.M .
We can choose Ln such that there areN = b2n/nc different
tuples in Ln. Notice that the size of each TL with L ∈ Ln is
polynomial in n and so N is superpolynomial in the size of
each TL with L ∈ Ln.

Every TL, for L ∈ Ln, entails, among other inclusions,dn
i=1 Ci v A, where every Ci is either Ai or Bi. There are

2n different such inclusions, which indicates that every rep-
resentation of the ‘intersection TBox’ requires superpolyno-
mially many axioms. It follows from Lemma 15 below that
this is indeed the case.

The following lemma (proved in the appendix) enables
us to respond to entailment queries without eliminating too
many TBoxes from the list S of TBoxes that the learner can-
not distinguish. We use Σn to denote the signature of TL.

4In fact, to prove non-polynomial learnability, it suffices to con-
sider ∃σ1.M u· · ·u∃σn.M v A in place of the concept equality;
however, inclusions of this form are not allowed in acyclic TBoxes.

Lemma 14 For all EL concept inclusions C v D over Σn:

• either TL |= C v D for every L ∈ Ln or
• the number of different L ∈ Ln such that TL |= C v D

does not exceed |C|.

To illustrate the result, consider two TBoxes TL and TL′ ,
where L = (σ1, . . . ,σn) and L′ = (σ′1, . . . ,σ

′
n). Then the

inclusion X0 u ∃σ1.M u ∃σ′1.M u A2 u · · · u An v A is
entailed by both TL and TL′ but not by any other TL′′ with
L ∈ Ln.

We now show how the oracle can answer equivalence
queries, aiming to show that for any polynomial size equiv-
alence query H, the oracle can return a counterexample
C v D such that either (i) H |= C v D and TL |= C v D
for at most one L ∈ Ln or (ii) H 6|= C v D and for every
L ∈ Ln we have TL |= C v D. Thus, such a counterex-
ample eliminates at most one TL from the set S of TBoxes
that the learner cannot distinguish. In addition, however, we
have to take extra care of the size of counterexamples as the
learning algorithm is allowed to run in time polynomial not
only in the size of the target TBox but also in the size of the
counterexamples returned by the oracle. For instance, if the
hypothesis TBox H contains an inclusion C v D which is
not entailed by any TL, one cannot simply return C v D
as a counterexample since the learner will be able to ‘pump
up’ its running time by asking for equivalence of the target
TBox to a sequence of hypotheses Hi = {Ci v Di} such
that the size of Ci+1 v Di+1 is twice the size of Ci v Di.
Then at every stage in a run of the learning algorithm, the
running time will be polynomial in the size of the input and
the size of the largest counterexample received so far, but the
overall running time will be exponential in the size of input.
The following lemma addresses this issue.

Lemma 15 For any n > 1 and any EL TBox H in Σn with
|H| < 2n, there exists an EL CI C v D over Σn such that
(i) the size of C v D does not exceed 6n and (ii) if H |=
C v D then TL |= C v D for at most one L ∈ Ln and if
H 6|= C v D then for every L ∈ Ln we have TL |= C v D.

Then we have the following.

Theorem 16 EL TBoxes are not polynomial time learnable
using entailment and equivalence queries.

Proof. Assume that TBoxes are polynomial time learnable.
Then there exists a learning algorithm whose running time
is bounded at any stage by a polynomial p(n,m). Choose n
such that b2n/nc > (p(n, 6n))2 and let S = {TL | L ∈
Ln}. We follow Angluin’s strategy of letting the oracle re-
move TBoxes from S in such a way that the learner cannot
distinguish between any of the remaining TBoxes. Given an
entailment queryC v D, if TL |= C v D for everyL ∈ Ln,
then the answer is ‘yes’; otherwise the answer is ‘no’ and all
TL with TL |= C v D are removed from S (by Lemma 14,
there are at most |C| such TBoxes). Given an equivalence
queryH, the answer is ‘no’, a counterexample C v D guar-
anteed by Lemma 15 is produced, and (at most one) TL such
that TL |= C v D is removed from S.



As all counterexamples produced are smaller than 6n,
the overall running time of the algorithm is bounded by
p(n, 6n). Hence, the learner asks no more than p(n, 6n)
queries and the size of every query does not exceed p(n, 6n).
By Lemmas 14 and 15, at most (p(n, 6n))2 TBoxes are re-
moved from S during the run of the algorithm. But then,
the algorithm cannot distinguish between any remaining
TBoxes and we have derived a contradiction. o

We now show that DL-Lite∃R TBoxes cannot be learnt in
polynomial time using equivalence queries only. We use
the following result on non-learnability of monotone DNF
formulas using equivalence queries due to Angluin (1990).
Here, equivalence queries take a hypothesis ψ in the form
of a monotone DNF formula and return as a counterexam-
ple either a truth assignment that satisfies ψ but not the tar-
get formula φ or vice versa. Let M(n, t, s) denote the set of
all monotone DNF formulas whose variables are x1, . . . , xn,
that have exactly t conjunctions, and where each conjunction
contains exactly s variables.

Theorem 17 (Angluin) For any polynomial q(·) there exist
constants t0 and s0 and a strategy for the oracle O to answer
equivalence queries posed by a learning algorithm in such a
way that for sufficiently large n any learning algorithm that
asks at most q(n) equivalence queries, each bounded in size
by q(n), cannot exactly identify elements of M(n, t0, s0).

To employ Theorem 17, we associate with every mono-
tone DNF formula φ =

∨t
i=1(xi1 ∧ · · · ∧ xisi) with vari-

ables x1, . . . , xn a DL-Lite∃R TBox Tφ as follows. With
each conjunct xi1 ∧ · · · ∧ xisi we associate a concept Ci :=

∃ρi1.∃ρi2. . . .∃ρin.> where ρij = r if xj occurs in xi1 ∧ · · · ∧
xisi and ρij = r̄ otherwise (r and r̄ are role names). Let A be
a concept name and set

Tφ = {A v
dt
i=1 Ci, r̄ v r}.

For example, for n = 4 and φ = (x1 ∧ x4) ∨ x2 we have

Tφ = {A v ∃r.∃r̄.∃r̄.∃r.>, A v ∃r̄.∃r.∃r̄.∃r̄.>, r̄ v r}.

A truth assignment I (for the variables x1 . . . , xn) also cor-
responds to a concept CI := ∃ρi1.∃ρi2. . . .∃ρin.>, where
ρij = r if I makes xj true and ρij = r̄ otherwise. Then
I |= φ iff Tφ |= A v CI holds for all truth assignments I .

Note that r̄ represents that a variable is false and r that a
variable is true. Thus, the role inclusion r̄ v r captures the
monotonicity of the DNF formulas considered. For any fixed
values n, s and t, we set T (n, t, s) = {Tφ | φ ∈M(n, t, s)}.

Theorem 18 The class of DL-Lite∃R TBoxes is not polyno-
mial time learnable using equivalence queries.

Proof. We sketch the proof for the case when the TBoxes
H from any equivalence query represent a monotone DNF
formula in the variables x1, . . . , xn, that is, if all equivalence
queriesH are of the form

{A v
d
ρ1···ρn∈Γ ∃ρ1.∃ρ2. . . .∃ρn.>, r̄ v r},

for some Γ ⊆ {r, r̄}n. Arbitrary DL-Lite∃R TBoxes in equiv-
alence queries are considered in the appendix.

For a proof by contradiction, suppose that the running
time of a learning algorithm A for DL-Lite∃R TBoxes in
Σ = {A, r, r̄} is bounded at every stage of computation
by a polynomial p(x, y), where x is the size of the target
TBox, and y is the maximal size of a counterexample re-
turned by the oracle up to the current stage of computation.
Let q(n) = p(n2, 4n + 2), and let t0 and s0 be the con-
stants from the strategy of the oracle in Theorem 17. Let n
be sufficiently large so that the claim of Theorem 17 holds.

Consider the oracle O′ that responds to every equivalence
query H that represents a monotone DNF-formula ψ in n
variables by returning the counterexample A v CI corre-
sponding to the truth assignment I that O would return for
the equivalence query ψ. We show that A cannot distinuish
between certain TBoxes in T (n, t0, s0) and thus obtain a
contradiction.

The largest counterexample returned by O′ is of the form
A v ∃ρ1. · · · ∃ρn.>, so for sufficiently large n the maximal
size of any counterexample returned by O′ in any run of the
algorithm is bounded by 4n + 2. Similarly, the size of ev-
ery potential target TBox Tφ ∈ T (n, t0, s0) does not exceed
t0 · (4n + 2) and, as t0 is a constant, for sufficiently large
n it is bounded by n2. Thus, for sufficiently large n the to-
tal running time of A for any target TBox in T (n, t0, s0) is
bounded by p(n2, 4n+ 2). So, the size of a monotone DNF
equivalence query forwarded to the strategy O is bounded
by q(n), and there will be at most q(n) queries forwarded.
But then O returns answers such that some φ and ψ from
M(n, t0, s0) are not distinguished. It remains to observe that
A does not distinguish Tφ and Tψ . o

Future Work
We have presented the first study of learnability of DL
TBoxes in Angluin et al’s framework of learning via queries.
Many research questions remain to be explored. An immedi-
ate question is whether acyclic EL TBoxes can be learned in
polynomial time using queries and counterexamples of the
formA ≡ C andA v C only. Note that our non-learnability
result for acyclic EL TBoxes relies heavily on counterexam-
ples that are not of this form. Another immediate question is
whether the extension of ELlhs with inverse roles (which is a
better approximation of OWL2 RL than ELlhs itself) can still
be learned in polynomial time. Other interesting research di-
rections are non-polynomial time learning algorithms for EL
TBoxes and the admission of different types of membership
queries and counterexamples in the learning protocol. For
example, one could replace concept inclusions as counterex-
amples with interpretations. In an OBDA context, one could
allow membership queries that speak about certain answers
to queries over an ABox and relative to the target TBox. Our
results provide a good starting point for studying such vari-
ations.
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Proofs for: Learning DL-Lite∃R TBoxes in
Polynomial Time

The reader can find illustrations of parent/child merging and
sibling merging in Figures 2 and 3, respectively.

We show that if any of the first four conditions for being
T -essential is removed, then Algorithm 1 requires at least
exponential time or does not even terminate. An example
showing that minimality (Condition 5) is required has been
given already in the paper.

1. Assume concept saturation is omitted from the definition
of being T -essential. Let T = {A v ∃r.A}. Then the
oracle can provide for the n-th equivalence query in the
while loop of Algorithm 1 the positive counterexample
A v ∃rn.>, n ≥ 2. The algorithm does not terminate.

2. Assume role saturation is omitted from the definition of
being T -essential. Let T = {A v ∃e1.∃e2. . . .∃en.>} ∪
{e1 v r1, e1 v s1, e2 v r2, e2 v s2, ..., en v rn, en v
sn}. For M ⊆ {1, . . . , n} (with M = {1, . . . , n} \M ),
set CM = ∃t1.∃t2. . . .∃tn.>, where ti = ri if i ∈M and
ti = si if i ∈M , 1 ≤ i ≤ n. Then the oracle can provide
for the first 2n equivalence queries in the while loop of
Algorithm 1 a fresh positive counterexample A v CM by
always choosing a fresh M ⊆ {1, . . . , n}.

3. Assume sibling-merged is omitted from the definition of
being T -essential. Define concepts Ci as follows:

C1 = ∃r.> u ∃s.>, Ci+1 = C1 u ∃e.Ci
and let Tn = {A v ∃e.Cn}. For M ⊆ {1, . . . , n} set
CM1 = ∃r.> if 1 ∈ M and CM1 = ∃s.> if 1 ∈ M .
Also, let CMi+1 = ∃r.> u ∃e.CMi if i + 1 ∈ M and
CMi+1 = ∃s.> u ∃e.CMi if i + 1 ∈ M , 1 ≤ i ≤ n.
Then the oracle can provide for the first 2n equivalence
queries in the while loop of Algorithm 1 the fresh positive
counterexample A v ∃e.CMn by always choosing a fresh
M ⊆ {1, . . . , n}.

4. Assume parent/child-merged is omitted from the defini-
tion of T -essential. Let T = {A v ∃r.>u∃s.>u∃e.B}.

For M ⊆ {1, . . . , n} (with M = {1, . . . , n} \ M ),
set CM = ∃t1.∃t−1 .∃t2.∃t

−
2 . . . .∃tn.∃t−n .∃e.>), where

ti = r if i ∈ M and ti = s if i ∈ M , 1 ≤ i ≤ n.
Then the oracle can provide for the first 2n equivalence
queries in the while loop of Algorithm 1 a fresh posi-
tive counterexample A v CM by always choosing a fresh
M ⊆ {1, . . . , n}.

We provide proofs for the two claims left unproven in the
proof sketch of Lemma 4. In what follows we often use the
fact that for any interpretationJ , d ∈ ∆J , and ELI concept
F , d ∈ FJ iff there exists a homomorphism h from the
labelled tree corresponding to F into J with h(aD) = d.

Lemma 4 The number of times that an existing CI A v
C is replaced in Hadd by a fresh CI A v C ′ is bounded
polynomially in |T |.

Proof. We first show the following

Claim 1. If A v C is T -essential, T |= A v C ′, and
|= C ′ v C, then the tree corresponding to C is obtained
from the tree corresponding to C ′ by removing subtrees.

Proof of Claim 1. Assume that A v C is T -essential, T |=
A v C ′, and |= C ′ v C. We show that then there is an
injective homomorphism h that maps the labelled tree TC to
the labeled tree TC′ such that

• the root of TC is mapped to the root of TC′ ;

• A ∈ l(d) if A ∈ l(h(d)), for all concept names A and all
d in TC .

We can regard TC′ as an interpretation IC′ . This interpreta-
tion satisfies C ′ in its root and so, since |= C ′ v C, it sat-
isfies C in its root. Thus, there is a homomorphism h from
TC to TC′ mapping the root of TC to the root of TC′ . h is
injective since A v C is sibling and parent/child merged
and T |= A v C ′. Finally A ∈ l(d) if A ∈ h(l(d)), for all
concept names A and all d in TC , follows from concept sat-
uratedness for T of A v C and T |= A v C ′. This finishes
the proof of Claim 1.

Recall that nC denotes the number of nodes in the tree
representation of C and that AT = {B | A v B ∈
Hbasic} ∪ {D | A ≡T B,B v D ∈ T }. We show the
following

Claim 2. If A v C is T -essential, then nC ≤
∑
D∈AT

nD.

The proof of Claim 2 employs canonical models for DL-Lite
TBoxes (Kontchakov et al. 2010). Assume A v C is T -
essential. We may assume that T = Hbasic ∪ T ′, where T ′
consists of role inclusions and concept inclusions in reduced
form.

We define the canonical model IA,T as the union of a
sequence of interpretations I0, I1, . . .. Let I0 be the tree
shaped interpretation defined by the labelled tree corre-
sponding to D0 :=

d
D∈AT D. Its root is denoted by ρA.

Now assume In has been defined. To define In+1,

• let i ≤ n be minimal such that there exist d, d′ ∈ rIi

with (d, d′) ∈ rIi but (d, d′) 6∈ sIn for some role s with



T |= r v s. Then define In+1 in the same way as In
except that sIn+1 = sIn ∪ {(d, d′)} if s is a role name
and sIn+1

0 = sIn0 ∪{(d′, d)} if s = s−0 for a role name s0.
• Otherwise let i ≤ n be minimal such that there exists
∃r.> v E ∈ Hbasic with E a concept name and d ∈
(∃r.>)Ii with d 6∈ EIn . Then define In+1 in the same
way as In except that EIn+1 := EIn ∪ {d}.

• Otherwise let i ≤ n be minimal such that there exists
E v F ∈ T with E a concept name and d ∈ EIi such
that d 6∈ F In . Then add to In a copy of the tree shaped in-
terpretation Id,F defined by the labelled tree correspond-
ing to F and identify d with the root of Id,F .

• Otherwise let IA,T := In.
If Point 4 never applies in the definition of the sequence
I0, I1, . . ., then let IA,T :=

⋃
n≥0 In. The interpretation

IA,T has the following properties:
1. IA,T is a model of T ;

2. for every ELI concept F : ρA ∈ F IA,T iff T |= A v F ;
3. for any d ∈ ∆I0 and ELI concept of the form F =
∃r.F ′: if there exists a homomorphism h from the labelled
tree corresponding to F into IA,T such that h(aF ) = d
and all nodes in the labelled tree corresponding to F ′ are
mapped to ∆I \∆I0 , then there exists a concept name E
with d ∈ EI such that T |= E v F .

The only non-standard condition is Point 3 which can be
proved using the construction of IA,T and the assumption
that T = Hbasic∪T ′ for T ′ containing concept inclusions in
reduced form only. We now show the following claim (from
which Claim 2 follows immediately):

Claim 3. There is an injective homomorphism from the la-
belled tree corresponding toC into the restriction J of IA,T
to ∆I0 which maps aC to ρA.

By Point 2 above and since T |= A v C, there is a ho-
momorphism h from the labelled tree TC corresponding to
C into IA,T which maps aC to ρA. It follows from Point 2
again and the condition that A v C is role-saturated, sibling
merged, and parent/child merged for T that h is injective.
It thus remains to be proved that h is into J (rather than
IA,T ). By concept saturatedness of A v C and Point 2, we
have (∗): h(d) ∈ EIA,T iff E ∈ l(d) for every node d in TC
and every concept name E.

Assume now that h(d′) 6∈ ∆I0 for some node d′ in TC .
Assume that d′ has minimal distance from dC with this prop-
erty - thus the parent d of d′ in TC is mapped to ∆I0 . Let
l(d, d′) = r. We make a case distinction:
• the whole subtree generated by d′ is mapped into ∆IA,T \

∆I0 . Let C ′ = ∃r.C ′′, where C ′′ corresponds to the sub-
tree generated by d′ in C. By Point 3, there exists a con-
cept name E with h(d) ∈ EIA,T such that T |= E v C ′.
By (∗), E ∈ l(d). We make a case distinction:
– d 6= ρA. Then A v C is not minimal for T since C

contains the edge (d, d′) such thatE is in the node label
of d, l(d, d′) = r, and T |= E v ∃r.C ′′. We have
derived a contradiction.

– d = ρA and A 6≡T E. Then A v C is not minimal for
T since C contains the edge (ρA, d

′), E is in the node
label of ρA, E 6≡T A, l(d, d′) = r, and T |= E v
∃r.C ′′. We have derived a contradiction.

– d = ρA and no E from the node label of ρA that is
non-T -equivalent to A can be chosen such that T |=
E v ∃r.C ′′. We show that then d′ ∈ ∆I0 which
is a contradiction and so our claim follows. Asume
d′ ∈ ∆IA,T \∆I0 . By construction of IA,T , there ex-
ists an inclusion E0 v D ∈ T with E0 a concept name
such that ρA ∈ E

IA,T
0 and d′ is in the copy of the tree

shaped interpretation IρA,D which was attached to ρA
in the construction of IA,T . Then E0 6≡T A because
otherwise IρA,D would be already part of I0. But that
contradicts our assumption that no E from the node la-
bel of ρA that is non-T -equivalent to A can be chosen
such that T |= E v ∃r.C ′′.

• the subtree generated by d′ is not mapped into ∆IA,T \
∆I0 . Then h is not injective and we have again derived a
contradiction.

Claim 1 and 2 together directly imply Lemma 4. o

Proofs for: Learning ELlhs TBoxes in
Polynomial Time

We begin with the proof that the interpretation I constructed
in the proof sketch for Lemma 8 satisfies the conditions re-
quired in Lemma 8.
Lemma 8. Given a positive counterexample C v A for T
relative toH, one can construct an essential T -countermodel
I with I |= H only polynomially many entailment queries
in |T |+ |C|.
Proof. Let C v A be a positive counterexample for T rel-
ative to H. First observe that I 6|= T : since H 6|= C v A,
we know that A does not occur as a top-level conjunct in C.
Consequently, ρIC ∈ CIC \AIC and thus IC 6|= T .

Now we show that the interpretation I constructed in the
proof sketch of Lemma 8 has the required properties:

• I |= H: clearly, the interpretation J constructed in Step 1
is a model of H. Taking subtress and removing subtrees
from I preserves being a model ofH, and so I |= H.

• I 6|= T : the interpretation J constructed in Step 1 is not
a model of T . In fact, we can use CJ v A as a positive
counterexample for T relative to H instead of C v A.
Observe that ∅ |= CJ v C, and thus T |= C v A implies
T |= CJ v A. On the other hand, ρJ ∈ BJ implies
H |= C v B for all concept names B. Consequently and
since H 6|= C v A, we have ρJ /∈ AJ . Thus J 6|= T .
Steps 2 and 3 preserve the condition that J is not a model
of T and so I 6|= T .

• I satisfies Condition 1 for T -essential models because of
Step 2.

• I satisfies Condition 2 for T -essential models because of
Step 3.

o



Lemma 11. Let I be a sequence computed at some point
of an execution of Algorithm 2. Then (i) the length of I is
bounded by the number of CIs in T and (ii) each interpreta-
tion in each position of I is replaced only |T | + |T |2 often
with a new interpretation.

The rest of the section is devoted to proving Lemma 11. For
easy reference, assume that at each point of the execution
of the algorithm, I has the form I0, . . . , Ik for some k ≥
0. To establish Point (i) above, we closely follow (Angluin,
Frazier, and Pitt 1992) and show that

(iii) for every Ii, there is a Di v Ai ∈ T with Ii 6|= Di v Ai
and

(iv) if i 6= j, then Di v Ai and Dj v Aj are not identical.

In fact, Point (iii) is immediate since whenever a new Ii is
added to I in the algorithm, then Ii is a T -countermodel.
To prove Point (iv), we first establish the intermediate
Lemma 19 below. For a tree-shaped interpretation I and a
concept inclusionC v A, we write I |=r C v A if ρI /∈ CI
or ρI ∈ AI ; that is, the inclusion C v A is satisfied at the
root of I, but not necessarily at other points in I. It is easy to
see that if some interpretation I is a T -countermodel, then
there is a C v A ∈ T such that I 6|=r C v A.

Lemma 19 If the interpretation I constructed in Line 5 of
the algorithm satisfies I 6|=r C v A ∈ T and ρIj ∈ CIj for
some j, then J = Ii is replaced with J ′ in Line 9 for some
i ≤ j.

Proof. Assume that the interpretation I constructed in
Line 5 of the algorithm satisfies I 6|=r C v A ∈ T and
that there is some j with ρIj ∈ CIj . If there is some i < j
such that Ii 6⇒ (I×rIi) and I×rIi 6|= T , then J = Ii′ will
be replaced with J ′ in Line 9 for some i′ ≤ i and we are
done. Thus assume that there is no such i. We aim to show
that J = Ij is replaced with J ′ in Line 9. To this end, it
suffices to prove that Ij 6⇒ (I ×r Ij) and I ×r Ij 6|= T . The
latter is a consequence of I 6|=r C v A and ρIj ∈ CIj .

Assume to the contrary of what we have to show that
Ij ⇒ (I×rIj). We establish a contradiction against I |= H
(which holds by construction of I in the algorithm) by show-
ing that

1. I 6|=r CIj v A and

2. CIj v A ∈ H.

For Point 1, Ij ⇒ (I ×r Ij) and ρIj ∈ (CIj )Ij im-
ply ρI×rIj ∈ (CIj )I×rIj , which gives ρI ∈ (CIj )I , by
Lemma 7 and Lemma 6. It remains to observe that I 6|=r

C v A implies ρI /∈ AI .
In view of the construction ofH in the algorithm, Point 2

can be established by showing that T |= CIj v A. Since
C v A ∈ T , it suffices to prove that CIj v C. This, how-
ever, is an immediate consequence of the fact that ρIj ∈ CIj
and the definition of CIj . o

Now, Point (iv) above is a consequence of the following.

Lemma 20 At any time of the algorithm execution, the fol-
lowing condition holds: if Ii 6|=r C v A ∈ T and j < i,
then ρIj /∈ CIj .

Proof. We prove the invariant formulated in Lemma 20 by
induction on the number of iterations of the while loop.
Clearly, the invariant is satisfied before the loop is entered.
We now consider the two places where I is modified, that is,
Line 9 and Line 11, starting with the latter.

In Line 11, I is appended to I. Assume that I 6|=r C v
A ∈ T . We have to show that, before I was added to I, there
was no Ii ∈ I with ρIi ∈ CIj . This, however, is immediate
by Lemma 19.

Now assume that J was replaced in Line 9 with J ′. We
have to show two properties:

1. If J ′ = Ii 6|=r C v A ∈ T and j < i, then ρIj /∈ CIj .

Assume to the contrary that ρIj ∈ CIj . Since J ′ is ob-
tained from I × J by removing subtrees (see Lemma 9),
J ′ 6|=r C v A implies I × J 6|=r C v A. Conse-
quently, I 6|=r C v A or J 6|=r C v A. The former
and ρIj ∈ CIj yields i ≤ j by Lemma 19, in contra-
diction to j < i. In the latter case, since Ii = J before
the replacement of J with J ′, we have a contradiction
against the induction hypothesis.

2. If J ′ = Ij and Ii 6|=r C v A ∈ T with i > j, then
ρIj /∈ CIj .

Assume to the contrary that ρIj ∈ CIj . Since J ′ is ob-
tained from I ×r J by removing subtrees, we then have
ρI×rJ ∈ CI×rJ , thus ρJ ∈ CJ . Since Ij = J before
the replacement of J with J ′, we have a contradiction
against the induction hypothesis.

o

We now turn towards proving Point (ii) above. It is a conse-
quence of Lemma 22 below.

Lemma 21 If I is an essential T -countermodel, then
|∆I | ≤ |T |.

Proof. Let I be an essential T -counttermodel. Then I 6|= T ,
but I|−root |= T . It follows that there is a C v A ∈ T such
that ρI ∈ CI \ AI . Consequently, there is a simulation ∼
from (IC , ρIC ) to (I, ρI). Since IC is tree-shaped, we can
assume w.l.o.g. that ∼ is a total function (that is, a homo-
morphism). To show that |I| ≤ |C| and thus |I| ≤ |T | as
required, it clearly suffices to show that ∼ is surjective. As-
sume that this is not the case, and let d ∈ ∆I be outside
the range of ∼ and J = I|−d↓. All descendants of d must
be outside the range of ∼ as well and thus ∼ is a simulation
from (IC , ρIC ) to (J , ρJ ). Therefore, ρJ ∈ CJ , which
implies J 6|= C v A, in contradiction to I being an essen-
tial T -countermodel: Property 2 of being essential requires
J |= T . o



Lemma 22 Let I0, . . . , In be a sequence of interpretations
such that Ii+1 replaces Ii in Line 9 for all i < n. Then
n ≤ |T |+ |T |2.

Proof. We first show that for every i < n either
1. there is a concept name A such that ρIi ∈ AIi and
ρIi+1

/∈ AIi+1 or
2. Ii+1 ⇒ Ii via a surjective simulation.
For a proof by contradiction assume that there is i < n such
that neither Point 1 nor Point 2 holds. Since Ii+1 is a subin-
terpretation of some I ×r Ii and I ×r Ii ⇒ Ii we obtain
that Ii+1 ⇒ Ii. Since Ii+1 is an essential T -countermodel,
there is a C v A ∈ T such that Ii+1 6|=r C v A. Let J
be the subinterpretation of Ii determined by the range of the
simulation ∼ from Ii+1 to Ii. Then ρJ ∈ CJ and so, since
ρJ 6∈ AJ because Point 1 does not hold, J 6|=r C v A. Ii
is an essential T -countermodel and so J = I. But then ∼
is surjective and we have derived a contradiction.

In addition to the property stated above, we also have:
• for all concept names A, if ρIi ∈ AIi+1 , then ρIi+1 ∈
AIi ;

• Ii 6⇒ Ii+1.
By Lemma 21 we have |∆Ii | ≤ |T | for all i ≤ n. Thus, any
convex subsequence Ij , . . . , Ik of the sequence I0, . . . , In
such that ρIi ∈ AIi iff ρIi+1

∈ AIi+1 holds for all concept
names A and all j ≤ i < k has length bounded by |T |2.

o

Proofs for: Limits of Polynomial Time
Learnability

To prove Lemma 14, we first show two technical lem-
mas. We also require the following lemma from (Konev et
al. 2012) that characterizes concept inclusions entailed by
acyclic EL TBoxes.

Lemma 23 Let T be an acyclic EL TBox, r a role name
and D an EL concept. Suppose that T |=

d
1≤i≤nAi ud

1≤j≤m ∃rj .Cj v D, where Ai are concept names for 1 ≤
i ≤ n, Cj are EL concepts for 1 ≤ j ≤ m, and m,n ≥ 0,
then
• if D is a concept name such that T does not contain an

inclusion D ≡ C, for some concept C, then there exists
Ai, 1 ≤ i ≤ n, such that T |= Ai v D;

• if D is of the form ∃r.D′ then either (i) there exists Ai,
1 ≤ i ≤ n, such that T |= Ai v ∃r.D′ or (ii) there exists
rj , 1 ≤ j ≤ m, such that rj = r and T |= Cj v D′.

Lemma 24 For any 0 ≤ m ≤ n, any sequence of role
names σ = σ1 . . . σm, any L = (σ1, . . . ,σn) ∈ Ln and
any EL concept C over Σn: if TL |= C v ∃σ.M then ei-
ther

1. m = n, σ = σi, for some 1 ≤ i ≤ n and C is of the form
A uC ′, Ai uC ′ or Bi uC ′, for some EL concept C ′; or

2. |= C v ∃σ.M .

Proof. We prove the proposition by induction on m. If m =
0, by Lemma 23, C is of the form Z uC ′, for some concept
name Z and concept C ′, and TL |= Z v M . This is only
possible if Z is M itself, so |= C vM .
Let m > 0. By Lemma 23 we have one of the following two
cases:
• C is of the form X u C ′, for some concept name X and

concept C ′ such that TL |= X v ∃σ.M . It is easy to see
that this is only possible if m = n, σ = σi and X is one
of A, Ai or Bi.

• C is of the form ∃σ1.C ′ u C ′′ for some concepts C ′ and
C ′′ such that TL |= C ′ v ∃σ2. · · · ∃σm.M . By induction
hypothesis, |= C ′ v ∃σ2. · · · ∃σm.M . But then |= C v
∃σ.M .

o

Finally, we require the following observation.

Lemma 25 For any acyclic EL TBox T , any inclusion A v
C ∈ T and any concept of the form ∃t.D we have T |= A v
∃t.D if, and only if, T |= C v ∃t.D.

We are now ready to prove Lemma 14.
Lemma 14 For every EL concept inclusion C v D
over Σn:
• either for every L ∈ Ln we have TL |= C v D or
• the number of different L ∈ Ln such that TL |= C v D

does not exceed |C|.
Proof. We prove the lemma by induction on the size of D.
We assume throughout the proof that there exists some L0 ∈
Ln such that TL0 |= C v D.
Base case:D is a concept name. We make the following case
distinction.
• D is one of Xi, Ai, Bi or M , for i ≥ 1. By Lemma 23,
C is of the form Z u C ′, for some concept name Z, and
TL0
|= Z v D. If D is one of Xi, Ai, Bi or M , then this

can only be the case if Z = D. But then for every L ∈ Ln
we have TL |= C v D.

• D = X0. By Lemma 23,C is of the formZuC ′, for some
concept name Z, and TL0 |= Z v X0. This is the case if
either Z = X0, or Z is one of A, A1, B1, . . . , An, Bn. In
either case, for every L ∈ Ln we have TL |= C v X0.

• D = A. If C is form A u C ′ or for for all i such that
1 ≤ i ≤ n, Ai or Bi is a conjunct of C, then for every
L ∈ Ln we have TL |= C v A. Assume now that C is
not of this form. Then for some j such that 1 ≤ j ≤ n,
C is neither of the form A u C ′ nor of the form Aj u C ′
nor of the form Bj u C ′. Let L = (σ1, . . . ,σn) ∈ Ln
be such that TL |= C v A. Notice that TL |= C v A,
for L = (σ1, . . . ,σn) ∈ Ln, if, and only if, TL |= C v
X0 u ∃σ1.M u · · · u ∃σn.M . By Lemma 24, for such a
TL we must have |= C v ∃σj .M . Clearly, the number of
different L = (σ1, . . . ,σn) ∈ Ln with |= C v ∃σj .M
does not exceed |C|.
Thus, either for every L ∈ Ln we have TL |= C v A or
the number of different L ∈ Ln such that TL |= C v A
does not exceed |C|.



Induction step. If D = D1 uD2, then TL |= C v D if, and
only if, T |= C v Di, i = 1, 2. By induction hypothesis, for
i = 1, 2 either for every L ∈ Ln we have TL |= C v Di, or
there exist at most |C| differentL ∈ Ln such that TL |= C v
Di. Thus either for every L ∈ Ln we have TL |= C v D,
or the number of different L ∈ Ln such that TL |= C v D
also does not exceed |C|.

Let D = ∃t.D′. Suppose that for some L ∈ Ln we have
TL |= C v D. Then, by Lemma 23, either there exists a
conjunct Z of C, Z a concept name, such that TL |= Z v
∃t.D′ or there exists a conjunct ∃t.C ′ of C with TL |= C ′ v
D′. We analyse for every conjunct of C of the form Z or
∃t.C ′ for how many different L ∈ Ln it holds that TL |=
Z v ∃t.D′ (or TL |= ∃t.C ′ v ∃t.D′ respectively).

(i) Let Z be a conjunct of C such that Z is a concept name
and TL |= Z v ∃t.D′. Notice that Z cannot be M as for
no L ∈ Ln we have TL |= M v ∃t.D′. Consider the
remaining possibilities.

– Z is one of Xi, i ≥ 0. It is easy to see that for L,L′ ∈
Ln we have TL |= Xi v ∃t.D′ if, and only if TL′ |=
Xi v ∃t.D′. Thus, for every L ∈ Ln we have TL |=
Z v ∃t.D′.

– Z is one of Ai, Bi for i ≥ 1. By Lemma 25, TL |=
Z v ∃t.D′ if, and only if, TL |= X0 u ∃σi.M v
∃t.D′. By Lemma 23, either TL |= X0 v ∃t.D′ or
TL |= ∃σi.M v ∃t.D′. If TL |= X0 v ∃t.D′ then, as
above, for every L ∈ Ln we have TL |= C v ∃t.D′.
Suppose that ∃t.D′ is such that TL 6|= X0 v ∃t.D′ and
TL |= ∃σi.M v ∃t.D′. By inductive applications of
Lamma 23, this is only possible when ∃t.D′ is ∃σi.M .
Notice that all σi are unique so there exists exactly one
L ∈ Ln (namely,L isL0) such that TL |= Z v ∃σi.M .

– Z isA. Suppose that for some L = (σ1, . . . ,σn) ∈ Ln
we have TL |= A v ∃t.D′, equivalently TL |= X0 u
∃σ1.M u . . .σn.M v ∃t.D′. By Lemma 23, either
TL |= X0 v ∃t.D′ or TL |= ∃σi.M v ∃t.D′, for some
i : 1 ≤ i ≤ n, so, as above, unless TL |= X0 v ∃t.D′
we have ∃t.D′ is ∃σi.M . But then L = L0.

(ii) Let ∃t.C ′ be a conjunct of C with TL |= C ′ v D′. The
induction hypothesis implies that the number of different
L ∈ Ln such that TL |= C ′ v D′ does not exceed |C ′|.

To summarize, either TL |= C v ∃t.D′ for every L ∈ Ln
or for every conjunct C0 of C of the form Z or ∃t.C ′, the
number of different L ∈ Ln such that TL |= C0 v ∃t.D′
does not exceed |C0|. Hence the number of different L ∈ Ln
such that TL |= C v ∃t.D′ does not exceed |C|. o

The next lemma prepares the proof of Lemma 15.

Lemma 26 For any 0 ≤ i ≤ n and Σn-concept D, if
T0 6|= Xi v D then there exists a sequence of role names
t1, . . . tl such that |= D v ∃t1. · · · ∃tl.Y and T0 6|= Xi v
∃t1. · · · ∃tl.Y , where Y is either > or a concept name,
0 ≤ l ≤ n− i+ 1.

Proof. We prove the lemma by induction on i. The base case
is i = n. Then T0 6|= Xn v D either if |= D v ∃t.>, for
some role name t, or |= D v Y , for some concept name
Y 6= Xn.

Suppose that the proposition is proved for 0 < j ≤ n and
let i = j−1. We proceed by induction on the structure ofD.
If D is a concept name, we are done as for no concept name
Z 6= Xi we have T0 |= Xi v Z. If D is of the form ∃t.D′,
where t is one of r, s, we, obviously, have T0 6|= Xi+1 v
D′, and so, by induction hypothesis, there exists a sequence
of role names t1, . . . , tl, with l ≤ n − i, such that T0 6|=
Xi+1 v ∃t1. · · · ∃tl.Y and |= D′ v ∃t1. · · · ∃tl.Y . But then,
by Lemma 25 and Lemma 23, T0 6|= Xi v ∃t.∃t1. · · · ∃tl.Y
and |= ∃t.D′ v ∃t.∃t1. · · · ∃tl.Y . If D is of the form D =
D1 uD2, for one of Di, i = 1, 2, we have T0 6|= Xi v Di

and the proposition holds by induction. o

Lemma 15 For any n > 1 and any EL TBox H in Σn
with |H| < 2n there exists a Σn-concept inclusion C v D
such that (i) the size of C v D does not exceed 6n and
(ii) if H |= C v D then TL |= C v D for at most one
L ∈ Ln and if H 6|= C v D then for every L ∈ Ln we have
TL |= C v D.
Proof. We define an exponentially large TBox T∩ and use it
to prove that one can select the required EL inclusion C v
D is such a way that eitherH |= C v D and T∩ 6|= C v D,
or vice versa.

To define T∩, for any sequence b = b1 . . . bn, where every
bi is either 0 or 1, we denote byCb the conjunction

d
i≤n Ci,

where Ci = Ai if bi = 1 and Ci = Bi if bi = 0. Then we
define

T∩ = T0 ∪ {Cb v A uX0 | b ∈ {0, 1}n}.
Consider possibilities forH and T∩.

(1) IfH 6|= T∩ then there exists an inclusion C v D ∈ T∩
such thatH 6|= C v D. Clearly, C v D is entailed by every
TL, for L ∈ Ln, and the size of C v D does not exceed 6n,
so C v D is as required.

(2) Suppose that for some b ∈ {0, 1}n and a concept
of the form ∃t.D′ we have H |= Cb v ∃t.D′ and T∩ 6|=
Cb v ∃t.D′. To ‘minimise’ Cb v ∃t.D′, notice that T0 6|=
X0 v ∃t.D′. Then, by Lemma 26, there exists a sequence
of role names t1, . . . , tl, for 0 ≤ l ≤ n + 1 and Y being >
or a concept name such that |= ∃t.D′ v ∃t1. · · · ∃tl.Y , so
H |= Cb v ∃t1. · · · ∃tl.Y , and T0 6|= X0 v ∃t1. · · · ∃tl.Y .
Clearly, the size of Cb v ∃t1. · · · ∃tl.Y does not exceed 6n.
It remains to prove that TL |= Cb v ∃t1 · · · ∃tl.Y for at
most one L ∈ Ln.

Suppose for some L ∈ Ln we have TL |= Cb v
∃t1. · · · ∃tl.Y . By Lemma 23, there existsAj orBj such that
TL |= Aj v ∃t1. · · · ∃tl.Y (or TL |= Bj v ∃t1. · · · ∃tl.Y ,
respectively). As T0 6|= X0 v ∃t1. · · · ∃tl.Y it is easy to see
that this is only possible when l = n, (t1, t2, . . . , tn) = σj ,
and Y is M . Since every σj is unique, for every L′ ∈ Ln
such that L′ 6= L we have TL′ 6|= Cb v ∃σj .M .

Thus, Cb v ∃t1. · · · ∃tl.Y is as required.
(3) Finally, suppose that Case 1 and 2 above do not apply.

Then H |= T∩ and for every b ∈ {0, 1}n and every EL
concept over Σn of the form ∃t.D′: if H |= Cb v ∃t.D′



then T0 |= X0 v ∃t.D′. We show that unless there exists
an inclusion C v D satisfying the conditions of the lemma,
H contains at least 2n different inclusions. Thus, we have
derived a contradiction.

Fix b ∈ {0, 1}n. As H |= T∩ we have H |= Cb v A.
Then there must exist an (at least one) inclusion C v A u
D ∈ H such that H |= Cb v C and 6|= C v A. Let C =
Z1 u · · · u Zm u ∃t1.C ′1 u · · · u ∃tl.C ′l , where Z1,. . . , Zm
are different concept names. AsH |= Cb v ∃tj .C ′j we have
T0 |= X0 v ∃tj .C ′j , for j = 1, . . . l. As H |= T∩ we have
H |= X0 v ∃tj .C ′j , for j = 1, . . . l. So H |= Z1 u · · · u
Zm uX0 v A.

Suppose that for some i : 1 ≤ i ≤ n there exists no
j : 1 ≤ j ≤ m such that Zj is either Ai or Bi. Then we
have TL 6|= Z1 u · · · u Zm u X0 v A, for any L ∈ Ln.
Notice that in the worst case Z1 u · · · u Zm contains the
conjunction of all Σn-concept names, except Ai, Bi, so the
size of Z1 u · · · u Zm u X0 v A does not exceed 6n, and
Z1 u · · · u Zm uX0 v A is as required.

Assume that Z0 u · · · u Zm uX0 contains a conjunct Bi
such that bi 6= 0. ThenH |= Cb v Bi and for no L ∈ Ln we
have TL |= Cb v Bi. The size of Cb v Bi does not exceed
6n, so it is as required.

Assume that Z0 u · · · u Zm uX0 contains a conjunct Ai
such that bi 6= 1. ThenH |= Cb v Ai and for no L ∈ Ln we
have TL |= Cb v Ai. The size of Cb v Ai does not exceed
6n, so it is as required.

The only remaining option is that Z1 u · · · u Zm u X0

contains exactly the Ai with bi = 1 and exactly the Bi with
bi = 0.

This argument applies to arbitrary b ∈ {0, 1}n. Thus if
there exists no inclusion C v D satisfying the conditions of
the lemma thenH contains at least 2n inclusions. o

We come to the proof of Theorem 13. Theorem 13 fol-
lows immediately with Angluin’s strategy from the follow-
ing lemma. Let Γn = {r, s, A,M,X0, . . . , Xn}.

Lemma 27 For every DL-Lite∃R concept inclusion B v D
over Γn:
• either for every Tσ ∈ S we have Tσ |= B v D;
• or there is at most one Tσ ∈ S such that Tσ |= B v D.

Proof. Assume B v D is given. If B 6= A or M does not
occur in D, then the claim can be readily checked. Thus,
we assume that B = A and M occurs in D. Assume there
exists σ0 such that Tσ0 |= A v D (if no such σ0 exists,
we are done). For any σ, let IA,Tσ be the canonical model
constructed in the same way as in the proof of Lemma 4.
Note that IA,Tσ is a tree interpretation with root ρA. Observe
that the following conditions are equivalent for every σ:
• Tσ |= A v D;
• ρA ∈ DIA,Tσ ;
• there is a homomorphism from the interpretation ID cor-

responding to D to IA,Tσ which maps the root dD of ID
to ρA.

We consider a restricted form of parent-child merging forD.
Apply the following merging operation exhaustively to D:

• if there are nodes d, d1, d2 ∈ TD with l(d1, d) = σ and
l(d, d2) = σ− for some σ ∈ {r, s}, then replace D by the
resulting concept after d1 and d2 are merged in D.

Let D′ be the resulting concept. It is readily checked that
any homomorphism h from ID to IA,Tσ which maps the
root of ID to ρA factors through ID′ and that D′ is an EL
concept. Thus, if there is an additional σ′ 6= σ0 such that
Tσ′ |= A v D, then there are two homomorphisms hσ0

and
hσ′ from ID′ to IA,Tσ0

and from ID′ to IA,Tσ′ mapping the
root of ID′ to the roots of IA,Tσ0

and IA,Tσ′ , respectively.
Moreover, M occurs in D′. Since D′ is a EL-concept we
find a sequence D′ = D0, . . . , Dm such that ∃si+1.Di+1 is
a top-level conjunct of Di for si ∈ {r, s} and all i < m.
But then s1 · · · sm = σ0 and s1 · · · sm = σ′ and we have
derived a contradiction to the assumption that σ0 and σ′ are
distinct. o

We come to the proof of Theorem 18.

Theorem 18 The class of DL-Lite∃R TBoxes is not polyno-
mial time learnable using equivalence queries.

In the paper we have designed a strategy for the oracle
with the following property: if all TBoxes H in equivalence
queries represent monotone DNF formulas in n variables,
then the learner cannot distinguish all TBoxes in T (n, s, t)
in polynomial time (for sufficiently large n). We now extend
this strategy to cover TBoxes in equivalence queries that do
not represent monotone DNF formulas.

We say that a TBox T has a DNF-representation for n if
it is obtained by the translation of a monotone DNF-formula
with n variables; that is, if T is of the following form, for
some Γ ⊆ {r, r̄}n:

{A v
l

ρ1···ρn∈Γ

∃ρ1.∃ρ2. . . .∃ρn.>, r̄ v r}.

Observe that the TBoxes in T (n, s, t) are exactly those
TBoxes that have a DNF-representation for n and satisfy ad-
ditionally the conditions that the DNF represented by Tφ has
exactly t conjunctions each conjunction of which has exactly
s variables.

We describe the strategy for the oracle O′ to answer
equivalence queries so that no learning algorithm is able
to exactly identify members of T (n, s, t) based on the an-
swers to polynomially many equivalence queries of polyno-
mial size. If the TBox in the equivalence query is ‘obviously’
not within the class T (n, t, s), then we will explicitly give
the counterexample that the oracle returns. If, on the other
hand, the TBoxH from the equivalence query is ‘similar’ to
TBoxes that have a DNF-representation for n, then we ap-
proximate H by a TBox H′ that has a DNF-representation
for n and return the counterexample A v CI corresponding
to the truth assignment I that the oracle O from Theorem 17
would return when given ψ.

In detail the strategy is as follows. Assume q is the given
polynomial in Theorem 17 and that t0, s0 and the strategy
of the oracle O are chosen so that for sufficiently large n no
learning algorithm for DNF formulas that asks at most q(n)



equivalence queries, each bounded in size by q(n), can dis-
tinguish all members of M(n, t0, s0). Choose a sufficiently
large n. Let H be an equivalence TBox query issued by a
learning algorithm. Then O′ does the following:

1. If H entails some A v ∃ρ1.∃ρ2. . . .∃ρn+1.> with ρi ∈
{r, r̄} for 1 ≤ i ≤ n + 1, then return this inclusion as a
negative counterexample;

2. If H entails some ∃ρ1.> v ∃ρ2.> such that {ρ1, ρ2} ⊆
{r, r̄, r−, r̄−} and {r̄ v r} 6|= ∃ρ1.> v ∃ρ2.>, then
return this inclusion as a negative counterexample;

3. If H |= ∃ρ1.> v ∃ρ2.∃ρ3.> such that {ρ1, ρ2, ρ3} ⊆
{r, r̄}, then return this inclusion as a negative counterex-
ample;

4. If there exists no ρ1, . . . , ρn ∈ {r, r̄}n such that H |=
A v ∃ρ1. · · · ∃ρn.> then return A v ∃r · · · ∃r︸ ︷︷ ︸

n

.> as a

positive counterexample.

5. Suppose now that none of the above applies. We say that a
sequence ρ1, . . . , ρn ∈ {r, r̄}n is r-minimal forH ifH |=
A v ∃ρ1. · · · ∃ρn.> and whenever ρi = r, for 1 ≤ i ≤
n, we have H 6|= ∃ρ1. · · · ∃ρi−1.∃r̄.∃ρi+1. · · · ∃ρn.>. We
obtain a TBoxH′ with a DNF representation by setting

H′ = {A v
l

ρ1,...,ρn is
r-minimal forH

∃ρ1. · · · ∃ρn.>, r̄ v r}.

Observe that for any sequence ρ1, . . . , ρn ∈ {r, r̄}n
we have H |= A v ∃ρ1. · · · ∃ρn.> iff H′ |= A v
∃ρ1. · · · ∃ρn.>. We convert H′ into its corresponding
monotone DNF formula φH′ by reversing the translation
from monotone DNF formulas into DL-Lite∃R TBoxes of
the above form, in the obvious way. Note that the size of
φH′ is linear in the size of H′. Given φH′ the oracle O
returns a (positive or negative) counterexample (a truth
assignment) I . Then return the counterexample in the in
the form of the CI A v CI .

Observe that the answers given in Points 1 to 3 are correct in
the sense that if an inclusion α is returned as a negative ex-
ample then T 6|= α for any T ∈ T (n, t, s). Point 4 is trivially
correct, since any monotone DNF is satisfied by the truth as-
signment that makes every variable true. We first analyse the
size of the TBoxH′ computed in Point 5.

Lemma 28 Assume that Points 1 to 4 do not apply to H.
Then the number of sequences ρ1, . . . , ρn ∈ {r, r̄}n which
are r-minimal forH is bounded by |H|.

Proof. We first show that if ρ1, . . . , ρn ∈ {r, r̄}n is r-
minimal for H, then there exists an inclusion A v C ∈ H
such that

(∗) there are concepts C = C0, . . . , Cn with ∃ρi+1.Ci+1 a
top-level conjunct of Ci, for i < n.

For the proof we require the canonical model construc-
tion given in the proof of Lemma 4. Here we start with
the interpretation I0 which has domain {ρA} and in which
AI0 = {ρA} and XI0 = ∅ for all symbols X 6= A.

Then one applies the Expansion Rules 1-3 to construct IA,H
in exactly the same way as in the proof of Lemma 4. Let
ρ1, . . . , ρn ∈ {r, r̄}n be r-minimal for H. Then there are
ρA = d0, . . . , dn in ∆IA,H such that (di, di+1) ∈ ρIA,H

i for
all i < n.

Claim 1. For all i > 0: di 6∈ AIA,H .

Proof of Claim 1. Assume di ∈ AIA,H . Then H |= A v
∃ρ1 · · · ∃ρi.A. But then H |= A v ∃(ρ1 · · · ρi)n.> for all
n > 0 which contradicts the assumption that Point 1 does
not apply toH.

Using the fact Points 2 to 3 do not apply to H, it follows
that the only possible reason for having a sequence ρ0 =

d0, . . . , dn in ∆IA,H such that (di, di+1) ∈ ρIA,H
i with ρi ∈

{r, r̄} for i < n in IA,H is that there is an A v C ∈ H such
that (∗) holds.

It follows that the number of distinct r-minimal sequences
is bounded by the number of distinct sequences C =
C0, . . . , Cn with A v C ∈ H and ∃ρi+1.Ci+1 a top-level
conjunct of Ci for all i < n. Thus, the number of distinct
r-minimal sequences is bounded by |H|. o

It follows from Lemma 28 that the size of the TBoxH′ com-
puted in Point 5 is bounded by 4n|H|+ 2.

We are now in the position to prove the main result in
general form.

Proof of Theorem 18. Suppose that the running time of a
learning algorithm A for DL-Lite∃R TBoxes in Σ = {A, r, r̄}
is bounded at every stage of computation by a polynomial
p(x, y), where x is the size of the target TBox, and y is
the maximal size of a counterexample returned by the or-
acle up to the current stage of computation. Let q(n) =
(p(n2, 4n + 6))2, and let constants t0 and s0 be as guaran-
teed by Lemma 17. We claim that, for sufficiently large n, A
cannot distinguish some Tφ and Tψ for φ, ψ ∈M(n, t0, s0).

Assuming that n > 11 (the maximal size of counterex-
amples given under Point 2 and 3), the largest counterexam-
ple returned by our strategy described above is of the form
A v ∃ρ1. · · · ∃ρn+1.>, so for sufficiently large n the maxi-
mal size of any counterexample in any run of A is bounded
by 4n + 6 = 4(n + 1) + 2. Similarly, the size of ev-
ery potential target TBox Tφ ∈ T (n, t0, s0) does not ex-
ceed t0 · (4n + 2) and, as t0 is a constant, for sufficiently
large n it is bounded by n2. Thus, for sufficiently large n
the total running time of A on any input from T (n, t0, s0)
is bounded by p(n2, 4n + 6). Obviously, the size of each
query is bounded by the running time of the learning algo-
rithm. So, the size of a DNF equivalence query forwarded
to the strategy O guaranteed by Lemma 17 is bounded by
4n×p(n2, 4n+6)+2 ≤ q(n), and there will be at most q(n)
queries forwarded. But then O can return answers such that
some φ and ψ from M(n, t0, s0) cannot be distinguished. It
remains to observe that A cannot distinguish Tφ and Tψ .


