Review

Conjunctive queries (CQs) are simpler than FO-queries:
- NP combined and query complexity (instead of PSpace)
- data complexity remains in AC^0

CQs become even simpler if they are tree-shaped:
- GYO algorithm defines acyclic hypergraphs
- acyclic hypergraphs have join trees
- join trees can be evaluated in P with Yannakakis' Algorithm

This time:
- Find more general conditions that make CQs tractable
 \rightarrow “tree-like" queries that are not really trees
- Play some games

Is Yannakakis’ Algorithm Optimal?

We saw that tree queries can be evaluated in polynomial time, but we know that there are much simpler complexity classes:

\[
\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \subset L \subset NL \subset \text{AC}^1 \subset \ldots \subset \text{NC} \subset P
\]

Indeed, tighter bounds have been shown:

Theorem 7.1 (Gottlob, Leone, Scarcello: J. ACM 2001): Answering tree BCQs is complete for LOGCFL.

LOGCFL: the class of problems LogSpace-reducible to the word problem of a context-free language:

\[
\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \subset L \subset NL \subset \text{LOGCFL} \subset \text{AC}^1 \subset \ldots \subset \text{NC} \subset P
\]

\rightarrow highly parallelisable

Generalising Tree Queries

In practice, many queries are tree queries, but even more queries are “almost" tree queries, but not quite …

How can we formalise this idea?

Several attempts to define “tree-like" queries:
- Treewidth: a way to measure tree-likeness of graphs
- Query width: towards tree-like query graphs
- Hypertree width: adoption of treewidth to hypergraphs
How to recognise trees ...

... from quite a long way away:

Tree Decompositions

Idea: if we can group the edges of a graph into bigger pieces, these pieces might form a tree structure

Definition 7.2: Consider a graph $G = (V, E)$. A tree decomposition of G is a tree structure T where each node of T is a subset of V, such that:

- The union of all nodes of T is V.
- For each edge $(v_1 \rightarrow v_2) \in E$, there is a node N in T such that $v_1, v_2 \in N$.
- For every vertex $v \in V$, the set of nodes of T that contain v form a subtree of T; equivalently: if two nodes contain v, then all nodes on the path between them also contain v (connectedness condition).

Nodes of a tree decomposition are often called bags
(not related to the common use of "bag" as a synonym for "multiset")

Tree Decompositions: Example

Treewidth

The treewidth of a graph defines how “tree-like” it is:

Definition 7.3: The width of a tree decomposition is the size of its largest bag minus one.

The treewidth of a graph G, denoted $\text{tw}(G)$, is the smallest width of any of its tree decompositions.

Simple observations:
- If G is a tree, then we can decompose it into bags that contain only one edge \sim trees have treewidth 1
- Every graph has at least one tree decomposition where all vertices are in one bag \sim maximal treewidth $= \text{number of vertices} - 1$
Treewidth: Example

More Examples

Treewidth and Conjunctive Queries

Exploiting Treewidth in CQ Answering
Treewidth via Games

Seymour and Thomas [1993] gave an alternative characterisation of treewidth:

The Cops-and-Robber Game

- The game is played on a graph G
- There are k cops and one robber, each located at one vertex
- In each turn:
 - the cops can fly to an arbitrary vertex in the graph
 - the robber can run along the edges of the graph, as far as she likes, as long as she does not pass through any vertex that was occupied by a cop before or after the turn
 (the robber can run to a place where a cop was before the turn, but not pass through such a place)
- The goal of the cops is to catch the robber;
 the goal of the robber is never to be caught

Cops & Robbers: Example

Cops & Robbers and Treewidth

Theorem 7.6 (Seymour and Thomas): A graph G is of treewidth $\leq k - 1$ if and only if k cops have a winning strategy in the cops & robber game on G.

Intuition: the cops together can block even the widest branch and still move in on the robber

Treewidth via Logic

Kolaitis and Vardi [1998] gave a logical characterisation of treewidth

Bounded treewidth CQs correspond to certain FO-queries:

- We allow FO-queries with \exists and \land as only operators
- But operators can be nested in arbitrary ways (unlike in CQs)
- Theorem: A query can be expressed with a CQ of treewidth k if and only if it can be expressed in this logic using a query with at most $k + 1$ distinct variables

Intuition: variables can be reused by binding them in more than one \exists

- Apply a kind of “inverted prenex-normal-form transformation”
- Variables that occur in the same atom or in a “tightly connected” atom must use different names
- minimum number of variables \Rightarrow treewidth (+1)
Summary and Outlook

Treewidth has Pros and Cons:

Advantages:
- Bounded treewidth is easy to check
- Bounded treewidth CQs are easy to answer

Disadvantages:
- Even families of acyclic graphs may have unbounded treewidth
- Loss of information when using primal graph
 (cliques might be single hyperedges – linear! –
 or complex query patterns – exponential!)

Open questions:
- Are there better ways to capture “tree-like” queries?