FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

Introduction to RDF

Sebastian Rudolph
Introduction to RDF
Introduction to RDF
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Disadvantages of XML

- tag names ambiguous (can be tackled by name spaces and IRIs)
- tree structure not optimal for
 - intuitive description of the data
 - information integration
- Example: how to encode in a tree the sentence:
 “The book ‘Semantic Web – Grundlagen’ was published by Springer-Verlag.”
Modeling Problems in XML

“The book ‘Semantic Web – Grundlagen’ was published by Springer-Verlag.”
Modeling Problems in XML

“The book ‘Semantic Web – Grundlagen’ was published by Springer-Verlag.”

<Published>
 <Publisher>Springer-Verlag</Publisher>
 <Book>Semantic Web -- Grundlagen</Book>
</Published>
Modeling Problems in XML

“The book ‘Semantic Web – Grundlagen’ was published by Springer-Verlag.”

<Published>
 <Publisher>Springer-Verlag</Publisher>
 <Book>Semantic Web -- Grundlagen</Book>
</Published>

<Publisher Name="Springer-Verlag">
 <Published Book="Semantic Web -- Grundlagen"/>
</Publisher>
Modeling Problems in XML

“The book ‘Semantic Web – Grundlagen’ was published by Springer-Verlag.”

<Published>
 <Publisher>Springer-Verlag</Publisher>
 <Book>Semantic Web -- Grundlagen</Book>
</Published>

<Publisher Name="Springer-Verlag">
 <Published Book="Semantic Web -- Grundlagen"/>
</Publisher>

<Book Name="Semantic Web -- Grundlagen">
 <Publisher Publisher="Springer-Verlag"/>
</Book>
RDF: Graphs instead of Trees

Solution: Representation as (directed) Graphs

http://example.org/SemanticWeb

ex:publishedBy

http://springer.com/Publisher
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
General Remarks about RDF

- “Resource Description Framework”
- W3C Recommendation (http://www.w3.org/RDF)
- currently being revised
- RDF is a data model
 - originally: assign metadata to Web resources, later more general usage
 - encodes structured information
 - universal, machine-readable exchange format
Constituents of RDF Graphs

- **IRIs**
 - for uniquely referencing resources
 - (already discussed at XML lecture)
- **literals**
 - describe data values that do not have an independent existence
- **blank nodes**
 - allow for stating the existence of some individual (and describing its properties) without giving it a name
Literals

- for representing data values
- noted as strings
- interpreted by an associated datatype
- literals without datatype are treated like strings
Graph as a Set of Triples

- there are several different ways to represent graphs
- we use list of (node-edge-node) triples
RDF Triple

Constituents of an RDF triple

- inspired by linguistic but not always an exact match
- permitted occurrences of constituents:
 - subject: IRI or blank node
 - predicate: IRI (also called properties)
 - object: IRI or blank node or literal
- node and edge labels are unique, thus the original graph can be reconstructed from the list of triples
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Simple Syntax for RDF

- direct enumeration of triples:
 - N3: “Notation 3” – comprehensive formalism
 - N-Triples: fraction of N3
 - Turtle: extension of N-Triples (by abbreviations)

- Turtle syntax:
 - IRIs in angular brackets
 - literals in quotes
 - triples terminated by full stop
 - spaces and line breaks outside such delimiters are ignored
Turtle Syntax: Abbreviations

Example

 <http://springer.com/Publisher> .
 "Semantic Web -- Grundlagen" .
<http://springer.com/Verlag> <http://ex.org/Name>
 "Springer Verlag" .

In Turtle we can define prefix abbreviations:

@prefix ex: <http://ex.org/> .
@prefix springer: <http://springer.com/> .
ex:SemanticWeb ex:publishedBy springer:Publisher .
ex:SemanticWeb ex:Title "Semantic Web -- Grundlagen" .
springer:Publisher ex:Name "Springer Verlag" .
Turtle Syntax: Abbreviations

Multiple triples with the same subject can be grouped:

```turtle
@prefix ex: <http://ex.org/> .
@prefix springer: <http://springer.com/> .

ex:SemanticWeb ex:publishedBy springer:Publisher ;
  ex:Title          "Semantic Web -- Grundlagen" .
springer:Publisher ex:Name            "Springer Verlag" .
```
Turtle Syntax: Abbreviations

Multiple triples with the same subject can be grouped:

@prefix ex: <http://ex.org/> .
@prefix springer: <http://springer.com/> .

ex:SemanticWeb ex:publishedBy springer:Publisher ;
 ex:Title "Semantic Web -- Grundlagen" .
springer:Publisher ex:Name "Springer Verlag" .

Likewise triples with coinciding subject and predicate:

@prefix ex: <http://ex.org/> .

ex:SemanticWeb ex:Author ex:Hitzler, ex:Krötzsch,
 ex:Rudolph, ex:Sure ;
 ex:Titel "Semantic Web -- Grundlagen" .
XML Syntax of RDF

- Turtle intuitively understandable, machine-processable
- yet, better tool support and available libraries for XML
- thus: XML syntax more wide-spread
XML Syntax of RDF

- like in XML, name spaces are used in order to disambiguate tag names
- RDF-specific tags have a predefined name space, by convention abbreviated with 'rdf'

```xml
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:ex="http://example.org/">

  <rdf:Description rdf:about="http://example.org/SemanticWeb">
    <ex:publishedBy>
      <rdf:Description rdf:about="http://springer.com/Publisher"/>
    </ex:publishedBy>
  </rdf:Description>

</rdf:RDF>
```
XML Syntax of RDF

- the rdf:Description element encodes the subject (the IRI of which is stated as the value of the associated rdf:about attribute)
- every element directly nested into an rdf:Description element denotes a predicate (the IRI of which is the element name),
- predicate elements in turn contain the triple’s object as rdf:Description element

```xml
<rdf:Description rdf:about="http://example.org/SemanticWeb">
  <ex:publishedBy>
    <rdf:Description rdf:about="http://springer.com/Publisher"/>
  </ex:publishedBy>
</rdf:Description>
```
XML Syntax of RDF

```xml
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:ex="http://example.org/">
    <rdf:Description rdf:about="http://example.org/SemanticWeb">
        <ex:publishedBy>
            <rdf:Description rdf:about="http://springer.com/Publisher"/>
        </ex:publishedBy>
    </rdf:Description>
</rdf:RDF>
```
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/>
 <rdf:Description rdf:about="http://example.org/SemanticWeb">
 <ex:publishedBy>
 <rdf:Description rdf:about="http://springer.com/Publisher"/>
 </ex:publishedBy>
 </rdf:Description>
</rdf:RDF>
XML Syntax of RDF

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/">
 <rdf:Description rdf:about="http://example.org/SemanticWeb">
 <ex:publishedBy>
 <rdf:Description rdf:about="http://springer.com/Publisher"/>
 </ex:publishedBy>
 </rdf:Description>
</rdf:RDF>
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/">
 <rdf:Description rdf:about="http://example.org/SemanticWeb">
 <ex:publishedBy>
 <rdf:Description rdf:about="http://springer.com/Publisher"/>
 </ex:publishedBy>
 </rdf:Description>
</rdf:RDF>
XML Syntax of RDF

- untyped literals can be included as free text into the predicate element
- condensed forms admissible:
 - one subject containing several property elements
 - one object description serves as subject for another triple

```xml
<rdf:Description rdf:about="http://example.org/SemanticWeb">
  <ex:Title>Semantic Web -- Grundlagen</ex:Title>
  <ex:publishedBy>
    <rdf:Description rdf:about="http://springer.com/Publisher/>
      <ex:Name>Springer Verlag</ex:Name>
    </rdf:Description>
  </ex:publishedBy>
</rdf:Description>
```
XML Syntax of RDF

- alternative (but semantically equivalent) representation of literals as XML attributes
- property IRIs are then used as attribute names
- object IRIs can be given as value of the rdf:resource attribute inside a property tags

```xml
<rdf:Description rdf:about="http://example.org/SemanticWeb"
  ex:Title="Semantic Web -- Grundlagen">
  <ex:publishedBy rdf:resource="http://springer.com/Publisher"/>
</rdf:Description>

<rdf:Description rdf:about="http://springer.com/Verlag"
  ex:Name="Springer Verlag"/>
```

Diagram:
- ex:SemanaticWeb
- ex:Title
- ex:Name
- springer:Publisher
- Semantic Web – Grundlagen
- Springer Verlag
RDF/XML Syntax: Complications

- name spaces are needed (not just for abbreviation reasons), because colons inside XML elements and attributes are always interpreted as name space delimiters

- problem: in XML, no name spaces in attribute values allowed (would be interpreted as IRI schema), thus we cannot write:

 \texttt{rdf:about="ex:Seman ticWeb"}

- “work around” via XML entities:

 Declaration:

 \texttt{<!ENTITY ex 'http://example.org/'}

 Usage:

 \texttt{rdf:resource="&ex;SemanticWeb"}
RDF/XML Syntax: Base IRIs

- usage of base IRIs:

```xml
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:base="http://example.org/">
  <rdf:Description rdf:about="SemanticWeb">
    <ex:publishedBy rdf:resource="http://springer.com/Publisher"/>
  </rdf:Description>
</rdf:RDF>
```

- relative IRIs (i.e. those that are to be preceded by the given base IRI) are recognized by the absence of a schema part
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Datatypes

Example: `xsd:decimal`

For `xsd:decimal` holds "3.14" = "+03.14"
But not for `xsd:string`!
Datatypes in RDF

- by now: untyped literals, treated like strings (e.g.: "02" < "100" < "11" < "2")
- typing allows for a better (more semantic = meaning-adequate) handling of values
- datatypes are themselves denoted by IRIs and can essentially be freely chosen
- common: usage of xsd datatypes
- syntax:
 "datavalue"^^datatype_IRI
Datatypes in RDF – Example

Graph:

Turtle:
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://springer.com/Publisher>
 <http://example.org/Name> "Springer Verlag"^^xsd:string ;
 <http://example.org/foundation_date> "1842-05-10"^^xsd:date .

XML:
<rdf:Description rdf:about="http://springer.com/Publisher">
 <ex:Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Springer Verlag</ex:Name>
 <ex:foundation_date rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1842-05-10</ex:foundation_date>
</rdf:Description>
XML Schema – Canonical Values

- there may be several lexical forms for one value
- one of these is picked as the value’s canonical form
- useful to detect equivalence between different notations of the same values
- the following lexical forms of the datatype `decimal` represent the same value: 100.5, +100.5, 0100.5, 100.50, 100.500, 100.5000, the canonical variant is: 100.5
The Predefined Datatype

- rdf:XMLLiteral is the only datatype that is pre-defined within the RDF standard
- denotes arbitrary balanced XML snippets
- in RDF/XML special syntax for unambiguous representation:

```xml
<rdf:Description rdf:about="http://example.org/SemanticWeb">
  <ex:Titel rdf:parseType="Literal">
    <b>Semantic Web</b><br/>
    Grundlagen
  </ex:Titel>
</rdf:Description>
```
Language Information and Datatypes

- Language information can only be provided for untyped literals

Example:

XML:

```xml
<rdf:Description rdf:about="http://springer.com/Publisher">
  <ex:Name xml:lang="de">Springer Verlag</ex:Name>
  <ex:Name xml:lang="en">Springer Science+Business Media</ex:Name>
</rdf:Description>
```

Turtle:

```turtle
```
Language Information and Datatypes

According to the spec, the following literals are all different from each other:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

In practice they are, however, often implemented as equal.
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Multi-Valued Relationships

- Cooking with RDF:
 “For the preparation of Chutney, you need 1 lb green mango, a teaspoon Cayenne pepper, …”

- first modeling attempt:
  ```
  @prefix ex: <http://example.org/> .
  ex:Chutney ex:hasIngredient "1 lb green mango",
  "1 tsp. Cayenne pepper",
  ...
  ```

- Not satisfactory: ingredients plus amounts encoded as one string. Search for recipes containing green mango not possible (or difficult).
Multi-Valued Relationships

- Cooking with RDF:
 “For the preparation of Chutney, you need 1 lb green mango, a teaspoon Cayenne pepper, …”

- second modeling attempt:

  ```
  @prefix ex: <http://example.org/> .
  ex:Chutney ex:hasIngredient ex:greenMango;
      ex:amount "1 lb";
  ex:hasIngredient ex:CayennePepper;
  ex:amount "1 tsp.";
  ...
  ```

- Even worse: no unique assignment of ingredient and amounts possible.
Multi-Valued Relationships

- Problem: we have a proper three-valued (aka: ternary) relationship (cf. databases)

<table>
<thead>
<tr>
<th>dish</th>
<th>ingredient</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>chutney</td>
<td>green mango</td>
<td>1 lb</td>
</tr>
<tr>
<td>chutney</td>
<td>Cayenne pepper</td>
<td>1 tsp.</td>
</tr>
</tbody>
</table>

- direct representation in RDF not possible
- solution: introduction of auxiliary nodes
Multi-Valued Relationships

auxiliary nodes in RDF:

- as graph

 ![Graph representation](image)

- Turtle syntax (using rdf:value for the primary component)

```turtle
@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:chutney ex:hasIngredient ex:chutneyIngredient1 .
ex:chutneyIngredient1 rdf:value ex:greenMango; ex:amount "1 lb" .
```

TU Dresden Foundations of Semantic Web Technologies slide 46 of 70
 Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Blank Nodes

auxiliary nodes in RDF:

- blank nodes (aka bnodes) can be used for resources that need not be named (e.g. auxiliary nodes)
- can be interpreted as existential statement
- syntax (as graph):

```
http://example.org/chutney

http://example.org/hasIngredient

http://example.org/greenMango

http://example.org/ingredient

http://example.org/amount

"1 lb"
```
Blank Nodes

RDF/XML-Syntax:

```
<rdf:Description rdf:about="http://example.org/chutney">
  <ex:hasIngredient rdf:nodeID="id1" />
</rdf:Description>
<rdf:Description rdf:nodeID="id1">
  <ex:ingredient rdf:resource="http://example.org/greenMango" />
  <ex:amount>1 lb</ex:amount>
</rdf:Description>
```

abbreviated:

```
<rdf:Description rdf:about="http://example.org/chutney">
  <ex:hasIngredient rdf:parseType="Resource">
    <ex:ingredient rdf:resource="http://example.org/greenMango" />
    <ex:amount>1 lb</ex:amount>
  </ex:hasIngredient>
</rdf:Description>
```
Blank Nodes

Turtle syntax:

```turtle
@prefix ex: <http://example.org/> .
ex:chutney ex:hasIngredient _:id1 .
_:id1 ex:ingredient ex:greenMango ;
ex:amount "1 lb" .
```

Abbreviated:

```turtle
@prefix ex: <http://example.org/> .
ex:chutney ex:hasIngredient [
ex:ingredient ex:greenMango ;
ex:amount "1 lb" ] .
```
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Lists

- General data structures for enumerating arbitrary many resources (where order is relevant), e.g. authors of a book
- distinction between
 - open lists (container)
 new entries can be added
 - closed lists (collections)
 new entries can not be added
- These structures are modeled using the already discussed means of representation, i.e. no additional expressivity!
Open Lists (Container)

graph:

http://example.org/SemanticWeb
http://example.org/authors
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/1999/02/22-rdf-syntax-ns#1
http://www.w3.org/1999/02/22-rdf-syntax-ns#2
http://www.w3.org/1999/02/22-rdf-syntax-ns#3
http://www.w3.org/1999/02/22-rdf-syntax-ns#4

abbreviated in RDF/XML:

```xml
<rdf:Description rdf:about="http://example.org/SemanticWeb">
  <ex:authors>
    <rdf:Seq>
      <rdf:li rdf:resource="http://example.org/Hitzler />
      <rdf:li rdf:resource="http://example.org/Krötzsch />
      <rdf:li rdf:resource="http://example.org/Rudolph />
      <rdf:li rdf:resource="http://example.org/Sure />
    </rdf:Seq>
  </ex:authors>
</rdf:Description>
```
Types of Open Lists

Via \texttt{rdf:type} the a list type is assigned to the root node of the list:

- \texttt{rdf:Seq}
 ordered list (sequence)

- \texttt{rdf:Bag}
 unordered set
 indicates that the encoded order is irrelevant

- \texttt{rdf:Alt}
 set of alternatives
 normally only one entry will be relevant
Closed Lists (Collections)

Graph:

http://example.org/Autoren

http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

http://www.w3.org/1999/02/22-rdf-syntax-ns#first

underlying idea: recursive deconstruction of the list into head element and (possibly empty) rest list
Closed Lists (Collections)

RDF/XML-Syntax

```
<rdf:Description rdf:about="http://example.org/SemanticWeb">
  <ex:authors rdf:parseType="Collection">
    <rdf:Description rdf:about="http://example.org/Hitzler />
    <rdf:Description rdf:about="http://example.org/Krötzsch />
    <rdf:Description rdf:about="http://example.org/Rudolph />
    <rdf:Description rdf:about="http://example.org/Sure />
  </ex:authors>
</rdf:Description>
```

Turtle

```
@prefix ex: <http://example.org/> .
ex:SemanticWeb ex:authors
  ( ex:Hitzler ex:Krötzsch ex:Rudolph ex:Sure ) .
```
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
An RDF triple consists of three components:

1. the subject, which can be an IRI or a bnode,
2. the predicate, which has to be an IRI, and
3. the object, which can be an IRI, a bnode or a Literal.

The predicate is also denoted as property.

An RDF graph (or simply graph) is a set of RDF triples. The graph nodes are the subjects and objects of these triples.

A (proper) subgraph of an RDF graph is a (proper) subset of its triples.

A ground graph is an RDF graph without bnodes.
Graph Definitions

- A name is an IRI or a literal.
- A typed literal comprises two names: the literal itself and its type reference (IRI).
- A set of names is referred to as a vocabulary.
- The vocabulary of a graph is the set of all names occurring as subject, predicate or object in one of its triples.
- Remark: The IRIs which only occur inside the typed literals do not belong to the graph’s vocabulary.
Graph Definitions

- Let M be a mapping from bnodes to a set of literals, bnodes and IRI. We denote M as instance mapping.
- Every graph G' obtained by substituting (some or all) bnodes ℓ in G by $M(\ell)$, is an instance of G.
- An instance with respect to a vocabulary V is an instance in which all names replacing bnodes are from V.
- A proper instance of a graph is an instance wherein at least one bnode has been replaced by a name or identified with another bnode.
- Graphs that only differ in the labels of their bnodes are considered equivalent.
Graph Definitions

- An RDF graph is lean if it does not have an instance that is a proper subgraph of it.
- Non-lean graphs are internally redundant.

\[
\begin{align*}
&\{\texttt{ex:a ex:p _:x . _:y ex:p _:x .}\} & (1) \\
&\{\texttt{ex:a ex:p _:x . _:x ex:p _:x .}\} & (2)
\end{align*}
\]
Graph Definitions

• An RDF graph is lean if it does not have an instance that is a proper subgraph of it.

⇝ Non-lean graphs are internally redundant.

\[\{ \text{ex:a ex:p _:_x . _:_y ex:p _:_x .} \} \quad (1) \]
\[\{ \text{ex:a ex:p _:_x . _:_x ex:p _:_x .} \} \quad (2) \]

• (1) is not lean, but (2) is
Graph Definitions

The merge of two RDF graphs G_1 and G_2 is defined as follows:

- if G_1 and G_2 do not have common blank nodes, the merge is the union $G_1 \cup G_2$
- otherwise, the merge of G_1 and G_2 is the union of G_1' and G_2', where G_1' and G_2' are equivalent to G_1 and G_2, respectively, but do not have blank nodes in common
- if this renaming of variables is carried out, one usually says “blank nodes have been standardized apart”
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice
Popularity of RDF

- today, a plethora of RDF tools exists
- there are libraries for virtually all programming languages
- freely available systems to work with large RDF data sets (so-called RDF Stores or Triple Stores)
- also commercial players (like Oracle) support RDF
- RDF is basis for other data formats: RSS 1.0, XMP (Adobe), SVG (vector graphics)
Assessment of RDF

- widely supported standard for data storage and interchange
- enables syntax-independent representation of distributed information via a graph-based data model
- pure RDF very oriented toward individuals
- few possibilities to encode schema knowledge
- → RDF Schema (next lecture)
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 version="XHTML+RDFa 1.0" xml:lang="en">
 <head>
 <title>John’s Home Page</title>
 <base href="http://example.org/john-d/" />
 <meta property="dc:creator" content="Jonathan Doe" />
 <link rel="foaf:primaryTopic"
 href="http://example.org/john-d/#me" />
 </head>
<body about="http://example.org/john-d/#me">
 <h1>John’s Home Page</h1>
 <p>My name is John D and I like <a href="http://www.neubauten.org/"
 rel="foaf:interest" xml:lang="de">Einstürzende Neubauten.
 </p>
 <p>My favorite book is the inspiring <cite
 property="dc:title">Weaving the Web</cite> by
 Tim Berners-Lee.
 </p>
</body>
<?xml version="1.0" encoding="UTF-8"?>
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:xmlns="urn:ISBN:0752820907">
 <rdf:Description rdf:about="http://example.org/john-d/">
 <dc:creator xml:lang="en">Jonathan Doe</dc:creator>
 <foaf:primaryTopic>
 <rdf:Description rdf:about="http://example.org/john-d/#me">
 <foaf:nick xml:lang="en">John D</foaf:nick>
 <foaf:interest rdf:resource="http://www.neubauten.org/"/>
 <foaf:interest>
 <rdf:Description rdf:about="urn:ISBN:0752820907">
 <dc:creator xml:lang="en">Tim Berners-Lee</dc:creator>
 <dc:title xml:lang="en">Weaving the Web</dc:title>
 </rdf:Description>
 </foaf:interest>
 </rdf:Description>
 </foaf:primaryTopic>
 </rdf:Description>
</rdf:RDF>
Agenda

- Motivation
- RDF data model
- Syntax for RDF: Turtle and XML
- Datatypes
- Multi-Valued Relationships
- Blank Nodes
- Lists
- Graph Definitions
- RDF in Practice