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Abstract
Datalog is an essential logical rule language with many applications, and modern rule engines
compute logical consequences for Datalog with high performance and scalability. While Datalog
is rather simple and, in principle, explainable by design, such sophisticated implementations and
optimizations are hard to verify. We therefore propose a certificate-based approach to validate results
of Datalog reasoners in a formally verified checker for Datalog proofs. Using the proof assistant
Lean, we implement such a checker and verify its correctness against direct formalizations of the
Datalog semantics. We propose two JSON encodings for Datalog proofs: one using the widely
supported Datalog proof trees, and one using directed acyclic graphs for succinctness. To evaluate
the practical feasibility and performance of our approach, we validate proofs that we obtain by
converting derivation traces of an existing Datalog reasoner into our tool-independent format.
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1 Introduction

Datalog is a simple and elegant rule language that is at the heart of many approaches
to logic programming, knowledge representation, and data analysis [1, 14]. Syntactically,
Datalog rules are universally quantified, function-free predicate logic implications, such as
the following two recursive rules defining transitivity (written from right to left and without
the implicit universal quantifiers, as is customary in logic programming):

trans(x, y)← edge(x, y) (1)
trans(x, z)← trans(x, y) ∧ trans(y, z) (2)
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36:2 Verifying Datalog Reasoning with Lean

The main reasoning task then is to compute all logical consequences of such programs over a
given set of facts (e.g., for edge), which can equivalently be seen as first-order entailment or
second-order model checking [1].1 Deciding such consequences is P-complete with respect to
the set of input facts, making Datalog interesting for data-intensive applications.

Datalog is well supported in practice. Modern rule engines such as clingo [19], Nemo [22],
RDFox [31], Soufflé [23], and VLog [34] can easily compute millions of Datalog consequences
on commodity hardware. Tools like Datomic (https://datomic.com/) and Google’s Logica
(https://logica.dev/) are database-oriented and leverage the robustness of existing data
management infrastructure. In each case, practical tools include many additional features and
language extensions and rely on intricate optimizations to achieve the necessary performance.

Unfortunately, the complexity of real-world systems unavoidably leads to errors that
may compromise correctness. Mature systems like the above counteract this with extensive
testing, code quality analysis, and public issue trackers, but complete freedom of bugs is rare
and volatile in such ever-evolving systems [26, 27, 37]. Stronger correctness guarantees are
given by certified Datalog systems, but the few prototypes that exist cannot scale to the
input sizes of optimized systems yet [7], or even restrict to a subset of Datalog [8].

In this paper, we address this challenge by developing a certificate checker for Datalog,
written and verified in Lean 4[30]. Instead of replacing optimized systems, such checkers
validate certificates that prove the correctness of individual results. Successful uses of this
approach (a.k.a. the de Bruijn criterion [6]) exist in various fields [21, 5, 18, 35, 9], but we
are not aware of any solution for Datalog. This is surprising since the logical semantics of
Datalog leads to structured proofs that are suitable certificates. Indeed, systems like Nemo
and Soufflé include tracing features that can produce such proof trees for their derivations.

Our main concerns are correctness and performance. For correctness, we formalize the
semantics of Datalog in two ways – least models and proofs – and prove their equivalence.
We then formalize a checker that builds upon the proof-theoretic semantics to validate given
proofs. This also requires us to formalize Datalog syntax, unification, and model theory.

Towards practical performance, we allow the checker to ingest JSON-formatted inputs
that encode Datalog rules and (sets of) proofs in an implementation-independent exchange
format. For proofs, we consider a traditional encoding in the form of proof trees and a
redundancy-avoiding encoding as proof graphs that can be exponentially more succinct. We
evaluate the feasibility and performance of our approach using synthetic and real Datalog
tasks and proofs generated by the Datalog engine Nemo.

This paper hyperlinks most Lean-symbols to their formal definitions in our repository.
Some proofs are abbreviated in the code blocks by _, but are available in the linked code.
All proofs in this paper reflect the ideas of the formal Lean proofs in natural language.

2 Formalizing Datalog

We begin by formalizing Datalog and two definitions of its semantics, which we then show to
be equivalent. Datalog programs are based on a Signature that provides sets of constants,
variables, and relation symbols, where each relation has an arity ≥ 0:

1 The views do differ for other reasoning tasks, notably program entailment (a.k.a. query containment),
which is decidable for first-order rules but undecidable for second-order programs.
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structure Signature where
(constants: Type)
(vars: Type)
(relationSymbols: Type)
(relationArity: relationSymbols → N)

If not stated otherwise, we use a fixed Signature τ . A Term is a constant or a variable;
our formalization uses distinct constructors for each case so that constants and variables are
disjoint. Further restrictions are not required in our work.

An Atom is an expression of the form p(t1, . . . , tn), where t1, . . . , tn are terms and p is
a relation of arity n. A Rule has the form H ← B1 ∧ · · · ∧ Bn, where the head H is an
Atom, and the body B1 ∧ · · · ∧Bn is a conjunction of Atoms (represented as a list in Lean). A
Program is a finite set of rules. A GroundAtom (or fact) is an Atom without variables and a
Database is a finite set of facts. A KnowledgeBase is a pair of a Program and a Database.

The semantics of Datalog is given by defining the set of all facts that are logical con-
sequences of a knowledge base. A (possibly infinite) set of facts is an Interpretation, which
can indeed be seen as a first-order Herbrand interpretation, interpreting constant symbols by
themselves (a. k. a. unique name assumption). Several equivalent definitions for the semantics
of Datalog exist, e.g., based on least models, proof trees, and fixed-point operators [1]. We
formalize the first two – model-theoretic and proof-theoretic – semantics, and validate their
correctness by proving the equivalence of these distinct definitions.

Both semantics consider GroundRules, i.e., rules that contain only GroundAtoms, obtained
from rules by mapping variables to constants. Such a mapping g is a Grounding, and its
application to a rule is formalized as applyRule. For a Program P , the groundProgram
ground(P ) is the set of all ground rules r obtained from some r′ ∈ P by some grounding g:

def Program.groundProgram (p : Program τ) := {r : GroundRule τ | ∃ (r’: Rule τ)
(g: Grounding τ), r’ ∈ p ∧ r = g.applyRule’ r’}

An interpretation I satisfies a ground rule r if, whenever I contains all body atoms of r, I

also contains the head of r. I satisfies a Program P if I satisfies all rules r ∈ ground(P ). Finally,
I models a knowledge base ⟨P, D⟩ if I satisfies P and D ⊆ I. The modelTheoreticSemantics
for ⟨P, D⟩ is the least model of ⟨P, D⟩:

def modelTheoreticSemantics (kb: KnowledgeBase τ) : Interpretation τ :=
{a: GroundAtom τ | ∀ (i: Interpretation τ), i.models kb → a ∈ i}

The proofTheoreticSemantics of a knowledge base ⟨P, D⟩ is the set of all facts that have
a ProofTree valid in P and D. Listing 1 shows our formalization: a directed node-labeled
tree T of ground atoms is a ProofTreeSkeleton and it is valid in P and D for a ground
atom a if (1) the root of T is labeled by a and (2) for all nodes t (including the root) either
(2a) t is a leaf and the label of t occurs in D, or (2b) if s1, . . . , sk are the children of t in T ,
then there is a rule r ∈ ground(P ) such that the head of r is t and the body atoms of r are
s1, . . . , sk. A ProofTree is then a valid proof tree skeleton. We can now define:

def proofTheoreticSemantics (kb : KnowledgeBase τ) : Interpretation τ :=
{a: GroundAtom τ | ∃ (t: ProofTree kb), t.root = a}

In modelAndProofTreeSemanticsEquivalent, we formally verify the equivalence of the
semantics. The proof uses the fact that the modelTheoreticSemantics yields the least model
together with the subsequent lemmas.
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inductive Tree (A: Type u)
| node: A → List (Tree A) → Tree A

abbrev ProofTreeSkeleton (τ: Signature) := Tree (GroundAtom τ)

def ProofTreeSkeleton.isValid (P: Program τ) (kb : KnowledgeBase τ)
(t: ProofTreeSkeleton τ): Prop :=
match t with
| .node a l =>

(∃ (r: Rule τ) (g: Grounding τ), r ∈ kb.prog
∧ g.applyRule’ r = {head:= a, body:= l.map root}
∧ l.attach.Forall (fun ⟨st, _h⟩ => isValid st kb))

∨ (l = [] ∧ kb.db.contains a)

Listing 1 Proof tree skeletons and their validity

▶ Lemma 1 (proofTheoreticSemanticsIsModel). The proofTheoreticSemantics for a
knowledge base ⟨P, D⟩ is a model of ⟨P, D⟩.

Proof. We show that the proofTheoreticSemantics F for ⟨P, D⟩ contains D and satisfies
ground(P ). The former is easy to show since every fact a in D has a valid proof tree that
consists of a single node labeled with a (see dbElementsHaveProofTrees).

It remains to show that F satisfies every rule in ground(P ). If the body atoms B1, . . . , Bn

of a rule r ∈ ground(P ) are in F , then they have by the definition of F proof trees T1, . . . , Tn

that are valid in P and D. Hence, we can construct a valid proof tree for the head H of r by
introducing a root node that is labeled with H and that has T1, . . . , Tn as children. ◀

▶ Lemma 2 (proofTreeAtomsInEveryModel). The proofTheoreticSemantics for a know-
ledge base ⟨P, D⟩ is a subset of every model of ⟨P, D⟩.

Proof. Let M be a model of ⟨P, D⟩. We show that M contains all facts a that are the root
label of some proof tree T that is valid in P and D. We show this by strong induction on
the height h of T . For the inductive step, assume the claim has been shown for all trees of
height < h. There are two cases where T is valid. In the first case, T is just a single node
that is in D. Hence, we have a ∈M . In the second case, there is a rule r ∈ ground(P ) with
head a, such that the children s1, . . . , sk of the root of T are labeled with the body atoms of
r. Since the subtrees of T with roots s1, . . . , sk have height < h, we can apply the induction
hypothesis to conclude that each body atom of r is in M . But then the head of r (i.e., a)
also occurs in M since M is a model. ◀

3 Implementing a Computable Check for Proof Tree Validity

In this section, we describe our implementation for a checker of proof tree validity. In contrast
to the general formalizations in Section 2, this leads to an effective approach for verifying the
soundness of individual conclusions, which can be applied on proof trees that are provided
by existing Datalog implementations.

We implement a computable function checkValidity whose result coincides with the
(uncomputable) ProofTreeSkeleton.isValid, shown in checkValidityOkIffIsValid.
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3.1 Finding Substitutions with Unification
The formalizations in Section 2 use Groundings that are total functions from variables to
constants. For an effective validity check, we take a similar approach as Benzaken et al. [7]
and use partial functions (i.e., Substitutions) since they are easier to expand recursively.
def Grounding (τ: Signature):= τ.vars → τ.constants
def Substitution (τ: Signature):= τ.vars → Option (τ.constants)

The application of a substitution to a rule, applyRule, is defined in the obvious way. We
verify that Groundings and Substitutions produce the same ground instances from any
rule (grounding_substitution_equiv). For turning a substitution into a grounding, we
just need some default constant to use for unmapped variables.
theorem grounding_substitution_equiv [Inhabited τ.constants]:

(∃ (g: Grounding τ), g.applyRule’ r’ = r) ↔
(∃ (s: Substitution τ), s.applyRule r’= r)

To validate a proof tree, we need to check that the label of every non-leaf node can be
entailed by applying a ground rule to the labels of its children. Since the set of ground rules
can be large, even infinite, a goal-directed procedure is needed. We therefore implement a
unification algorithm that finds a Substitution to map a given Rule to a given GroundRule,
if such a Substitution exists. The main outcome is the function checkRuleMatch together
with a proof of its correctness (checkRuleMatchOkIffExistsRule).

def matchRule (r: Rule τ) (gr: GroundRule τ): Option (Substitution τ):=
((empty.matchAtom r.head gr.head).bind fun s => s.matchAtomList (r.body.zip

gr.body)).filter (fun _ => r.body.length = gr.body.length)

The function matchRule first matches the head atoms and then all body atoms of the
rules, each time updating the current Substitution. Atoms are mapped by comparing their
relation symbols and iterating over their terms, and applying the function matchTerm to
each corresponding pair. That function either returns a (possibly extended) Substitution,
or Option.none if a previously mapped variable is to be unified with a different constant.

def matchTerm (t: Term τ) (c: τ.constants) (s: Substitution τ):
Option (Substitution τ) :=

match t with
| .constant c’ => if c = c’ then Option.some s else Option.none
| .variableDL v =>

(some (extend s v c)).filter (fun s’ => (s v).isSome → s v = s’ v)

This definition is acompanied by lemmas showing that matchTerm returns a substitution
if and only if one exists (matchTermYieldsSubs, matchTermNoneThenNoSubs) and that the
returned substitution is subset-minimal with respect to its domain (matchTermIsMinimal).

3.2 Validation for Single Trees
A proof tree can be validated for ⟨P, D⟩ by checking that each of its leaf nodes occurs in D

or in a ground rule with an empty body in P , and each of its non-leaf nodes represents a
valid inference using a rule in P . For the latter, we can directly read off the required ground
rule from any inner node, and it remains to check if it can be obtained from a rule in P .
Some Datalog tools generate proof trees that specify the original rule in P for each step,
but it is also possible that only its ground instance is provided. We therefore design our
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def checkValidity (t : ProofTreeSkeleton τ) (m : SymbolSequenceMap τ)
(d : Database τ) : Except String Unit :=
match t with
| .node a l =>

if l.isEmpty
then if d.contains a

then Except.ok ()
else

(checkRuleMatch m {head:= a, body := []}).map (fun _ => ())
else

(checkRuleMatch m {head:= a, body := l.map Tree.root}).bind (fun _ =>
(l.attach.mapExceptUnit (fun ⟨t, _h⟩ => checkValidity t m d)))

Listing 2 Goal-directed validation of proof trees

implementation so that it finds a suitable rule from P even if not given explicitly. However,
we do assume that the leaves in the proof tree are provided in the order of atoms in the
original rule, which is natural and indeed true for all implementations we are aware of.

To find applicable rules efficiently, we associate each rule with the list of relation symbols
in its head and body atoms, in their order of appearance:

def symbolSequence (r: Rule τ) := r.head.symbol :: (List.map Atom.symbol r.body)

We then construct a lookup structure m: Std.HashMap (List τ.relationSymbols) (List
(Rule τ)) mapping lists of relation symbols to the list of all corresponding rules in P . This
allows us to find rules for a given ground rule r in checkRuleMatch and to prove that the check
returns Option.ok () if and only if r is in ground(P ) (checkRuleMatchOkIffExistsRule):
def checkRuleMatch (m: SymbolSequenceMap τ)

(gr: GroundRule τ) : Except String Unit :=
if (m.find gr.toRule.symbolSequence).any (fun rule => (Substitution.matchRule

rule gr).isSome)
then Except.ok ()
else Except.error ("No match for " ++ ToString.toString gr)

Listing 2 shows the overall function checkValidity as our practical implementation to
verify ProofTreeSkeleton.isValid. The straightforward check that leaf nodes of the proof
tree are in the database is also included. As an alternative, we also allow for facts being the
conclusion of rules with empty bodies. For inner nodes we only have to check whether this
forms a ground rule of the program. We show that this implementation does indeed agree
with the definition in ProofTreeSkeleton.isValid, which is established by induction on
the height of the input tree (checkValidityOkIffIsValid).

4 From Proof Trees to Proof Graphs

Trees are a traditional representation of proofs in logic programming, and many practical
tools provide tracing features in terms of tree structures. However, this is far from optimal,
as the following example illustrates.

▶ Example 3. Consider the following rules with variables x, y and z:

trans(x, y)← edge(x, y) (3)
trans(x, z)← t(x, y) ∧ u(x, y) ∧ edge(y, z) (4)

t(x, y)← trans(x, y) (5)
u(x, y)← trans(x, y) (6)
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variable {A: Type} [DecidableEq A] [Hashable A]
variable (A) in abbrev PreGraph := Std.HashMap A (List A)
def PreGraph.vertices (g : PreGraph A) : List A := g.toList.map Prod.fst
def PreGraph.predecessors (g : PreGraph A) (a : A) : List A := g.findD a []
def PreGraph.complete (g:PreGraph A):= ∀ a ∈ g,(g.predecessors a).all fun x => x ∈

g
variable (A) in abbrev Graph := { pg : PreGraph A // pg.complete }

Listing 3 The hashmap based graph model

This still defines trans as the transitive closure of edge. Given a chain edge(a0, a1), . . . ,

edge(an, an+1), we can derive trans(a0, an+1) in a proof that uses rule (4) n times. However,
since (4) has body atoms for t and u, the proof of trans(a0, an+1) contains two disjoint
subtrees with the proof of trans(a0, an), i.e., it is exponential in n. To avoid this, we would
rather consider only a single proof of trans(a0, an), which can then be used by rules (5) and
(6) to show t(a0, an) and u(a0, an), respectively.

We therefore propose the use of directed acyclic graphs to allow more efficient encodings
of certificates. The special case of proof trees is still supported, but optimized outputs are
possible if a tool supports them. Lean has graph-theoretic primitives and theorems in its
mathlib, but their formalization was not sufficient for our purposes. First, mathlib currently
considers undirected graphs and has only very limited results on directed graphs which is
crucial to model our problem. Second, its graph model uses an adjacency matrix approach,
but we expect the proof graphs to be sparse and therefore expect an adjacency list. Instead,
we design two new graph encodings – referred to as unordered and ordered –, which we
implement using HashMap and Array, respectively. Both encodings resemble adjacency lists in
the sense that each atom is directly associated with all atoms that are used for its derivation.

Both approaches require that the graph is acyclic in order to capture a valid derivation, but
differ in the way of achieving this requirement. The ordered approach requires a topological
sorting of the graph already as the input and therefore allows faster checking and a more
compact representation. The output of reasoners does however not reflect this input format
and is instead often just a list of edges. These can easily be verified using the unordered
graph approach which computes the topological sorting.

4.1 Modeling a Directed Acyclic Graph
Our underlying graph model, called PreGraph, is a HashMap from Lean’s standard library
mapping each vertex to a list of its immediate predecessors. Alternatively, we could have
used a simple function from vertices to their predecessors, but this was too slow in practice.
Hashmaps were faster but required us to prove additional properties of certain operations.
These results have been contributed to the standard library as a byproduct of this work.

Now a Graph is a PreGraph that is complete in the sense that each vertex that occurs as
a predecessor also occurs as a key in the map (possibly with an empty list of predecessors).
This prevents ill-defined graphs where a vertex is connected via an edge to something that is
not a vertex in our graph. An alternative would be to have a special type that consists of all
vertices, but this approach was easier for the parsing.

A walk is a list of connected vertices. We use lists and place the first vertex at the end
of the list since Lean’s inductive list definition makes it easier to prepend new elements to
lists. This choice influences the way we explore graphs later on. Formally, a possibly empty
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list of vertices ℓ = v0, . . . , vn isWalk in a graph G if all vertices in ℓ occur in G and, for all
0 < i ≤ n, vi−1 is a predecessor of vi in G:
def List.isWalk (l : List A) (G: Graph A) : Prop :=

(∀ (a:A), a ∈ l → a ∈ G.vertices) ∧
∀ i > 0, ∀ (g: i < l.length), l[i.pred]’_ ∈ G.predecessors l[i]

Using lists is convenient to extend walks by prepending vertices:

▶ Lemma 4 (prependPredecessor). Let w be a walk in a graph G of the form a :: tl, and
let b be a predecessor of a. Then b :: a :: tl is a walk in G.

A graph that encodes a well-founded proof should also be acyclic. Formally, a walk
isCycle if it consists of at least two vertices and has the same vertex in its first and last
position. A graph isAcyclic if it does not have cycles.

4.2 Validating a Proof Graph via Depth-First Search
Recall that we are considering a knowledge base ⟨P, D⟩ but instead of a proof tree, we
now consider a graph G of facts. We verify that each vertex in G is the head of a rule
r ∈ ground(P ) such that the predecessors are exactly the body of r or that the vertex
has no predecessors and, therefore, represents a database element. We abstract this into
a NodeCondition as a function of the type A -> Except String Unit. Note that the graph
stays constant during the exploration so that we can express our criteria in this form.

In general, we need a procedure that checks a node condition on all vertices and that
also ensures that the graph is acyclic. We consider a standard depth-first search imple-
mentation [15] alongside some helper functions that ease our proof efforts. The algorithm is
divided into two functions: (1) verify_via_dfs initializes the search on all vertices and (2)
verify_via_dfs_step explores the graph recursively until no new vertex can be discovered.
For early termination, we keep track of a set of vertices that have already been visited
somewhere in the search. Therefore, the function verify_via_dfs_step also returns a set
of all vertices that have been visited so far. For performance reasons, this set of vertices is
again stored in a HashSet.

The function verify_via_dfs takes only the graph and a node condition, for which
verify_via_dfs_step (defined below) is called on every vertex.
def verify_via_dfs (G : Graph A) (cond : NodeCondition A) : Except String Unit :=

(G.vertices.attach.foldl_except
(fun acc ⟨a, h⟩ => G.verify_via_dfs_step a cond ⟨Walk.singleton G a h, _⟩ acc)
(Except.ok HashSet.empty)).map (fun _ => ())

The function verify_via_dfs_step (Listing 4) takes five arguments: (1) the current
vertex a; (2) the graph G; (3) a node condition cond to be evaluated on a (4) the path taken
up until a; and (5) a set of already visited (i.e., verified) vertices. The function returns
either a set of already verified vertices or an error (if the acyclicity check or cond fails).

Using the verifiedNodes set, we make sure to never explore a node twice. When exploring
a node we check for the node condition and if any predecessor occurs already in the walk as
this would indicate a cycle. If neither of these checks throws an error, we recursively explore
the predecessors. Here, foldl_except is just used for aggregating the results of all branches
(i.e., predecessors) of a. If any branch yields an error, the aggregation returns the same
error. After each successful recursive call, the set verifiedNodes is extended by the explored
vertices for the next call. Take note of the difference between and the different purposes of
walkFromA and verifiedNodes. The former grows along the path we take in the depth-first
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def verify_via_dfs_step (a : A) (G : Graph A) (cond : NodeCondition A)
(walkFromA : {w : Walk G // w.val.head? = some a}) (verifiedNodes : HashSet
A) : Except String (HashSet A) :=

if verifiedNodes.contains a then Except.ok verifiedNodes
else (cond a).bind (fun _ =>

if pred_not_mem_walk : (G.predecessors a).any
(fun pred => pred ∈ walkFromA.val.val)

then Except.error "Cycle detected"
else

let verifiedAfterRecursion :=
(G.predecessors a).attach.foldl_except (fun verified ⟨pred, mem⟩ =>

let walkFromPred : {w : Walk G // w.val.head? = some pred} :=
⟨walkFromA.val.prependPredecessor pred _, _⟩

G.verify_via_dfs_step pred cond walkFromPred verified)
(Except.ok verifiedNodes)

verifiedAfterRecursion.map (fun verified => verified.insert a))

Listing 4 Function to perform a single step in depth-first search

search (“top-down”) and is used to detect cycles whereas the latter grows while backtracking
(“bottom-up”) and is used to mark vertices as fully verified.

The desired main correctness result of the procedure is formalized in the following theorem,
which we prove in Section 4.3.

▶ Theorem 5. Let G be a graph and cond be a node condition. Then dfs G cond = Except.ok
() if and only if G is acyclic and and cond holds for all vertices in G.

First, we complete the verification of the “proof graph” by plugging in the correct function
for cond.
def locallyValid_for_kb (G : Graph (GroundAtom τ))

(kb : KnowledgeBase τ) (node : GroundAtom τ) : Prop :=
(∃ r ∈ kb.prog, ∃ (g : Grounding τ), g.applyRule’ r =

{ head := node, body := G.predecessors node })
∨ (G.predecessors node = [] ∧ kb.db.contains node)

We say, a vertex v in a graph is locallyValid_for_kb for a knowledge base ⟨P, D⟩ if v

follows from its predecessors via a ground rule in ground(P ) or v occurs in D.
If we have an acyclic graph with only locally valid vertices, proof trees for every vertex

can be extracted. Hence, every fact encoded in such a graph is part of the proof-theoretic
semantics (verticesOfLocallyValidAcyclicGraphAreInProofTheoreticSemantics). We
computably check locallyValid_for_kb in checkValidity reusing checkRuleMatch similar
to checkValidity. Correctness is proven in checkValidityIsOkIffAcyclicAndAllValid.

4.3 Correctness of Depth-First Search

We illustrate the proof idea for Theorem 5 used in our Lean implementation. Recall that
verify_via_dfs calls verify_via_dfs_step on every vertex of the graph. In contrast to this
procedure, acyclicity was defined by the absence of cycles. In order to prove the correctness
of the implementation, we need a criterion that uses vertices explicitly. Then we can show
that verify_via_dfs_step returns ok if and only if this criterion holds for the given vertex.
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ABCD
D is not in a cycle.

D can reach a cycle.
A,B,C are all in a cycle.

A,B,C all can reach a cycle.

Figure 1 Propagating Acyclicity Check Results via Depth-First Search in Example 6.

A candidate for this is membership in a cycle. A graph is acyclic if and only if every vertex
is not a member of a cycle. This criterion, however, is insufficient for our implementation as
the subsequent example shows.

▶ Example 6. Consider the graph depicted in Figure 1. We can start a depth-first search
from vertex D following the predecessor relation. In the process, we want to check if the graph
is acyclic by maintaining a list of vertices that corresponds to the path we have taken in the
graph and checking if the next vertex already occurs in this list. In the graph, after visiting
D, C, B, A (in that order), we visit C again, which is already in the list. We now know that C

occurs in a cycle and also that A and B occur in this cycle. However, D does not occur in any
cycle. Hence, if we pick membership in a cycle as our property for cycle detection, we could
not faithfully propagate this information back to D. This means that verify_via_dfs_step
should return an error while D does not fulfill the membership in cycle criterion. Instead, if
we are only interested in reachability from a cycle, then this property holds for all vertices
A, B, C, D and can safely be backpropagated once we find the cycle through C.

The observation from Example 6 is generalized as follows: A graph is cyclic if and only if
some of its vertices are reached from a cycle. A vertex is reached from a cycle if it can be
reached from a vertex that is part of a cyclic walk. We formalize this idea as follows: First,
vertex a canReach vertex b if there is a non-empty walk from a to b (i.e., b occurs in the
reflexive and transitive closure of the predecessor relation of a). Note that every vertex n can
reach itself by [n]. Second, we formalize when a node is reachableFromCycle in graph G.

def canReach (G : Graph A) (a b : A) : Prop :=
∃ (w: Walk G) (neq: w.val ̸= []), (w.val.head neq) = a ∧ (w.val.getLast neq) = b

def reachableFromCycle (G: Graph A) (b : A) :=
∃ (w : Walk G), w.isCycle ∧ ∃ (a: A), a ∈ w.val ∧ G.canReach a b

The following lemma is an immediate consequence of the definitions.

▶ Lemma 7 (acyclicIffAllNotReachableFromCycle). A graph G is acyclic if and only if
all vertices of G are not reached from a cycle.

Furthermore, as illustrated in Example 6, we can propagate the property of a vertex
being reached from a cycle to other vertices in a depth-first search.

▶ Lemma 8 (notReachableFromCycleIffPredecessorsNotReachableFromCycle). A ver-
tex a is not reached from a cycle if and only if all predecessors b are not reached from a
cycle.

We reuse the property canReach for the following theorem for verify_via_dfs_step:

▶ Theorem 9 (dfs_semantics). In the scope of an application of verify_via_dfs, we say
that a vertex n has property DfsStepSemantics if and only if n is not reached from a cycle
(in G) and if the node condition holds for every vertex m that reaches n.
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Consider the arguments of verify_via_dfs_step and require additionally that each vertex
a′ in verifiedNodes has the property DfsStepSemantics. Then, verify_via_dfs_step is
successful if and only if a has the property DfsStepSemantics.

We will prove this theorem and multiple lemmas by induction on the cardinality of the
finite set that contains all vertices that are not in the current walk for any input vertex, walk
and set so that all elements of the input set fulfill the DfsStepSemantics property. Due to the
input parameters of verify_via_dfs_step the base case is trivial since the current vertex
is not in the path, but all vertices are in the path at the same time, which is a contradiction.
Therefore, we only consider the induction step in the following.

The most challenging case is if we reach the foldl_except call. This function reduces
the list one by one and produces new sets and reuses them in the next call. We can however
break this into separate calls if some conditions hold. We note that the verifiedNodes
set plays no role in the statement of Theorem 9 as long as all of its members have the
DfsStepSemantics property. If we manage to prove that verify_via_dfs_step preserves the
DfsStepSemantics property, we can replace the foldl_except call with individual calls of
verify_via_dfs_step in the proof and directly use the induction hypothesis.

▶ Lemma 10 (dfs_step_result_valid). If the call of verify_via_dfs_step is successfully
returning verifiedAfter and all elements of verifiedNodes had property DfsStepSemantics,
then all elements of verifiedAfter have property DfsStepSemantics.

Proof. The interesting case appears when a was not yet explored, as then the result is
different from the input set. Since verify_via_dfs_step does not yield an error, the node
condition must hold for a. The returned result verifiedAfter consists of a and the result of
foldl_except. By inducing on the size of the list, we can prove that foldl_except preserves
set properties if the function preserves it. This holds by the induction hypothesis so that
all elements in verifiedAfter′ \ {a} have the DfsStepSemantics property. Therefore it only
remains to prove that a has this property as well. We see that the result of foldl_except
contains all predecessors from a. By Lemma 8, a is not reached from a cycle. Using a similar
argument, every element reaching a also satisfies the node condition. ◀

▶ Lemma 11 (dfs_step_extends_verified and dfs_step_result_contains_a). Con-
sider the input for verify_via_dfs_step with a being the argument for the single vertex.
If verify_via_dfs_step is successful and returns verifiedAfter, then verifiedNodes ⊆
verifiedAfter. Furthermore, then a ∈ verifiedAfter.

Proof. We prove this by induction on the number of vertices that occur in G but not in
currWalk. The base case is again trivial. For the induction step, we consider the cases of a

already being contained in verifiedNodes or not. If yes, the claim follows directly. Otherwise,
we note that due to the induction hypothesis, the resulting set will be a superset of the input
set. We finally add a to this set so that the statement is proven. ◀

Using this result, we can complete the missing proofs of Theorem 9 and Theorem 5.

Proof of Theorem 9. We show the claim via induction. For the induction step, we show both
directions individually. If verify_via_dfs_step is successful, then the claim follows from
Lemma 11 and Lemma 10. For the other direction, assume that a has property DfsStepSe-
mantics. We show that verify_via_dfs_step is successful. If a is in verifiedNodes, the
claim follows. Otherwise, we know by property DfsStepSemantics that cond holds for a, since
a can reach itself, and that all predecessors of a are not in walkFromA. The claim follows from
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the induction hypothesis once we prove that DfsStepSemantics holds for every predecessor b

of a by showing that (1) b is not reached from a cycle and that (2) for every vertex c that
reaches b, the node condition holds. Claim (1) holds by assumption and Lemma 8. Claim (2)
holds by assumption and since every vertex that can reach b also can reach a. ◀

Proof of Theorem 5. By definition, verify_via_dfs is successful if and only if the calls of
verify_via_dfs_step are successful for every vertex in G. Also, by Lemma 7, G is acyclic if
and only if every vertex in G is not reached by a cycle. Additionally, we note that cond holds
for every vertex if and only if this holds for any vertex that is reachable from a vertex in
the graph because every vertex that is reachable from a vertex is also in G by the definition
of isWalk and canReach. After applying these two equivalences, the claim follows from
Theorem 9. ◀

4.4 Ordered Graph Approach
For the Array-based ordered graph approach, we reduce the complexity of the previous check
by requiring a data structure that is acyclic by definition:
abbrev OrderedProofGraph (τ: Signature) := {arr: Array ((GroundAtom τ) × List N)

// ∀ i : Fin arr.size, ∀ j ∈ arr[i].snd, j < i }

To certify that an ordered proof graph is valid for a given knowledge base, we check that
each index is locally valid i.e. if the vertex label is either in the database when it has no
predecessors, or it follows from the labels of its predecessors via a rule.

def locallyValid (G : OrderedProofGraph τ) (kb : KnowledgeBase τ)
(i : Fin G.val.size) : Prop :=
(G.val[i].snd = [] ∧ kb.db.contains G.val[i].fst)
∨ (∃ r ∈ kb.prog, ∃ (g : Grounding τ), g.applyRule’ r = {

head := G.val[i].fst
body := G.val[i].snd.attach.map (fun n => (G.val.get n.val _).fst)})

The validity can be checked locally by checkAtIndex similarly to trees and is globally
checked by checkValidity. Because of the ordering, we can safely assume that all predecessors
are already certified when iterating through the indices starting at 0. The ProofTree
construction can be implemented analogously to the unordered case. Termination follows
from the fact that the predecessors of each vertex have strictly smaller indices.

An interesting observation is that the ordered graph check runs in LogSpace in the size
of the input graph as it only iterates over the array once, whereas the acyclicity for directed
graphs that is needed in the unordered case is NLogSpace-complete. This illustrates that
the actual encoding of certificates can be an important aspect in a certificate-based approach.
While computational savings during validation will generally have to be paid for in certificate
creation, the more complex computational processes that are to be certified might already
include the necessary work naturally. This is likely true in our case: any reasoning engine
that produces (valid) proofs should be aware of the ordering that we require, since it is the
order of its own derivations. Of course, it is not clear if a theoretical reduction in worst-case
complexity is reflected by practical performance without suitable empirical evaluations.

5 Model Checking

Besides verifying soundness, we also want to provide basic functionality to check if the atoms
included in the input form a (first-order) model of the input program. In this section we
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def checkPGR (m : CheckableModel τ) (pgr : PartialGroundRule τ)
(safe : pgr.isSafe) : Except String Unit :=
match eq : pgr.ungroundedBody with
| .nil => if pgr.head.toGroundAtom _ ∈ m

then Except.ok ()
else Except.error ("Unsatisfied rule: " ++ ToString.toString pgr.toRule)

| .cons hd tl =>
(m.substitutionsForAtom hd).attach.mapExceptUnit (fun ⟨s, s_mem⟩ =>

let adjustedRule : PartialGroundRule τ := {
head := s.applyAtom pgr.head
groundedBody := pgr.groundedBody ++ [(s.applyAtom hd).toGroundAtom _]
ungroundedBody := tl.map s.applyAtom}

m.checkPGR adjustedRule _)

Listing 5 Function to check wheter an Interpretation is a model

require rules to be safe (isSafe), i.e. all variables in the head also occur in the body.

In principle, the implementation is straightforward: collect all atoms from the tree/
graph into an interpretation i and check for all possible rule body instantiations if their
head is also present. To improve performance over a brute force approach, we introduce
PartialGroundRules that allow us to keep track which body atoms we have instantiated
while applying the same variable mapping on all other atoms. Any rule can be transformed
into a partial ground rule and vice versa so that we may reuse terminology from rules.

structure PartialGroundRule (τ: Signature) where
head: Atom τ

groundedBody: List (GroundAtom τ)
ungroundedBody: List (Atom τ)

Additionally, this structure allows stopping the procedure early. We call a partial ground
rule r active in i, if all atoms in the grounded body are in i. If not active, then r is satisfied
for any remaining variable assignment and we can stop early (satisfied_of_not_active).

We use this in a recursive exploration using checkPGR (see Listing 5). If the ungrounded
body is empty, then we simply check if the head, which due to the safety assumption must also
be a ground atom, is in i. If the ungrounded body is not empty, we take the first element and
check for all possible substitutions between this element and ground atoms in i. In order to be
consistent we apply this substitution to the whole partial ground rule (except for the grounded
body which is not affected by it). On all these new partial ground rules we again call checkPGR.
In order to check the whole program, we call this procedure for every rule which at the start
is always active. This returns the correct result (checkPGRIsOkIffRuleIsSatisfied) for
any active rule and the newly created rules in the procedure preserve activeness.

Apart from using the activeness of the partial ground rules, the other main idea of the
proof is that we can transform groundings that instantiate the first atom of the ungrounded
body into a substitution from substitutionsForAtom and a grounding and vice versa. Note
that this is only a first version for a completeness check for datalog reasoning not yet
implementing optimizations that would be necessary for large models.
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Figure 2 A proof tree and a proof graph for Example 12. Invalid versions are indicated in red.

6 Evaluation

In this section, we evaluate the practicality of our Lean implementation on synthetic and
real-world examples. Moreover, we compare the different encodings of datalog proofs in
practice. To obtain Datalog consequences and proofs, we use the Datalog reasoning engine
Nemo [22], which has a tracing feature that returns proof graphs in a custom JSON format.2
Transformations of Nemo’s output into our various formats are realized by Python scripts.
On top of the implementation described in the previous sections, we created a parsing
infrastructure for a JSON-based input format in Main and Parsing.

Database facts are not part of our JSON representation. Instead, we interpret nodes in
proof trees or graphs as database facts if they do not have any predecessors. For production
use, an explicit representation of the assumed facts would be preferable, resulting in more
robust certificates, but this is not important for our (performance) evaluation. A full validation
might also have to encompass that facts and rules are correctly read from the input sources
(e.g., CSV files), which is beyond the scope of the certification-based approach.

We illustrate the usage of our tool with the following toy example showing both a valid
and an invalid proof tree/graph. The example also reflects the experimental setup.

▶ Example 12. Consider the transitive closure rules (1) and (2) from the introduction
together with the facts {edge(a, b), edge(b, c), edge(c, d)}. Using Nemo, we can derive all six
entailed facts for trans. For each fact, Nemo further provides a trace showing how the system
has applied the rules to obtain the result. A Python script converts such traces into proof
trees or proof graphs in our Nemo-independent JSON format. Figure 2 shows a proof tree
for trans(a, c) (left), and a proof graph for trans(a, d) and trans(a, c) (right). We manually
add some errors to the proofs, indicated in red in Figure 2.

These valid and invalid proof files are in the directory tcToyExample of our supplementary
material, which also contains further documentation for reproducing this example. Running
our prototype checker as documented, we obtain the expected outputs where the original
proofs are valid and their modifications are not. Invalid cases also report a short error message,
e.g., “invalid result: no match for trans(a,d) :- trans(a,b), trans(b,d), trans(a,c)”
for the invalid proof graph in Figure 2 or can also be recognized via the exit code 1. Our other
evaluations follow the same pattern and can also be reproduced from the supplementary
material.

We consider four scenarios – (1a), (1b), (2), and (3) – which include realistic synthetic
and real-world applications of Datalog. Moreover, we consider individual certification of
single facts and joint certification of many facts. The latter case is implemented for proof

2 The Nemo version used was https://github.com/knowsys/nemo/releases/tag/v0.7.1

https://github.com/knowsys/CertifyingDatalog/tree/v0.2.0/Main.lean
https://github.com/knowsys/CertifyingDatalog/tree/v0.2.0/CertifyingDatalog/Parsing.lean
https://github.com/knowsys/CertifyingDatalog/tree/v0.2.0/Examples/tcToyExample/README.md
https://github.com/knowsys/nemo/releases/tag/v0.7.1
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Table 1 Evaluation (times and proof sizes) using trees (T), and unordered/ordered graphs (G/O)

Nemo Size(T) Size(G) Size(O) Time(T) Time(G) Time(O)
(1a) 59s 320KB 515KB 320KB 0.1s 0.1s 0.1s
(1b) <0.1s 53MB 1.7MB 564KB 2.7s 0.2s 0.1s
(2) <0.1s 313MB 16KB 12KB 16s <0.1s <0.1s
(3) 7.8s 8.7MB 9.9MB 4.4MB 0.3s 0.4s 0.2s

trees by checking a collection of trees, and for proof graphs by checking a single graph that
includes all conclusions that are to be certified.

(1) We consider the rules of Example 12 with facts of the form edge(0, 1), . . . , edge(n−1, n)
for some number n. For (1a), we set n = 1000 and check the conclusion trans(0, 1000)
(tcBenchSingleFact); for (1b), we set n = 100 and check all 5050 conclusions for trans
(tcBenchAllFacts). Transitivity is a frequent type of (sub-)task in Datalog reasoning, but
chains of length 1000 are very long even for large datasets, since transitivity is mostly used
on hierarchies that are relatively shallow.

(2) We consider the rules of Example 3 with an edge-chain of length n = 20, and we check
the conclusion trans(0, 20) (tcBenchExponential). This scenario emphasizes the possibly
exponential advantage of proof graphs over trees.

(3) We consider the real-world task of reasoning in the OWL EL profile of the W3C Web
Ontology Language, which is possible in Datalog by translating reasoning calculi to rules [13].
We use the derivation rules by Kazakov et al. [24], and the medical ontology GALEN that was
also used in the evaluation of their work. The rules and pre-processed input ontology3 yield
more than 1.8 million facts. We randomly select 1000 conclusions from the output predicate
mainSubClassOf that represents the output of the EL reasoning task (elReasoning).

All experiments were performed on a mid-range laptop (Intel Core i5 gen8, 16GB RAM,
NixOS Linux). Table 1 reports the results including Nemo reasoning times without tracing.
The other columns give the proof file sizes and total validation time for the scenarios
representing proofs as trees (T), unordered graphs (G), or ordered graphs (O). Times are
overall wall-clock times of the prototype checker averaged over 5 runs, and sizes refer to
compact (not pretty-printed) JSON. For example, while Nemo reasons in (1b) for less than
0.1 seconds, the proof trees amount to 53MB of JSON taking 2.7 seconds to validate.

Overall, even the check based on unordered graphs is very fast in all cases and the
tree-based implementation achieves similar performance in cases (1a) and (3). The overall
fast times for (3) reflect the fact that proofs in real-world applications are rarely very deep,
even in cases where millions of consequences are derived. The advantages of graphs are
seen when considering many overlapping proofs (1b) and, as expected, for rules that realize
the exponential worst-case penalty of using proof trees (2). The ordered graph approach
outperforms the others in all scenarios regarding both time and memory.

We still find that both tree-based and graph-based validations are fit for practical use.
While graphs are theoretically and empirically superior, the choice may also be governed
by the native tracing output of a tool (which is graph-like in Nemo, but tree-like, e.g., in
Soufflé). While the ordered graph would always be the best option, it also requires some

3 https://github.com/knowsys/nemo-examples/tree/main/examples/owl-el/
from-preprocessed-csv
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additional effort to output the trace in the right order. But when all inferences have indeed
been done properly by the reasoning engine, this should not be too much of a challenge.

7 Related Work

The de Bruijn criterion [6] requires that the software tools (e.g., logical reasoners) provide
certificates together with their output and the tool checking the validity based on output and
certificate (e.g., our Lean-based validator) are independent entities. Besides certificate-based
verifiers [5, 21], a similar criterion has been coined as certifying algorithms in software
engineering [29]. One approach there is to transpile certificate checker code written in the C
programming language to an interactive theorem prover. Alkassar et al. [2] use a transpilation
to Isabelle to verify the certificate checker in this sense. Thereby, one has to additionally trust
the transpilation while our work implements the checker directly in Lean. Baader et al. [4]
generate certificates for consequences of the description logic EL, computed by an existing
EL-reasoner. The validation of the generated proof certificates is done by the LSFC checker4.
In contrast to this approach, we have provided the correctness of our proof validator (w.r.t.
the Datalog semantics) ourselves and, therefore, do not rely on third-party developments
like the LSFC checker. Our approach partly generalizes the work of Baader et al. in that
the EL-reasoning calculus can be expressed in Datalog [25], making our proof validator also
available to EL reasoning.

Another approach to building trust in automated reasoning engines is to implement the
reasoner itself (i.e., not a certificate checker) in Lean. For instance, Benzaken et al. [7] and
Dumbravă [16] proposed a certified Datalog engine written in Rocq. Later on, a similar
approach was implemented for a subset of Datalog, which Bonifati et al. [8] call Regular
Datalog, for (knowledge) graph view maintenance. The Rocq implementations formalize
the model-theoretic semantics up to basic definitions for rule satisfaction and modelhood,
but fully integrate the fixed-point semantics for proving correctness. Whitehead [36] also
formalizes the fixed point semantics of Datalog and its extension Binder, a security logic,
in Rocq to extract a monitoring framework for access control policies. An Isabelle/HOL
formalization of the model-theoretic semantics of stratified Datalog – an non-monotone
extension of Datalog – is provided by Schlichtkrull et al. [33] to verify program analysis
algorithms, which are themselves written in Datalog. In contrast, our work fully formalizes
the model-theoretic semantics as well as the proof-theoretic semantics, neglecting the fixed
point semantics. Thereby, we aim at independence of our implementation from the reasoners
in use (i.e., ultimately satisfying the de Bruijn criterion). This independence additionally
preserves the original reasoners’ efficiency.

A rather data-driven approach has been coined as data provenance [10, 20], providing
explanations in different formats (formalized as expressions of certain semirings). Such
explanations are often based on the (finite) input database. Notably, usual provenance
explanations for Datalog reasoning results are obtained from analyzing all (i.e., infinitely
many) proof trees [17] or a careful selection thereof [11]. Thus, our work provides the
necessary ingredients to obtain a fully formalized theory of data provenance for Datalog.
While provenance solutions, specialized for particular reasoners [32], exist, our certificate-
based framework is independent of the reasoner in use, as long as it provides proof trees (i.e.,
certificates) for their derivations.

4 https://github.com/CVC4/LFSC

https://github.com/CVC4/LFSC
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8 Conclusion and Future Work

We propose a certificate-based approach to the verification of Datalog reasoning, built on the
proof-theoretic semantics of Datalog. The certificate checker is formalized and implemented
in Lean, validating proof trees of Datalog conclusions, as provided by Datalog tools such as
Nemo [22] or Soufflé [23]. Our evaluation shows that the exponentially more succinct proof
graphs can accelerate the validation of complex derivations or multiple conclusions.

In practical applications, Datalog is often extended with further features, which should
be covered in future works. Relevant extensions include: (1) negation in rule bodies, stratified
or under a general semantics for normal logic programs; (2) existential quantification in rule
heads [12]; (3) datatypes and aggregate functions; and (4) function terms and complex values,
such as tuples or sets [1, 28]. Function terms, complex values, and existential quantifiers are
closest to our work, since they admit similar proof structures. With negation and aggregates,
proofs must refer to all facts of a certain shape, e.g., to show that a conclusion was not
derived, which can lead to larger proofs and more checks. Stratified negation has already
been integrated in certified reasoners [7, 8], but certificate checkers for stratified Datalog do
not yet exist. Datatypes in turn present their own challenges, but their validation could be
based on existing support for some datatypes in Lean.

Within a Datalog toolchain, our tool builds trust in these database systems with the
ability to exemplarily verify derivations. In principle, one could automatically check the proof
trees for each derivation. In many applications this might not be viable if there is a large
number of facts and is likely also not necessary once we can be sure enough that the system
indeed works as intended after enough exemplary checks. However, for critical applications,
one could directly generate certificates, i.e. proof trees/graphs, for each derived fact and
autmatically check their correctness with our tool. When debugging a Datalog program or
even the system itself, our certified checker can act as a companion to explainability tools
by checking that the given explanation in form of a proof tree/graph is valid in the first
place, which enhances user trust into the explanation and the result of the Datalog system.
Another line of research is to directly verify the Datalog reasoner itself but, as mentioned in
the introduction, this is challenging since today’s Datalog systems are highly sophisticated
and optimized pieces of software. Reimplementing the systems in e.g. Lean most likely cannot
compete with implementations directly done in C(++) or Rust in terms of performance.
However, it might be possible (with significant effort) to maintain both implementations (the
formally verified one and the fast one) and verify with enough tests that their components
behave the same on all inputs. Automatic transpilations could also come in handy here.
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