General Acyclicity and Cyclicity Notions for the Disjunctive Skolem Chase (Extended Abstract)

Lukas Gerlach¹ David Carral²

¹Knowledge-Based Systems, TU Dresden ²LIRMM, Inria, University of Montpellier, CNRS

02.09.2023

© Leaves of tree form *universal model set* (can answer queries) [Bou+16]

- Leaves of tree form universal model set (can answer queries) [Bou+16]
- But query answering/entailment is undecidable [BV81]

- Eaves of tree form *universal model set* (can answer queries) [Bou+16]
- But query answering/entailment is undecidable [BV81]
- Chase termination is also undecidable [GM14, GO18]

- Example 2 Leaves of tree form *universal model set* (can answer queries) [Bou+16]
- But query answering/entailment is undecidable [BV81]
- Chase termination is also undecidable [GM14, G018]
- MFA/MFC can sometimes detect (non-)termination [Cue+13, CDK17]

- Example 2 Leaves of tree form *universal model set* (can answer queries) [Bou+16]
- But query answering/entailment is undecidable [BV81]
- Chase termination is also undecidable [GM14, G018]
- MFA/MFC can sometimes detect (non-)termination [Cue+13, CDK17]
- We use ideas from RMFA/RMFC (for a different chase variant) [CDK17] to improve MFA/MFC for disjunctions: DMFA(2)/DMFC [GC23a]

Is it any good?

cat my-ruleset | docker run --rm -i registry.gitlab.com/m0nstr/dmfa-checker -t [non_]termination -cv skolem [-disj] [-depth 2]

Open (1)

Is it any good?

cat my-ruleset | docker run --rm -i registry.gitlab.com/m0nstr/dmfa-checker -t [non_]termination -cv skolem [-disj] [-depth 2]

We want to know if the chase terminates on all databases for a rule set.

1. Replace Disjunctions

- 1. Replace Disjunctions
- 2. Use Critical Database

- 1. Replace Disjunctions
- 2. Use Critical Database
- 3. Run Chase

- 1. Replace Disjunctions
- 2. Use Critical Database
- 3. Run Chase

- 1. Replace Disjunctions
- 2. Use Critical Database
- 3. Run Chase

- 1. Replace Disjunctions
- 2. Use Critical Database
- 3. Run Chase

- 1. Replace Disjunctions
- 2. Use Critical Database
- 3. Run Chase
- 4. Stop on Cyclic Term

- 1. Replace Disjunctions
- 2. Use Critical Database
- 3. Run Chase
- 4. Stop on Cyclic Term
- 5. MFA iff no Cyclic Term

We want to know if the chase terminates on all databases for a rule set.

- 1. Replace Disjunctions
- 2. Use Critical Database
- 3. Run Chase
- 4. Stop on Cyclic Term
- 5. MFA iff no Cyclic Term

Theorem. If a rule set R is MFA, then R terminates on every database. Intuitively, the critical database chase subsumes every possible chase tree.

We want to know if the chase terminates on all databases for a rule set.

1. Replace Disjunctions

We want to know if the chase terminates on all databases for a rule set.

1. Use Critical Database

- 1. Use Critical Database
- Run Chase without blocked triggers

- 1. Use Critical Database
- 2. Run Chase without blocked triggers

- 1. Use Critical Database
- Run Chase without blocked triggers

- 1. Use Critical Database
- Run Chase without blocked triggers

Is
$$x: \diamondsuit \to x:$$
 $\forall x:$ with $x/f(\star)$ blocked?

We want to know if the chase terminates on all databases for a rule set.

- 1. Use Critical Database
- Run Chase without blocked triggers

Is
$$x: \diamondsuit \to x: \longrightarrow with x/f(\star)$$
 blocked?

1. Backtrack facts for $f(\star)$

$$f(\star):$$

We want to know if the chase terminates on all databases for a rule set.

- 1. Use Critical Database
- Run Chase without blocked triggers

Is
$$x: \diamondsuit \to x: \circlearrowleft \lor x: \longleftrightarrow$$
 with $x/f(\star)$ blocked?

1. Backtrack facts for $f(\star)$

- 1. Use Critical Database
- Run Chase without blocked triggers

Is
$$x: \diamondsuit \to x: \square \lor x: \square$$
 with $x/f(\star)$ blocked?

- 1. Backtrack facts for $f(\star)$
- 2. Check Applicability

We want to know if the chase terminates on all databases for a rule set.

- 1. Use Critical Database
- 2. Run Chase without blocked triggers

Lemma. If a trigger is blocked it can never be applied in any chase tree.

Intuitively, because the backtracked facts must occur in every chase tree.

Is
$$x: \diamondsuit \to x: \mathbf{T} \lor x: \mathbf{W}$$
 with $x/f(\star)$ blocked? Yes!

- 1. Backtrack facts for $f(\star)$
- 2. Check Applicability

- 1. Use Critical Database
- Run Chase without blocked triggers

- 1. Use Critical Database
- Run Chase without blocked triggers
- 3. Stop on Cyclic Term

- 1. Use Critical Database
- Run Chase without blocked triggers
- 3. Stop on Cyclic Term
- 4. DMFA iff no Cyclic Term

We want to know if the chase terminates on all databases for a rule set.

- 1. Use Critical Database
- Run Chasewithout blocked triggers
- 3. Stop on Cyclic Term
- 4. DMFA iff no Cyclic Term

Theorem. If a rule set R is DMFA, then R terminates on every database. Again, the critical database chase subsumes every possible chase tree.

We want to know if the chase always loops on some DB for a rule set.

1. Ignore Disjunctive Rules

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases
- 3. Run Chase

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases
- 3. Run Chase

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases
- 3. Run Chase
- 4. Not beyond Cyclic Term

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases
- 3. Run Chase
- 4. Not beyond Cyclic Term
- 5. MFC iff Rule-Cyclic Term

We want to know if the chase always loops on some DB for a rule set.

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases
- 3. Run Chase
- 4. Not beyond Cyclic Term
- 5. MFC iff Rule-Cyclic Term

Theorem. If a rule set R is MFC, then there is a rule database for a rule in R that only admits infinite chase trees. Intuitively, the loop occurs in every CT.

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases
- 3. Run Chase
- 4. Not beyond Cyclic Term
- 5. MFC iff Rule-Cyclic Term

- 1. Ignore Disjunctive Rules
- 2. Use Rule Databases
- 3. Run Chase
- 4. Not beyond Cyclic Term
- 5. MFC iff Rule-Cyclic Term

We want to know if the chase always loops on some DB for a rule set.

1. Ignore Disjunctive Rules

- 2. Use Rule Databases
- 3. Run Chase
- 4. Not beyond Cyclic Term
- 5. MFC iff Rule-Cyclic Term

We want to know if the chase always loops on some DB for a rule set.

1. Ignore Disjunctive Rules

We want to know if the chase always loops on some DB for a rule set.

1. Rule DB and Head-Choice

- 1. Rule DB and Head-Choice
- Run Chase only unblockable trgs

- 1. Rule DB and Head-Choice
- Run Chaseonly unblockable trgs

Is
$$x: \longrightarrow x: \diamondsuit \lor x: \diamondsuit$$
 with $x/f(c_x)$ unblockable?

We want to know if the chase always loops on some DB for a rule set.

- 1. Rule DB and Head-Choice
- 2. Run Chase only unblockable trgs

Lemma. If a trigger is unblockable, (1) its output must occur if its body is satisfied and (2) there are infinitely many *similar* unblockable triggers.

Is $x: \longrightarrow x: \diamondsuit \lor x: \diamondsuit$ with $x/f(c_x)$ unblockable?

We want to know if the chase always loops on some DB for a rule set.

- 1. Rule DB and Head-Choice
- 2. Run Chase only unblockable trgs

Lemma. If a trigger is unblockable, (1) its output must occur if its body is satisfied and (2) there are infinitely many *similar* unblockable triggers.

Is $x: \longrightarrow x: \diamondsuit \lor x: \diamondsuit$ with $x/f(c_x)$ unblockable? Yes! I will explain on the next slide.

- 1. Rule DB and Head-Choice
- 2. Run Chase only unblockable trgs
- 3. Not beyond Cyclic Term
- 4. DMFC iff Rule-Cycl. Term

We want to know if the chase always loops on some DB for a rule set.

- 1. Rule DB and Head-Choice
- Run Chaseonly unblockable trgs
- 3. Not beyond Cyclic Term
- 4. DMFC iff Rule-Cycl. Term

Theorem. If a rule set R is DMFC, then there is a rule database for a rule in R that only admits infinite chase trees. Infinite repetition of loop not obvious.

1. Backtrack facts for $f(c_x)$

$$f(c_x): \ c_x \in f(c_x)$$

- 1. Backtrack facts for $f(c_x)$
- 2. Add critical facts

- 1. Backtrack facts for $f(c_x)$
- 2. Add critical facts
- 3. Chase with Star-Rules except checked trigger

- 1. Backtrack facts for $f(c_x)$
- 2. Add critical facts
- 3. Chase with Star-Rules except checked trigger
- 4. Unblk iff applicable

We compute an overapproximation of facts that can occur in the chase.

- 1. Backtrack facts for $f(c_x)$
- 2. Add critical facts
- 3. Chase with Star-Rules except checked trigger
- 4. Unblk iff applicable

Lemma. If a trigger is unblockable, (1) its output must occur if its body is satisfied and (2) there are infinitely many *similar* unblockable triggers.

We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.

- We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.
- We verified the generality of **DMFA/DMFC** in comparison to **MFA/MFC**.

- We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.
- We verified the generality of **DMFA/DMFC** in comparison to **MFA/MFC**.
- In a follow-up work, we **ported non-termination improvements** and technicalities back to the **(disjunctive) restricted chase**. [GC23b]

- We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.
- We verified the generality of **DMFA/DMFC** in comparison to **MFA/MFC**.
- In a follow-up work, we **ported non-termination improvements** and technicalities back to the **(disjunctive) restricted chase**. [GC23b]
- Investigate computation of the **disjunctive skolem chase with ASP**.

- We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.
- We verified the generality of **DMFA/DMFC** in comparison to **MFA/MFC**.
- In a follow-up work, we **ported non-termination improvements** and technicalities back to the **(disjunctive) restricted chase**. [GC23b]
- Investigate computation of the disjunctive skolem chase with ASP.
- Apply similar techniques in other areas of KRR (like ASP).

- We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.
- We verified the generality of **DMFA/DMFC** in comparison to **MFA/MFC**.
- In a follow-up work, we **ported non-termination improvements** and technicalities back to the **(disjunctive) restricted chase**. [GC23b]
- Investigate computation of the **disjunctive skolem chase with ASP**.
- Apply similar techniques in other areas of KRR (like ASP).
- Look into different translation techniques from OWL into rules.

- We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.
- We verified the generality of **DMFA/DMFC** in comparison to **MFA/MFC**.
- In a follow-up work, we **ported non-termination improvements** and technicalities back to the **(disjunctive) restricted chase**. [GC23b]
- Investigate computation of the disjunctive skolem chase with ASP.
- Apply similar techniques in **other areas of KRR** (like ASP).
- Look into different translation techniques from OWL into rules.

These slides are built using https://typst.app with the Polylux and CeTZ packages; give it a try! trypst.app with the Polylux and CeTZ packages; give it a try! trypst.app with the Polylux and CeTZ packages; give it a try! trypst.app with the Polylux and CeTZ packages; give it a try! trypst.app with the Polylux and Toldown app app and Toldown app app and Toldown app app and <a href="h

- We introduced **DMFA/DMFC** as sufficient conditions for **disjunctive skolem chase** (non-)termination based on ideas from **RMFA/RMFC**.
- We verified the generality of **DMFA/DMFC** in comparison to **MFA/MFC**.
- In a follow-up work, we **ported non-termination improvements** and technicalities back to the **(disjunctive) restricted chase**. [GC23b]
- Investigate computation of the disjunctive skolem chase with ASP.
- Apply similar techniques in **other areas of KRR** (like ASP).
- Look into different translation techniques from OWL into rules.

These slides are built using https://typst.app with the Polylux and CeTZ packages; give it a try! https://typst.app with the Polylux and CeTZ packages; give it a try! https://typst.app with the Polylux and CeTZ packages; give it a try! https://typst.app with the Polylux and DETZ packages; give it a try! https://typst.app with the Polylux and DETZ packages; give it a try! https://typst.app with the Polylux and DETZ packages; give it a try! DETZ</a

References

- [Cue+13] B. Cuenca Grau, I. Horrocks, et al., "Acyclicity notions for existential rules and their application to query answering in ontologies," *J. Artif. Intell. Resesearch (Jair)*, vol. 47, pp. 741–808, 2013.
- [GM14] T. Gogacz, and J. Marcinkowski, "All-instances termination of chase is undecidable," in *Proc. 41st Int. Colloq. Automata, Languages, Program. (ICALP 2014), Denmark, Part Ii* in Lecture Notes in Computer Science, vol. 8573, 2014, pp. 293–304.
- [Bou+16] P. Bourhis, M. Manna, M. Morak, and A. Pieris, "Guarded-based disjunctive tuple-generating dependencies," *ACM Trans. Database Syst. (Tods)*, vol. 41, no. 4, pp. 1–45, 2016.

[CDK17]	D. Carral, I. Dragoste, and M. Krötzsch, "Restricted chase
	(non)termination for existential rules with disjunctions," in Proc.
	26th Int. Joint Conf. Artif. Intell. (IJCAI 2017), Aust., 2017, pp. 922–
	928.

Informaticae, vol. 157, no. 3, pp. 221–270, 2018.
 [GC23a] L. Gerlach, and D. Carral, "General acyclicity and cyclicity notions for the disjunctive skolem chase," Proc. AAAI Conf. Artif. Intell.,

vol. 37, no. 5, pp. 6372-6379, Jun. 2023A, doi: 10.1609/

aaai.v37i5.25784. [Online]. Available: https://ojs.aaai.org/

G. Grahne, and A. Onet, "Anatomy of the chase," Fundamenta

[G018]

index.php/AAAI/article/view/25784

[GC23b] L. Gerlach, and D. Carral, "Do repeat yourself: Understanding sufficient conditions for restricted chase non-termination," in

Proc. 20th Int. Conf. Princ. Knowl. Representation Reasoning, 2023B, pp. 301–310, doi: 10.24963/kr.2023/30. [Online]. Available: https://doi.org/10.24963/kr.2023/30

[BV81] C. Beeri, and M. Y. Vardi, "The implication problem for data dependencies," in *Proc. 8th Int. Colloq. Automata, Languages Program. (ICALP 1981), Isr.* in Lecture Notes in Computer Science, vol. 115, 1981, pp. 73–85.