
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Dismatching and Local Disunification in EL

Franz Baader and Stefan Borgwardt and Barbara Morawska

LTCS-Report 15-03

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Abstract

Unification in Description Logics has been introduced as a means to
detect redundancies in ontologies. We try to extend the known decidability
results for unification in the Description Logic EL to disunification since
negative constraints on unifiers can be used to avoid unwanted unifiers.
While decidability of the solvability of general EL-disunification problems
remains an open problem, we obtain NP-completeness results for two
interesting special cases: dismatching problems, where one side of each
negative constraint must be ground, and local solvability of disunification
problems, where we restrict the attention to solutions that are built from
so-called atoms occurring in the input problem. More precisely, we first
show that dismatching can be reduced to local disunification, and then
provide two complementary NP-algorithms for finding local solutions of
(general) disunification problems.

1 Introduction

Description logics (DLs) [9] are a family of logic-based knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an
application domain in a structured and formally well-understood way. They are
employed in various application areas, but their most notable success so far is
the adoption of the DL-based language OWL [20] as standard ontology language
for the semantic web. DLs allow their users to define the important notions
(classes, relations) of the domain using concepts and roles; to state constraints
on the way these notions can be interpreted using terminological axioms; and
to deduce consequences such as subsumption (subclass) relationships from the
definitions and constraints. The expressivity of a particular DL is determined by
the constructors available for building concepts.

The DL EL, which offers the concept constructors conjunction (u), existential
restriction (∃r.C), and the top concept (>), has drawn considerable attention in
the last decade since, on the one hand, important inference problems such as the
subsumption problem are polynomial in EL, even with respect to expressive termi-
nological axioms [15]. On the other hand, though quite inexpressive, EL is used to
define biomedical ontologies, such as the large medical ontology SNOMEDCT.1
For these reasons, the most recent OWL version, OWL2, contains the profile
OWL2EL,2 which is based on a maximally tractable extension of EL [10].

Unification in Description Logics was introduced in [4] as as a novel inference
service that can be used to detect redundancies in ontologies. It is shown there
that unification in the DL FL0, which differs from EL in that existential restriction

1http://www.ihtsdo.org/snomed-ct/
2http://www.w3.org/TR/owl2-profiles/

1

http://www.ihtsdo.org/snomed-ct/
http://www.w3.org/TR/owl2-profiles/

is replaced by value restriction (∀r.C), is ExpTime-complete. The applicability
of this result was not only hampered by this high complexity, but also by the fact
that FL0 is not used in practice to formulate ontologies.

In contrast, as mentioned above, EL is employed to build large biomedical ontolo-
gies for which detecting redundancies is a useful inference service. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe head injury as

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_finding u Injury u ∃finding_site.Head). (2)

Formally, these two concepts are not equivalent, but they are nevertheless meant
to represent the same concept. They can obviously be made equivalent by treating
the concept names Head_injury and Severe_finding as variables, and substituting
the first one by Injuryu ∃finding_site.Head and the second one by ∃severity.Severe.
In this case, we say that the concepts are unifiable, and call the substitution that
makes them equivalent a unifier. In [1], we were able to show that unification in EL
is of considerably lower complexity than unification in FL0: the decision problem
for EL is NP-complete. The main idea underlying the proof of this result is to
show that any solvable EL-unification problem has a local unifier, i.e., a unifier
built from a polynomial number of so-called atoms determined by the unification
problem. However, the brute-force “guess and then test” NP-algorithm obtained
from this result, which guesses a local substitution and then checks (in polynomial
time) whether it is a unifier, is not useful in practice. We thus developed a goal-
oriented unification algorithm for EL, which is more efficient since nondeterministic
decisions are only made if they are triggered by “unsolved parts” of the unification
problem. Another option for obtaining a more efficient unification algorithm is
a translation to satisfiability in propositional logic (SAT): in [2] it is shown how
a given EL-unification problem Γ can be translated in polynomial time into a
propositional formula whose satisfying valuations correspond to the local unifiers
of Γ.

Intuitively, a unifier of two EL concepts proposes definitions for the concept names
that are used as variables: in our example, we know that, if we define Head_injury
as Injuryu∃finding_site.Head and Severe_finding as ∃severity.Severe, then the two
concepts (1) and (2) are equivalent w.r.t. these definitions. Of course, this example
was constructed such that the unifier (which is actually local) provides sensible
definitions for the concept names used as variables. In general, the existence of a
unifier only says that there is a structural similarity between the two concepts. The
developer that uses unification as a tool for finding redundancies in an ontology
or between two different ontologies needs to inspect the unifier(s) to see whether
the definitions it suggests really make sense. For example, the substitution that

2

replaces Head_injury by Patient u Injury u ∃finding_site.Head and Severe_finding
by Patient u ∃severity.Severe is also a local unifier, which however does not make
sense. Unfortunately, even small unification problems like the one in our example
can have too many local unifiers for manual inspection. In [12] we propose to
restrict the attention to so-called minimal unifiers, which form a subset of all
local unifiers. In our example, the nonsensical unifier is indeed not minimal. In
general, however, the restriction to minimal unifiers may preclude interesting local
unifiers. In addition, as shown in [12], computing minimal unifiers is actually
harder than computing local unifiers (unless the polynomial hierarchy collapses).
In the present paper, we propose disunification as a more direct approach for
avoiding local unifiers that do not make sense. In addition to positive constraints
(requiring equivalence or subsumption between concepts), a disunification problem
may also contain negative constraints (preventing equivalence or subsumption
between concepts). In our example, the nonsensical unifier can be avoided by
adding the dissubsumption constraint

Head_injury 6v? Patient (3)

to the equivalence constraint (1) ≡? (2).

Unification and disunification in DLs is actually a special case of unification and
disunification modulo equational theories (see [4] and [1] for the equational theories
respectively corresponding to FL0 and EL). Disunification modulo equational
theories has, e.g., been investigated in [16, 17]. It is well-known in unification
theory that for effectively finitary equational theories, i.e., theories for which
finite complete sets of unifiers can effectively be computed, disunification can be
reduced to unification: to decide whether a disunification problem has a solution,
one computes a finite complete set of unifiers of the equations and then checks
whether any of the unifiers in this set also solves the disequations. Unfortunately,
for FL0 and EL, this approach is not feasible since the corresponding equational
theories have unification type zero [1, 4], and thus finite complete sets of unifiers
need not even exist. Nevertheless, it was shown in [6] that the approached used
in [4] to decide unification (reduction to language equations, which are then
solved using tree automata) can be adapted such that it can also deal with
disunification. This yields the result that disunification in FL0 has the same
complexity (ExpTime-complete) as unification.

For EL, going from unification to disunification appears to be more problematic.
In fact, the main reason for unification to be decidable and in NP is locality: if the
problem has a unifier then it has a local unifier. We will show that disunification
in EL is not local in this sense by providing an example of a disunification
problem that has a solution, but no local solution. Decidability and complexity of
disunification in EL remains an open problem, but we provide partial solutions that
are of interest in practice. On the one hand, we investigate dismatching problems,
i.e., disunification problems where the negative constraints are dissubsumptions
C 6v? D for which either C or D is ground (i.e., does not contain a variable).

3

Table 1: Syntax and semantics of EL
Name Syntax Semantics
concept name A AI ⊆ ∆I
role name r rI ⊆ ∆I ×∆I
top > >I := ∆I
conjunction C uD (C uD)I := CI ∩DI

existential restr. ∃r.C (∃r.C)I := {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

Note that the dissubsumption (3) from above actually satisfies this restriction
since Patient is not a variable. We prove that (general) solvability of dismatching
problems can be reduced to local disunification, i.e., the question whether a given
EL-disunification problem has a local solution, which shows that dismatching in
EL is NP-complete. On the other hand, we develop two specialized algorithms
to solve local disunification problems that extend the ones for unification [1, 2]:
a goal-oriented algorithm that reduces the amount of nondeterministic guesses
necessary to find a local solution, as well as a translation to SAT. The reason we
present two kinds of algorithms is that, in the case of unification, they have proved
to complement each other well in first evaluations [11]: the goal-oriented algorithm
needs less memory and finds minimal solutions faster, while the SAT reduction
generates larger data structures, but outperforms the goal-oriented algorithm on
unsolvable problems.

2 Subsumption and dissubsumption in EL

The syntax of EL is defined based on two sets NC and NR of concept names and
role names, respectively. Concept terms are built from concept names using the
constructors conjunction (C uD), existential restriction (∃r.C for r ∈ NR), and
top (>). An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and
an interpretation function that maps concept names to subsets of ∆I and role
names to binary relations over ∆I . This function is extended to concept terms as
shown in the semantics column of Table 1.

Since conjunction is interpreted as intersection, we can treat u as a commutative
and associative operator, and thus dispense with parentheses in nested conjunctions.
An atom is a concept name or an existential restriction. Hence, every concept
term C is a conjunction of atoms or >. We call the atoms in this conjunction the
top-level atoms of C. Obviously, C is equivalent to the conjunction of its top-level
atoms, where the empty conjunction corresponds to >. An atom is flat if it is a
concept name or an existential restriction of the form ∃r.A with A ∈ NC.

A concept term C is subsumed by a concept term D (written C v D) if for every

4

interpretation I it holds that CI ⊆ DI . The two concept terms C and D are
equivalent (written C ≡ D) iff C v D and D v C, i.e. they are always interpreted
as the same set. We write a dissubsumption C 6v D to abbreviate the fact that
C v D does not hold. Subsumption in EL is decidable in polynomial time [8] and
can be checked by recursively comparing the top-level atoms of the two concept
terms.

Lemma 1 ([1]). For two atoms C,D, we have C v D iff C = D is a concept
name or C = ∃r.C ′, D = ∃r.D′, and C ′ v D′. If C,D are concept terms, then
C v D iff for every top-level atom D′ of D there is a top-level atom C ′ of C such
that C ′ v D′.

We obtain the following contrapositive formulation characterizing dissubsumption.

Lemma 2. For two concept terms C,D, we have C 6v D iff there is a top-level
atom D′ of D such that for all top-level atoms C ′ of C it holds that C ′ 6v D′.

In particular, C 6v D is characterized by the existence of a top-level atom D′ of D
for which C 6v D′ holds. By further analyzing the structure of atoms, we obtain
the following.

Lemma 3. Let C,D be two atoms. Then we have C 6v D iff either

1. C or D is a concept name and C 6= D; or

2. D = ∃r.D′, C = ∃s.C ′, and r 6= s; or

3. D = ∃r.D′, C = ∃r.C ′, and C ′ 6v D′.

3 Disunification

As described in the introduction, we now partition the set NC into a set of (concept)
variables (Nv) and a set of (concept) constants (Nc). A concept term is ground if it
does not contain any variables. We define a quite general notion of disunification
problems that is similar to the equational formulae used in [17].

Definition 4. A disunification problem Γ is a formula built from subsumptions of
the form C v? D, where C and D are concept terms, using the logical connectives
∧, ∨, and ¬. We use equations C ≡? D to abbreviate (C v? D) ∧ (D v? C),
disequations C 6≡? D for ¬(C v? D) ∨ ¬(D v? C), and dissubsumptions C 6v? D
instead of ¬(C v? D). A basic disunification problem is a conjunction of sub-
sumptions and dissubsumptions. A dismatching problem is a basic disunification
problem in which all dissubsumptions C 6v? D are such that either C or D is
ground. Finally, a unification problem is a conjunction of subsumptions.

5

To define the semantics of disunification problems, we now fix a finite signature
Σ ⊆ NC ∪ NR and assume that all disunification problems contain only concept
terms constructed over the symbols in Σ. A substitution σ maps every variable in
Σ to a ground concept term constructed over the symbols of Σ. This mapping
can be extended to all concept terms (over Σ) in the usual way. A substitution σ
solves a subsumption C v? D if σ(C) v σ(D); it solves Γ1 ∧Γ2 if it solves both Γ1
and Γ2; it solves Γ1∨Γ2 if it solves Γ1 or Γ2; and it solves ¬Γ if it does not solve Γ.
A substitution that solves a given disunification problem is called a solution of
this problem. A disunification problem is solvable if it has a solution.

In contrast to unification, in disunification it does make a difference whether
or not solutions may contain variables from Nv ∩ Σ or additional symbols from
(NC ∪ NR) \ Σ [16]. In the context of the application sketched in the introduction,
restricting solutions to ground terms over the signature of the ontology to be
checked for redundancy is appropriate: since a solution σ is supposed to provide
definitions for the variables in Σ, it should not use the variables themselves to
define them; moreover, definitions that contain newly generated symbols would
be meaningless to the user.

Reduction to basic disunification problems We will consider only basic dis-
unification problems in the following. The reason is that there is a straightforward
NP-reduction from solvability of arbitrary disunification problems to solvability
of basic disunification problems. In this reduction, we view all subsumptions
occurring in the disunification problem as propositional variables and guess a
satisfying valuation of the resulting propositional formula. It then suffices to check
solvability of the basic disunification problem obtained as the conjunction of all
subsumptions evaluated to true and the negations of all subsumptions evaluated to
false. Since the problems considered in the following sections are all NP-complete,
the restriction to basic disunification problems does not affect our complexity
results. In the following, we thus restrict the attention to basic disunification
problems, which we simply call disunification problems and consider them to be
sets of subsumptions and dissubsumptions.

Reduction to flat disunification problems We further simplify our analysis
by considering flat disunification problems, which means that they may only
contain flat dissubsumptions of the form C1 u · · · u Cn 6v? D1 u · · · uDm for flat
atoms C1, . . . , Cn, D1, . . . , Dm with m,n ≥ 0,3 and flat subsumptions of the form
C1 u · · · u Cn v? D1 for flat atoms C1, . . . , Cn, D1 with n ≥ 0.

The restriction to flat disunification problems is without loss of generality: to
flatten concept terms, one can simply introduce new variables and equations to
abbreviate subterms [1]. Moreover, a subsumption of the form C v? D1u· · ·uDm

3Recall that the empty conjunction is >.

6

is equivalent to C v? D1, . . . , C v? Dm. Any solution of a disunification problem Γ
can be extended to a solution of the resulting flat disunification problem Γ′, and
conversely every solution of Γ′ also solves Γ.

This flattening procedure also works for unification problems. However, dismatch-
ing problems cannot without loss of generality be restricted to being flat since the
introduction of new variables to abbreviate subterms may destroy the property
that one side of each dissubsumption is ground (see also Section 4).

For solving flat unification problems, it has been shown that it suffices to consider
so-called local solutions [1], which are restricted to use only the atoms occurring
in the input problem. We extend this notion to disunification as follows.

Let Γ be a flat disunification problem. We denote by At the set of all (flat)
atoms occurring as subterms in Γ, by Var the set of variables occurring in Γ, and
by Atnv := At \ Var the set of non-variable atoms of Γ. Let S : Var → 2Atnv be
an assignment (for Γ), i.e. a function that assigns to each variable X ∈ Var a
set SX ⊆ Atnv of non-variable atoms. The relation >S on Var is defined as the
transitive closure of {(X, Y) ∈ Var2 | Y occurs in an atom of SX}. If this defines
a strict partial order, i.e. >S is irreflexive, then S is called acyclic. In this case,
we can define the substitution σS inductively along >S as follows: if X is minimal,
then

σS(X) :=
l

D∈SX

D;

otherwise, assume that σS(Y) is defined for all Y ∈ Var with X > Y , and define

σS(X) :=
l

D∈SX

σS(D).

It is easy to see that the concept terms σS(D) are ground and constructed from
the symbols of Σ, and hence σS is a valid candidate for a solution of Γ according
to Definition 4.

Definition 5. Let Γ be a flat disunification problem. A substitution σ is called
local if there exists an acyclic assignment S for Γ such that σ = σS. The
disunification problem Γ is locally solvable if it has a local solution, i.e. a solution
that is a local substitution. Local disunification is the problem of checking flat
disunification problems for local solvability.

Note that assignments and local solutions are defined only for flat disunification
problems.

Obviously, local disunification is decidable in NP: We can guess an assignment S,
and check it for acyclicity and whether the induced substitution solves the disuni-
fication problem in polynomial time. The corresponding complexity lower bound
follows from NP-hardness of (local) solvability of unification problems in EL [1].

7

Fact 6. Deciding local solvability of flat disunification problems in EL is NP-
complete.

It has been shown that unification in EL is local in the sense that the equivalent
flattened problem has a local solution iff the original problem is solvable, and
hence (general) solvability of unification problems in EL can be decided in NP [1].
The next example shows that disunification in EL is not local in this sense.

Example 7. Consider the flat disunification problem

Γ := {X v? B, A uB u C v? X, ∃r.X v? Y, > 6v? Y, Y 6v? ∃r.B}

with concept variables X, Y and concept constants A,B,C. The substitution σ
with σ(X) := A uB u C and σ(Y) := ∃r.(A u C) is a solution of Γ. For σ to be
local, the atom ∃r.(A u C) would have to be of the form σ(D) for a non-variable
atom D occurring in Γ. But the only candidates for D are ∃r.X and ∃r.B, none
of which satisfy σ(∃r.(A u C)) = σ(D).

We show that Γ cannot have another solution that is local. Assume to the contrary
that Γ has a local solution γ. We know that γ(Y) cannot be > since γ must solve
the first dissubsumption. Furthermore, none of the constants A,B,C can be a
top-level atom of γ(Y) since this would contradict the third subsumption. That
leaves only the non-variable atoms ∃r.γ(X) and ∃r.B, which are ruled out by the
last dissubsumption since both γ(X) and B are subsumed by B.

The decidability and complexity of general solvability of disunification problems is
still open. In the following, we first consider the special case of solving dismatching
problems, for which we show a similar result as for unification: every dismatching
problem can be polynomially reduced to a flat problem that has a local solution
iff the original problem is solvable. The main difference is that this reduction is
nondeterministic. In this way, we reduce dismatching to local disunification. We
then provide two different NP-algorithms for the latter problem by extending the
rule-based algorithm from [1] and adapting the SAT encoding from [2]. These
algorithms are more efficient than the brute-force “guess and then test” procedure
on which our argument for Fact 6 was based.

4 Reducing dismatching to local disunification

Our introduction of dismatching problems was motivated in part by the work on
matching in description logics, where similar restrictions are imposed on unification
problems [3, 7, 22]. In particular, the matching problems for EL investigated
in [3] are similar to our dismatching problems in that there subsumptions are
restricted to ones where one side is ground. Another motivation comes from

8

our experience that matching problems already suffice to formulate most of the
negative constraints one may want to put on unification problems, as described in
the introduction.

As mentioned in Section 3, we cannot restrict our attention to flat dismatching
problems without loss of generality. Instead, the nondeterministic algorithm we
present in the following reduces any dismatching problem Γ to a flat disunification
problem Γ′ with the property that local solvability of Γ′ is equivalent to the
solvability of Γ. Since the algorithm takes at most polynomial time in the size of Γ,
this shows that dismatching in EL is NP-complete. For simplicity, we assume that
the subsumptions and the non-ground sides of the dissubsumptions have already
been flattened using the approach mentioned in the previous section. This retains
the property that all dissubsumptions have one ground side and does not affect
the solvability of the problem.

Our procedure exhaustively applies a set of rules to the (dis)subsumptions in
a dismatching problem (see Figures 1 and 2). In these rules, C1, . . . , Cn and
D1, . . . , Dm are atoms. The rule Left Decomposition includes the special case
where the left-hand side of s is >, in which case s is simply removed from the
problem. Note that at most one rule is applicable to any given (dis)subsumption.
The choice which (dis)subsumption to consider next is don’t care nondeterminis-
tic, but the choices in the rules Right Decomposition and Solving Left-Ground
Dissubsumptions are don’t know nondeterministic.

Algorithm 8. Let Γ0 be a dismatching problem. We initialize Γ := Γ0. While
any of the rules of Figures 1 and 2 is applicable to any element of Γ, choose one
such element and apply the corresponding rule. If any rule application fails, then
return “failure”.

Note that each rule application takes only polynomial time in the size of the
chosen (dis)subsumption. In particular, subsumptions between ground atoms can
be checked in polynomial time [8].

Lemma 9. Every run of Algorithm 8 terminates in time polynomial in the size
of the input problem.

Proof. Let Γ0, . . . , Γk be the sequence of disunification problems created during
a run of the algorithm, i.e.

• Γ0 is the input dismatching problem;

• for all j, 0 ≤ j ≤ k − 1, Γj+1 is the result of successfully applying one rule
to a (dis)subsumption in Γj; and

• either no rule is applicable to any element of Γk, or a rule application to a
(dis)subsumption in Γk failed.

9

Right Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D1 u · · · uDm if m = 0 or
m > 1, and C1, . . . , Cn, D1, . . . , Dm are atoms.
Action: If m = 0, then fail. Otherwise, choose an index i ∈ {1, . . . ,m} and replace
s by C1 u · · · u Cn 6v? Di.

Left Decomposition:
Condition: This rule applies to s = C1u· · ·uCn 6v? D if n = 0 or n > 1, C1, . . . , Cn
are atoms, and D is a non-variable atom.
Action: Replace s by C1 6v? D, . . . , Cn 6v? D.

Atomic Decomposition:
Condition: This rule applies to s = C 6v? D if C and D are non-variable atoms.
Action: Apply the first case that matches s:

a) if C and D are ground and C v D, then fail;

b) if C and D are ground and C 6v D, then remove s from Γ;

c) if C or D is a constant, then remove s from Γ;

d) if C = ∃r.C ′ and D = ∃s.D′ with r 6= s, then remove s from Γ;

e) if C = ∃r.C ′ and D = ∃r.D′, then replace s by C ′ 6v? D′.

Figure 1: Decomposition rules

We prove that k is polynomial in the size of Γ0 by measuring the size of
(dis)subsumptions by the function c defined as follows:

c(C 6v? D) := c(C v? D) := |C| · |D|,

where |C| is the size of the concept term C; the latter is measured in the number
of symbols it takes to write down C, where we count each concept name as one
symbol, and “∃r.” is also one symbol. Note that we always have |C| ≥ 1 since
C must contain at least one concept name or >, and thus also c(s) ≥ 1 for any
(dis)subsumption s. We now define the size c(Γ) of a disunification problem Γ as
the sum of the sizes c(s) for all s ∈ Γ to which a rule is applicable.

Since c(Γ0) is obviously polynomial in the size of Γ0, it now suffices to show that
c(Γj) > c(Γj+1) holds for all j, 0 ≤ j ≤ k − 1. To show this, we consider the rule
that was applied to s ∈ Γj in order to obtain Γj+1:

• Right Decomposition: Then s = C1 u · · · u Cn 6v? D1 u . . . Dm and we
must have m > 1 since we assumed that the rule application was successful.
Thus, we get |C1u · · · uCn| · |D1u · · · uDm| > |C1u · · · uCn| · |Di| for every
choice of i ∈ {1, . . . ,m}, and thus c(Γj) > c(Γj+1).

10

Flattening Right-Ground Dissubsumptions:
Condition: This rule applies to s = X 6v? ∃r.D if X is a variable and D is ground
and is not a concept name.
Action: Introduce a new variable XD and replace s by X 6v? ∃r.XD and D v? XD.

Flattening Left-Ground Subsumptions:
Condition: This rule applies to s = C1 u · · · uCn u ∃r1.D1 u · · · u ∃rm.Dm v? X if
m > 0, X is a variable, C1, . . . , Cn are flat ground atoms, and ∃r1.D1, . . . ,∃rm.Dm

are non-flat ground atoms.
Action: Introduce new variables XD1 , . . . , XDm and replace s by D1 v? XD1 , . . . ,
Dm v? XDm and C1 u · · · u Cn u ∃r1.XD1 u · · · u ∃rm.XDm v? X.

Solving Left-Ground Dissubsumptions:
Condition: This rule applies to s = C1 u · · · u Cn 6v? X if X is a variable and
C1, . . . , Cn are ground atoms.
Action: Choose one of the following options:

• Choose a constant A ∈ Σ and replace s by X v? A. If C1 u · · · uCn v A, then
fail.

• Choose a role r ∈ Σ, introduce a new variable Z, replace s by X v? ∃r.Z,
C1 6v? ∃r.Z, . . . , Cn 6v? ∃r.Z, and immediately apply Atomic Decomposition
to each of these dissubsumptions.

Figure 2: Flattening and solving rules

• Left Decomposition: Then s = C1 u · · · u Cn 6v? D and, if n = 0, then
c(Γj) = c(Γj+1) + c(s) ≥ c(Γj+1) + 1 > c(Γj+1). Otherwise, we have n > 1,
and thus

|C1 u · · · u Cn| · |D| = (|C1|+ · · ·+ |Cn|+ (n− 1)) · |D|
> |C1| · |D|+ · · ·+ |Cn| · |D|.

• Atomic Decomposition: It suffices to consider Case e) since Case a) is
impossible and the other cases are trivial. Then s = ∃r.C ′ 6v? ∃r.D′, and we
get |∃r.C ′| · |∃r.D′| = (|C ′|+ 1) · (|D′|+ 1) > |C ′| · |D′|.

• Flattening Right-Ground Dissubsumptions: Then s = X 6v? ∃r.D is
replaced by X 6v? ∃r.XD and D v? XD. To the dissubsumption, no further
rule is applicable, and hence it does not count towards c(Γj). Regarding the
subsumption, we have |X| · |∃r.D| = |D|+ 1 > |D| = |D| · |XD|.

• Flattening Left-Ground Subsumptions: Then the subsumption s is
of the form C1 u · · · u Cn u ∃r1.D1 u · · · u ∃rm.Dm v? X and only to the
subsumptions D1 v? XD1 , . . . , Dm v? XDm this flattening rule may be

11

applicable again. But we have

|C1 u · · · u Cn u ∃r1.D1 u · · · u ∃rm.Dm| · |X|
= |C1|+ · · ·+ |Cn|+ |∃r1.D1|+ · · ·+ |∃rm.Dm|+ (n+m− 1)
≥ |∃r1.D1|+ · · ·+ |∃rm.Dm|
> |D1|+ · · ·+ |Dm|
= |D1| · |XD1|+ · · ·+ |Dm| · |XDm|.

• Solving Left-Ground Dissubsumptions: Then s = C1 u · · · uCn 6v? X
and to a generated subsumption of the form X v? A or X v? ∃r.Z no further
rule is applicable. If n = 0, then no further dissubsumptions are generated,
and thus c(Γj) > c(Γj+1). Otherwise, we denote by |si| the size of the dis-
subsumption resulting from applying Atomic Decomposition to Ci 6v? ∃r.Z,
1 ≤ i ≤ n, where we consider this number to be 0 if the dissubsumption was
simply discarded (cf. Cases b)–d) of Atomic Decomposition).
If |si| = 0, we obtain |Ci| ≥ 1 > 0 = |si|. But also in Case e), we have
Ci = ∃r.C ′i, and thus |Ci| = |C ′i|+ 1 = |C ′i| · |Z|+ 1 > |si|. Hence, we get

|C1 u · · · u Cn| · |X| = |C1|+ · · ·+ |Cn|+ (n− 1)
≥ |C1|+ · · ·+ |Cn|
> |s1|+ · · ·+ |sn|.

Note that the Solving rule for left-ground dissubsumptions is not limited to
non-flat dissubsumptions, and thus the algorithm completely eliminates all left-
ground dissubsumptions from Γ. It is also easy to see that, if the algorithm is
successful, then the resulting disunification problem Γ is flat. We now prove that
this nondeterministic procedure is correct in the following sense.

Lemma 10. The dismatching problem Γ0 is solvable iff there is a successful run
of Algorithm 8 such that the resulting flat disunification problem Γ has a local
solution.

Proof. For soundness (i.e. the if direction), let σ be the local solution of Γ and
consider the run of Algorithm 8 that produced Γ. It is easy to show by induction on
the reverse order in which the rules have been applied that σ solves all subsumptions
that have been considered. Indeed, this follows from simple applications of
Lemmata 1–3 and the properties of subsumption. This implies that σ is also a
solution of Γ0.

Showing completeness (i.e. the only-if direction) is a little more involved. Let γ
be a solution of Γ0. We guide the rule applications of Algorithm 8 and extend γ
to the newly introduced variables in such a way to maintain the invariant that
“γ solves all (dis)subsumptions of Γ”. This obviously holds after the initialization
Γ := Γ0. Afterwards, we will use γ to define a local solution of Γ.

12

Consider a (dis)subsumption s ∈ Γ that is solved by γ and to which one of the
rules of Figures 1 and 2 is applicable. We make a case distinction on which rule is
to be applied:

• Right Decomposition: Then s is of the form C1u· · ·uCn 6v? D1u· · ·uDm

for m 6= 1. Since γ(C1u · · ·uCn) 6v γ(D1u · · ·uDm), by applying Lemma 2
twice, we can find an index i ∈ {1, . . . ,m} such that γ(C1u· · ·uCn) 6v γ(Di).
Thus, we can choose this index in the rule application in order to satisfy
the invariant.

• Left Decomposition: Then s is of the form C1 u · · · u Cn 6v? D, where
n 6= 1 and D is a non-variable atom. This means that γ(D) is also an atom,
an thus by Lemma 2 we know that γ(Ci) 6v γ(D) holds for all i ∈ {1, . . . , n},
as required.

• Atomic Decomposition: Then s is of the form C 6v? D for two non-
variable atoms C and D. Since γ(C) 6v γ(D), Case a) cannot apply. If one
of the Cases b)–d) applies, then s is simply removed from Γ and there is
nothing to show. Otherwise, we have D = ∃r.D′ and C = ∃r.C ′, and the new
dissubsumption C ′ 6v? D′ is added to Γ. Moreover, we have γ(C) = ∃r.γ(C ′)
and γ(D) = ∃r.γ(D′), and thus by Lemma 3 we know that γ(C ′) 6v γ(D′).

• Flattening Right-Ground Dissubsumptions: Then s is of the form
X 6v? ∃r.D. By defining γ(XD) := D, γ solves X 6v? ∃r.XD and D v? XD.

• Flattening Left-Ground Subsumptions: Then the subsumption s is of
the form C1u· · ·uCnu∃r1.D1u· · ·u∃rm.Dm v? X, where allD1, . . . , Dm are
ground. If we extend γ by defining γ(XDi) := Di for all i ∈ {1, . . . ,m}, then
this obviously satisfies the new subsumptions D1 v? XD1 , . . . , Dm v? XDm ,
and C1 u · · · uCn u ∃r1.XD1 u · · · u ∃rm.XDm v? X by our assumption that
γ solves s.

• Solving Left-Ground Dissubsumptions: Then the dissubsumption s is
of the form C1 u · · · u Cn 6v? X, where X is a variable and C1, . . . , Cn are
ground atoms. By Lemma 2, there must be a ground top-level atom D
of γ(X) such that C1 u · · · u Cn 6v D, i.e. C1 6v D, . . . , Cn 6v D. If D
is a concept constant, we can choose this in the rule application since we
know that γ(X) v D. Otherwise, we have D = ∃r.D′. By extending γ to
γ(Z) := D′, we ensure that X v? ∃r.Z, C1 6v? ∃r.Z, . . .Cn 6v? ∃r.Z are
solved by γ. The remaining claim follows as for the Atomic Decomposition
rule above.

Once no more rules can be applied, we obtain a flat disunification problem Γ of
which the extended substitution γ is a (possibly non-local) solution. To obtain a

13

local solution, we denote by At, Var, and Atnv the sets as defined in Section 3 and
define the assignment S induced by γ as in [2]:

SX := {D ∈ Atnv | γ(X) v γ(D)},

for all (old and new) variables X ∈ Var. It was shown in [2] that S is acyclic and
the substitution σS solves all subsumptions in Γ.4 Furthermore, it is easy to show
that γ(C) v σS(C) holds for all concept terms C.

Since Γ contains no left-ground dissubsumptions anymore, it remains to show
that σS solves all remaining right-ground dissubsumptions in Γ and all flat dis-
subsumptions created by an application of the Flattening rule for right-ground
dissubsumptions. Consider first any flat right-ground dissubsumption X 6v? D
in Γ. We have already shown that γ(X) 6v D holds. Since γ(X) v σS(X), by the
transitivity of subsumption σS(X) v D cannot hold, and thus also σS solves the
dissubsumption.

Consider now a dissubsumption X 6v? ∃r.XD that was created by an application of
the Flattening rule for right-ground dissubsumptions to X 6v? ∃r.D. By the same
argument as above, from γ(X) 6v ∃r.D we can derive that σS(X) 6v ∃r.D holds. We
now show that σS(XD) v D holds, which implies that σS(∃r.XD) v ∃r.D, and thus
by the transitivity of subsumption it cannot be the case that σS(X) v σS(∃r.XD),
which concludes the proof by showing that σS solves Γ.

We show that σS(XC) v C holds for all variables XC for which a subsump-
tion C v? XC was introduced by a Flattening rule. We prove this claim by
induction on the role depth of C, which is the maximum nesting depth of exis-
tential restrictions occurring in it. Let C1, . . . , Cn be the top-level atoms of C.
Then Γ contains a flat subsumption C ′1 u · · · u C ′n v? XC , where Ci = C ′i if
Ci is flat, and Ci = ∃r.Di and C ′i = ∃r.XDi otherwise. Since the role depth
of each such Di is strictly smaller than that of C, by induction we know that
σS(XDi) v Di, and thus σS(C ′1 u · · · uC ′n) v C1 u · · · uCn = C by Lemma 1. Fur-
thermore, for all i ∈ {1, . . . , n} we have γ(XC) = C v Ci = γ(C ′i) and C ′i ∈ Atnv.
Thus, C ′i ∈ SXC by the definition of S. The definition of σS now yields that
σS(XC) v σS(C ′1 u · · · u C ′n) v C (see Section 3).

This shows that dismatching in EL is local in the sense that there is an NP-
reduction of solvability of dismatching problems to local solvability of flat dis-
unification problems. Together with Fact 6 and the NP-hardness of unification
in EL [1], this shows the following complexity result.

Theorem 11. Deciding solvability of dismatching problems in EL is NP-complete.
4More precisely, it was shown that γ induces a satisfying valuation of a SAT problem, which

in turn induces the solution σS above. For details, see [2] or Sections 6.1 and 6.2.

14

5 A goal-oriented algorithm for local disunifica-
tion

In this section, we present an algorithm for local disunification that is based on
transformation rules. Basically, to solve the subsumptions, this algorithm uses the
rules of the goal-oriented algorithm for unification in EL [1, 13], which produces
only local unifiers. Since any local solution of the disunification problem is a local
unifier of the subsumptions in the problem, one might think that it is then sufficient
to check whether any of the produced unifiers also solves the dissubsumptions. This
would not be complete, however, since the goal-oriented algorithm for unification
does not produce all local unifiers. For this reason, we have additional rules for
solving the dissubsumptions. Both rule sets contain (deterministic) eager rules
that are applied with the highest priority, and nondeterministic rules that are
only applied if no eager rule is applicable. The goal of the eager rules is to enable
the algorithm to detect obvious contradictions as early as possible in order to
reduce the number of nondeterministic choices it has to make.

Let now Γ0 be the flat disunification problem for which we want to decide local
solvability, and let the sets At, Var, and Atnv be defined as in Section 3. We
assume without loss of generality that the dissubsumptions in Γ0 have only a
single atom on the right-hand side. If this is not the case, it can easily be achieved
by exhaustive application of the nondeterministic rule Right Decomposition (see
Figure 1) without affecting the complexity of the overall procedure.

Starting with Γ0, the algorithm maintains a current disunification problem Γ
and a current acyclic assignment S, which initially assigns the empty set to all
variables. In addition, for each subsumption or dissubsumption in Γ, it maintains
the information on whether it is solved or not. Initially, all subsumptions of
Γ0 are unsolved, except those with a variable on the right-hand side, and all
dissubsumptions in Γ0 are unsolved, except those with a variable on the left-hand
side and a non-variable atom on the right-hand side.

Subsumptions of the form C1 u · · · u Cn v? X and dissubsumptions of the form
X 6v? D, for a non-variable atom D, are called initially solved. Intuitively, they
only specify constraints on the assignment SX . More formally, this intuition is
captured by the process of expanding Γ w.r.t. the variable X, which performs the
following actions:

• every initially solved subsumption s ∈ Γ of the form C1 u · · · u Cn v? X
is expanded by adding the subsumption C1 u · · · u Cn v? E to Γ for every
E ∈ SX , and

• every initially solved dissubsumption X 6v? D ∈ Γ is expanded by adding
E 6v? D to Γ for every E ∈ SX .

15

A (non-failing) application of a rule of our algorithm does the following:

• it solves exactly one unsolved subsumption or dissubsumption,

• it may extend the current assignment S by adding elements of Atnv to some
set SX ,

• it may introduce new flat subsumptions or dissubsumptions built from
elements of At, and

• it keeps Γ expanded w.r.t. all variables X.

Subsumptions and dissubsumptions are only added by a rule application or by
expansion if they are not already present in Γ. If a new subsumption or dis-
subsumption is added to Γ, it is marked as unsolved, unless it is initially solved
(because of its form). Solving subsumptions and dissubsumptions is mostly inde-
pendent, except for expanding Γ, which can add new unsolved subsumptions and
dissubsumptions at the same time, and may be triggered by solving a subsumption
or a dissubsumption.

The rules dealing with subsumptions are depicted in Figures 3 and 4. Note that
several rules may be applicable to the same subsumption.

The rules for solving dissubsumptions are presented in Figures 5 and 6. In the
rule Local Extension, the left-hand side of s may be a variable, and then s is of
the form Y 6v? X. This dissubsumption is not initially solved, because X is not a
non-variable atom.

Algorithm 12. Let Γ0 be a flat disunification problem. We initialize Γ := Γ0
and SX := ∅ for all variables X ∈ Var. While Γ contains an unsolved subsumption
or dissubsumption, do the following:

1. Eager rule application: If eager rules are applicable to some unsolved
subsumption or dissubsumption s in Γ, apply an arbitrarily chosen one to s.
If the rule application fails, return “failure”.

2. Nondeterministic rule application: If no eager rule is applicable, let
s be an unsolved subsumption or dissubsumption in Γ. If one of the
nondeterministic rules (Figures 4 and 6) applies to s, choose one and apply
it. If none of these rules apply to s or the rule application fails, then return
“failure”.

Once all (dis)subsumptions in Γ are solved, return the substitution σS that is
induced by the current assignment.

16

Eager Ground Solving:
Condition: This rule applies to s = C1 u · · · u Cm v? D ∈ Γ, if s is ground.
Action: The rule application fails if s does not hold. Otherwise, s is marked as
solved.

Eager Solving:
Condition: This rule applies to s = C1 u · · · u Cm v? D ∈ Γ, if there is an index
i ∈ {1, . . . , n}, such that Ci = D or Ci = X ∈ Var and D ∈ SX .
Action: The application of the rule marks s as solved.

Eager Extension:
Condition: This rule applies to s = C1 u · · · u Cm v? D ∈ Γ, if there is an index
i ∈ {1, . . . , n}, such that Ci = X ∈ Var and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: The application of the rule adds D to SX . It this makes S cyclic, the rule
application fails. Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Figure 3: Eager rules for subsumptions

As with Algorithm 8, the choice which (dis)subsumption to consider next and
which eager rule to apply is don’t care nondeterministic, while the choice of which
nondeterministic rule to apply and the choices inside the rules are don’t know
nondeterministic.

5.1 Termination

Lemma 13. Every run of Algorithm 12 terminates in time polynomial in the size
of Γ0.

Proof. Each rule application solves one subsumption or dissubsumption. We
show that there are only polynomially many subsumptions and dissubsumptions
produced during a run of the algorithm, and thus there can be only polynomially
many rule applications during one run of the algorithm.

A new subsumption or dissubsumption may be created only by an application
of Decomposition, Left Decomposition, or Atomic Decomposition, and then it
is of the form C v? D or C 6v? D, where C,D ∈ At. Obviously, there are only
polynomially many such (dis)subsumptions.

Now, we consider (dis)subsumptions created by expanding Γ. These subsumptions
or dissubsumptions have the following forms, where D,E ∈ Atnv:

1. C1 u · · · u Cn v? E, for C1 u · · · u Cn v? X in Γ,

2. E 6v? D, for X 6v? D in Γ.

17

Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn v? ∃s.D ∈ Γ, if there is at least
one index i ∈ {1, . . . , n} with Ci = ∃s.C.
Action: The application of the rule chooses such an index i, adds C v? D to Γ,
expands Γ w.r.t. D if D is a variable, and marks s as solved.

Extension:
Condition: This rule applies to s = C1 u · · · uCn v? D ∈ Γ, if there is at least one
index i ∈ {1, . . . , n} with Ci ∈ Var.
Action: The application of the rule chooses such an index i and adds D to SCi . If
this makes S cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t. Ci
and s is marked as solved.

Figure 4: Nondeterministic rules for subsumptions

Dissubsumptions of the second type are also of the form described above. For the
subsumptions of the first type, note that C1u· · ·uCn is either the left-hand side of
a subsumption from the original problem Γ0, or it was created by a Decomposition
rule, in which case we have n = 1. Thus, there can also be at most polynomially
many subsumptions of the first type.

Finally, each rule application takes at most polynomial time.

5.2 Soundness

Assume that a run of the algorithm terminates with success, i.e. all subsumptions
and dissubsumptions are solved. Let Γ̂ be the set of all subsumptions and
dissubsumptions produced by this run, S be the final assignment, and σS the
induced substitution (see Section 3). To show that σS solves Γ̂, and hence also Γ0,
we use induction on the following order on (dis)subsumptions.

Definition 14. Consider any (dis)subsumption s of the form C1u· · ·uCn v? Cn+1

or C1 u · · · u Cn 6v? Cn+1 in Γ̂.

• We define m(s) := (m1(s),m2(s)), where

– m1(s) := ∅ if s is ground; otherwise, m1(s) := {X1, . . . , Xm}, where
{X1, . . . , Xm} is the multiset of all variables occurring in the concept
terms C1, . . . , Cn, Cn+1.

– m2(s) := |s|, where |s| is the size of s, i.e. the number of symbols in s.

• The strict partial order � on such pairs is the lexicographic order, where the
second components are compared w.r.t. the usual order on natural numbers,
and the first components are compared w.r.t. the multiset extension of >S [5].

18

Top Solving:
Condition: This rule applies to s = C 6v? > ∈ Γ.
Action: The rule application fails.

Left Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D ∈ Γ if n = 0 or n > 1, and
D ∈ Atnv.
Action: The application of the rule marks s as solved and, for each i ∈ {1, . . . , n},
adds Ci 6v? D to Γ and expands Γ w.r.t. Ci if Ci is a variable and D is a constant.

Atomic Decomposition:
Condition: This rule applies to s = C 6v? D ∈ Γ if C,D ∈ Atnv.
Action: The application of the rule applies the first case that matches s:

a) if C and D are ground and C v D, then the rule application fails;

b) if C and D are ground and C 6v D, then s is marked as solved;

c) if C or D is a concept name, then s is marked as solved;

d) if C = ∃r.C ′ and D = ∃s.D′ with r 6= s, then s is marked as solved;

e) if C = ∃r.C ′ and D = ∃r.D′, then C ′ 6v? D′ is added to Γ, Γ is expanded
w.r.t. C ′ if C ′ is a variable and D′ is a constant, and s is marked as solved.

Figure 5: Eager rules for dissubsumptions

• We extend � to Γ̂ by setting s1 � s2 iff m(s1) � m(s2).

Since multiset extensions and lexicographic products of well-founded strict partial
orders are again well-founded [5], � is a well-founded strict partial order on Γ̂.

Lemma 15. σS is a solution of Γ̂, and thus also of its subset Γ0.

Proof. Consider a (dis)subsumption s ∈ Γ̂ and assume that σS solves all s′ ∈ Γ̂
with s′ ≺ s. Since s is solved, either it has been solved by a rule application or it
was initially solved.

• If s was solved by a rule application, we consider which rule was applied.

– Eager Ground Solving: Then s is ground and holds under any
substitution.

– Eager Solving: Then s = C1 u · · · u Cn v? D and σS(D) occurs on
the top-level of σS(C1)u · · ·uσS(Cn), hence σS solves the subsumption.

– (Eager) Extension: Then s = XuC1u· · ·uCn v? D for a variable X
and D ∈ SX . By the definition of σS, we have σS(X) v σS(D) and
thus σS solves s.

19

Local Extension:
Condition: This rule applies to s = C 6v? X ∈ Γ if X ∈ Var.
Action: The application of the rule chooses D ∈ Atnv and adds D to SX . If this
makes S cyclic, the rule application fails. Otherwise, the new dissubsumption C 6v? D
is added to Γ, Γ is expanded w.r.t. X, Γ is expanded w.r.t. C if C is a variable, and
s is marked as solved.

Figure 6: Nondeterministic rule for dissubsumptions

– Decomposition: Then s = C1 u · · · u Cn v? ∃s.D with Ci = ∃s.C
for some i ∈ {1, . . . , n} and we have s′ = C v? D ∈ Γ̂. We know that
s′ ≺ s, because m1(s′) ≤ m1(s) and m2(s′) < m2(s). By induction, we
get σS(C) v σS(D), and hence σS solves s.

– Top Solving: This rule cannot have been applied since we assumed
the run to be successful.

– Left Decomposition: Then either s = C1u· · ·uCn 6v? D with n > 1,
or s = > 6v? D, for a non-variable atom D. In the former case, σS
solves s by Lemma 2. In the latter case, for each i ∈ {1, . . . , n} we have
si := Ci 6v? D ∈ Γ̂. Notice that m1(s) ≥ m1(si) and m2(s) > m2(si)
and hence s � si. Thus, by induction we have that σS(Ci) 6v σS(D).
By Lemma 2, σS(C1) u · · · u σS(Cn) 6v σS(D).

– Atomic Decomposition: Then s = C 6v? D, where C and D are non-
variable atoms. Since we assume that the run was successful, Case a)
cannot apply. In Cases b)–d), σS must solve s by Lemma 3. Finally,
in Case e), we have C = ∃r.C ′, D = ∃r.D′, and s′ = C ′ 6v? D′ ∈ Γ̂.
Notice that s � s′, because m1(s) = m1(s′) and m2(s) > m2(s′).
Hence, by induction we get σS(C ′) 6v σS(D′) and thus σS(C) 6v σS(D)
by Lemma 3.

– Local Extension: Then s = C1 u · · · u Cn 6v? X and there is a non-
variable atom D ∈ SX such that s′ = C1 u · · · uCn 6v? D ∈ Γ̂. We have
s � s′, because D may only contain a variable strictly smaller than X,
and thus m1(s) > m1(s′). Hence by induction, σ solves s′. Since σS(D)
is a top-level atom of σS(X), σS solves s by Lemma 2.

• If s is a subsumption that is initially solved, then s = C1 u · · · u Cn v? X
with X ∈ Var. By expansion, for every E ∈ SX , there is a subsumption
sE = C1 u · · · u Cn v? E in Γ̂. We have sE ≺ s since m1(sE) < m1(s), for
every E ∈ SX . Hence, by induction all subsumptions sE are solved by σS.
Since the top-level atoms of σS(X) are exactly those of the form σS(E) for
E ∈ SX , σS solves s by Lemma 1.

• If s is a dissubsumption that is initially solved, then s = X 6v? D for X ∈ Var
and D ∈ Atnv. By expansion, for every E ∈ SX , we have sE = E 6v? D ∈ Γ̂.

20

We know that s � sE, because E may only contain a variable strictly
smaller than X, and thus m1(s) > m1(sE). Hence by induction, σS solves all
dissubsumptions sE with E ∈ SX . By the definition of σS(X) and Lemma 2,
σS also solves s.

5.3 Completeness

Let σ be a local solution of Γ0. We show that σ can guide the choices of
Algorithm 12 to obtain a local solution σ′ of Γ0 such that for every variable X, we
have σ(X) v σ′(X). The following invariants will be maintained throughout the
run of the algorithm for the current set of (dis)subsumptions Γ and the current
assignment S:

I. σ is a solution of Γ.

II. For each D ∈ SX , we have that σ(X) v σ(D).

By Lemma 1, chains of the form σ(X1) v σ(∃r1.X2), . . .σ(Xn−1) v σ(∃rn−1.Xn)
with X1 = Xn are impossible, and thus invariant II implies that S is acyclic.
Hence, if extending S during a rule application preserves this invariant, this
extension will not cause the algorithm to fail.

Lemma 16. The invariants are maintained by the operation of expanding Γ.

Proof. Since expansion does not affect the assignment S, we have to check only
invariant I. Consider a subsumption s = C1 u · · · u Cn v? X in Γ, for which a
new subsumption sE = C1 u · · · u Cn v? E is created because E ∈ SX . By the
invariants, σ solves s and σ(X) v σ(E). Hence by transitivity, σ also solves s′,
i.e. invariant I is satisfied after adding sE to Γ.

For a dissubsumption s = X 6v? D ∈ Γ and E ∈ SX , a new dissubsumption
sE = E 6v? D is created. Since σ solves s and σ(X) v σ(E) by invariant II, we
have σ(E) 6v σ(D) by transitivity of subsumption, i.e. σ solves sE.

Now we show that if the invariants are satisfied, the eager rules maintain the
invariants and do not lead to failure.

Lemma 17. The application of an eager rule never fails and maintains the
invariants.

Proof. There are six eager rules to consider:

• Eager Ground Solving: By invariant I, σ solves all ground subsumptions
in Γ, and thus they must be valid subsumptions. Therefore the rule cannot
fail, and obviously it preserves the invariants.

21

• Eager Solving: The rule cannot fail and does not affect the invariants.

• Eager Extension: Consider any C1u · · ·uCm v? D ∈ Γ such that there is
an index i ∈ {1, . . . , n} with Ci = X ∈ Var and {C1, . . . , Cm} \ {X} ⊆ SX .
By the invariants and Lemma 1, we have σ(X) v σ(C1)u· · ·uσ(Cm) v σ(D),
and thus adding D to SX maintains invariant II. Therefore, the application
of the rule does not cause S to be cyclic, and does not fail. Invariant I is
not affected by this rule.

• Top Solving: By invariant I, this rule will never be applied since σ(C) 6v? >
is impossible by Lemma 2.

• Left Decomposition: Notice that this rule never fails. Furthermore, S
is not affected by the rule, and hence invariant I is preserved. Finally, if
σ solves C1 u · · · u Cn 6v? D, then it must also solve Ci 6v? D for each
i ∈ {1, . . . , n} by Lemma 2.

• Atomic Decomposition: Case a) cannot apply since σ is a solution of Γ.
Invariant II is not affected, because S is not changed by these rules. The
fact that invariant I is maintained in Case e) follows from Lemma 3.

Now we show that the non-deterministic rules can be applied in such a way that
the invariants are maintained and the application does not lead to failure.

Lemma 18. If s is an unsolved (dis)subsumption of Γ to which no eager rule
applies, then there is a nondeterministic rule that can be successfully applied to s
while maintaining the invariants.

Proof. If s is an unsolved subsumption, then it is of the form C1 u · · · uCn v? D,
whereD is a non-variable atom. By invariant I, we have σ(C1)u· · ·uσ(Cn) v σ(D).
By Lemma 1, there is an index i ∈ {1, . . . , n} and a top-level atom E of σ(Ci)
such that E v σ(D).

• If Ci is a constant, then by Lemma 1 we have Ci = E = D, and thus Eager
Solving is applicable, which contradicts the assumption.

• If Ci = ∃r.C ′, then σ(Ci) = ∃r.σ(C ′) = E and by Lemma 1 we must
have D = ∃r.D′ and σ(C ′) v σ(D′). Thus, the Decomposition rule can be
successfully applied to s and results in a new subsumption C ′ v? D′ that is
solved by σ.

• If Ci is a variable, then invariant II is preserved by adding D to SCi since
σ(Ci) v Eσ(D). Thus, we can successfully apply the Extension rule to s.

If s is an unsolved dissubsumption, then it must be of the form C1u· · ·uCn 6v? X
since otherwise one of the eager rules in Figure 5 would be applicable to it. We

22

have σ(C1) u · · · u σ(Cn) 6v σ(X) by invariant I. By Lemma 2, there is a top-level
atom E of σ(X) such that σ(C1)u· · ·uσ(Cn) 6v E. Since σ is local, we must have
E = σ(D) for some D ∈ Atnv. Hence, adding D to SX maintains invariant II, and
adding C1 u · · · u Cn 6v? D to Γ maintains invariant I. Thus, we can successfully
apply the Local Extension rule to s.

This concludes the proof of correctness of Algorithm 12, which provides a more
goal-directed way to solve local disunification problems than blindly guessing an
assignment as described in Section 4.

Theorem 19. The flat disunification problem Γ0 has a local solution iff there is
a successful run of Algorithm 12 on Γ0.

6 Encoding local disunification into SAT

The following reduction to SAT is a generalization of the one for unification
problems in [2]. We again consider a flat disunification problem Γ and the sets At,
Var, and Atnv as in Section 3. Since we are restricting our considerations to local
solutions, we can without loss of generality assume that the sets Nv, Nc, and NR
contain exactly the variables, constants, and role names occurring in Γ. To further
simplify the reduction, we assume in the following that all flat dissubsumptions
in Γ are of the form X 6v? Y for variables X, Y . This is without loss of generality,
which can be shown using a transformation similar to the flattening rules from
Section 4.

The translation into SAT uses the propositional variables [C v D] for all C,D ∈ At.
The SAT problem consists of a set of clauses C(Γ) over these variables that express
properties of (dis)subsumption in EL and encode the elements of Γ. The intuition
is that a satisfying valuation of C(Γ) induces a local solution σ of Γ such that
σ(C) v σ(D) holds whenever [C v D] is true under the valuation. The solution
σ is constructed by first extracting an acyclic assignment S out of the satisfying
valuation and then computing σ := σS. We additionally introduce the variables
[X > Y] for all X, Y ∈ Nv to ensure that the generated assignment S is indeed
acyclic. This is achieved by adding clauses to C(Γ) that express that >S is a strict
partial order, i.e. irreflexive and transitive.

Finally, we use the auxiliary variables pC,X,D for all X ∈ Nv, C ∈ At, and D ∈ Atnv
to express the restrictions imposed by dissubsumptions of the form C 6v? X in
clausal form. More precisely, whenever [C v X] is false for some X ∈ Nv and
C ∈ At, then the dissubsumption σ(C) 6v σ(X) should hold. By Lemma 2, this
means that we need to find an atom D ∈ Atnv that is a top-level atom of σ(X)
and satisfies σ(C) 6v σ(D). This is enforced by making the auxiliary variable
pC,X,D true, which makes [X v D] true and [C v D] false (see Definition 20(IV)
and Lemma 23 for details).

23

Definition 20. The set C(Γ) contains the following propositional clauses:

(I) Translation of Γ.

a. For every subsumption C1 u · · · u Cn v? D in Γ with D ∈ Atnv:
→ [C1 v D] ∨ · · · ∨ [Cn v D]

b. For every subsumption C1 u · · · u Cn v? X in Γ with X ∈ Nv, and
every E ∈ Atnv:

[X v E]→ [C1 v E] ∨ · · · ∨ [Cn v E]

c. For every dissubsumption X 6v? Y in Γ: [X v Y]→

(II) Properties of subsumptions between non-variable atoms.

a. For every A ∈ Nc: → [A v A]
b. For every A,B ∈ Nc with A 6= B: [A v B]→
c. For every ∃r.A,∃s.B ∈ Atnv with r 6= s: [∃r.A v ∃s.B]→
d. For every A ∈ Nc and ∃r.B ∈ Atnv:

[A v ∃r.B]→ and [∃r.B v A]→

e. For every ∃r.A,∃r.B ∈ Atnv:
[∃r.A v ∃r.B]→ [A v B] and [A v B]→ [∃r.A v ∃r.B]

(III) Transitivity of subsumption.
For every C1, C2, C3 ∈ At: [C1 v C2] ∧ [C2 v C3]→ [C1 v C3]

(IV) Dissubsumptions with a variable on the right-hand side.
For every C ∈ At, X ∈ Nv:

→ [C v X] ∨
∨

D∈Atnv

pC,X,D,

and additionally for every D ∈ Atnv:
pC,X,D → [X v D] and pC,X,D ∧ [C v D]→

(V) Properties of >.

a. For every X ∈ Nv: [X > X]→
b. For every X, Y, Z ∈ Nv: [X > Y] ∧ [Y > Z]→ [X > Z]
c. For every X, Y ∈ Nv and ∃r.Y ∈ At: [X v ∃r.Y]→ [X > Y]

The main difference to the encoding in [2] (apart from the fact that we consider
(dis)subsumptions here instead of equations) lies in the clauses (IV) that ensure
the presence of a non-variable atom D that solves the dissubsumption C 6v? X (cf.
Lemma 2). We also need some additional clauses in (II) to deal with dissubsump-
tions. It is easy to see that C(Γ) can be constructed in time polynomial in the
size of Γ. We prove the correctness of this reduction in the following two sections.

24

6.1 Soundness

Let τ be a valuation of the propositional variables that satisfies C(Γ). We define
the assignment Sτ as follows:

SτX := {D ∈ Atnv | τ([X v D]) = 1}.

We show the following connection between >Sτ and the order relation encoded by
the propositional variables [X > Y]. The proof is exactly the same as in [2], but
uses a different notation.

Lemma 21. The relation >Sτ is irreflexive.

Proof. We first show that X >Sτ Y implies τ([X > Y]) = 1 for all X, Y ∈ Nv. If
Y occurs in an atom of SτX , then this atom must be of the form ∃r.Y with r ∈ NR.
By construction of Sτ , this implies that τ([X v ∃r.Y]) = 1. Since τ satisfies the
clauses in (V)c, we have τ([X > Y]) = 1. By definition of >Sτ and the transitivity
clauses in (V)b, we conclude that τ([X > Y]) = 1 whenever X >Sτ Y .

Assume now that X >Sτ X holds for some X ∈ Nv. By the claim above, this
implies that τ([X > X]) = 1. But this is impossible since τ satisfies the clauses
in (V)a.

This in particular shows that Sτ is acyclic. In the following, let στ denote the
substitution σSτ induced by Sτ . We show that στ is a solution of Γ.

Lemma 22. If C,D ∈ At such that τ([C v D]) = 1, then στ (C) v στ (D).

Proof. We show this by induction on the pairs (rd(στ (D)),Var(D)), where Var(D)
is either the variable that occurs in D, or ⊥ if D is ground. These pairs are
compared by the lexicographic extension of the order > on natural numbers for the
first component and the order >Sτ for the second component, which is extended
by Y >Sτ ⊥ for all Y ∈ Nv.

We make a case distinction on the form of C and D and consider first the case
that D is a variable. Let στ (E) be any top-level atom of στ (D), which means
that τ([D v E]) = 1. By the clauses in (III), we also have τ([C v E]) = 1.
Since rd(στ (D)) ≥ rd(στ (E)) and Var(D) = D >Sτ Var(E), by induction we get
στ (C) v στ (E). Since στ (D) is equivalent to the conjunction of all its top-level
atoms, by Lemma 1 we obtain στ (C) v στ (D).

If D is a non-variable atom and C is a variable, then στ (C) v στ (D) holds by
construction of Sτ and Lemma 1.

If C,D are both non-variable atoms, then by the clauses in (II) they must either
be the same concept constant, or be existential restrictions using the same role
name. In the first case, the claim follows immediately. In the latter case, let

25

C = ∃r.C ′ and D = ∃r.D′. By the clauses in (II)e, we have τ([C ′ v D′]) = 1.
Since rd(στ (D)) > rd(στ (D′)), by induction we get στ (C ′) v στ (D′), and thus
στ (C) v στ (D) by Lemma 1.

We now show that the converse of this lemma also holds.

Lemma 23. If C,D ∈ At such that τ([C v D]) = 0, then στ (C) 6v στ (D).

Proof. We show this by induction on the tuples (rd(στ (C)),Var(C),Var(D)) and
make a case distinction on the form of C and D. If D is a variable, then by the
clauses in (IV) there must be a D′ ∈ Atnv such that τ(pC,D,D′) = 1. This implies
that τ([D v D′]) = 1 and τ([C v D′]) = 0. By construction of Sτ , στ (D′) is a top-
level atom of στ (D) and Var(D) >Sτ Var(D′). Since rd(στ (C)) = rd(στ (C)) and
Var(C) = Var(C), by induction we get στ (C) 6v στ (D′), and thus στ (C) 6v στ (D)
by Lemma 2.

If D is a non-variable atom and C is a variable, then consider any top-level atom
στ (E) of στ (C), which means that we have τ([C v E]) = 1. By the clauses
in (III) this implies that τ([E v D]) = 0. Since we have rd(στ (C)) ≥ rd(στ (E))
and Var(C) = C >Sτ Var(E), by induction we get στ (E) 6v στ (D). Since στ (C)
is equivalent to the conjunction of all its top-level atoms, by Lemma 2 we get
στ (C) 6v στ (D).

If C,D are both non-variable atoms, then by the clauses in (II), they are either
different constants, a constant and an existential restriction, or two existential
restrictions. In the first two cases, στ (C) 6v στ (D) holds by Lemma 1. In the last
case, they can either contain two different roles or the same role. Again, the former
case is covered by Lemma 1, while in the latter case we have C = ∃r.C ′, D = ∃r.D′,
and τ([C ′ v D′]) = 0 by the clauses in (II)e. Since rd(στ (C)) > rd(στ (C ′)), by
induction we get στ (C ′) 6v στ (D′), and thus στ (C) 6v στ (D) by Lemma 2.

This suffices to show soundness of the reduction.

Lemma 24. If C(Γ) is solvable, then Γ has a local solution.

Proof. Since στ is obviously local, it suffices to show that it solves Γ.

Consider any flat subsumption C1 u · · · u Cn v? D in Γ. If D ∈ Atnv, then we
have στ (Ci) v στ (D) for some i, 1 ≤ i ≤ n, by the clauses in (I) and Lemma 22.
By Lemma 1, στ solves the subsumption.

If D is a variable, then consider any top-level atom στ (E) of στ (D), for which we
must have τ([D v E]) = 1. By the clauses in (I), there must be an i, 1 ≤ i ≤ n,
such that τ([Ci v E]) = 1, and thus στ (Ci) v στ (E) by Lemma 22. Again, by
Lemma 1 this implies that στ solves the subsumption.

Finally, consider a dissubsumption X 6v? Y in Γ. Then by the clauses in (I) and
Lemma 23 we have στ (X) 6v στ (Y) i.e. στ solves the dissubsumption.

26

6.2 Completeness

Let now σ be a ground local solution of Γ and >σ the resulting partial order on Nv,
defined as follows for all X, Y ∈ Nv:

X >σ Y iff σ(X) v ∃r1. . . .∃rn.σ(Y) for some r1, . . . , rn ∈ NR with n ≥ 1.

Note that >σ is irreflexive since X >σ X is impossible by Lemma 1, and it is
transitive since v is transitive and closed under applying existential restrictions
on both sides. Thus, >σ is a strict partial order. We define a valuation τσ as
follows for all C,D ∈ At, E ∈ Atnv, and X, Y ∈ Nv:

τσ([C v D]) :=

1 if σ(C) v σ(D)
0 otherwise

τσ(pC,X,E) :=

1 if σ(X) v σ(E) and σ(C) 6v σ(E)
0 otherwise

τσ([X > Y]) :=

1 if X >σ Y

0 otherwise

Lemma 25. If Γ has a local solution, then C(Γ) is solvable.

Proof. We verify that τσ satisfies all clauses of Definition 20.

For (I)a, consider any flat subsumption C1 u · · · u Cn v? D in Γ with D ∈ Atnv.
Since σ solves Γ, we have σ(C1) u · · · u σ(Cn) v σ(D). Since σ(D) is an atom, by
Lemma 1 there must be an i, 1 ≤ i ≤ n, and a top-level atom E of σ(Ci) such
that σ(Ci) v E v σ(D). By the definition of τσ, this shows that τσ([Ci v D]) = 1,
and thus the clause is satisfied.

Consider now an arbitrary flat subsumption C1 u · · · u Cn v? X from Γ where
X is a variable, and any E ∈ Atnv such that τσ([X v E]) = 1. This implies
that we have σ(C1) u · · · u σ(Cn) v σ(X) v σ(E), and thus as above there is a
top-level atom F of some σ(Ci) such that σ(Ci) v F v σ(E), which shows that
τσ([Ci v E]) = 1, as required for the clause in (I)b.

For every dissubsumption X 6v? Y in Γ, we must have σ(X) 6v σ(Y), and thus
τσ([X v Y]) = 0, satisfying the clause in (I)c.

For A ∈ Nc, we have σ(A) v σ(A), and thus τσ([A v A]) = 1. Similar arguments
show that the remaining clauses in (II) are also satisfied (see Lemma 1). For (III),
consider C1, C2, C3 ∈ At with τσ([C1 v C2]) = τσ([C2 v C3]) = 1, and thus
σ(C1) v σ(C2) v σ(C3). By transitivity of v, we infer τσ([C1 v C3]) = 1.

For all C ∈ At, X ∈ Nv, and D ∈ Atnv with τσ(pC,X,D) = 1, we must have
τσ([X v D]) = 1 and τσ([C v D]) = 0 by the definition of τσ. Furthermore,
whenever τσ([C v X]) = 0, we have σ(C) 6v σ(X), and thus by Lemma 2 there

27

must be a top-level atom E of σ(X) such that σ(C) 6v E. Since σ is a local
solution, E must be of the form σ(F) for some F ∈ Atnv, and thus we obtain
σ(X) v σ(F) and σ(C) 6v σ(F), and hence τσ(pC,X,F) = 1. This shows that all
clauses in (IV) are satisfied by τσ.

For (V)a, recall that >σ is irreflexive. Transitivity of >σ yields satisfaction of
the clauses in (V)b. Finally, if σ(X) v σ(∃r.Y) = ∃r.σ(Y) for some X, Y ∈ Nv
with ∃r.Y ∈ At, we have X >σ Y by definition, and thus the clauses in (V)c are
satisfied by τσ.

This completes the proof of the correctness of the translation presented in Defini-
tion 20, which provides us with a reduction of local disunification (and thus also of
dismatching) to SAT. This SAT reduction has been implemented in our prototype
system UEL,5 which uses SAT4J6 as external SAT solver. First experiments show
that dismatching is indeed helpful for reducing the number and the size of unifiers.
The runtime performance of the solver for dismatching problems is comparable to
the one for pure unification problems.

7 Related and future work

Since Description Logics and Modal Logics are closely related [25], results on
unification in one of these two areas carry over to the other one. In Modal Logics,
unification has mostly been considered for expressive logics with all Boolean
operators [18, 19, 24]. An important open problem in the area is the question
whether unification in the basic modal logic K, which corresponds to the DL ALC,
is decidable. It is only known that relatively minor extensions of K have an
undecidable unification problem [26].

Disunification also plays an important role in Modal Logics since it is basically
the same as the admissibility problem for inference rules [14, 21, 23]. To be more
precise, a given a normal modal logic L induces an equational theory EL that
axiomatizes equivalence in this logic, where the formulas are viewed as terms.
Validity is then just equivalence to > and inconsistency is equivalence to ⊥. An
inference rule is of the form

A1, . . . , Am
B1, . . . , Bn

(4)

where A1, . . . , Bn are formulas (terms) that may contain variables. More precisely,
it is not a single rule but a rule schema that stands for all its instances

σ(A1), . . . , σ(Am)
σ(B1), . . . , σ(Bn) (5)

5version 1.3.0, available at http://uel.sourceforge.net/
6http://www.sat4j.org/

28

http://uel.sourceforge.net/
http://www.sat4j.org/

where σ is a substitution. The semantics of such a rule (5) is the following:
whenever all of its premises are valid, then one of the consequences must be valid
as well. We only admit the inference rule (4) for the logic L if all its instances (5)
satisfy this requirement. Thus, we say that the inference rule (4) is admissible
for L if

σ(A1) =EL > ∧ . . . ∧ σ(Am) =EL > implies σ(B1) =EL > ∨ . . . ∨ σ(Bn) =EL >

for all substitutions σ. Obviously, this is the case iff the disunification problem

{A1 ≡? >, . . . , Am ≡? >, B1 6≡? >, . . . , Bn 6≡? >}

does not have a solution.

Regarding future work, we want to investigate the decidability and complexity of
general disunification in EL, and consider also the case where non-ground solutions
are allowed. From a more practical point of view, we plan to implement also the
goal-oriented algorithm for local disunification, and to evaluate the performance
of both presented algorithms on real-world problems.

References
[1] Franz Baader and Barbara Morawska. Unification in the description logic EL.

Logical Methods in Computer Science, 6(3), 2010. doi: 10.2168/LMCS-6(3:
17)2010.

[2] Franz Baader and Barbara Morawska. SAT encoding of unification in EL.
In Christian G. Fermüller and Andrei Voronkov, editors, Proc. of the 17th
Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’10), volume 6397 of Lecture Notes in Computer Science, pages 97–111.
Springer-Verlag, 2010. doi: 10.1007/978-3-642-16242-8_8.

[3] Franz Baader and Barbara Morawska. Matching with respect to general
concept inclusions in the description logic EL. In Carsten Lutz and Michael
Thielscher, editors, Proc. of the 37th German Conf. on Artificial Intelligence
(KI’14), volume 8736 of Lecture Notes in Computer Science, pages 135–146.
Springer-Verlag, 2014. doi: 10.1007/978-3-319-11206-0_14.

[4] Franz Baader and Paliath Narendran. Unification of concept terms in de-
scription logics. J. of Symbolic Computation, 31(3):277–305, 2001.

[5] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1999.

[6] Franz Baader and Alexander Okhotin. Solving language equations and
disequations with applications to disunification in description logics and

29

monadic set constraints. In Nikolaj Bjørner and Andrei Voronkov, editors,
Proceedings of the 18th International Conference on Logic for Programming,
Artifical Intelligence, and Reasoning (LPAR-12), volume 7180 of Lecture
Notes in Computer Science, pages 107–121, Mérida, Venezuela, 2012. Springer-
Verlag.

[7] Franz Baader, Ralf Küsters, Alex Borgida, and Deborah L. McGuinness.
Matching in description logics. Journal of Logic and Computation, 9(3):
411–447, 1999. doi: 10.1093/logcom/9.3.411.

[8] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common
subsumers in description logics with existential restrictions. In Thomas Dean,
editor, Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI’99), pages 96–101. Morgan Kaufmann, 1999.

[9] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[10] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope
further. In Kendall Clark and Peter F. Patel-Schneider, editors, In Proceedings
of the Fifth International Workshop on OWL: Experiences and Directions
(OWLED’08), Karlsruhe, Germany, 2008.

[11] Franz Baader, Stefan Borgwardt, Julian Alfredo Mendez, and Barbara
Morawska. UEL: Unification solver for EL. In Yevgeny Kazakov, Domenico
Lembo, and Frank Wolter, editors, Proc. of the 25th Int. Workshop on De-
scription Logics (DL’12), volume 846 of CEUR Workshop Proceedings, pages
26–36, 2012. URL http://ceur-ws.org/Vol-846/paper_8.pdf.

[12] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Computing minimal
EL-unifiers is hard. In Silvio Ghilardi and Lawrence Moss, editors, Proceedings
of the 9th International Conference on Advances in Modal Logic (AiML’12),
2012.

[13] Franz Baader, Stefan Borgwardt, and Barbara Morawska. A goal-oriented
algorithm for unification in EL w.r.t. cycle-restricted TBoxes. In Yevgeny
Kazakov, Domenico Lembo, and Frank Wolter, editors, Proc. of the 25th Int.
Workshop on Description Logics (DL’12), volume 846 of CEUR Workshop
Proceedings, pages 37–47, 2012. URL http://ceur-ws.org/Vol-846/paper_
1.pdf.

[14] Sergey Babenyshev, Vladimir V. Rybakov, Renate Schmidt, and Dmitry
Tishkovsky. A tableau method for checking rule admissibility in S4. In Proc.
of the 6th Workshop on Methods for Modalities (M4M-6), Copenhagen, 2009.

30

http://ceur-ws.org/Vol-846/paper_8.pdf
http://ceur-ws.org/Vol-846/paper_1.pdf
http://ceur-ws.org/Vol-846/paper_1.pdf

[15] Sebastian Brandt. Polynomial time reasoning in a description logic with
existential restrictions, GCI axioms, and—what else? In Ramon López
de Mántaras and Lorenza Saitta, editors, Proc. of the 16th Eur. Conf. on
Artificial Intelligence (ECAI 2004), pages 298–302, 2004.

[16] W. L. Buntine and H.-J. Bürckert. On solving equations and disequations. J.
of the ACM, 41(4):591–629, 1994.

[17] H. Comon. Disunification: A survey. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson, pages 322–359.
MIT Press, Cambridge, MA, 1991.

[18] Silvio Ghilardi. Unification through projectivity. Journal of Logic and
Computation, 7(6):733–752, 1997.

[19] Silvio Ghilardi. Unification in intuitionistic logic. Journal of Logic and
Computation, 64(2):859–880, 1999.

[20] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. Journal of Web
Semantics, 1(1):7–26, 2003.

[21] Rosalie Iemhoff and George Metcalfe. Proof theory for admissible rules.
Annals of Pure and Applied Logic, 159(1-2):171–186, 2009.

[22] Ralf Küsters. Chapter 6: Matching. In Non-Standard Inferences in De-
scription Logics, volume 2100 of Lecture Notes in Computer Science, pages
153–227. Springer-Verlag, 2001. doi: 10.1007/3-540-44613-3_6.

[23] Vladimir V. Rybakov. Admissibility of logical inference rules, volume 136
of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 1997.

[24] Vladimir V. Rybakov. Multi-modal and temporal logics with universal formula
- reduction of admissibility to validity and unification. Journal of Logic and
Computation, 18(4):509–519, 2008.

[25] Klaus Schild. A correspondence theory for terminological logics: Preliminary
report. In John Mylopoulos and Raymond Reiter, editors, Proc. of the
12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471.
Morgan Kaufmann, 1991. URL http://ijcai.org/Past%20Proceedings/
IJCAI-91-VOL1/PDF/072.pdf.

[26] Frank Wolter and Michael Zakharyaschev. Undecidability of the unification
and admissibility problems for modal and description logics. ACM Transac-
tions on Computational Logic, 9(4):25:1–25:20, 2008. doi: 10.1145/1380572.
1380574.

31

http://ijcai.org/Past%20Proceedings/IJCAI-91-VOL1/PDF/072.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-91-VOL1/PDF/072.pdf

	Introduction
	Subsumption and Dissubsumption in EL
	Disunification
	Reducing dismatching to local disunification
	A goal-oriented algorithm for local disunification
	Termination
	Soundness
	Completeness

	Encoding local disunification into SAT
	Soundness
	Completeness

	Related and future work

