Complexity Theory

Exercise 4: NP-Completeness

10 November 2025

Exercise 4.1. Show that the following problem is NP-complete:

Input: A propositional formula φ in CNF

Question: Does φ have at least 2 different satisfying assignments?

Exercise 4.2. We recall some definitions.

- Given some language L, L \in CONP if, and only if, $\overline{L} \in$ NP.
- L is CONP-hard if, and only if, $L' \leq_p L$ for every $L' \in CONP$.
- L is CONP-complete if, and only if, $L \in \text{CONP}$ and L is CONP-hard.

Show that if any CONP-complete problem is in NP, then NP = CONP.

Exercise 4.3. If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size.

VERTEX-COVER = $\{\langle G, k \rangle \mid G \text{ is an undirected graph that has a } k\text{-node vertex cover.}\}$

Show that **Vertex-Cover** is NP-complete.

Hint:

Try to find a reduction from 3-Sat

Exercise 4.4. Show that if a language L is NP-complete, then \overline{L} is coNP-complete.

Exercise 4.5. Show that finding paths of a given length in undirected graphs, i.e.,

PATH = { $\langle G, s, t, k \rangle \mid G$ contains a simple path from s to t of length k }

is NP-complete.

* **Exercise 4.6.** Let $A \subseteq 1^*$. Show that if A is NP-complete, then P = NP.

Proceed as follows: Consider a polynomial-time reduction f from SAT to A. For a formula φ , let φ_{0100} be the reduced formula where variables x_1, x_2, x_3, x_4 in φ are set to the values 0, 1, 0, 0, respectively. (The particular choice of 4 variables as well as of 0100 is arbitrary here) What happens when one applies f to all of these exponentially many reduced formulas?