
Plans as Formulae

with a Non-commutative Logical Operator

Planning as Concurrency

Ozan Kahramanoğulları

University of Leipzig, Augustusplatz 10-11, 04109 Leipzig, Germany

Abstract. System NEL is a conservative extension of multiplicative ex-
ponential linear logic with a self-dual, non-commutative operator. In this
paper, we express plans as logical formulae by using this sequential op-
erator. We present an encoding of the conjunctive planning problems in
the language of NEL where plans are not extracted from the proofs, but
become explicit premises of derivations. We then extend the notion of a
plan to cover parallel composition by employing a commutative logical
operator. This way, like in concurrency, sequential and parallel composi-
tion come to the same level where the reasoning is done in a purely logical
way. We provide a constructive correctness proof and an implementation
of system NEL in Maude, and argue that this work is the primary step
for providing a common language for planning and concurrency.

1 Introduction

Concurrency and planning are two fields of computer science that evolved in-
dependently, aiming at solving tasks that are similar in nature, but different in
perspective: while planning formalisms focus on finding a plan (process) that
solves a planning problem, the focus in process algebras, such as CCS [17], is
concepts like dead-lock freeness and verification of security protocols. In such a
perspective, a notion of equivalence of processes, e.g., bisimilarity, which respects
the parallel behavior of the processes gains importance.

In a process algebra parallel and sequential composition are at the same
level, since they are equivalently important notions for expressing concurrent
processes. On the other hand, in planning the emphasis in the literature is on
the sequential composition. In the case of the partial order planners, the plan
is computed by heuristic methods, in a way distant from the underlying logical
framework, and then the computed plan is linearized to be executed. However,
parallel composition is natural in logic due to the commutative logical operators.
In this paper, in a resource conscious setting, we establish the first, but crucial,
step for our long term goal of a common language for concurrency and planning,
inside a uniform deductive formalism.

With respect to resource consciousness, the relation between logic, actions
and causality has been studied by various authors: In [1], Bibel imposes a syntac-
tical condition called linearity on proofs, which requires that each literal is en-
gaged in at most one connection. In [12], based on multiset rewriting, Hölldobler

and Schneeberger introduce an equational Horn logic where states are repre-
sented by an AC1 function symbol. In [16], Masseron et al. applies multiplicative
fragment of Girard’s linear logic [6] to resource conscious planning by axioma-
tizing the actions as proper axioms. Linear logic approach to planning is studied
further by various authors [13, 15, 5]. In [7], it is shown to be equivalent to the
approaches in [1] and [12].

In this paper, we further elaborate on the linear logic approach to planning,
aiming at providing a common language for planning and concurrency. For this
purpose we employ system NEL of the calculus of structures [9]. The calculus
of structures is a proof theoretical formalism, which is a generalization of the
one-sided sequent calculus with the gain of interesting proof theoretical proper-
ties. It was conceived to represent the logical system BV , which is a conservative
extension of multiplicative linear logic with a self-dual, non-commutative oper-
ator, called seq. Tiu showed in [21] that this system can not be designed in the
sequent calculus.

System NEL [10] is an extension of system BV with the exponentials of lin-
ear logic. In [2], Bruscoli showed that there is a correspondence between sys-
tem BV and a fragment of CCS: the sequential composition corresponds to the
non-commutative operator seq. Parallel composition is naturally mapped to the
commutative linear logic operator par. However, as it is the case in CCS, there
only the actions (labels) are included in the language, but not the resources that
are consumed and produced by the actions.

In the following, we present an encoding of the conjunctive (multiset rewrit-
ing) planning problems in the language of NEL, where plans are not extracted
from the proof of a planning problem, but become explicit premises of deriva-
tions. This way, similar to [2], by exploiting the non-commutative operator of
system NEL, and the commutative logical operator par, we are able to observe
concurrent plans, where the parallelism between plans is respected. Since our en-
coding is propositional, no unification mechanism is needed. This allows system
NEL to give the complete operational semantics of our method, and establish the
first step of a uniform formalism that connects concurrency and planning. This
way, it becomes possible to transfer methods from concurrency to planning.

In [14], we presented an implementation of the system BV in Maude 2 [3].
By extending those modules by accommodating exponentials, in this paper, we
also present an implementation of system NEL, where search for proofs and
derivations becomes possible.

The rest of the paper is organized as follows: we begin with recapitulating
notions and notations of conjunctive planning problems and system NEL. We
then present an encoding of the conjunctive planning problems in the language
of NEL and show that our encoding is correct for plans that are sequences of
actions. Following this, we extend our correctness result to plans which include
parallel composition. After presenting a sketch of a Maude 2 implementation of
system NEL, we conclude with a brief discussion.

2 Planning Problems

Following [7, 16], a planning domain is given by: (1) a set of constants repre-
senting atomic properties of the world which we call fluents and denote by small
letters; (2) a set of transition rules (actions) 1 that are multiset2 rewrite rules;
(3) states which are multisets of fluents. A conjunctive planning problem P

is then given by 〈I,G,A ,F〉 where I : {| r1, . . . , rm |} is a multiset of fluents
called initial state. The multiset G : {| g1, . . . , gn |} of fluents is the goal state. A

is a finite set of actions of the form a : {| c1, . . . , cp |} → {| e1, . . . , eq |}, where
{| c1, . . . , cp |} and {| e1, . . . , eq |} are multisets of fluents called conditions and ef-
fects, respectively, and a is the name of the action. F = {f1, . . . , fh} is the set
of all the fluents that appear in I, G and A .

An action is applicable in a state S iff {| c1, . . . , cp |} ⊆̇ S. The application of
an action a to a state S is defined by the function Φ as follows.

Φ(a,S) = (S−̇{| c1, . . . , cp |}) ∪̇ {| e1, . . . , eq |} .

A goal G is satisfied iff there is a plan (structure) p, i.e., a sequence of actions
p = 〈a1; . . . ; ak〉, which transforms the initial state into a state S, i.e.,
Φ(ak, . . . , Φ(a1, I) . . .) = S such that G ⊆̇ S. If there exists such a plan p, then p

is a solution for the planning problem P. Then we say p solves P. We denote
the empty plan with ◦. If it is more convenient, Φ(ak, . . . , Φ(a1, I) . . .) will be
abbreviated with Φ(p, I). The length of a plan is the number of actions in that
plan.

Now, to illustrate the above theory on a planning problem, let us look at
the following example which is a modification of an example from [7]. Suppose
Bert is thirsty and wants to get some lemonade (l) from a vending machine. The
lemonade costs 50 cents (f). Bert has a dollar bill (d) in his pocket. Because
the vending machine accepts only 50 cents coins, Bert has to get change for
his dollar. The problem of getting the lemonade can be described as a planning
problem with the initial state I : {| d |} , the actions cd : {| d |} → {| f, f |} and
bl : {| f |} → {| l |} that allow him to change a dollar for two 50 cents coins, and
to buy a lemonade, respectively. The goal state in which Bert got the lemonade
is given by G : {| l |} .

Clearly, the solution to the problem is the plan in which at first Bert changes
the dollar and then buys the lemonade: applying this plan to the initial state
yields, first, the state {| f, f |}, and then {| f, l |} . As the goal is contained in the
last state, the planning problem is solved.

1 We consider only propositional actions.
2 Multisets are denoted by the curly brackets “{|” and “|} ”. ∪̇ , −̇ and ⊆̇ denote
the multiset operations corresponding to the usual set operations ∪ , − and ⊆ ,
respectively.

Associativity

[[R, T], U] = [R, [T, U]]

((R, T), U) = (R, (T, U))

〈〈R;T 〉;U〉 = 〈R; 〈T ;U〉〉

Commutativity

[R, T] = [T, R]

(R, T) = (T, R)

Singleton

[R] = (R) = 〈R〉 = R

Units

[◦, R] = R

(◦, R) = R

〈◦;R〉 = R

〈R; ◦〉 = R

Exponentials

??R = ?R

!!R = !R

?◦ = ◦

!◦ = ◦

Negation

◦̄ = ◦

[R, T] = (R, T)

(R, T) = [R, T]

〈R;T 〉 = 〈R;T 〉

?R =!R

!R =?R

R = R

Contextual Closure

if R = T then S{R} = S{T}

Fig. 1. The equational system underlying System NEL.

3 The Calculus of Structures and System NEL

In this section, we present the calculus of structures [9] and system NEL [10]
which is a conservative extension of multiplicative exponential linear logic with
a non-commutative operator.

There are countably many atoms, denoted by a, b, c, . . . The structures3 of
the language NEL are denoted by P ,Q,R, S. . . and are generated by

R ::= a | ◦ | [R, . . . , R
︸ ︷︷ ︸

>0

] | (R, . . . , R
︸ ︷︷ ︸

>0

) | 〈R; . . . ;R
︸ ︷︷ ︸

>0

〉 | !R | ?R | R̄ ,

where a stands for any atom and ◦, the unit, is not an atom. A structure
[R1, . . . , Rh] is a par structure, (R1, . . . , Rh) is a times structure, 〈R1; . . . ;Rh〉
is a seq structure, !R is called an of-course structure, and ?R is called a why-not
structure; R̄ is the negation of the structure R. Structures are considered to
be equivalent modulo the relation =, which is the smallest congruence relation
induced by the equations shown in Figure 1. A structure context, denoted as in
S{ }, is a structures with a hole that does not appear in the scope of negation.
The structure R is a substructure of S{R} and S{ } is its context. Context
braces are omitted if no ambiguity is possible.

In the calculus of structures, an inference rule is a scheme of the kind
T

ρ
R

,

where ρ is the name of the rule, T is its premise and R is its conclusion. A typical

(deep) inference rule has the shape
S{T}

ρ
S{R}

and specifies a step of rewriting, by

3 The notion of a structure is similar to the notion of a formula or a sequent of the
sequent calculus. However, a structure denotes an equivalence class of structures.
Fore a formal elaboration of this notion, we refer the reader to [9].

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, T], U)
s

S [(R, U), T]

S〈[R, T]; [U, V]〉
q↓

S [〈R;U〉, 〈T ;V 〉]

S{![R, T]}
p↓

S [!R, ?T]

S{◦}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

Fig. 2. System NEL

the implication T ⇒ R inside a generic context S{ }, which is linear implication4

in our case. An inference rule is called an axiom if its premise is empty. Rules
with empty contexts correspond to the case of the sequent calculus.

A (formal) system S is a set of inference rules. A derivation ∆ in a certain
formal system is a finite chain of instances of inference rules in the system. A
derivation can consist of just one structure. The topmost structure in a deriva-
tion, if present, is called the premise of the derivation, and the bottommost
structure is called its conclusion. A derivation ∆ whose premise is T , conclusion

is R, and inference rules are in S will be written as
T

R

S∆ . Similarly,
R

SΠ

will denote a proof Π which is a finite derivation whose topmost inference rule
is an axiom.

The system in Figure 2 is called Non-commutative Exponential Linear logic,
or system NEL. The rules of the system are unit (◦↓), atomic interaction (ai↓),
switch (s), seq (q↓), promotion (p↓), weakening (w↓), and absorption (b↓).

For system NEL, the cut rule has the shape
S(R, R̄)

i↑
S{◦}

.

Theorem 1 (Cut Elimination). [10] The rule i↑ is admissible for system NEL, in

other words, for every proof
R

NEL∪{i↑}Π
, there is a proof

R

NELΠ′

.

Theorem 2 (Decomposition). [19] For every derivation ∆ in system NEL, there
is a derivation ∆′ where, seen bottom-up, first system {b↓}, then {w↓}, and then
{p↓, s,q↓,ai↓} are applied.

There is a straightforward correspondence between structures not involving
seq and formulae of multiplicative exponential linear logic (MELL). For example
! [(?a, b), c̄, ! d̄] corresponds to ! ((?a² b)O c⊥O! d⊥), and vice versa. Units 1 and

4 Due to duality between T ⇒ R and R̄ ⇒ T̄ , rules come in pairs of dual rules: a
down-version and an up-version. For instance, the dual of the ai↓ rule is the cut
rule. In this paper, we only consider the down rules, since the up rules, including
the cut rule, are admissible.

⊥ are mapped into ◦, since 1 ≡ ⊥, when the rules mix and mix0 are added to
MELL. For a proof of the above results, a more detailed discussion on the proof
theory of NEL and the precise relation between NEL and MELL, the reader is
referred to [19].

4 Planning with NEL

In this section, we present our encoding of the planning problems in the language
of NEL and show that it is correct with respect to conjunctive planning problems.

Definition 1. The sequential action structure for an action, a : {| c1, . . . , cp |} →
{| e1, . . . , eq |}, denoted by Q, is the structure 〈[c̄1, . . . , c̄p]; a; [e1, . . . , eq]〉.

Definition 2. The simple problem structure P s for an initial state I = {| r1, . . . , rm |}
and a goal state G = {| g1, . . . , gn |} is the structure [r1, . . . , rm, ḡ1, . . . , ḡn].

Because an action can be executed arbitrarily many times, we employ the
exponential “ ? ” which retains a controlled contraction and weakening on the
action structures. This way, we can duplicate an action structure by applying the
b↓ rule, or annihilate it by applying the w↓ rule during the search for the plans.
This also allows us to make the interaction between the planning problems and
actions explicit by prefixing a planning problem structure with “ ! ”: by applying
the p↓ rule in proof search we allow an action structure to get inside and interact
with a problem structure.

We can now define a planning problem in the language of NEL.

Definition 3. Let P = 〈I,G,A ,F〉 be a planning problem. The sequential con-
junctive planning problem structure (shortly scpps) for P, denoted by Ps, is
the structure

[?Q1, . . . , ?Qk, !P
s, ?f̄1, . . . , ?f̄h]

where Qi (1 ≤ i ≤ k) are the sequential action structures for the actions in A ,
P s is the simple problem structure for I and G, and F = {f1, . . . , fh}.

Let us reconsider the conjunctive planning problem from Section 2. This planning
problem can be expressed as the following scpps.

[?〈d̄; cd; [f, f]〉 , ?〈f̄ ; bl; l〉 , ! [d, l̄], ?d, ?f, ?l] (1)

The structures ?〈d̄; cd; [f, f]〉 and ?〈f̄ ; bl; l〉 are the sequential action structures
for the actions cd and bl, respectively. The structure [d, l̄] is the simple prob-
lem structure for the initial state I = {| d |} and the goal state G = {| l |}. The
structures ?d, ?l and ?f correspond to F = {d, f, l} .

In the following, we will show that searching for a certain kind of derivations
where the conclusion is the scpps for a planning problem is equivalent to finding a
solution for this planning problem. With the following lemmata, we will formally
express the operational semantics of reaching a goal state and applying an action
to a state in the language of NEL, respectively.

Lemma 1. The following rule is derivable in NEL.

S{!P}
termination

S [! 〈P ; [r1, . . . , rn, g1, . . . , gs, r̄1, . . . , r̄n]〉, ?f̄1, . . . , ?f̄h]

where gi ∈ {f1, . . . , fh} for 1 ≤ i ≤ s.

Proof: Take the following derivation.

S{!P}
ai↓

...
ai↓

! 〈P ; [g1, . . . , gs, ḡ1, . . . , ḡs]〉
q↓

! [〈P ; [g1, . . . , gs]〉, ḡ1, . . . , ḡs]
p↓

...
p↓

[! 〈P ; [g1, . . . , gs]〉, ?ḡ1, . . . , ?ḡs]
w↓

...
w↓

[! 〈P ; [g1, . . . , gs]〉, ?ḡ1, . . . , ?ḡs, ?f̄1, . . . , ?f̄h]
b↓

...
b↓

[! 〈P ; [g1, . . . , gs]〉, ?f̄1, . . . , ?f̄h]
ai↓

...
ai↓

[! 〈P ; [r1, . . . , rn , g1, . . . , gs, r̄1, . . . , r̄n]〉, ?f̄1, . . . , ?f̄h]

¤

Lemma 2. The following rule is derivable in NEL.

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; a; [R,E]〉]
action

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; [c1, . . . , cp, R]〉]

Proof: Take the following derivation.

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; a; [E,R]〉]
q↓

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; [〈a;E〉, R]〉]
ai↓

...
ai↓

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; [〈 [c1, . . . , cp, c̄1, . . . , c̄p] ; a;E〉, R]〉]
q↓

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; [〈[c̄1, . . . , c̄p]; a;E〉, c1, . . . , cp], R〉]
q↓

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! [〈[c̄1, . . . , c̄p]; a;E〉 , 〈P ; [c1, . . . , cp, R]〉]]
p↓

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; [c1, . . . , cp, R]〉]
b↓

S [?〈[c̄1, . . . , c̄p]; a;E〉 , ! 〈P ; [c1, . . . , cp, R]〉]

¤

By employing the rules action and termination bottom-up, we can search for
plans while going up in a derivation: the rule action is applied till the multiset of
negative atoms in the of-course structure denoting the simple problem structure
is a submultiset of the multiset of positive atoms, where the rule termination can
be applied. After annihilating the of-course structures for the sequential action
structures and excessive resources with the rule w↓, such a derivation will then
give a plan structure at the premise which is a solution for the planning problem.
The following theorem proves that our encoding is correct.

Theorem 3. Let P = 〈I,G,A ,F〉 be a conjunctive planning problem and P s

the scpps for P. There is a derivation

! p

Ps
NEL

iff the plan p solves P.

Proof:
(⇒:) Proof with induction on the length of the plan at the premise of the
derivation. If there is a derivation with the empty plan ◦ at the premise of
the derivation, then it follows from Lemma 1 that there must be a derivation of
the following form.

◦
w↓

...
w↓

[?Q1, . . . , ?Qk?f̄1, . . . , ?f̄h′]
termination

[?Q1, . . . , ?Qk, ! 〈◦; [r1, . . . , rn, f1, . . . , fs, r̄1, . . . , r̄n]〉, ?f̄1, . . . , ?f̄h]
=

[?Q1, . . . , ?Qk, ! [r1, . . . , rn, f1, . . . , fs, r̄1, . . . , r̄n] , ?f̄1, . . . , ?f̄h]
(2)

It follows that for I ⊇̇ {| r1, . . . , rn |} = G , plan ◦ with length 0 solves the planning
problem. Turning to the induction step, we assume that if there is a derivation

〈a1; . . . ; aj〉

[?Q1, . . . , ?Qk, ! [r1, . . . , rm, ḡ1, . . . , ḡn], ?f̄1, . . . , ?f̄h]
NEL∆ , (3)

then the plan 〈 a1; . . . ; aj 〉 solves the planning problem 〈I,G,A ,F〉 where A =
{a1, . . . , ak}, I = {| r1, . . . , rm |} and G = {| g1, . . . , gn |} . If there is such a deriva-
tion ∆, then it follows from Theorem 2 that there is a derivation of the following
form.

〈 a1; . . . ; aj 〉

! [Q1, . . . ,Qj , r1, . . . , rm, ḡ1, . . . , ḡn, f̄1, . . . , f̄h′′]

{ai↓,q↓}∆1

[?Q1, . . . , ?Qj , ! [r1, . . . , rm, ḡ1, . . . , ḡn], ?f̄1, . . . , ?f̄h′′]
{p↓}∆2

[?Q1, . . . , ?Qk, ?Q1, . . . , ?Qj , ! [r1, . . . , rm, ḡ1, . . . , ḡn], ?f̄1, . . . , ?f̄h′′ , ?f̄1, . . . , ?f̄h]
{w↓}∆3

[?Q1, . . . , ?Qk, ! [r1, . . . , rm, ḡ1, . . . , ḡn], ?f̄1, . . . , ?f̄h]
{b↓}∆4

Consider the planning problem given with A, I ′ = {| c1, . . . , cp, rq+1, . . . , rm |} G
and F ′ such that F ⊆ {f ′

1, . . . , f
′
h′} = F ′ . Suppose there is a derivation with

a plan of length j + 1 at the premise. Then, from Lemma 2 there must exist a
derivation of the following form.

! 〈a; a1; . . . ; aj〉

! 〈a; [Q1, . . . ,Qj , r1, . . . , rm, ḡ1, . . . , ḡn, f̄1, . . . , f̄h′′]〉
q↓

! [Q1, . . . ,Qj , 〈a; [r1, . . . , rm, ḡ1, . . . , ḡn]〉, f̄1, . . . , f̄h′′]
p↓

...
p↓

[?Q1, . . . , ?Qj , ! 〈a; [r1, . . . , rm, ḡ1, . . . , ḡn]〉, ?f̄1, . . . , ?f̄h′′]
w↓

...
w↓

[?Q1, . . . , ?Qk , ?Q1, . . . , ?Qj , ! 〈a; [r1, . . . , rm, ḡ1, . . . , ḡn]〉, ?f̄1, . . . , ?f̄h , ?f̄1, . . . , ?f̄h′′]
b↓

...
b↓

[?Q1, . . . , ?Qk , ! 〈a; [r1, . . . , rm, ḡ1, . . . , ḡn]〉, ?f̄1, . . . , ?f̄h]
w↓

...
w↓

[?Q1, . . . , ?Qk, ! 〈a; [r1, . . . , rq, rq+1, . . . , rm, ḡ1, . . . , ḡn]〉, ?f̄ ′
1, . . . , ?f̄

′
h′]

action
[?Q1, . . . , ?Qk, ?〈[c̄1, . . . , c̄p]; a; [r1, . . . , rq]〉, ! 〈◦ ; [c1, . . . , cp, rq+1, . . . , rm, ḡ1, . . . , ḡn]〉, ?f̄ ′

1, . . . , ?f̄
′
h′]

=
[?Q1, . . . , ?Qk, ?〈[c̄1, . . . , c̄p]; a; [r1, . . . , rq]〉, ! [c1, . . . , cp, rq+1, . . . , rm, ḡ1, . . . , ḡn] , ?f̄ ′

1, . . . , ?f̄
′
h′]

b↓
[?Q1, . . . , ?Qi , . . . , ?Qk, ! [c1, . . . , cp, rq+1, . . . , rm, ḡ1, . . . , ḡn], ?f̄ ′

1, . . . , ?f̄
′
h′]

{ai↓,q↓}∆1

(4)

Observe that there is an action a : {| c1, . . . , cp |} → {| r1, . . . , rq |} . Since

I ′ −̇ {| c1, . . . , cp |} ∪̇ {| r1, . . . , rq |} = {| r1, . . . , rm |} ,

it follows that 〈a; a1; . . . ; ak〉 with length k + 1 is a solution for the planning
problem.

(⇐:) Proof with induction on the length of the plan p . If p is the empty plan,
then it must be the case that I = {| r1, . . . , rm |} ⊇̇ G. Take the derivation (2).
Turning to the induction step we assume that the result holds for a plan with k

number of actions. Suppose there is a plan 〈a; a1; . . . ; ak〉 that solves the plan-
ning problem given with I = {| r1, . . . , rm, c1, . . . , cp |} and G = {| g1, . . . , gn |}.
Hence we find an action

a : {| c1, . . . , cp |} → {| r1, . . . , rq |} , where q < m ,

and a planning problem given with

I ′ = {| r1, . . . , rq, rq+1, . . . , rm |} , G = {| g1, . . . , gn |}

which is solved by 〈a1; . . . ; ak〉. Since we have the derivation ∆ in (3) from the
induction hypothesis, the derivation (4) proves the result. ¤

To illustrate the above ideas, let us return to our running example. Observe
that the conclusion of the below derivation is the scpps in (1).

! 〈cd ; bl〉
w↓4

[?〈d̄; cd; [f, f]〉 , ?〈f̄ ; bl; l〉 , ! 〈cd ; bl〉, ?d, ?l]
termination

[?〈d̄; cd; [f, f]〉 , ?〈f̄ ; bl; l〉 , ! 〈cd ; bl ; [f, l, l̄]〉, ?d, ?f , ?l]
action

[?〈d̄; cd; [f, f]〉 , ?〈f̄ ; bl; l〉 , ! 〈cd ; [f, f, l̄]〉, ?d, ?f, ?l]
action

[?〈d̄; cd; [f, f]〉 , ?〈f̄ ; bl; l〉 , ! 〈◦ ; [d, l̄]〉, ?d, ?f, ?l]
=

[?〈d̄; cd; [f, f]〉 , ?〈f̄ ; bl; l〉 , ! [d, l̄] , ?d, ?f, ?l]

The plan structure at the premise is a solution of our planning problem.

5 Concurrent Plans

As well as sequential composition due to non-commutative seq operator, the
language of NEL allows to express parallel composition of plans and actions by
employing the commutative par operator. In this section, we further extend the
notion of plans to the notion of concurrent plans, and show that our encoding
of the planning problems allows to capture parallelism in plans.

Definition 4. A concurrent plan structure is a structure generated by

P ::= ◦ | a | 〈P ;P 〉 | [P , P]

where a denotes atoms representing actions.

Proposition 1. For every planning problem P given with I, G, and A , and a
plan 〈a1; . . . ; ak〉 that solves it, for some s ≤ k, there is a planning problem P ′

given with I ′ = Φ(as, . . . , Φ(a1, I) . . .), G and A that is solved by 〈as+1; . . . ; ak〉.

Proof: Follows immediately from the definitions in Section 2. ¤

Proposition 2. Let I, S1, S2 be states and p be a plan.
Φ(p, I) = S1 iff Φ(p , I ∪̇ S2) = S1 ∪̇ S2 .

Proof: With induction on the length of p. ¤

Lemma 3. Let I1 = {| r1, . . . , rm |}, I2 = {| r′1, . . . , r
′
n |}, S1 = {| g1, . . . , gp |} and

S2 = {| g′1, . . . , g
′
q |} be states and p1 = 〈a1, . . . , ak〉, p2 = 〈a′1, . . . , a

′
k′〉 be plans.

Furthermore, let Q1, . . . ,Qk,Q
′
1, . . . ,Q

′
k′ be the sequential action structures for

the actions a1, . . . , ak, a
′
1, . . . , a

′
k′ . The following are equivalent.

(i) Φ(p1, Φ(p2, I1 ∪̇ I2)) = Φ(p2, Φ(p1, I1 ∪̇ I2)) = S .

(ii) Φ(p1, I1) = S1 and Φ(p2, I2) = S2 such that S = S1 ∪̇ S2 .

(iii)

〈[p1, p2]; [g1, . . . , gp, g
′
1, . . . , g

′
q]〉

[Q1, . . . ,Qk,Q
′
1, . . . ,Q

′
k′ , r1, . . . , rm, r

′
1, . . . , r

′
n]

{ai↓,q↓}

Proof:
(i)⇒ (ii) : Let Φ(p1, I1) = S

′. From Proposition 2, we have
Φ(p2 , Φ(p1 , I1 ∪̇ I2)) = Φ(p2 , S

′ ∪̇ I2) = S .
Assume that (i) holds and (ii) does not hold.
This can only be the case when there are fluents in S ′ that are not present in I2

and consumed by p2, but this contradicts with Φ(p2, Φ(p1, I1 ∪̇ I2)) = S

(ii)⇒ (iii) : Observe that (ii) implies that there are the following derivations.

〈p1; [g1, . . . , gp]〉

[Q1, . . . ,Qk, r1, . . . , rm]
{ai↓,q↓}∆1

〈p2; [g
′
1, . . . , g

′
q]〉

[Q′
1, . . . ,Q

′
k′ , r

′
1, . . . , r

′
n]

{ai↓,q↓}∆2

Take the following derivation.

〈[p1, p2]; [g1, . . . , gp, g
′
1, . . . , g

′
q]〉

q↓
[〈p1; [g1, . . . , gp]〉, 〈p2; [g

′
1, . . . , g

′
q]〉]

[Q1, . . . ,Qk, r1, . . . , rm, 〈p2; [g
′
1, . . . , g

′
q]〉]

∆1

[Q1, . . . ,Qk,Q
′
1, . . . ,Q

′
k′ , r1, . . . , rm, r

′
1, . . . , r

′
n]

∆2

(iii)⇒ (i) : The following derivations together with Theorem 3 prove the result.

〈p1; p2〉
=
〈[p1, ◦]; [◦, p2]〉

q↓
[〈p1; ◦〉, 〈◦; p2〉]

=
[p1, p2]

〈p2; p1〉
=
〈[◦, p2]; [p1, ◦]〉

q↓
[〈◦; p1〉, 〈p2; ◦〉]

=
[p1, p2]

¤

Definition 5. A concurrent plan structure P solves a planning problem P, if,
for all the derivations

p

P

{q↓}

where p is a plan structure, p solves P.

To illustrate these ideas let us return to our running example. However, this time
Bert is not only thirsty but also hungry. Since he is equipped with the action
that allows him to get a candy-bar (c) for 50 cents from the vending machine,
this should not be a problem. Then, once he has a lemonade and a candy bar,
he can have lunch which makes him happy (h). Consider the following scpps

[?〈d̄; cd; [f, f]〉 , ?〈f̄ ; bl; l〉 , ?〈f̄ ; gc; c〉 , ?〈[l̄, c̄];hl;h〉 , ! [d, h̄], ?d, ?f, ?l, ?c, ?h]

where ?〈f̄ ; gc; c〉 and ?〈[l̄, c̄];hl;h〉, respectively, are the sequential action struc-
tures for the actions get a candy-bar and have lunch, respectively. It is easy to
observe that the concurrent plan structure

〈cd ; [bl , gc];hl〉

solves the above planning problem. The following theorem formally justifies that
there is a derivation which provides this concurrent plan structure at the premise.

Theorem 4. Let P be a planning problem and Ps be the scpps for P. If P is
a concurrent plan structure that solves a planning problem P, then there is a
derivation of the following form.

!P

Ps
NEL∆

Proof: Let p = 〈a1, . . . , ak〉 be a plan structure such that there is a derivation
p

P

{q↓} . From Theorem 3 there is a derivation
! 〈a1, . . . , ak〉

Ps
NEL and from Theorem

2, there is a derivation of the following form

! 〈a1, . . . , ak〉

! [Q1, . . . ,Qk, r1, . . . , rm, ḡ1, . . . , ḡn]
{ai↓,q↓}∆1

Ps
{p↓,w↓,b↓}∆2

where Q1, . . . ,Qk are the sequential action structures for the actions a1, . . . , ak.
It remains to prove that there is a derivation

P

[Q1, . . . ,Qk, r1, . . . , rm, ḡ1, . . . , ḡn]

{ai↓,q↓}∆3

We will construct the derivation ∆3 with structural induction on P .

– If P = ◦ or P = a , then take ∆1.

– If P = 〈P1;P2〉, then there must be a plan p = 〈p1; p2〉 that solves P such
that

p1

P1

{q↓} and

p2

P2

{q↓}

where p1 = 〈a1, . . . , ak′〉 and p2 = 〈ak′+1, . . . , ak〉.
Let Q1, . . . ,Qk be the sequential action structures for the actions a1, . . . , ak.
Then from Proposition 1 and Theorem 3, there must be a derivation of the
following form.

〈p1; p2〉
ai↓

...
ai↓

〈p1; [t1, . . . , th, t̄1, . . . , t̄h]; p2〉
q↓
〈p1; [t1, . . . , th, 〈[t̄1, . . . , t̄h]; p2〉]〉

q↓
[〈p1; [t1, . . . , th]〉, 〈[t̄1, . . . , t̄h]; p2〉]

[Q1, . . . ,Qk′ , r1, . . . , rm′ , ḡ1, . . . , ḡn′ , 〈[t̄1, . . . , t̄h]; p2〉]

{ai↓,q↓}

[Q1, . . . ,Qk′ , r1, . . . , rm′ , ḡ1, . . . , ḡn′ ,Qk′+1, . . . ,Qk, rm′+1, . . . , rm, ḡn′+1, . . . , ḡn]
=

[Q1, . . . ,Qk, r1, . . . , rm, ḡ1, . . . , ḡn]

{ai↓,q↓}

It follows that induction hypothesis gives the derivations

〈P1; [t1, . . . , th]〉

[Q1, . . . ,Qk′ , r1, . . . , rm′ , ḡ1, . . . , ḡn′]

{ai↓,q↓}∆4 and
〈[t̄1, . . . , t̄h];P2〉

[Qk′+1, . . . ,Qk, rm′+1, . . . , rm, ḡn′+1, . . . , ḡn]

{ai↓,q↓}∆5 .

Take the derivation

〈P1;P2〉
ai↓

...
ai↓

〈P1; [t1, . . . , th, t̄1, . . . , t̄h];P2〉
q↓
〈P1; [t1, . . . , th, 〈[t̄1, . . . , t̄h];P2〉]〉

q↓
[〈P1; [t1, . . . , th]〉, 〈[t̄1, . . . , t̄h];P2〉]

[Q1, . . . ,Qk, r1, . . . , rm, ḡ1, . . . , ḡn]

{ai↓,q↓}[∆4,∆5]

.

– If P = [P1, P2] then there must be plans p = 〈p1; p2〉 and p′ = 〈p2; p1〉 that
solve P such that

p1

P1

{q↓} and

p2

P2

{q↓} .

From Lemma 3 and Theorem 3 there must be a derivation of the following form.

[p1, p2]

[Q1, . . . ,Qk′ , r1, . . . , rm′ , ḡ1, . . . , ḡn′ , p2]

{ai↓,q↓}

[Q1, . . . ,Qk′ , r1, . . . , rm′ , ḡ1, . . . , ḡn′ ,Qk′+1, . . . ,Qk, rm′+1, . . . , rm, ḡn′+1, . . . , ḡn]
=

[Q1, . . . ,Qk, r1, . . . , rm, ḡ1, . . . , ḡn]

{ai↓,q↓}

It follows that induction hypothesis gives the derivations

P1

[Q1, . . . ,Qk′ , r1, . . . , rm′ , ḡ1, . . . , ḡn′]

{ai↓,q↓}∆6 and
P2

[Qk′+1, . . . ,Qk, rm′+1, . . . , rm, ḡn′+1, . . . , ḡn]

{ai↓,q↓}∆7 .

Take the derivation

[P1, P2]

[Q1, . . . ,Qk, r1, . . . , rm, ḡ1, . . . , ḡn]

{ai↓,q↓}[∆6,∆7] .

¤

Corollary 1. Let P be a planning problem and Ps be the scpps for P. If P is a
concurrent plan structure that solves a planning problem P, then the structure
[Ps, ?P̄] has a proof in NEL.

Proof: Result follows immediately from Theorem 4.

6 Logical Strategies

We did not make any use of the rule s in our derivations. However, this rule
can be employed to logically enforce strategies for backward or forward search
for plans, where the search starts from the inital state or the goal state. For
instance, consider the following schemes of derivations with the sequential action
structures and simple problem structures at the premise.

〈(c̄1, . . . , c̄p); a; [e1, . . . , eq]〉
s

...
s
〈[c̄1, . . . , c̄p]; a; [e1, . . . , eq]〉

and

[r1, . . . , rm, (ḡ1, . . . , ḡn)]
s

...
s
[r1, . . . , rm, ḡ1, . . . , ḡn]

By applying these schemes to all the sequential action structures and to the
simple planning problem structure in a scpps the search for plans is forced to
be forward search since only the atoms in a par structure can interact with the
negative atoms in the condition of an action. In order to observe this, the reader
can try to apply the induction argument of the proof of Theorem 3 backward
by starting from the goal state and applying the last action: this does not work
due to possible atoms in the goal state that are not necessarily produced by the
last action of the plan.

The same method can be analogously applied for enforcing a backward search
strategy.

7 Implementation in Maude

Besides other properties, one interesting and important property which distin-
guishes calculus of structures from the sequent calculus is deep inference: the
calculus of structures does not depend on a notion of main connective, and like
in term rewriting, inference rules are deeply applicable inside expressions. This
makes it possible to express logical systems as term rewriting systems modulo
equality [11, 14].

The language Maude [3] allows implementing term rewriting systems modulo
equational theories due to the built in very fast matching algorithm that supports
different combinations of associative, commutative equational theories, also with
the presence of units. Another important feature of Maude that makes it a
plausible platform for implementing systems of the calculus of structures is the
availability of the search function since the 2.0 release of Maude. This function
implements breadth-first search which is vital for complete search for derivations
and proofs.

Exploiting these features, we implemented system NEL in Maude 2 within
two modules: the first module converts an arbitrary NEL structure into a struc-
ture in negation normal form, i.e., to a structure where there are no occurrences
of units and where negation is pushed to the atoms. The second module im-
plements the inference rules of the system modulo associativity, commutativity

and equalities for unit(s). Different modules for the systems in the calculus of
structures including NEL are available for download at
http://www.informatik.uni-leipzig.de/~ozan/maude_cos.html/.

8 Discussion

We presented an encoding of the conjunctive planning problems in the language
of NEL where plans are not extracted from the proof of a derivation, but explicit
premises of derivations. Furthermore, we showed that our encoding is expressive
enough to capture concurrent plans where plans respecting parallelism can also
be obtained.

A direct consequence of this work is the establishment of a bridge between
concurrency theory and planning, which allows to apply methods from con-
currency to planning: labeled event structures is a model for concurrency [18]
which has been studied for linear logic proofs in the sequent calculus proofs in
[8]. Future work includes investigating a labeled event structure semantics in our
derivations which will result in a notion of plan equivalence.

Our results show that NEL can serve as an operational semantics for con-
junctive planning problems. In conjunction with our implementation of system
NEL, our result is, with future development, also of practical interest. We con-
jecture that the rules action and termination can be expressed in Maude as
conditional rewrite rules due to the matching of atoms with opposite polarities.
However, such an implementation will disregard the concurrent plans. Because
system NEL is undecidable [20] an implementation for practical purposes that
captures concurrent plans will require introduction of strategies at the Maude
meta-level [4].

References

1. Wolfgang Bibel. A deductive solution for plan generation. In New Generation
Computing, pages 115–132. 1986.

2. Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J.
Stuckey, editor, Logic Programming, 18th International Conference, volume 2401
of Lecture Notes in Computer Science, pages 302–316. Springer-Verlag, 2002.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications, Proceedings of the 14th International Conference,, volume 2706.
Springer, 2003.

4. M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal
meta-tool. In World Congress on Formal Methods (2), pages 1684–1703, 1999.

5. S. Cresswell, A. Smaill, and J. Richardson. Deductive synthesis of recursive plans
in linear logic. In ECP, 1999.

6. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

7. G. Große, S. Hölldobler, and J. Schneeberger. Linear deductive planning. In
Journal of Logic and Computation, volume 6 (2), pages 233–262. 1996.

8. Alessio Guglielmi. Abstract Logic Programming in Linear Logic Independence and
Causality in a First Order Calculus. PhD thesis, Universita di Pisa – Genova,
1996.

9. Alessio Guglielmi. A system of interaction and structure. Technical Report WV-
02-10, TU Dresden, 2002. to appear in ACM Transactions on Computational
Logic.

10. Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL.
In M. Baaz and A. Voronkov, editors, LPAR 2002, volume 2514 of Lecture Notes
in Artificial Intelligence, pages 231–246. Springer-Verlag, 2002.

11. Steffen Hölldobler and Ozan Kahramanoğulları. From the calculus of structures to
term rewriting systems. Technical Report WV-04-03, TU Dresden, 2004.

12. S. Hölldobler and J. Schneeberger. A new deductive approach to planning. In New
Generation Computing, pages 225–244. 1990.

13. Éric Jacopin. Classical AI planning as theorem proving: The case of a fragment
of linear logic. In AAAI Fall Symposium on Automated Deduction in Nonstandard
Logics, pages 62–66, Palo Alto, California, 1993. AAAI Press Publications.

14. Ozan Kahramanoğulları. Implementing system BV of the calculus of structures in
Maude 2. Technical report, TU Dresden, 2004. to appear in the proceedings of the
ESSLLI-2004 Student Session, Université Henri Poincaré, Nancy, France.

15. N. Kobayashi and A. Yonezawa. Reasoning on actions and change in linear logic
programming. Technical report, Department of Information Science, University of
Tokyo, 1993.

16. M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic. In
Foundations of Software Technology and Theoretical Computer Science, volume
472 of Lecture Notes in Computer Science, pages 63–75. Springer-Verlag, 1990.

17. Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

18. Vladimiro Sassone, Morgens Nielsen, and Glynn Winskel. Models for concurrency:
Towards a classification. In Theoretical Computer Science, volume 170 (1–2), pages
297–348. 1996.

19. Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Struc-
tures. PhD thesis, TU Dresden, 2003.

20. Lutz Straßburger. System NEL is undecidable. In Ruy De Queiroz, Elaine Pi-
mentel, and Lućılia Figueiredo, editors, 10th Workshop on Logic, Language, Infor-
mation and Computation (WoLLIC), volume 84 of Electronic Notes in Theoretical
Computer Science, 2003.

21. Alwen Fernanto Tiu. Properties of a logical system in the calculus of structures.
Technical Report WV-01-06, Technische Universität Dresden, 2001.

