
COBRA, a Demo

Rafael Peñaloza1,2? and Aparna Saisree Thuluva1??

1 Institute for Theoretical Computer Science,
Technische Universität Dresden

2 Center for Advancing Electronics Dresden
penaloza@tcs.inf.tu-dresden.de,aparna saisree.thuluva@tu-dresden.de

COBRA is a tool for performing context-based reasoning in OWL ontologies,
with an emphasis on its applications. COBRA is built on top of standard OWL
reasoning tools, and uses the OWL-API, which makes it easy to use, maintain,
and keep up-to-date with reasoning technologies.

To understand the behaviour of COBRA, we must first explain the idea of
context-based reasoning. We consider as input for the system an annotated OWL
ontology. Intuitively, this annotated ontology is a compact representation of a
class of ontologies, which we call contexts. More precisely, every axiom in an
OWL ontology is annonated, using the owl:annotation tag, with a list of labels
that express the contexts that this axiom belongs to. For example, if we have two
contexts C1 and C2 containing axioms α1 and α2; and α2 and α3, respectively,
then the annotated input ontology O will contain three axioms α1, α2, and α3

annotated with {c1}, {c1, c2}, and {c2}, respectively. One of the main goals of
context-based reasoning is to identify the class of contexts that entail a given
logical consequence.

An obvious method for solving this reasoning problem would be to first ex-
tract all the different contexts from the annotated ontology, and perform stan-
dard reasoning in all of them. Given the speed of state-of-the-art OWL reasoners,
this approach, in the following called the näıve approach produces a very efficient
reasoning procedure for realistic OWL ontologies, assuming that the number of
contexts is small. However, as the number of contexts grows, so does the total
execution time of the näıve method, by a linear factor.

To handle cases where the number of contexts is high (e.g., above a thousand)
more effective methods based on axiom-pinpointing, for detecting large clusters
of contexts entailing the consequence, through only one call to the reasoner, and
a variant of Reiter’s Hitting Set Tree (HST) algorithm [3] for ensuring that all
possible contexts have been detected through a systematic search. Specifically, we
use the HST approach for computing the so-called boundary of a consequence
described in [1]. Notice that in this case, the HST approach can be further
optimized, since the background lattice required in [1] corresponds to the class
of all sets of labels, with union and intersection as operators, which are easier to
compute.

COBRA implements the näıve and the HST methods via a sequence of black-
box calls to standard OWL reasoners. For the HST method, it must call a rea-

? Partially supported by DFG within the Cluster of Excellence ‘cfAED’
?? Supported by the International MSc Program in Computational Logic (MCL)



soner capable of explanation services. Specifically, the reasoner must not only
answer whether a consequence holds from an ontology or not, but in the affir-
mative case, additionally provide a justification; that is, a minimal sub-ontology
still entailing this consequence. Additionally, since the näıve and the HST algo-
rithms both require reasoning over several, slightly different, ontologies, incre-
mental reasoning tools have a strong positive impact in the performance of the
overall system. The current version of COBRA uses the explanation capabilities
of HermiT [4] and the very efficient incremental reasoner ELK [5] whenever the
input ontology adheres to the OWL 2 EL profile of OWL 2.

A typical application scenario for context-based reasoning is in the area of
error-tolerant reasoning, where the different contexts correspond to the repairs of
an unwanted consequence (see [2] for details). For that reason, COBRA provides
also an ontology-annotation service based on the computation of all repairs.
In a nutshell, the system receives as input a classical OWL ontology O, and an
unwanted consequence of O. It then computes all the repairs w.r.t. this unwanted
consequence, and annotates O considering each repair as a context. Notice that
applying this tool to Snomed CT can lead to situations with over ten million
contexts.

The demo will showcase the behaviour of the different components of the tool
and their use for practical applications, with special emphasis on error-tolerant
reasoning.

References

1. F. Baader, M. Knechtel, and R. Peñaloza. Context-dependent views to axioms and
consequences of semantic web ontologies. J. Web Sem., 12:22–40, 2012.

2. M. Ludwig and R. Peñaloza. Error-tolerant reasoning in the description logic EL.
In Proc. of JELIA’14, volume 8761 of LNCS, pages 107–121. Springer, 2014.

3. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

4. R. Shearer, B. Motik, and I. Horrocks. HermiT: A Highly-Efficient OWL Reasoner.
In Proc. of OWLED 2008 EU, Karlsruhe, Germany, 2008.

5. F. S. Yevgeny Kazakov, Markus Krötzsch. The incredible elk - from polynomial
procedures to efficient reasoning with el ontologies. J. Autom. Reas., 53(1):1–61,
2014.


