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ABSTRACT. How strongly an agent beliefs in a proposition can be represented by 

her degree of belief in that proposition. According to the orthodox Bayesian 

picture, an agent's degree of belief is best represented by a single probability 

function. On an alternative account, an agent’s beliefs are modeled based on a set 

of probability functions, called imprecise probabilities. Recently, however, 

imprecise probabilities have come under attack. Adam Elga claims that there is no 

adequate account of the way they can be manifested in decision-making. In 

response to Elga, more elaborate accounts of the imprecise framework have been 

developed. One of them is based on supervaluationism, originally, a semantic 

approach to vague predicates. Still, Seamus Bradley shows that some of those 

accounts that solve Elga’s problem, have a more severe defect: they undermine a 

central motivation for introducing imprecise probabilities in the first place. In this 

paper, I modify the supervaluationist approach in such a way that it accounts for 

both Elga’s and Bradley’s challenges to the imprecise framework.  
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Introduction 

How strongly an agent beliefs in a proposition can be represented by her degree of 

belief in that proposition. According to the orthodox Bayesian picture, an agent's 

degree of belief is best represented by a single probability function. In particular, the 

Bayesian claims that agents must assign numerically precise probabilities to every 

proposition that they can entertain. On an alternative account, an agent’s beliefs are 

modeled based on imprecise probabilities. With that, imprecise degrees of belief can 

be represented by a set of probability functions. A central decision-theoretical 

motivation for introducing imprecise probabilities is their solution to the Ellsberg 

Problem. In this problem, the orthodox Bayesian framework fails to adequately 

model the aversion of seemingly rational agents towards ambiguous actions whereas 

decision rules based on imprecise probabilities can do so. 
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Recently, however, imprecise probabilities have come under attack. Adam 

Elga1 claims that there is no adequate account of the way they can be manifested in 

decision-making. In response to Elga, more elaborate accounts of the imprecise 

framework have been developed. One of them is based on supervaluationism, 

originally, a semantic approach to vague predicates. Supervaluationism can very 

naturally be applied to imprecise probabilities. With that, it solves Elga’s problem. 

Still, Seamus Bradley2 showed that some of those accounts that solve Elga’s 

problem, including supervaluationism, have a more severe defect: they undermine a 

central motivation for introducing imprecise probabilities in the first place. That is, 

their solution to the Ellsberg Problem. In this paper, I modify the supervaluationist 

approach in such a way that it accounts for both Elga’s and Bradley’s challenges to 

the imprecise framework. 

This paper is organized as follows: In section 1, I will lay out the basic 

terminology of orthodox Bayesianism and the imprecise probabilities framework. In 

section 2, I will introduce the Ellsberg problem as a decision-theoretical motivation 

for imprecise probabilities. In section 3, we will look at Elga’s decision-theoretical 

counterargument to imprecise probabilities. In section 4, I will show how 

supervaluationism can be applied to imprecise probabilities as well as how it solves 

Elga’s problem. Moreover, I will introduce Bradley’s argument against 

supervaluationism. In section 5, I will present a modified version of 

supervaluationism which solves Bradley’s as well as Elga’s problem. 

1. Basic Terminology 

In this section, I will briefly outline the basic terminology of the two competing 

views: Namely, orthodox Bayesianism and the imprecise probabilities framework. 

1.1 Orthodox Bayesianism 

The starting point for both views is an agent with beliefs about the world and who 

is capable of decision-making. According to the orthodox Bayesian picture, a belief 
can be defined as follows: 

Definition, Belief. A belief is a ternary relation between an agent S, an object of 

belief and a real number between 0 and 1.3 

                                                        
1 Adam Elga, “Subjective Probabilities should be Sharp,” Philosopher’s Imprint 10, 5 (2010): 1-11. 
2 Seamus Bradley, “A Counterexample to Three Imprecise Decision Theories,” Theoria 85 (2019): 

18-30. 
3 Franz Huber, “Belief and Degrees of Belief,” in Degrees of Belief, eds. Franz Huber and Christoph 

Schmidt-Petri (Dordrecht: Springer, 2009), 1-33, here 2. 
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We assume the objects of belief to be propositions, i.e. sets of possible worlds.4 

Moreover, the real number assigned to a proposition by an agent is called her degree 
of belief in that proposition where 0 represents the lowest level of confidence and 1 

the highest level of confidence in it. Consider, for instance, the proposition P that it 
will rain tomorrow. Assume, moreover, that agent S is 70% sure that it will, in fact, 

rain. We can then state that S’s degree of belief in P is 0.7. 

Bayesianism claims that degrees of belief ought to be represented by single 

probability functions that assign a precise number to propositions. In order to define 

probability functions, we have to be more precise about what we mean by 

propositions. For that purpose, we begin by defining the set of all possible worlds 

and calls this set event space: 

Definition, Event Space. Ω = {w1, w2, …, wn} is called an event space where each 

wi in Ω is a state of affairs, or possible world.5 

Since propositions are taken to be sets of possible words, we can define a proposition 

as follows: 

Definition, Proposition. A proposition (or event) A is a subset of set Ω.6 

Taking a proposition as a subset of the set of possible worlds, we can, moreover, 

define the set of all the propositions the agent can possibly believe in: 

Definition, The Set of Propositions. The set of objects of beliefs (the propositions) 

is the power set of Ω: 2Ω.7 

Finally, based on our definition of the set of propositions, we can define a probability 

function as follows: 

Definition, Probability Function. A probability function pr is a function Pr: 2Ω → 

ℝ, satisfying the probability axioms.8 

In a next step, we can apply this view to decision-making. When an agent has 

to choose between different actions, Bayesianism suggests as decision rule to choose 

the action that yields the highest expected utility. Thus, we not only need a precise 

                                                        
4 Ibid., 2. 
5 Anna Mahtani, “Imprecise Probabilities,” in The Open Handbook of Formal Epistemology, ed. 

Richard Pettigrew and Jonathan Weisberg (PhilPapers Foundation, 2019), 107-130, here 108. 
6 Ibid., 108. 
7 Seamus Bradley, “How to Choose Among Choice Functions,” in Proceedings of the Ninth 
Symposium on Imprecise Probability: Theories and Applications, ed. Thomas Augustin, Serena 

Doria, Enrique Miranda, and Erik Quaeghebeur (2015), 57-66, here 57, 

http://www.sipta.org/isipta15/data/paper/9.pdf. 
8 Ibid., 57. 
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probability function but also a precise utility function that assigns a number to each 

possible outcome of an action reflecting the agent’s value of that outcome.9 Given 

those functions, the expected utility for an action can be calculated as follows:  

Let Pr(S) be the degree of belief for an event to be the case, let u(O) be the utility 

value the agent assigns to the consequence of an action, given the event S. Let Ai 

be some action. Now, the expected utility of Ai can be calculated as follows: 

Definition, Expected Utility. 𝐸𝑈(𝐴𝑖) = ∑ 𝑃𝑟(𝑆𝑗) × 𝑢(𝑂𝑖𝑗).
𝑚
𝑗=1  

That is, we multiply the agent’s degree of belief in an event by the utility value of 

the outcome of that action and, subsequently, sum those values for all possible 

outcomes. 

To sum up, orthodox Bayesianism has two characteristics relevant to our 

discussion:  

1) An agent’s belief state is represented by a probability function. The probability 

function maps each relevant proposition to a real number between 0 and 1. This 

number is the agent’s degree of belief in that proposition. 

2) Rational agents must choose an action that has maximum expected utility based 

on the agent’s degrees of belief in the relevant propositions. 

1.2 Imprecise Probabilities 

Assume, our agent S has to evaluate the proposition the European Union will consist 
of exactly 27 member states in 20 years. What precise probability should she assign 

to that proposition? Since orthodox Bayesianism represents an agent’s belief with a 

single probability function, such a precise value has to be given.10 Considering 

propositions of this type, it seems highly implausible to represent belief states with 

a single probability function.11 

On an alternative account, degrees of belief can be defined based on imprecise 

probabilities. One way to construe imprecise probabilities is the following: 

Definition, Imprecise Probabilities. Imprecise probabilities are sets of probability 

functions.12 

                                                        
9 Mahtani, “Imprecise,” 119. 
10 Susanna Rinard, “A Decision Theory for Imprecise Probabilities,” Philosopher’s Imprint 15, 7 

(2015): 1-16, here 1. 
11 Miriam Schoenfield, “Chilling out on epistemic rationality,” Philosophical Studies 158 (2012): 

197-219, here 199. 
12 Seamus Bradely and Katie Steele, “Should Subjective Probabilities be Sharp?,” Episteme 11, 3 

(2014): 277-289, here 277. 
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Moreover, we call each such set of probability functions the agent’s representor 𝒫.13 

Additionally, we assume that the set of values the distributions in the agent’s 

representor assign to a proposition covers all of the interval [x, y] with x, y ∈ ℝ. 

With that, we can define an imprecise degree of belief: 

Definition, Imprecise Degree of Belief. An agent’s imprecise degree of belief in a 

proposition H is represented by a representor, 𝒫, with 𝒫 = {Pr(H) : Pr ∈ 𝒫}.14 

This can be illustrated as follows: Let A be the proposition that the European Union 

will consist of exactly 27 member states in 20 years. Assume, our agent S is 40-60% 

confident that this will be the case. With that, we can represent the agent’s imprecise 

degree of belief in A with: 𝒫(A) = [0.4, 0.6]. 

Finally, an agent’s representor can be understood as a credal committee where 

every probability function in that committee represents the opinion of one of its 

members.15 Collectively, these opinions reflect the beliefs of an agent.16 This idea 

will be significant for the last section of this paper. 

2. The Ellsberg Problem 

A central decision-theoretical motivation for introducing imprecise degrees of belief 

is the so-called Ellsberg Problem. For this problem, it is vital to distinguish between 

risky and ambiguous actions. We take an action to be risky in case the probabilities 

of the relevant outcomes are known. An action is ambiguous, in turn, if the 

probabilities are unknown, or, only partially known.17 The Ellsberg Problem relies 

on the observation that, under specific circumstances, seemingly rational agents 

prefer taking risky decisions, instead of ambigious ones, even though it violates 

expected utility theory.18 

                                                        
13 Ibid., 227. 
14 Bradley, “How to Choose,” 57. 
15 Seamus Bradley and Katie Steele, “Learning, and the ‘Problem’ of Dialation,” Erkenntnis 79 

(2014): 1287-1303, here 1291.  
16 Seamus Bradley, “Imprecise Probabilities,” The Stanford Encyclopdia of Philosophy (Spring 2019 

Edition), https:// plato.stanford.edu/archives/spr2019/entries/imprecise-probabilities. 
17 Bradley, “A Counterexample,” 22. 
18 Katie Steele, “Distinguishing Indeterminate Belief from ‘Risk-Averse’ Preferences,” Synthese 158 

(2007): 189-205, here 190. 
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2.1 The Ellsberg Problem with Precise Probabilities 

Now, to the problem itself: In the Ellsberg Problem, an agent is told that an urn 

contains 30 red balls and 60 balls that are either blue or yellow in some unspecified 

proportion.19 The agent faces two decision problems: A and B.  

In problem A, the agent can decide to bet on either (I) which yields $100 if 

the next ball drawn is red or (II) where she receives $100 if it is blue. Likewise, in 

problem B: The agent can bet on (III) where she gets $100 if the next ball drawn is 

not blue or (IV) she receives $100 if it is not red.20 For the sake of simplicity, we can 

assume that receiving $100 yields a utility value of 1 and not receiving it yields 0 

utility.21 With that, we can summarize the payoffs as follows:22 

 
 Red Blue Yellow 

Problem A    

(I) 1 0 0 

(II) 0 1 0 

Problem B    

(III) 1 0 1 

(IV) 0 1 1 

 

A significant majority of apparently rational people chooses option (I) in 

problem A and option (IV) in problem B when the Ellsberg Problem is studied 

empirically.23 In the following, we will call this combination of (I) and (IV) Ellsberg 
preferences. Since the probabilities for those actions are known to the agent, they 

classify as risky actions. By upholding to this pattern, the agent expresses an aversion 

towards the ambiguous options (II) in problem A and (III) in problem B.  

The orthodox Bayesian, however, cannot rationalize the Ellsberg preferences 

since there is no precise probability an agent could possibly assign to drawing a blue 

ball such that EU(I) > EU(II) and, at the same time, EU(III) < EU(IV).24 This can be 

                                                        
19 Ibid., 191. 
20 Ibid., 191. 
21 Daniel Ellsberg, “Risk, Ambiguity, and the Savage Axioms,” The Quarterly Journal of Economics 
75, 4 (1961): 643-669, here 655. 
22 Figure based on: Bradley, “A Counterexample,” 23. 
23 Steele, “Distinguishing,” 191. 
24 Ibid., 191. 

Figure 1. Payoffs, Ellsberg. 



A Modified Supervaluationist Framework for Decision-Making 

181 

shown as follows: Let EU(I) = Pr1, EU(II) = Pr2, EU(III) = Pr1 + Pr2, and EU(IV) = Pr2 

+ Pr3. However, there is no Pri such that Pr1 > Pr2 and Pr1 + Pr3 < Pr2 + Pr3.25 

As ambiguity aversion seems to be a feature of rational decision-making, not 

being capable of adequately modeling it is a problem for the Bayesian account. 

2.1 The Ellsberg Problem with Imprecise Probabilities 

Now, let's analyze the Ellsberg Problem with imprecise probabilities. Since the 

proportion of blue and yellow balls is unknown, we can assume the proportion to lie 

somewhere between 0 and 2/3. It could be the case, for instance, that all non-red 

balls turn out to be blue or that there are as many blue balls as yellow balls. Thus, a 

natural distribution of probability functions is the following: 

Imprecise Degrees of Belief, Ellsberg. 𝒫(blue) = 𝒫(yellow)= [0, 2/3] and Pr(red) = 

1/3.26 

Representing an agent’s belief state with imprecise degrees of belief implies that the 

expected utility for a given action will be imprecise also. That is, it corresponds to a 

set of utility values given by the probability functions in the agent’s representor. 

Since those can overlap, the possible actions under considerations can turn out to be 

incommensurable.27 Given the imprecise probabilities for the Ellsberg problem, the 

expected utilities can be summarized as:  

Imprecise Expected Utilities, Ellsberg. (I) = 1/3, (II) = [0, 2/3], (III) = 1/3 + [0, 2/3], 

(IV) = 2/3.28  

Since expected utility theory cannot be applied to intervals, we have to look for 

alternative decision rules for imprecise probabilities.29 One such possible rule is the 

Maximin Rule. It tells us the following: For each action, there is a lowest expected 

utility value. This lowest value is the minimum expected utility for an action. In a 

decision problem, Maximin recommends the agent to choose the action that has the 

maximum minimum expected utility.30  

In order to apply Maximin to the Ellsberg Problem, we first have to state its 

minimum expected utility values: 

Minimum expected utility values, Ellsberg. EU(I) = 1/3, (II) = 0, (III) = 1/3, and (IV) 

                                                        
25 Ellsberg, “Risk, Ambiguity,” 655. 
26 Steele, “Distinguishing,” 195. 
27 Bradley and Steele, “Should Subjective,” 278. 
28 Steele, “Distinguishing,” 195. 
29 Nils-Eric Sahlin, “Unsharp,” Theoria 80, 1 (2014): 100-103, here 100.  
30 Mahtani, “Imprecise,” 121. 
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= 2/3. 

With that, the Maximin Rule recommends choosing (I) in problem A and (IV) in 

problem B. This corresponds to the Ellsberg preferences. Hence, we have shown that 

there is at least one decision rule for imprecise probabilities that rationalizes the 

Ellsberg preferences, and, with that, it rationalizes a case of ambiguity aversion. 

To sum up, empirical studies indicate that agents tend to have the Ellsberg 

preferences even though it violates expected utility theory. According to orthodox 

Bayesianism, those agents are irrational. However, it seems like they are, in fact, 

rational.31 With that, we have a case where orthodox Bayesianism fails to adequately 

model an instance of rational decision-making: it does not succeed in modeling 

ambiguity aversion. Still, the Ellsberg preferences can be rationalized with the 

imprecise framework.32 This is taken to be a decision-theoretical motivation for the 

imprecise probabilities framework. 

3. Elga’s Problem 

Even though decision rules based on imprecise probabilities seem to perform well in 

cases of ambiguity aversion, they struggle in another type of decision problem. That 

is, when imprecise probabilities are applied to sequential decision problems.33 When 

it comes to sequential decision problems, it can be the case that each decision taken 

individually is rationally admissible, the sequence of decision, however, can turn out 

to be rationally impermissible.34  

The central sequential decision problem to this discussion has been presented 

by Adam Elga. Elga’s argument is structured as follows: He considers three types of 

possible decision rules for imprecise probabilities and shows for each type that it 

either leads to absurd consequences in a specific decision problem, or, that it has 

some other severe defect. For this discussion, we will only consider the first type of 

decision rule. 

The specific decision problem goes as follows: In a great series of bets, an agent 

is sequentially offered Bet A first, and, immediately after the agent decides whether 

to accept or reject Bet A, she is offered Bet B.35 Now, let H be some proposition such 

as it will rain tomorrow. The agent is then offered the following series of bets: 

Bet A. If H is true, S loses $10. Otherwise S wins $15.  

                                                        
31 Steele, “Distinguishing,” 190. 
32 Mahtani, “Imprecise,” 125. 
33 Ibid., 191. 
34 Bradley, “A Counterexample,” 21. 
35 Elga, “Subjective,” 4. 
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Bet B. If H is true, S wins $15. Otherwise S loses $10. 

This series of bets is called great since S is guaranteed to win $5 in case she accepts 

both bets.36 However, it is not rationally required for S to accept both bets. If she 

believes, for instance, that H is highly unlikely, she would be better off to accept Bet 

B only. Still, she is rationally required to accept at least one of the bets since rejecting 

both bets is strictly dominated by accepting them.37 With that, any decision rule that 

permits to reject both bets rationalizes an obviously irrational action, and, thus, has 

to be rejected. 

Let’s apply Maximin to the great series of bets. The minimum expected utility 

for rejecting Bet A is 0. However, the one for accepting Bet A is -10. With that, 

Maximin suggests rejecting Bet A. Likewise, the minimum expected utility for 

rejecting B is 0 whereas the one for accepting it is -10.38 Hence, our agent S should 

reject both bets according to Maximin. This, however, is irrational and Maximin 

does fail in this betting scenario. 

Finally, this result can be extended to a number of decision rules for imprecise 

probabilities which all suggest rejecting both bets by Isaac Levi, Peter Walley, Teddy 

Seidenfeld, Gärdenfors and Sahlin as well as Gilboa.39 

4. Supervaluationism 

A defender of imprecise probabilities in decision-making can now choose one of two 

strategies:  

Strategy 1. It can be argued that the great series of bets does not show that decision 

rules for imprecise probabilities are irrational. 

Strategy 2. It can be accepted that it does, but that different decision rules for 

imprecise probabilities can be introduced that are not affected by Elga’s 

argument.40 

In this section, I will now introduce an approach following strategy 2: namely, 

supervaluationism. Supervaluationism is, originally, a semantic theory designed to 

handle vague predicates. The central idea is that vague predicates such as tall don’t 

have a definite extension, but rather a variety of different extensions. Each possible 

extension of a vague predicate corresponds to a possible precisification of that 

                                                        
36 Ibid., 4. 
37 Ibid., 4. 
38 Bradley, “A Counterexample,” 20. 
39 Elga, “Subjective,” 5. 
40 Richard Pettigrew, Dutch Book Arguments (Draft) (Cambridge University Press: 2019), 96, 

https://richardpettigrew.com/books/the-dutch-bookargument/. 



Jonas Karge 

184 

predicate.41 Since there is no definite precisification for the semantics of a vague 

language, the semantic value of a statement remains unclear unless there is complete 

agreement among the precisifications on that value.42  

When it comes to the truth value of statements in a vague language, complete 
agreement is understood as a proposition being either determinately true or 

determinately false in supervaluationistic terms. This can be spelled out as follows:43 

Definition, Determinately True. If a proposition is true according to all admissible 

precisifications, then it is determinately true. 

Definition, Determinately False. If a proposition is false according to all admissible 

precisifications, then it is determinately false. 

That said, if neither of those two is the case, it is possible for a statement to have no 

semantic value: 

Definition, Indeterminately True. If a proposition is true according to some, but 

not all, admissible precisifications, then it is indeterminate whether it’s true. 

Example. Consider the predicate tall. For this predicate, there are numerous 

possible precisifications. Each such precisification determines a threshold for what 

it means to be tall and not-tall. Assume, every threshold between 160cm and 200cm 

is an admissible precisification, but 220cm is not an admissible precisification. It that 

case it’s determinately true that someone 220cm tall is tall whereas it’s 

indeterminately true whether someone 170cm tall is tall.44  

In a next step, we have to make more precise what we mean by an admissible 

precisification. In fact, supervaluationism can very naturally be applied to imprecise 

probabilities by giving such a precisification: 

Definition, Admissible Precisifications. The admissible precisifications are the 

functions in an agent’s representor.45 

Moreover, with that definition at hand, we can characterize a supervaluationist 

decision theory based on imprecise probabilities. Contrary to most decision theories, 

actions will now not only be permissible or impermissible, but also classifiable as 

indeterminately permissible. This can be seen from the following definitions:46 

                                                        
41 Rosanna Keefe, “Vagueness: Supervaluationism,” Philosophy Compass 3, 2 (2008): 315-324, here 

315. 
42 Achille C. Varzi, “Supervaluationism and Its Logics,” Mind 116 (2007): 633-676, here 634. 
43 Definitions according to: Rinard, “A Decision Theory,” 2. 
44 Ibid., 2. 
45 Ibid., 2. 
46 Definitions according to: Rinard, “A Decision Theory,” 3. 
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Definition, Determinately Permissible Action. If some action A has the highest 

expected value (or ties for highest) according to every function in the agent's 

representor, then it’s determinately true that A is permissible. 

Definition, Determinately Impermissible Action. If some action A has a higher 

expected value according to every function in the agent’s representor than some 

alternative action B, action B is determinately impermissible. 

Analogous to the evaluation of the semantic value of statements in the 

supervaluationist framework, we also have the case of indeterminate permissibility:  

Definition, Indeterminately Permissible. If some action A has the highest expected 

value according to some, but not all, functions in the representor, it is 

indeterminate whether A is permissible. 

4.1 Supervaluationism and Sequential Decision-Making 

In a next step, we can apply these definitions to Elga’s problem. Assume, again, the 

great series of bets: 

Bet A. If H is true, S loses $10. Otherwise S wins $15. 

Bet B. If H is true, S wins $15. Otherwise S loses $10. 

Assume, moreover, the following representor for our agent S as suggested by Elga: 

𝒫(H) = [0.1, 0.8].47 

Now, according to our supervaluationist decision theory, it is indeterminate 

whether accepting Bet A is rationally permissible. This is the case because it is 

permissible according to some, but not all probability functions in the agent’s 

representor. For instance, according to the function that represents the precise value 

of Pr(H) = 0.2, accepting Bet A has the highest expected value. According to Pr(H) = 

0.7, though, the agent should reject Bet A. Likewise, it is indeterminate whether 

rejecting Bet B is permissible. However, it is determinately impermissible to reject 

both bets since there is an alternative action with a higher expected value according 

to every function in the agent’s representor.48 This alternative is to accept both bets. 

Since this analysis yields the desired result, the supervaluationist decision theory 

does succeed in Elga’s problem. 

4.2 The Sequential Ellsberg Problem 

Even though supervaluationism succeeds in Elga’s problem, Bradley recently 

showed that it fails in another: If we interpret the Ellsberg Problem sequentially, 

                                                        
47 Elga, “Subjective,” 4. 
48 Rinard, “A Decision Theory,” 6. 
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supervaluationism cannot rationalize ambiguity aversion. If this is the case, 

supervaluationism undermines a central motivation for introducing imprecise 

probabilities in the first place.49 For this reason, Bradley’s argument is a major 

challenge for the supervaluationist account.  

Let’s see how supervaluationism fails in the sequential Ellsberg Problem. As 

in the original problem, we again have an urn that contains 90 balls. From those 

balls, 30 balls are red and the remaining ones are either blue or yellow in some 

unknown proportion. Now, according to the sequential interpretation, an agent is 

offered two decision problems in quick succession: 

Problem A. The agent faces two choices: 

(I), which wins the agent a utility value of 1 if the ball drawn in the first round is 

red and nothing otherwise. 

(II), which wins the agent a utility value of 1 if the ball drawn in the first round is 

blue and nothing otherwise. 

Problem B. The agent faces two choices: 

(III), which wins the agent a utility value of 1 if the ball drawn in the second round 

is not blue and nothing otherwise. 

(IV), which wins the agent a utility value of 1 if the ball drawn in the second round 

is not red and nothing otherwise.50 

As degree of belief for our agent, we assume that 𝒫(bluei) = 𝒫(yellowi) = [0, 2/3] and 

Pr(redi) = 1/3 with i = 1, 2 referring to the current round of the decision problem.51 

With that, we can begin by analyzing Problem A.  

Analysis, Problem A. According to supervaluationism, it is indeterminate whether 

it is permissible to choose (I) over (II) and (II) over (I). It is indeterminate to choose 

(I) over (II) because it is permissible according to those functions in the representor 

that assign a probability less than 1/3 to drawing a blue ball and impermissible to 

the other functions in the representor. Likewise, it is permissible according to those 

functions in the representor to choose (II) over (I) that assign a probability greater 

than 1/3 to drawing a blue ball, but impermissible according to the other functions. 

The same line of reasoning applies to problem B: 

Analysis, Problem B. It is indeterminate whether it is permissible to choose (III) 

over (IV) and (IV) over (III). 

                                                        
49 Bradley, „A Counterexample,“ 18. 
50 Ibid., 24. 
51 Ibid., 24. 
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So far, every option is indeterminately permissible. But what about the 

Ellsberg preferences, i.e. the sequence of (I) in round 1 and (IV) in round 2? 

Analysis, Ellsberg Preferences (I) + (IV). No function in the representor is such that 

it yields a preference of (I) over (II) and (IV) over (III). With that, it’s determinately 

impermissible to have the Ellsberg preferences.52 

This is a major drawback for a supervaluationist decision theory for imprecise 

probabilities. Initially, the Ellsberg Problem was used in order to motivate imprecise 

probabilities since there are decision rules for them that can rationalize ambiguity 

aversion. Still, we have now shown that supervaluationism fails to do so.53 With that, 

supervaluationism seems to undermine a central motivation for introducing 

imprecise probabilities in the first place. 

Concluding this section, I want to briefly discuss the idea of rationalizing the 

Ellsberg preferences. To begin with, it is clear that any decision rule that classifies 

them as irrational, or determinately impermissible in this case, fails.  

However, it remains unclear how much permissibility is necessary in order to 

rationalize the Ellsberg preferences. One option is to classify them as determinately 

permissible. However, this could be a too strong requirement. That is, we are looking 

for the right amount of permissibility that we should be assigning to them.54 In fact, 

it can be argued that classifying them as indeterminately permissible is just the right 

amount. To support this idea, I want to give the following line of reasoning: 

On the one hand, we do not want to rationalize the Ellsberg preferences by 

classifying them as determinately permissible since there is no precise probability 

that allows this pattern of preferences. Thus, in order to respect expected utility 

theory, this amount of permissibility is too much. 

On the other hand, as we have seen, we want to take seriously the aversion 

towards ambiguous gambles among rational agents. Therefore, it would be too strong 

to classify the Ellsberg preferences as determinately impermissible. 

Luckily, supervaluationism allows for a third class of actions. Thus, in order 

to solve this conflict, I introduce a modified version of supervaluationism that 

classifies the Ellsberg preferences as indeterminately permissible as what I take to be 

the right amount of permissibility. 

 

                                                        
52 Ibid., 25. 
53 Ibid., 25. 
54 The idea of the right amount permissibility regarding the Ellsberg preferences goes back to 

personal correspondence with Dr. Seamus Bradley. 
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5. Modified Supervaluationism 

In this section, I introduce a modified supervaluationist framework which has to 

meet two objectives: First, it has to rationalize the Ellsberg preferences in its 

diachronic version. Secondly, it must not rationalize the rejection of both bets in 

Elga’s problem. 

The starting point for the modified supervaluationist framework is to take 

literally the interpretation of the agent’s representor as a credal committee. In this 

committee, I construe every member as a voter that votes for propositions or actions 

in decision problems. As voting method, I apply relative majority voting. That is, the 

alternative that accumulates the most votes wins.55 Based on this idea, I will now 

modify the central concepts of supervaluationism as well as its decision rule. 

According to the original supervaluationist account, a proposition is 

determinately true if it is true according to all admissible precisifications. In the 

following, I replace this notion by propositions being predominantly true. This can 

be defined as follows: 

Definition, Predominantly True. A proposition is predominantly true if it is true 

according to a relative majority of precisifications. 

Consider the following example: Assume, that there are ten admissible 

precisifications for the predicate tall. According to one of those the threshold for 

being tall is 170cm, according to two precisifications it is 175cm, according to three 

it is 185, and according to four precisifications the threshold lies at 180cm. In this 

case, it is predominantly true that someone who is at least 180cm tall is tall. 

In a next step, we apply this idea to imprecise probabilities by assuming that 

every probability function in the representor is represented by a member of a voting 

committee. With that, we can very naturally derive a novel decision rule for 

imprecise probabilities. We begin by defining predominantly permissible and 

impermissible actions: 

Definition, Predominantly Permissible Action. An action A is predominantly 

permissible if a relative majority of members in the representor vote for it. 

Definition, Predominantly Impermissible Action. An action A is predominantly 

impermissible iff there is a relative majority of members in the representor that 

vote for an alternative action B. 

                                                        
55 Joachim Behnke, Florian Grotz, and Christof Hartmann, Wahlen und Wahlsysteme 

(Oldenbourg: De Gruyter, 2016), 8. 



A Modified Supervaluationist Framework for Decision-Making 

189 

It is important to note that an available action does only count as 

impermissible in case there is an alternative that receives a majority of votes. If this 

is not the case, we have a case of indeterminacy: 

Definition, Determinately Permissible Action. If there is no relative majority in the 

representor for any action, every action is indeterminately permissible. 

Finally, it has to be defined how the members of the committees do, in fact, 

vote: 

Definition, Vote for an Action. A member in the representor, representing a 

probability function, votes for the action with the highest expected utility. If all 

actions bear the same expected utility according to the probability function, this 

member refrains from voting. 

Consider the following example:  

Example, Vote for an Action. Let action U be: buy an umbrella; action (I): buy ice 

cream. Furthermore, let H be: It will rain in an hour with 𝒫(H) = [0.1, 0.6].  

 

 

The members in the representor which represent 𝒫(H) = [0.1, 0.5) vote for (I) 

(80%). The members which represent 𝒫(H) = (0.5, 0.6] vote for U (20%). With that, 

(I) is predominantly permissible and U is predominantly impermissible. 

5.1 Modified Supervaluationism and the Sequential Ellsberg Problem 

In the final part of this text, I will first apply the modified supervaluationist 

framework to the sequential Ellsberg Problem, and, subsequently, to Elga’s problem. 

The agent is facing again problem A and B where she has to choose between 

(I) and (II) as well as (III) and (IV) respectively in two rounds. Moreover, we have 

as imprecise degrees of belief: 𝒫(blue) = 𝒫(yellow) = [0, 2/3] and Pr(red) = 1/3. With 

that, we can analyze both problems as follows: 

Analysis, Problem A. The members in the voting committee that represent 𝒫(blue) 

= [0, 1/3) vote for (I) since it yields a higher expected utility than voting for (II). 

 H ¬H 

U 1 -1 

I -1 1 

Figure 2. Payoffs, Vote for an Action. 
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The ones representing 𝒫(blue) = (1/3, 2/3], in turn, vote for option (II). The member 

that represents the function with Pr(blue) = 1/3 refrains from voting. With that, 

there is no majority for either option, and, thus, both options are indeterminately 

permissible. The same holds for problem B: 

Analysis, Problem B. 𝒫(blue) = [0, 1/3) vote for (III) and 𝒫(blue) = (1/3, 2/3] vote 

for (IV). Both of these actions are indeterminately permissible. 

Finally, since this is the sequential Ellsberg Problem, we have to consider the 

sequence of (I) in round 1 and (IV) in round 2. That is, the Ellsberg preferences. 

Similar to the original supervaluationist framework, no member in the representor 

votes for this sequence. However, according to modified supervaluationism, that 

does not imply its impermissibility.  

Analysis, Ellsberg preferences. The members in the representor that represent the 

probability functions 𝒫(blue) = (1/3, 2/3] vote for (II) + (IV) and the ones that 

represent 𝒫(blue) = [0, 1/3) vote for (I) + (III). With that, the Ellsberg preferences 

are indeterminately permissible. 

This, I count as an advantage of modified supervaluationism because it confirms with 

the demanded right amount of permissibility that should be assigned to the Ellsberg 

preferences by neither classifying them as determinately permissible nor 

determinately impermissible. 

5.2 Supervaluationism and Elga’s Problem 

In a final step, I will apply modified supervaluationism to Elga’s problem. Our agent 

faces once more the great the series of bets: 

Bet A. If H is true, S loses $10. Otherwise S wins $15. 

Bet B. If H is true, S wins $15. Otherwise S loses $10. 

We assume, moreover, the imprecise degree of belief in H given by Elga: 𝒫(H) = [0.1, 

0.8]. Now, we can analyze both bets as follows: 

Analysis, Bet A and B. The members in the representor representing [0.1, 0.6) vote 

to accept Bet A. The members representing (0.6, 0.8] vote to refuse Bet A. With 

that, 71% vote to accept Bet A. 

Likewise, Bet B: The members representing [0.1, 0.4) vote to refuse Bet B and the 

ones representing (0.4, 0.8] to accept Bet B. With that, 57% vote to accept Bet B. 

Thus, accepting Bet A and accepting Bet B are predominantly permissible. For 

the given representor this is the correct result. Moreover, this can be shown for any 

possible representor: 

Assertion: For no imprecise degree of belief, it is possible to refuse both bets. 
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Proof. Assume, that it is possible to refuse both bets. In particular, the agent has 

then to refuse Bet A. In order to refuse Bet A, the agent has to have more functions 

in his representor with Pr(H) > 60%. This is the case for imprecise degrees of belief 

with 𝒫 ⊆ (0.6, 1]. Bet B, in turn, is voted to be accepted for any imprecise degree 

of belief with Pr(H) > 40%. That is: 𝒫 ⊆ (0.4, 1]. With that, every member that 

represents a function with Pr(H) > 60% votes for A to be refused but for Bet B to 

be accepted. Thus, it is not possible to refuse both bets at the same time. 

Summary 

This paper’s objective was to provide a decision-theoretical framework based on 

imprecise probabilities that solves Elga’s and Bradley’s challenge. By modifying the 

supervaluationist account such a framework could be found. Modified 

supervaluationism construes the agent’s representor as a voting committee that 

applies relative majority voting to evaluate the truth of statements and permissibility 

of actions. Moreover, it relies on a weaker notion of truth and permissibility than 

standard supervaluationism. Instead of determinate truth and permissibility, 

modified supervaluationism only requires predominant truth and permissibility. 

With that, it succeeds in both cases: It rationalizes the Ellsberg preferences to a 

reasonable extend and it does not rationalize rejecting both bets in Elga’s problem. 

 


