DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Sebastian Rudolph
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \lnot makes rules simpler
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $\mathcal{I}^C \neq \emptyset$
- concepts in negation normal form (NNF) \mapsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
Tableau Algorithm for \(\mathcal{ALC} \) Concepts and TBoxes

- check satisfiability of \(C \) by constructing an abstraction of a model \(\mathcal{I} \) such that \(C^\mathcal{I} \neq \emptyset \)
- concepts in negation normal form (NNF) \(\leadsto \) makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree \(G = \langle V, E, L \rangle \)
- initialize \(G \) with a node \(v \) such that \(L(v) = \{C\} \)
- extend \(G \) by applying tableau rules
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \mapsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- C is satisfiable iff there is a successful tableau construction
Treatment of Knowledge Bases

we condense the TBox into one concept:
for $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$, $C_T = \text{NNF}(\prod_{1 \leq i \leq n} \neg C_i \sqcup D_i)$

we extend the rules of the \mathcal{ALC} tableau algorithm:

\mathcal{T}-rule: for an arbitrary $v \in V$ with $C_T \notin L(v)$,
let $L(v) := L(v) \cup \{C_T\}$.

in order to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for every individual a in \mathcal{A}
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E$ iff $r(a, b) \in \mathcal{A}$
Extensions of the Logic

• plus inverses ($ALCI$): inverse roles in edge labels, definition and use of r-neighbors instead of r-successors in tableau rules

• plus functional roles ($ALCIF$): merging of nodes to account for functionality

blocking guarantees termination:

• ALC subset-blocking

• plus inverses ($ALCI$): equality blocking

• plus functional roles ($ALCIF$): pairwise blocking
Agenda

• Recap Tableau Calculus
• **Optimizations**
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Optimizations

- Naïve implementation not performant enough
 - T-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
Optimizations

- Naïve implementation not performant enough
 - \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1,000$ axioms and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - …
Optimizations

- Naïve implementation not performant enough
 - \(\mathcal{T} \)-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain \(> 1.000 \) axioms and tableaux may contain thousands of nodes

- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - …
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 ($A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 $(A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A)$
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\mathcal{T}:

- $A \sqsubseteq B \sqcap \exists r. C$
- $B \equiv C \sqcup D$
- $C \sqsubseteq \exists r. D$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$\mathcal{T}:$$

- $A \sqsubseteq B \sqcap \exists r.C$
- $B \equiv C \sqcup D$
- $C \sqsubseteq \exists r.D$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox T

\[\begin{align*}
A \\
\lnot A \sqcap B \sqcap \exists r. C
\end{align*}\]

T:
\[\begin{align*}
A &\sqsubseteq B \sqcap \exists r. C \\
B &\equiv C \sqcup D \\
C &\sqsubseteq \exists r. D
\end{align*}\]
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[A \sqsubseteq B \sqcap \exists r.C \]
\[\sim A \sqcap B \sqcap \exists r.C \]
\[\sim A \sqcap (C \sqcup D) \sqcap \exists r.C \]

\mathcal{T}:

- $A \sqsubseteq B \sqcap \exists r.C$
- $B \equiv C \sqcup D$
- $C \sqsubseteq \exists r.D$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox T

$A \sqsubseteq B \sqcap \exists r.C$
$A \sqcap (C \sqcup D) \sqcap \exists r.C$
$A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$

T:

$A \sqsubseteq B \sqcap \exists r.C$
$B \equiv C \sqcup D$
$C \sqsubseteq \exists r.D$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[
\mathcal{T}:
\begin{align*}
A & \sqsubseteq B \sqcap \exists r.C \\
A & \sqsubseteq \neg A \sqcap B \sqcap \exists r.C \\
A & \sqsubseteq (A \sqcap B) \sqcap \exists r.C \\
A & \sqsubseteq ((A \sqcap C \sqcup D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)
\end{align*}
\]

- A is satisfiable w.r.t. \mathcal{T} iff

\[
A \sqsubseteq \neg A \sqcap B \sqcap \exists r.C \\
A \sqsubseteq (A \sqcap B) \sqcap \exists r.C \\
A \sqsubseteq ((A \sqcap C \sqcup D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)
\]

is satisfiable w.r.t. the empty TBox
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D)$:

\[
L(v_0) = \{U, A, (C \cap \exists r.D) \cup D,
\quad \exists r.(C \cap \exists r.D), C \cap \exists r.D,
\quad C, \exists r.D\}
\]

\[
L(v_1) = \{C \cap \exists r.D, C, \exists r.D\}
\]

\[
L(v_2) = \{D\}
\]

\[
L(v_3) = \{D\}
\]
We obtain the following contradiction-free tableau for the satisfiability of \(U = A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D): \)

\[
L(v_0) = \{U, A, (C \cap \exists r.D) \cup D, \\
\exists r.(C \cap \exists r.D), C \cap \exists r.D, \\
C, \exists r.D\}
\]

\[
L(v_1) = \{C \cap \exists r.D, C, \exists r.D\}
\]

\[
L(v_2) = \{D\}
\]

\[
L(v_3) = \{D\}
\]

Only one disjunctive decision left!
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg(C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$

- better: apply NNF and unfolding if needed, via corresponding tableau rules:
 - $A \equiv C \rightsquigarrow A \sqsubseteq C$ and $A \sqsupseteq C$

\sqsubseteq\text{-rule:} For $v \in V$ such that $A \sqsubseteq C \in \mathcal{T}$, $A \in L(v)$ and $C \notin L(v)$
 let $L(v) := L(v) \cup C$.

\sqsupseteq\text{-rule:} For $v \in V$ such that $A \sqsupseteq C \in \mathcal{T}$, $\neg A \in L(v)$ and $\neg C \notin L(v)$
 let $L(v) := L(v) \cup \{\neg C\}$.

\neg\text{-rule:} For $v \in V$ such that $\neg C \in L(v)$ and $\text{NNF}(\neg C) \notin L(v)$,
 let $L(v) := L(v) \cup \{\text{NNF}(\neg C)\}$.

TU Dresden Deduction Systems
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Absorption

- What if T is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - T_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - T_g is treated via the T-rule
Absorption

- What if \(\mathcal{T} \) is not unfoldable?
 - Separate \(\mathcal{T} \) into \(\mathcal{T}_u \) (unfoldable part) and \(\mathcal{T}_g \) (GCIs, not unfoldable)
 - \(\mathcal{T}_u \) is treated via \(\sqsubseteq \) and \(\sqsupseteq \)-rules
 - \(\mathcal{T}_g \) is treated via the \(\mathcal{T} \)-rule

- absorption decreases \(\mathcal{T}_g \) and increases \(\mathcal{T}_u \)

1. take an axiom from \(\mathcal{T}_g \), e.g., \(A \sqcap B \sqsubseteq C \)
2. transform the axiom: \(A \sqsubseteq C \sqcup \neg B \)
3. if \(\mathcal{T}_u \) contains an axiom of the form \(A \equiv D \quad (A \sqsubseteq D \text{ and } D \sqsupseteq A) \), then \(A \sqsubseteq C \sqcup \neg B \) cannot be absorbed; \(A \sqsubseteq C \sqcup \neg B \) remains in \(\mathcal{T}_g \)
4. otherwise, if \(\mathcal{T}_u \) contains an axiom of the form \(A \sqsubseteq D \), then absorb \(A \sqsubseteq C \sqcup \neg B \) resulting in \(A \sqsubseteq D \sqcap (C \sqcup \neg B) \)
5. otherwise move \(A \sqsubseteq C \sqcup \neg B \) to \(\mathcal{T}_u \)
Absorption

- What if T is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - T_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - T_g is treated via the T-rule

- Absorption decreases T_g and increases T_u
 1. take an axiom from T_g, e.g., $A \sqcap B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if T_u contains an axiom of the form $A \equiv D$ (A \sqsubseteq D and D \sqsupseteq A),
 then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 $A \sqsubseteq C \sqcup \neg B$ remains in T_g
 4. otherwise, if T_u contains an axiom of the form $A \sqsubseteq D$,
 then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to T_u

- If $A \equiv D \in T_u$, try rewriting/absorption with other axioms in T_u
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \sqsubseteq-rule

- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \subseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$),
 then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$,
 then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u

- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

\triangledown -rule $L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\}$
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[
\begin{align*}
\sqcap \text{-rule } L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\sqcup \text{-rule } L(v) & := L(v) \cup \{C_1\} \\
& \quad \vdots \\
& \quad \vdots \\
\sqcup \text{-rule } L(v) & := L(v) \cup \{C_n\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)

\[
\begin{align*}
\Box \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \cap B)\} \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \\
\exists \text{-rule} & \quad L(w) := \{\neg A\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

\[
\begin{align*}
\forall \text{-rule } \quad L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\sqcup \text{-rule } \quad L(v) & := L(v) \cup \{C_1\} \\
\vdots \quad \vdots \quad \vdots \\
\sqcup \text{-rule } \quad L(v) & := L(v) \cup \{C_n\} \\
\exists \text{-rule } \quad L(w) & := \{\neg A\} \\
\forall \text{-rule } \quad L(w) & := \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[
\begin{align*}
_\forall \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \cap B)\} \\
_\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
_\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \\
_\exists \text{-rule} & \quad L(v) := \{\neg A\} \\
_\forall \text{-rule} & \quad L(v) := \{\neg A, A\} \text{ clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \)

\[
\begin{align*}
\triangleleft & \quad \text{-rule} \quad L(v) := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\square & \quad \text{-rule} \quad L(v) := \quad L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\triangledown & \quad \text{-rule} \quad L(v) := \quad L(v) \cup \{C_n\} \\
\exists & \quad \text{-rule} \quad L(w) := \quad \{\neg A\} \\
\forall & \quad \text{-rule} \quad L(w) := \quad \{\neg A, A\} \quad \text{clash} \\
\square & \quad \text{-rule} \quad L(v) := \quad L(v) \cup \{D_n\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \sqcap \forall r. A \in L(v)\)

\[
\begin{align*}
\boxed{} - \text{rule } & L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\sqcup - \text{rule } & L(v) := L(v) \cup \{C_1\} \\
\vdots & \vdots \vdots \\
\sqcap - \text{rule } & L(v) := L(v) \cup \{C_n\} \\
\exists - \text{rule } & L(w) := \{\neg A\} \\
\forall - \text{rule } & L(w) := \{\neg A, A\} \quad \text{clash} \\
\sqcup - \text{rule } & L(v) := L(v) \cup \{D_n\} \\
\exists - \text{rule } & L(w) := \{\neg A\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\sqcap-rule $L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\}$

\sqcup-rule $L(v) := L(v) \cup \{C\}$

\exists-rule $L(w) := \{\neg A\}$

\forall-rule $L(w) := \{\neg A, A\}$ clash

\sqcap-rule $L(v) := L(v) \cup \{D\}$

TU Dresden Deduction Systems
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)\)

\[
\begin{align*}
\forall \text{-rule} \quad L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\sqcup \text{-rule} \quad L(v) & := L(v) \cup \{C_1\}
\end{align*}
\]

- exponentially big search space is traversed

TU Dresden Deduction Systems
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them

- most frequently used: backjumping
 - backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
 - initially, all concepts are tagged with \(\emptyset\)
 - tableau rules combine and extend these tags
 - \(\sqcup\)-rule adds the tag \(\{d\}\) to the existing tag, where \(d\) is the \(\sqcup\)-depth (number of \(\sqcup\)-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \(\sqcup\)-rule

- irrelevant part of the search space is not considered
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \sqcup-rule
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \sqcup-rule
- irrelevant part of the search space is not considered
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \lnot A \cap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[\quad \sqcap \text{-rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n),
\exists r. \lnot A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset\]
Dependency-Directed Backtracking
Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[
\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \quad \text{tagged with } \{1\} \\
& \ldots \quad \ldots \quad \ldots \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \quad \text{tagged with } \{n\}
\end{align*}
\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[\begin{array}{ll}
\sqcap \text{-rule} & L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \text{ all with } \emptyset \\
\sqcup \text{-rule} & L(v) := L(v) \cup \{C_1\} \text{ } C_1 \text{ tagged with } \{1\} \\
\exists \text{-rule} & L(w) := \{\neg A\} \text{ } A, r \text{ tagged with } \emptyset
\end{array}\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\] tagged with \(\emptyset\)

\[\sqcap\text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n),\]
\[\exists r. \neg A, \forall r. (A \sqcap B)\}\] all with \(\emptyset\)

\[\sqcup\text{-rule } L(v) := L(v) \cup \{C_1\}\] \(C_1\) tagged with \(\{1\}\)

\[\vdots \quad \vdots \quad \vdots\]

\[\sqcap\text{-rule } L(v) := L(v) \cup \{C_n\}\] \(C_n\) tagged with \(\{n\}\)

\[\exists\text{-rule } L(w) := \{\neg A\}\] \(A, r\) tagged with \(\emptyset\)

\[\forall\text{-rule } L(w) := \{\neg A, A\}\] \(\neg A\) tagged with mit \(\emptyset\)
Dependency-Directed Backtracking

Example

\((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)\) tagged with \(\emptyset\)

\(\sqcap\)-rule \(L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n),\ \exists r. \neg A, \forall r. (A \sqcap B)\}\) all with \(\emptyset\)

\(\sqcup\)-rule \(L(v) := L(v) \cup \{C_1\}\) \(C_1\) tagged with \(\{1\}\)

\(\sqcap\)-rule \(L(v) := L(v) \cup \{C_n\}\) \(C_n\) tagged with \(\{n\}\)

\(\exists\)-rule \(L(w) := \{\neg A\}\) \(A, r\) tagged with \(\emptyset\)

\(\forall\)-rule \(L(w) := \{\neg A, A\}\) clash \(\neg A\) tagged with mit \(\emptyset\)
Dependency-Directed Backtracking
Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[\forall \text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n),
\exists r. \neg A, \forall r. (A \sqcap B)\} \text{ all with } \emptyset\]

\[\exists \text{-rule } L(w) := \{\neg A\} \text{ A, r tagged with } \emptyset\]

\[\forall \text{-rule } L(w) := \{\neg A, A\} \text{ clash } \neg A \text{ tagged with mit } \emptyset\]

\[\bullet \text{ tag}(A) \cup \text{ tag}(\neg A) = \emptyset\]
Dependency-Directed Backtracking

Example

\((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)\) tagged with \(\emptyset\)

\[\begin{aligned}
\text{\begin{tabular}{lr}
\text{\square -rule} & \text{L(v)} := L(v) \cup \{ (C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \exists r. \neg A, \forall r. (A \sqcap B) \} \quad \text{all with } \emptyset
\end{tabular}}
\end{aligned}\]

\[\begin{aligned}
\text{\begin{tabular}{lr}
\text{\square -rule} & L(v) := L(v) \cup \{ C_1 \} \quad C_1 \text{ tagged with } \{1\}
\end{tabular}}
\end{aligned}\]

\[\begin{aligned}
\text{\begin{tabular}{lr}
\text{\square -rule} & L(v) := L(v) \cup \{ C_n \} \quad C_n \text{ tagged with } \{n\}
\end{tabular}}
\end{aligned}\]

\[\begin{aligned}
\text{\exists -rule} & \quad L(w) := \{ \neg A \} \quad A, r \text{ tagged with } \emptyset
\end{aligned}\]

\[\begin{aligned}
\text{\forall -rule} & \quad L(w) := \{ \neg A, A \} \quad \text{clash} \quad \neg A \text{ tagged with mit } \emptyset
\end{aligned}\]

- \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
- None of the \(\square\)-rules has contributed to the cotradiction
Dependency-Directed Backtracking

Example

\((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)\) tagged with \(\emptyset\)

- \(\sqcap\)-rule
 \(L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\}\) all with \(\emptyset\)

- \(\sqcup\)-rule
 \(L(v) := L(v) \cup \{C_1\}\) \(C_1\) tagged with \(\{1\}\)

 \(\vdots \vdots \vdots \vdots \)

- \(\sqcup\)-rule
 \(L(v) := L(v) \cup \{C_n\}\) \(C_n\) tagged with \(\{n\}\)

- \(\exists\)-rule
 \(L(w) := \{\neg A\}\) \(A, r\) tagged with \(\emptyset\)

- \(\forall\)-rule
 \(L(w) := \{\neg A, A\}\) clash \(\neg A\) tagged with mit \(\emptyset\)

- \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
- None of the \(\sqcup\)-rules has contributed to the cotradsiction
- Output false (unsatisfiable)
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap\{A, B, C\}$, $\forall r. C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\cap\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., \(A \cap (B \cap C) \equiv \cap \{A, B, C\}, \forall r.C \equiv \neg \exists r.\neg C \)
 - simplification, e.g., \(\cap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r.\bot \equiv \bot, \forall r.\top \equiv \top \)

- **caching**
 - prevents the repeated construction of equal subtrees
 - \(L(v) \) initialized with \(\{C_1, \ldots, C_n\} \) via \(\exists \)- and \(\forall \)-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of \(C_1 \cap \ldots \cap C_n \), update the cache
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap\{A, B, C\}$, $\forall r.C \equiv \neg \exists r.\neg C$
 - simplification, e.g., $\cap\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r.\bot \equiv \bot$, $\forall r.\top \equiv \top$

- **caching**
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \cap \ldots \cap C_n$, update the cache

- **heuristics**
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \cap, \forall, \lor, \exists
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., \(A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\} \), \(\forall r. C \equiv \neg \exists r. \neg C \)
 - simplification, e.g., \(\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot \), \(\exists r. \bot \equiv \bot \), \(\forall r. \top \equiv \top \)

- **caching**
 - prevents the repeated construction of equal subtrees
 - \(L(v) \) initialized with \(\{C_1, \ldots, C_n\} \) via \(\exists \)- and \(\forall \)-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of \(C_1 \sqcap \ldots \sqcap C_n \), update the cache

- **heuristics**
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \(\sqcap, \forall, \sqcup, \exists \)

- ...
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \cap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - \Rightarrow if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \Rightarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - \Rightarrow if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \Rightarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)
- naïve approach needs n^2 subsumption checks for n concept names
- normally cached in the concept hierarchy graph
Optimizing Classification

most wide-spread technique is called enhanced traversal
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
Optimizing Classification

most wide-spread technique is called enhanced traversal
• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of \sqsubseteq used to save checks

Only if $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
• then $B \sqsubseteq C \rightarrow A \sqsubseteq D$
• and $A \not\sqsubseteq D \rightarrow B \not\sqsubseteq C$
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

Bottom-Up Phase:

TU Dresden Deduction Systems
Enhanced Traversal Example

already created hierarchy:

```
⊤
  ▼
Disease
    ▼
  Joint
    ▼
JuvDisease
    ▼
JointDisease
    ▼
Arthritis
    ▼
JuvArthritis
  ▼
TU Dresden
```

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ ? Disease

Bottom-Up Phase:

- JuvArthritis ⊑ JointDisease
- JuvDisease ⊑ JointDisease
- Arthritis ⊑ JointDisease
Enhanced Traversal Example

already created hierarchy:

\[
\top \rightarrow \text{Disease} \rightarrow \text{Joint} \rightarrow \text{JuvDisease} \rightarrow \text{JointDisease} \rightarrow \text{Arthritis} \rightarrow \text{JuvArthritis} \rightarrow \bot \n\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\sqsubseteq?$ JuvDisease

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

-⊤
- Disease
- Joint
- JuvDisease
- JointDisease
- Arthritis
- JuvArthritis

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊑? Arthritis
- JointDisease ⊑? JuvDisease

Bottom-Up Phase:

TU Dresden Deduction Systems
Enhanced Traversal Example

already created hierarchy:

\[
\begin{align*}
\top & \quad \text{Disease} \\
& \quad \text{Joint} \\
& \quad \text{JuvDisease} \\
& \quad \text{JointDisease} \\
& \quad \text{Arthritis} \\
& \quad \text{JuvArthritis}
\end{align*}
\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq \text{Disease}
- JointDisease \not\sqsubseteq \text{JuvDisease}
- JointDisease \not\sqsubseteq \text{Arthritis}
- JointDisease \sqsubseteq \text{Joint}

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \subseteq Disease
- JointDisease $\not\subseteq$ JuvDisease
- JointDisease $\not\subseteq$ Arthritis
- JointDisease $\not\subseteq$ Joint

Bottom-Up Phase:

- JuvArthritis \subseteq ? JointDisease
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ̸⊑ JuvDisease
- JointDisease ̸⊑ Arthritis
- JointDisease ̸⊑ Joint

Bottom-Up Phase:

- JuvArthritis ⊑ JointDisease
- JuvDisease ⊑ JointDisease

TU Dresden Deduction Systems
Enhanced Traversal Example

already created hierarchy:

```
 ⊤
Disease
  Joint
  JuvDisease
  JointDisease
  Arthritis
  JuvArthritis
 ⊥
```

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease ⊑ Disease
- JointDisease ⊏ JuvDisease
- JointDisease ⊏ Arthritis
- JointDisease ⊏ Joint

Bottom-Up Phase:
- JuvArthritis ⊑ JointDisease
- JuvDisease ⊏ JointDisease
- Arthritis ⊏ JointDisease
Enhanced Traversal Example

already created hierarchy:

\[
\begin{align*}
\top & \mathbin\sqsubset \text{Disease} \\
& \quad \mathbin\sqsubset \text{JointDisease} \\
& \quad \quad \mathbin\sqsubset \text{Arthritis} \\
& \quad \quad \quad \mathbin\sqsubset \text{JuvArthritis} \\
& \quad \mathbin\sqsubset \text{JuvDisease} \\
& \quad \quad \mathbin\sqsubset \text{JointDisease} \\
\text{Joint} & \mathbin\sqsubset \text{JointDisease} \\
& \quad \mathbin\sqsubset \text{JuvDisease} \\
& \quad \quad \mathbin\sqsubset \text{Arthritis} \\
& \quad \quad \quad \mathbin\sqsubset \text{JointDisease} \\
& \quad \mathbin\sqsubset \text{Joint} \\
\end{align*}
\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubset \text{Disease}
- JointDisease \not\sqsubset \text{JuvDisease}
- JointDisease \not\sqsubset \text{Arthritis}
- JointDisease \not\sqsubset \text{Joint}

Bottom-Up Phase:

- JuvArthritis \sqsubset \text{JointDisease}
- JuvDisease \not\sqsubset \text{JointDisease}
- Arthritis \sqsubset \text{JointDisease}
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Summary

- we have a tableau algorithm for $ALCIF$ knowledge bases
 - ABox treated like for ALC
 - number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
 - becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
 - enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of OWL reasoners