
Foundations for Machine

Learning

L. Y. Stefanus

TU Dresden, June-July 2019

1Slides 04p

Slide 04p

Real-World Data

Representation Using

Tensors

2Slides 04p

Reference

• Eli Stevens and Luca Antiga. Deep

Learning with PyTorch. Manning

Publications, 2019/2020.

• Ian Goodfellow and Yoshua Bengio and

Aaron Courville. Deep Learning. MIT

Press, 2016.

Slides 04p
3

Tensor as Building-blocks

• We have learned that tensors are the building blocks for

data in PyTorch.

• Neural networks take tensors as input and produce

tensors as outputs. In fact, all operations within a neural

network and during optimization are operations between

tensors, and all parameters (e.g. weights) in a neural

network are tensors.

• How do we take a piece of data, a video, or some text,

and represent it with a tensor that is appropriate for

training a deep learning model?

Slides 04p
4

Tabular Data

• The simplest form of data: in a spreadsheet, in a CSV

(comma-separated values) file, or in database.

• Whatever the medium, it’s a table containing one row per

sample (or record), where a column contains one piece of

information of a sample.

• At first we assume there’s no meaning in the order in

which samples appear in the table: such table is a

collection of independent samples, unlike a time-series,

for instance, in which samples are related by a time

dimension.

Slides 04p
5

Tabular Data

• Columns may contain numerical values, like temperatures

at specific locations, or labels, like a string expressing an

attribute of the sample, like “green". Therefore, tabular

data is typically not homogeneous: different columns don’t

have the same type.

• PyTorch tensors, on the other hand, are homogeneous.

• Information in PyTorch is typically encoded as a number.

This numeric encoding is deliberate, since neural

networks are mathematical entities that take real numbers

as inputs and produce real numbers as output through

successive application of matrix multiplications and non-

linear functions.

Slides 04p
6

Tabular Data

• Our first job, as deep learning practitioners, is therefore to

encode heterogenous, real-world data into a tensor of

floating point numbers, ready for consumption by a neural

network.

• There are a large number of tabular datasets freely

available on the Internet, see for instance:

github.com/caesar0301/awesome-public-datasets

• We will use the Wine Quality dataset, which can be

downloaded from here: archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality-white.csv.

Slides 04p
7

Tabular Data

• The file contains a comma-separated collection of values

organized in 12 columns preceded by a header line

containing the column names. The first 11 columns

contain values of chemical variables, while the last

column contains the sensory quality score from 0 (very

bad) to 10 (excellent).

• These are the column names in the order they appear in

the dataset: fixed acidity, volatile acidity, citric acid,

residual sugar, chlorides, free sulfur dioxide, total sulfur

dioxide, density, pH, sulphates, alcohol, quality.

• A possible machine learning task on this dataset is

predicting the quality score from chemical characterization

alone.

Slides 04p
8

Tabular Data

• As we can see in Figure-4.1, we’re expecting to see

quality increase as sulfur decreases.

Slides 04p
9

Tabular Data

• Let’s see how we can load the data using Python and

then turn it into a PyTorch tensor. Python offers several

options for quickly loading a CSV file: csv module,

NumPy, Pandas.

• Since PyTorch has excellent NumPy interoperability, we’ll

go with that. Let’s load our file and turn the resulting

NumPy array into a PyTorch tensor.

Slides 04p
10

Tabular Data
In[2]:

import csv

Import numpy as np

wine_path = "C:/Kuliah/machineLearning2019/data/winequality.csv"

wineq_numpy = np.loadtxt(wine_path, dtype=np.float32,

delimiter=";", skiprows=1)

wineq_numpy

Out[2]:

array([[7. , 0.27, 0.36, ..., 0.45, 8.8 , 6.],

[6.3 , 0.3 , 0.34, ..., 0.49, 9.5 , 6.],

[8.1 , 0.28, 0.4 , ..., 0.44, 10.1 , 6.],

...,

[6.5 , 0.24, 0.19, ..., 0.46, 9.4 , 6.],

[5.5 , 0.29, 0.3 , ..., 0.38, 12.8 , 7.],

[6. , 0.21, 0.38, ..., 0.32, 11.8 , 6.]], dtype=float32)

Slides 04p
11

• For the function loadtxt from Numpy, we

just prescribed what the type of the 2D

array should be (32-bit floating point), the

delimiter used to separate values in each

row and the fact that the first line should

not be read since it contains the column

names.

Slides 04p
12

Tabular Data

Slides 04p
13

At this point we have a

torch.FloatTensor containing all

columns of the table.

Tabular Data

• We will remove the quality score from the tensor of input

data and keep it in a separate tensor, so that we can use

the score as the ground truth.

Slides 04p
14

1. select all rows,

all columns except the last

2. select all rows,

the last column

Tabular Data

• If we want to transform the target tensor into a tensor of

labels, we have two options, depending on the strategy

or what we use the categorical data for. One is simply to

treat labels as an integer vector of scores:

• If targets were string labels, like colors, assigning an

integer number to each string would allow for the same

approach.

Slides 04p
15

Tabular Data

One-hot Encoding

• The other approach is to build a one-hot encoding of the

quality scores, that is, encode each of the 10 scores in a

vector of 10 elements, with all elements set to zero

except one, at a different index for each score. This way

a score of 1 could be mapped onto the vector

(1,0,0,0,0,0,0,0,0,0), a score of 5 onto

(0,0,0,0,1,0,0,0,0,0) and so on.

Slides 04p
16

Tabular Data

• There’s an important difference between the two

approaches.

• Keeping wine quality scores in an integer vector of scores

induces an ordering on the scores - which might be

appropriate in this case, since a score of 1 is lower than a

score of 4. It also induces some sort of distance between

scores, i.e. the distance between 1 and 3 is the same as

the distance between 2 and 4. If this holds for our quantity,

then fine. If, on the other hand, scores were purely

qualitative, like colors, one-hot encoding will be a much

better fit, as there’s no implied ordering or distance.

Slides 04p
17

Tabular Data

• One-hot encoding will also be appropriate for quantitative

scores when fractional values in-between integer scores,

like 2.4, make no sense for the application.

• We can achieve one-hot encoding using the scatter_

method, which fills the tensor with values from a source

tensor along the indices provided as arguments.

In[8]:

target_onehot = torch.zeros(target.shape[0], 10)

target_onehot.scatter_(1, target.unsqueeze(1), 1.0)

target_onehot[0]

Out[8]:

tensor([0., 0., 0., 0., 0., 0., 1., 0., 0., 0.])

Slides 04p
18

Tabular Data

• The arguments for scatter_ are:

1. The dimension along which the following two arguments are

specified

2. A column tensor indicating the indices of the elements to scatter

3. A tensor containing the elements to scatter or a single scalar to

scatter (1.0 in this case)

• In other words, the above invocation reads: for each row,

take the index of the target label (which coincides with the

score in our case) and use it as the column index to set the

value 1.0.

• The end-result is a tensor encoding categorical

information.

Slides 04p
19

Tabular Data

• The second argument of scatter_, the index tensor, is

required to have the same number of dimensions as the

tensor we scatter into. Since target_onehot has two

dimensions (4898x10), we needed to add an extra dummy

dimension to target using the method unsqueeze.

Slides 04p
20

Tabular Data

• The call to unsqueeze added a singleton dimension, from a

1D tensor of 4898 elements to a 2D tensor of size

(4898x1), without changing its contents - there are no extra

elements added, we just use an extra index to access the

elements. For example, we access the first element of

target as target[0] and the first element of its unsqueezed

counterpart as target_unsqueezed[0,0].

• If we want to use the score as a categorical input to a

neural network in PyTorch, we would have to transform it to

a one-hot encoded tensor.

Slides 04p
21

Images

• The introduction of convolutional neural networks

revolutionized computer vision. In order to work in

computer vision, we need to be able to load images from

common image formats, and then transform the data into a

tensor representation that has the various parts of the

image arranged in the way that PyTorch expects.

• An image is represented as a collection of scalars

arranged in a regular grid, having a height and a width (in

pixels). One might have a single scalar per grid point (the

pixel), which would be represented as a grayscale image,

or multiple scalars per grid point, which would typically be

representing different colors, or different features like

depth from a depth camera.

Slides 04p
22

Images

• Scalars representing values at individual pixels are often

encoded using 8-bit integers, for instance in consumer

cameras. In medical, scientific or industrial applications it

is not infrequent to find pixels with higher numerical

precision, like 12-bit or 16-bit.

• There are several ways of encoding colors into numbers.

The most common is RGB, where a color is defined by

three numbers representing the intensity of red, green and

blue. We can think of a color channel as a grayscale

intensity map of only the color in question, similar to what

you’d see if you looked at the scene in question using a

pair of pure red sunglasses.

Slides 04p
23

Images

• Images come in several different file formats, but there are

many ways of loading images in Python. Let’s start loading

a PNG image using the imageio module, which can handle

different data types with a uniform API.

In[2]:

import imageio

img_arr = imageio.imread('C:/Kuliah/ml/data/bobby.jpg')

img_arr.shape

Out[2]:

(720, 1280, 3)

Slides 04p
24

Images
• At this point, img_arr is a NumPy array object with three dimensions:

two spatial dimensions, width and height, and a third dimension

corresponding to channels (red, green and blue).

• Any library that outputs a NumPy array will do in order to obtain a

PyTorch tensor. The only thing to watch out for is the layout of

dimensions. PyTorch modules dealing with image data require tensors

to be laid out as C x H x W (channels, height, width).

• We can use the transpose function to get to an appropriate layout.

Given an input tensor with layout W x H x C as obtained above, we get

to a proper layout by swapping the first and last dimensions:

• Note that the two tensors use the same storage.

Slides 04p
25

Images
• So far we have described a single image. In order to create a dataset

of multiple images to use as an input for our neural networks, we store

the images in a batch along the first dimension to obtain a N x C x H x

W tensor.

• As a more efficient alternative to using stack to build up the tensor, we

can pre-allocate a tensor of appropriate size and fill it with images

loaded from a directory, like so:

Slides 04p
26

Images
• Our batch or dataset consists of 100 RGB images of 256 pixels in

height and 256 pixels in width. Notice the type of the tensor: we’re

expecting each color to be represented as a 8-bit integer, as in most

photographic formats from standard consumer cameras.

• Neural networks exhibit the best training performance when input data

ranges roughly from 0 to 1 (or from -1 to 1) in floating-point values.

• So a typical thing we’ll want to do is cast a tensor to floating point and

normalize the values of the pixels. One possibility is to just divide the

values of pixels by 255 (the maximum representable number in 8-bit

unsigned):

Slides 04p
27

