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Tensor as Building-blocks

• We have learned that tensors are the building blocks for 

data in PyTorch.

• Neural networks take tensors as input and produce 

tensors as outputs. In fact, all operations within a neural 

network and during optimization are operations between 

tensors, and all parameters (e.g. weights) in a neural 

network are tensors. 

• How do we take a piece of data, a video, or some text, 

and represent it with a tensor that is appropriate for 

training a deep learning model?
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Tabular Data

• The simplest form of data: in a spreadsheet, in a CSV 

(comma-separated values) file, or in database. 

• Whatever the medium, it’s a table containing one row per 

sample (or record), where a column contains one piece of 

information of a sample.

• At first we assume there’s no meaning in the order in 

which samples appear in the table: such table is a 

collection of independent samples, unlike a time-series, 

for instance, in which samples are related by a time 

dimension.
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Tabular Data

• Columns may contain numerical values, like temperatures 

at specific locations, or labels, like a string expressing an 

attribute of the sample, like “green". Therefore, tabular 

data is typically not homogeneous: different columns don’t 

have the same type.

• PyTorch tensors, on the other hand, are homogeneous. 

• Information in PyTorch is typically encoded as a number. 

This numeric encoding is deliberate, since neural 

networks are mathematical entities that take real numbers 

as inputs and produce real numbers as output through 

successive application of matrix multiplications and non-

linear functions.
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Tabular Data

• Our first job, as deep learning practitioners, is therefore to 

encode heterogenous, real-world data into a tensor of 

floating point numbers, ready for consumption by a neural 

network.

• There are a large number of tabular datasets freely 

available on the Internet, see for instance: 

github.com/caesar0301/awesome-public-datasets

• We will use the Wine Quality dataset, which can be 

downloaded from here: archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality-white.csv. 
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Tabular Data

• The file contains a comma-separated collection of values 

organized in 12 columns preceded by a header line 

containing the column names. The first 11 columns 

contain values of chemical variables, while the last 

column contains the sensory quality score from 0 (very 

bad) to 10 (excellent). 

• These are the column names in the order they appear in 

the dataset: fixed acidity, volatile acidity, citric acid, 

residual sugar, chlorides, free sulfur dioxide, total sulfur 

dioxide, density, pH,  sulphates,  alcohol, quality.

• A possible machine learning task on this dataset is 

predicting the quality score from chemical characterization 

alone.
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Tabular Data

• As we can see in Figure-4.1, we’re expecting to see 

quality increase as sulfur decreases.
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Tabular Data

• Let’s see how we can load the data using Python and 

then turn it into a PyTorch tensor. Python offers several 

options for quickly loading a CSV file: csv module, 

NumPy, Pandas.

• Since PyTorch has excellent NumPy interoperability, we’ll 

go with that. Let’s load our file and turn the resulting 

NumPy array into a PyTorch tensor.
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Tabular Data
# In[2]:

import csv

Import numpy as np

wine_path = "C:/Kuliah/machineLearning2019/data/winequality.csv"

wineq_numpy = np.loadtxt(wine_path, dtype=np.float32, 

delimiter=";", skiprows=1)

wineq_numpy

# Out[2]:

array([[ 7. , 0.27, 0.36, ..., 0.45, 8.8 , 6. ],

[ 6.3 , 0.3 , 0.34, ..., 0.49, 9.5 , 6. ],

[ 8.1 , 0.28, 0.4 , ..., 0.44, 10.1 , 6. ],

...,

[ 6.5 , 0.24, 0.19, ..., 0.46, 9.4 , 6. ],

[ 5.5 , 0.29, 0.3 , ..., 0.38, 12.8 , 7. ],

[ 6. , 0.21, 0.38, ..., 0.32, 11.8 , 6. ]], dtype=float32)
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• For the function loadtxt from Numpy,  we 

just prescribed what the type of the 2D 

array should be (32-bit floating point), the 

delimiter used to separate values in each 

row and the fact that the first line should 

not be read since it contains the column 

names.
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Tabular Data
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At this point we have a 

torch.FloatTensor containing all 

columns of the table.



Tabular Data

• We will remove the quality score from the tensor of input 

data and keep it in a separate tensor, so that we can use 

the score as the ground truth. 
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1. select all rows, 

all columns except the last

2. select all rows, 

the last column



Tabular Data

• If we want to transform the target tensor into a tensor of 

labels, we have two options, depending on the strategy 

or what we use the categorical data for. One is simply to 

treat labels as an integer vector of scores:

• If targets were string labels, like colors, assigning an 

integer number to each string would allow for the same 

approach.
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Tabular Data

One-hot Encoding

• The other approach is to build a one-hot encoding of the 

quality scores, that is, encode each of the 10 scores in a 

vector of 10 elements, with all elements set to zero 

except one, at a different index for each score. This way 

a score of 1 could be mapped onto the vector 

(1,0,0,0,0,0,0,0,0,0), a score of 5 onto 

(0,0,0,0,1,0,0,0,0,0) and so on.
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Tabular Data

• There’s an important difference between the two 

approaches. 

• Keeping wine quality scores in an integer vector of scores 

induces an ordering on the scores - which might be 

appropriate in this case, since a score of 1 is lower than a 

score of 4. It also induces some sort of distance between 

scores, i.e. the distance between 1 and 3 is the same as 

the distance between 2 and 4. If this holds for our quantity, 

then fine. If, on the other hand, scores were purely 

qualitative, like colors, one-hot encoding will be a much 

better fit, as there’s no implied ordering or distance.
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Tabular Data

• One-hot encoding will also be appropriate for quantitative 

scores when fractional values in-between integer scores, 

like 2.4, make no sense for the application.

• We can achieve one-hot encoding using the scatter_

method, which fills the tensor with values from a source 

tensor along the indices provided as arguments.

# In[8]:

target_onehot = torch.zeros(target.shape[0], 10)

target_onehot.scatter_(1, target.unsqueeze(1), 1.0)

target_onehot[0]

# Out[8]:

tensor([0., 0., 0., 0., 0., 0., 1., 0., 0., 0.])
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Tabular Data

• The arguments for scatter_ are:

1. The dimension along which the following two arguments are 

specified

2. A column tensor indicating the indices of the elements to scatter

3. A tensor containing the elements to scatter or a single scalar to 

scatter (1.0 in this case)

• In other words, the above invocation reads: for each row, 

take the index of the target label (which coincides with the 

score in our case) and use it as the column index to set the 

value 1.0.

• The end-result is a tensor encoding categorical 

information.
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Tabular Data

• The second argument of scatter_, the index tensor, is 

required to have the same number of dimensions as the 

tensor we scatter into. Since target_onehot has two 

dimensions (4898x10), we needed to add an extra dummy 

dimension to target using the method unsqueeze.

Slides 04p
20



Tabular Data

• The call to unsqueeze added a singleton dimension, from a 

1D tensor of 4898 elements to a 2D tensor of size 

(4898x1), without changing its contents - there are no extra 

elements added, we just use an extra index to access the 

elements. For example, we access the first element of 

target as target[0] and the first element of its unsqueezed 

counterpart as target_unsqueezed[0,0].

• If we want to use the score as a categorical input to a 

neural network in PyTorch, we would have to transform it to 

a one-hot encoded tensor.
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Images

• The introduction of convolutional neural networks 

revolutionized computer vision. In order to work in 

computer vision, we need to be able to load images from 

common image formats, and then transform the data into a 

tensor representation that has the various parts of the 

image arranged in the way that PyTorch expects.

• An image is represented as a collection of scalars 

arranged in a regular grid, having a height and a width (in 

pixels). One might have a single scalar per grid point (the 

pixel), which would be represented as a grayscale image, 

or multiple scalars per grid point, which would typically be 

representing different colors, or different features like 

depth from a depth camera.
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Images

• Scalars representing values at individual pixels are often 

encoded using 8-bit integers, for instance in consumer 

cameras. In medical, scientific or industrial applications it 

is not infrequent to find pixels with higher numerical 

precision, like 12-bit or 16-bit. 

• There are several ways of encoding colors into numbers. 

The most common is RGB, where a color is defined by 

three numbers representing the intensity of red, green and 

blue. We can think of a color channel as a grayscale 

intensity map of only the color in question, similar to what 

you’d see if you looked at the scene in question using a 

pair of pure red sunglasses. 
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Images

• Images come in several different file formats, but there are 

many ways of loading images in Python. Let’s start loading 

a PNG image using the imageio module, which can handle 

different data types with a uniform API.

# In[2]:

import imageio

img_arr = imageio.imread('C:/Kuliah/ml/data/bobby.jpg')

img_arr.shape

# Out[2]:

(720, 1280, 3)
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Images
• At this point, img_arr is a NumPy array object with three dimensions: 

two spatial dimensions, width and height, and a third dimension 

corresponding to channels (red, green and blue). 

• Any library that outputs a NumPy array will do in order to obtain a 

PyTorch tensor. The only thing to watch out for is the layout of 

dimensions. PyTorch modules dealing with image data require tensors 

to be laid out as C x H x W (channels, height, width).

• We can use the transpose function to get to an appropriate layout. 

Given an input tensor with layout W x H x C as obtained above, we get 

to a proper layout by swapping the first and last dimensions:

• Note that the two tensors use the same storage.
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Images
• So far we have described a single image. In order to create a dataset 

of multiple images to use as an input for our neural networks, we store 

the images in a batch along the first dimension to obtain a N x C x H x 

W tensor.

• As a more efficient alternative to using stack to build up the tensor, we 

can pre-allocate a tensor of appropriate size and fill it with images 

loaded from a directory, like so:
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Images
• Our batch or dataset consists of 100 RGB images of 256 pixels in 

height and 256 pixels in width. Notice the type of the tensor: we’re 

expecting each color to be represented as a 8-bit integer, as in most 

photographic formats from standard consumer cameras. 

• Neural networks exhibit the best training performance when input data 

ranges roughly from 0 to 1 (or from -1 to 1) in floating-point values.

• So a typical thing we’ll want to do is cast a tensor to floating point and 

normalize the values of the pixels. One possibility is to just divide the 

values of pixels by 255 (the maximum representable number in 8-bit 

unsigned):
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