Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Automation

• by now: ad hoc arguments about satisfiability of DL axioms
• wanted: generic algorithm
• considered reasoning task: concept satisfiability
• a concept is satisfiable, if it has a model
 ⇝ idea: constructive decision procedure that tries to build models
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Simple Tableau

We want to check satisfiability of the following propositional formula:

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]
We want to check satisfiability of the following propositional formula:

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

Negation in front of complex expressions and operators like \(\rightarrow\) and \(\leftrightarrow\) difficult to handle, thus reformulate:
We want to check satisfiability of the following propositional formula:

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

Negation in front of complex expressions and operators like → and ↔ difficult to handle, thus reformulate:

\[\neg(p \lor q) \lor (\neg p \lor \neg q)\]
Simple Tableau

We want to check satisfiability of the following propositional formula:

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

Negation in front of complex expressions and operators like \(\rightarrow\) and \(\leftrightarrow\) difficult to handle, thus reformulate:

\[\neg(p \lor q) \lor (\neg p \lor \neg q)\]
\[(\neg p \land \neg q) \lor (\neg p \lor \neg q)\]
Simple Tableau

We want to check satisfiability of the following propositional formula:

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

Negation in front of complex expressions and operators like \rightarrow and \leftrightarrow difficult to handle, thus reformulate:

\[\neg(p \lor q) \lor (\neg p \lor \neg q)\]
\[\neg p \land \neg q) \lor (\neg p \lor \neg q)\]
\[\neg p \land \neg q) \lor \neg p \lor \neg q\]
Simple Tableau

\((\neg p \land \neg q) \lor \neg p \lor \neg q\)
Simple Tableau

\((\neg p \land \neg q) \lor \neg p \lor \neg q\)

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
Simple Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
Simple Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

\[\neg p \land \neg q\]
\[\neg p\]
\[\neg q\]

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
- compare: truth table

<table>
<thead>
<tr>
<th>(I(p))</th>
<th>(I(q))</th>
<th>(I(\neg p))</th>
<th>(I(\neg q))</th>
<th>(I(p \lor q))</th>
<th>(I(\neg p \lor \neg q))</th>
<th>(I((p \lor q) \rightarrow (\neg p \lor \neg q)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
</tr>
<tr>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
</tbody>
</table>
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]
Simple Tableau with Contradiction

\[(\neg p \vee q) \land p \land \neg q\]
\[\neg p \vee q\]
\[p\]
\[\neg q\]
Simple Tableau with Contradiction

\((\neg p \lor q) \land p \land \neg q\)

\(\neg p \lor q\)

\(p\)

\(\neg q\)

\(\neg p\)

\(q\)
Simple Tableau with Contradiction

\((\neg p \lor q) \land p \land \neg q\)

\(\neg p \lor q\)

\(p\)

\(\neg q\)

\(\neg p\)

\(q\)
Simple Tableau with Contradiction

\[\neg p \lor q \land p \land \neg q \]

\[\neg p \lor q \]

\[p \]

\[\neg q \]

\[\neg p \]

\[q \]

\[\bot \]

- If a branch contains an atomic contradiction (clash), we call this branch closed
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

\[\neg p \lor q\]
\[p\]
\[\neg q\]
\[\neg p\]
\[q\]
\[\bot\]

- if a branch contains an atomic contradiction (clash), we call this branch closed
- a tableau is closed, if all its branches are
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q \]

\[\neg p \lor q \]

\[p \]

\[\neg q \]

\[\neg p \]

\[q \]

\[\bot \]

\[\bot \]

- if a branch contains an atomic contradiction (clash), we call this branch closed
- a tableau is closed, if all its branches are
- a complete tableau without open branches shows the formula’s unsatisfiability
Constructing a Model from the Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

- Given an open branch, we can construct a model:
Constructing a Model from the Tableau

Given an open branch, we can construct a model:
- Left branch: let $I(p) = \text{false}$ and let $I(q) = \text{false}$
- Middle branch: let $I(p) = \text{false}$ (if q is irrelevant, default assignment false)
- Right branch: let $I(q) = \text{false}$ (if p is irrelevant, default assignment false)
Given an open branch, we can construct a model:

- Left branch: let $I(p) = \text{false}$ and let $I(q) = \text{false}$
- Middle branch: let $I(p) = \text{false}$ ($I(q)$ is irrelevant since not in the branch, default assignment false)
- Right branch: let $I(q) = \text{false}$ ($I(p)$ is irrelevant since not in the branch, default assignment false)
Constructing a Model from the Tableau

Given an open branch, we can construct a model:
- Left branch: let $I(p) = \text{false}$ and let $I(q) = \text{false}$
- Middle branch: let $I(p) = \text{false}$ ($I(q)$ is irrelevant since not in the branch, default assignment false)
- Right branch: let $I(q) = \text{false}$ ($I(p)$ is irrelevant since not in the branch, default assignment false)
Propositional Tableau

- not always exponentially many combinations have to be checked (as opposed to truth table method)
- branches can be built one after the other \leadsto only polynomial space needed
- if we care about satisfiability we can stop after constructing the first complete open branch
Construction with only one Branch in Memory

\((\neg p \lor q) \land p \land q\)
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]

\[\neg p^{1a} \lor q^{1b}\]

\[p\]

\[q\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]

\[\neg p^{1a} \lor q^{1b}\]

- \(p\)
- \(q\)
- \(\neg p^{1a}\)

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]
\[\neg p^{1a} \lor q^{1b}\]
\[p\]
\[q\]
\[\neg p^{1a}\]
\[\bot^{1a}\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
- when encountering a contradiction caused by a choice, remove marked formulae and try next choice
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]

\[\neg p^{1a} \lor q^{1b}\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
- when encountering a contradiction caused by a choice, remove marked formulae and try next choice
From Propositional Tableau to Tableau for DLs

How can the tableaux be extended for checking satisfiability of \mathcal{ALC} concepts?
NB: initially, we assume no underlying knowledge base, thus unsatisfiability means that the concept is contradictory “by itself”.

- tableau represents an element of the domain (plus its “environment”)
From Propositional Tableau to Tableau for DLs

How can the tableaux be extended for checking satisfiability of \mathcal{ALC} concepts?
NB: initially, we assume no underlying knowledge base, thus unsatisfiability means that the concept is contradictory “by itself”.

- tableau represents an element of the domain (plus its “environment”)
- tableau branch: finite set of propositions of the form $C(a)$, $r(a, b)$
- for existential quantifiers, new domain elements are introduced
- universal quantifiers propagate formulae (=concept expressions) to neighboring elements
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
NNF Transformation

recursive definition of an NNF transformation:

if C atomic:

$$\text{NNF}(C) := C$$

$$\text{NNF}(\neg C) := \neg C$$

otherwise:

$$\text{NNF}(\neg\neg C) := \text{NNF}(C)$$

$$\text{NNF}(C \land D) := \text{NNF}(C) \land \text{NNF}(D)$$

$$\text{NNF}(C \lor D) := \text{NNF}(C) \lor \text{NNF}(D)$$

$$\text{NNF}(\forall r.C) := \forall r.(\text{NNF}(C))$$

$$\text{NNF}(\exists r.C) := \exists r.(\text{NNF}(C))$$

$$\text{NNF}(\leq n.s.C) := \leq n.s.(\text{NNF}(C))$$

$$\text{NNF}(\geq n.s.C) := \geq n.s.(\text{NNF}(C))$$

$$\text{NNF}(\geq 0.s.C) := \top$$

$$\text{NNF}(\neg(\geq 0.s.C)) := \bot$$

otherwise

$$\text{NNF}(\neg(C \land D)) := \text{NNF}(\neg C) \lor \text{NNF}(\neg D)$$

$$\text{NNF}(\neg(C \lor D)) := \text{NNF}(\neg C) \land \text{NNF}(\neg D)$$

$$\text{NNF}(\neg(\forall r.C)) := \exists r.(\text{NNF}(\neg C))$$

$$\text{NNF}(\neg(\exists r.C)) := \forall r.(\text{NNF}(\neg C))$$

$$\text{NNF}(\neg(\leq n.s.C)) := \geq n + 1.s.(\text{NNF}(C))$$

$$\text{NNF}(\neg(\geq n.s.C)) := \leq n - 1.s.(\text{NNF}(C))$$

if $n \geq 1$

$$\text{NNF}(\neg(\geq 0.s.C)) := \bot$$

otherwise
NNF Transformation – Example

\[
\begin{align*}
\text{NNF}(&\neg(\neg C \sqcap (\neg D \sqcup E))) \\
= & \text{NNF}(\neg\neg C) \sqcup \text{NNF}(\neg(\neg D \sqcup E)) \\
= & \text{NNF}(C) \sqcup \text{NNF}(\neg(\neg D \sqcup E)) \\
= & C \sqcup \text{NNF}(\neg(\neg D \sqcup E)) \\
= & C \sqcup (\text{NNF}(\neg D) \sqcap \text{NNF}(\neg E)) \\
= & C \sqcup (\text{NNF}(D) \sqcap \text{NNF}(\neg E)) \\
= & C \sqcup (D \sqcap \text{NNF}(\neg E)) \\
= & C \sqcup (D \sqcap \neg E)
\end{align*}
\]
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \(\mathcal{ALC} \) Concepts
- Correctness and Termination
- Summary
Tableau for \mathcal{ALC} Concepts

- tableau for a propositional formula α: one element, labeled with subformulae of α
- tableau for an \mathcal{ALC} concept C: graph (more precisely: tree) where the nodes are labeled with subformulae of C
- root node labeled with C
- represents model for C (if complete and clash-free)
- non-root nodes are enforced by existential quantifiers

Definition

Let C be an \mathcal{ALC} concept, $\text{SF}(C)$ the set of all subformulae of C and $\text{Rol}(C)$ the set of all roles occurring in C. A tableau for C is a tree $G = \langle V, E, L \rangle$, with nodes V, edges $E \subseteq V \times V$ and a labeling function L with $L: V \rightarrow 2^{\text{SF}(C)}$ and $L: V \times V \rightarrow 2^{\text{Rol}(C)}$.
Properties of the \mathcal{ALC} Tableau Algorithm

- the algorithm is specified as a set of rules
- every rule breaks down a complex concept into its parts
- rules applicable in any order
- the algorithm is non-deterministic (due to disjunction)
- check for atomic contradictions

Tableau algorithm for checking satisfiability of \mathcal{ALC} concepts

Input: an \mathcal{ALC} concept in NNF
Output: true if there is a clash-free tableau
 where no more rules can be applied
 false otherwise (tableau closed)
Tableau Rules for \mathcal{ALC} Concepts

\sqcap-rule: For an arbitrary $v \in V$ mit $C \sqcap D \in L(v)$ and
\{C, D\} $\not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\sqcup-rule: For an arbitrary $v \in V$ with $C \sqcup D \in L(v)$ and
\{C, D\} $\cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let
$L(v) := L(v) \cup \{X\}$.

\exists-rule: For an arbitrary $v \in V$ with $\exists r.C \in L(v)$ such that
there is no r-successor v' of v with $C \in L(v')$,
let $V' = V \cup \{v'\}$, $E = E \cup \{(v, v')\}$, $L(v') := \{C\}$ and
$L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For arbitrary $v, v' \in V$, v' r-successor of v,
$\forall r.C \in L(v)$ and $C \notin L(v')$, let $L(v') := L(v') \cup \{C\}$.

- a node v' is an r-successor of a node v if $\langle v, v'\rangle \in E$ and $r \in L(v, v')$.

TU Dresden, 29 April 2018
Tableau Rules for \textit{ALC} Concepts

\textbf{\(\neg\)-rule:} For an arbitrary \(v \in V\) mit \(C \cap D \in L(v)\) and
\{\(C, D\)\} \(\not\in L(v)\), let \(L(v) := L(v) \cup \{C, D\}\).

\textbf{\(\sqcup\)-rule:} For an arbitrary \(v \in V\) with \(C \sqcup D \in L(v)\) and
\{\(C, D\)\} \(\cap L(v) = \emptyset\), choose \(X \in \{C, D\}\) and let
\(L(v) := L(v) \cup \{X\}\).

\textbf{\(\exists\)-rule:} For an arbitrary \(v \in V\) with \(\exists r. C \in L(v)\) such that
there is no \(r\)-successor \(v'\) of \(v\) with \(C \in L(v')\),
let \(V = V \cup \{v'\}\), \(E = E \cup \{(v, v')\}\), \(L(v') := \{C\}\) and
\(L(v, v') := \{r\}\) for \(v'\) a new node.

\textbf{\(\forall\)-rule:} For arbitrary \(v, v' \in V\), \(v'\) \(r\)-successor of \(v\),
\(\forall r. C \in L(v)\) and \(C \notin L(v')\), let \(L(v') := L(v') \cup \{C\}\).

- a node \(v'\) is an \(r\)-successor of a node \(v\) if \((v, v') \in E\) and \(r \in L(v, v')\)
- rule application order: “don’t care” non-determinism
Tableau Rules for \mathcal{ALC} Concepts

\square-rule: For an arbitrary $v \in V$ with $C \sqcap D \in L(v)$ and $
\{C, D\} \not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\sqcup-rule: For an arbitrary $v \in V$ with $C \sqcup D \in L(v)$ and $
\{C, D\} \cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let $L(v) := L(v) \cup \{X\}$.

\exists-rule: For an arbitrary $v \in V$ with $\exists r. C \in L(v)$ such that there is no r-successor v' of v with $C \in L(v')$, let $V := V \cup \{v'\}$, $E := E \cup \{(v, v')\}$, $L(v') := \{C\}$ and $L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For arbitrary $v, v' \in V$, v' r-successor of v, $\forall r. C \in L(v)$ and $C \not\in L(v')$, let $L(v') := L(v') \cup \{C\}$.

- a node v' is an r-successor of a node v if $\langle v, v'\rangle \in E$ and $r \in L(v, v')$
- rule application order: “don’t care” non-determinism
- choice of disjunction: “don’t know” non-determinism
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[u \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B \} \]

\[L(w) = \{ \neg A \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A) \} \]

\[L(w) = \{ \neg A \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[
L(u) = \{ C, \exists r. (A \sqcup \exists r. B),
\exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A))\}
\]

\[
L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A)\}
\]

\[
L(w) = \{ \neg A, \forall r. (\neg B \sqcup A)\}
\]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), A \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[
L(u) = \{ C, \exists r. (A \cup \exists r. B), \\
\exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \}
\]

\[
L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A) \}
\]

\[
L(w) = \{ \neg A, \forall r. (\neg B \cup A) \}
\]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[
\begin{align*}
L(u) &= \{ C, \exists r. (A \sqcup \exists r. B), \\
&\quad \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \\
L(v) &= \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), \times \exists r. B \} \\
L(w) &= \{ \neg A, \forall r. (\neg B \sqcup A) \}
\end{align*}
\]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[
L(u) = \{ C, \exists r. (A \cup \exists r. B), \\
\exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \}\n\]

\[
L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A), \times \exists r. B \}\n\]

\[
L(w) = \{ \neg A, \forall r. (\neg B \cup A) \}\n\]

\[
L(x) = \{ B \}\n\]
Tableau Algorithm Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A), \neg \exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \cup A) \} \]

\[L(x) = \{ B, \neg B \cup A \} \]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[
\begin{align*}
L(u) &= \{C, \exists r. (A \sqcup \exists r. B), \\
&\quad \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A))\} \\
L(v) &= \{A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), \times \exists r. B\} \\
L(w) &= \{\neg A, \forall r. (\neg B \sqcup A)\} \\
L(x) &= \{B, \neg B \sqcup A, \neg B\}
\end{align*}
\]
Tableau Algorithm Example

\[C = \exists r.(A \sqcup \exists r.B) \sqcap \exists r.\neg A \sqcap \forall r.(-A \sqcap \forall r.(-B \sqcup A)) \]

\[
L(u) = \{ C, \exists r.(A \sqcup \exists r.B), \\
\exists r.\neg A, \forall r.(-A \sqcap \forall r.(-B \sqcup A)) \}
\]

\[
L(v) = \{ A \sqcup \exists r.B, \neg A, \forall r.(-B \sqcup A), \xmark \exists r.B \}
\]

\[
L(w) = \{ \neg A, \forall r.(-B \sqcup A) \}
\]

\[
L(x) = \{ B, \neg B \sqcup A, \xmark B \}
\]
Tableau Algorithm Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), \not\exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]

\[L(x) = \{ B, \neg B \sqcup A, \not B, A \} \]
Tableau Algorithm Example

The model \mathcal{I} constructed by the algorithm is the following:

$$
\Delta^\mathcal{I} = \{u, v, w, x\},
A^\mathcal{I} = \{x\},
B^\mathcal{I} = \{x\},
r^\mathcal{I} = \{\langle u, v \rangle, \langle u, w \rangle, \langle v, x \rangle\}.
$$

Check that indeed $C^\mathcal{I} = \{u\}$, given the defined semantics of \mathcal{ALC}.

Tableau Algorithm Properties

- from a clash-free complete tableau, we can construct a model
- if there is no clash-free complete tableau, there is no model

If the algorithm is successful, the constructed clash-free complete tableau will give rise to a model with the following properties:

1. the model is finite: only finitely many elements in the domain,
2. the model is tree-shaped: the tableau is a labeled tree.
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of ALC Concepts
- Correctness and Termination
- Summary
Tableau Properties

- the depth (number of nested quantifiers) decreases in every node
- every node is labeled only with subformulae of C
- C has only polynomially many subformulae
- if the output is $true$ we can build a model out of the constructed tableau
- on the other hand, we can use a model of a satisfiable concept to construct a clash-free tableau for this concept
Tableau Algorithm for ALC Concepts

Theorem

1. The algorithm terminates for every input.
2. If the output is $true$, then the input concept is satisfiable.
3. If the input concept is satisfiable, then the output is $true$.
Tableau Algorithm for \mathcal{ALC} Concepts

Theorem

1. the algorithm terminates for every input
2. if the output is $true$, then the input concept is satisfiable
3. if the input concept is satisfiable, then the output is $true$.

Corollary

Every \mathcal{ALC} concept C has the following properties:

1. **finite model property**: If C has a model, then it has a finite one.
2. **tree model property**: If C has a model, then it has a tree-shaped one.
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Summary

• we now have a constructive method for building model abstractions
• satisfiable \mathcal{ALC} concepts always have a finite tree model that we can construct
• the algorithm is correct, complete and terminating
• serves as basis for practically implemented algorithms
• next: extension to knowledge bases