

Towards a General Argumentation System Based on Answer-set Programming

Sarah Alice Gaggl

Institute of Informationsystems, Vienna University of Technology

Edinburgh — July 21, 2010

FACULTY OF !NFORMATICS

Wiener Wissenschafts-, Forschungs- und Technologiefonds

Argumentation Frameworks (AFs)

- AFs provide a formalism for a compact representation and evaluation of such scenarios.
- More complex semantics, especially in combination with an increasing amount of data, requires an automated computation of such solutions.
- Most of these problems are intractable, so implementing dedicated systems from the scratch is not the best idea.
- Logic Programming (LP), in particular Answer-set Programming (ASP), turned out to be adequate to solve problems associated to AFs.
- We use ASP to design the system ASPARTIX for the evaluation of several approaches how to deal with AFs.

1 Introduction to Abstract Argumentation Frameworks

ASP Encoding

3 ASPARTIX - System Demonstration

Abstract Argumentation Frameworks

- First introduced by Phan Minh Dung in 1995.
- AFs provide a formal way of dealing with conflicting knowledge.
- Represent arguments together with a binary attack relation.
- Conflicts are solved via semantics (admissible, preferred, stable).
- They can be represented as directed graphs.

More formally

An argumentation framework (AF) is a pair (A, R), where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing "attacks" ("defeats")

FACULTY OF !NFORMATICS

Let F=(A,R) be an AF. A set $S\subseteq A$ is said to be conflict-free (in F), if there are no $a,b\in S$, such that $(a,b)\in R$. We denote the collection of sets which are conflict-free (in F) by cf(F).

$$cf(F) = \{\{a, c\},\$$

Let F=(A,R) be an AF. A set $S\subseteq A$ is said to be conflict-free (in F), if there are no $a,b\in S$, such that $(a,b)\in R$. We denote the collection of sets which are conflict-free (in F) by cf(F).

$$cf(F) = \{\{a, c\}, \{a, d\}, \}$$

Let F=(A,R) be an AF. A set $S\subseteq A$ is said to be conflict-free (in F), if there are no $a,b\in S$, such that $(a,b)\in R$. We denote the collection of sets which are conflict-free (in F) by cf(F).

$$cf(F) = \{\{a,c\}, \{a,d\}, \{b,d\}, \}$$

Let F=(A,R) be an AF. A set $S\subseteq A$ is said to be conflict-free (in F), if there are no $a,b\in S$, such that $(a,b)\in R$. We denote the collection of sets which are conflict-free (in F) by cf(F).

$$cf(F) = \{\{a,c\}, \{a,d\}, \{b,d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}\}$$

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

$$stable(F) = \{ \{a, c\}, \}$$

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

$$stable(F) = \{ \{a, c\}, \{a, d\}, \}$$

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example

 $stable(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{b, d\}, \{a, d\}, \{b, d\}, \{a, d\}$

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example

 $stable(F) = \{ \{a, e\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{e\}, \{d\}, \emptyset \} \}$

Conflict-free Set

Given an AF (A, R).

A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Encoding for F = (A, R)

$$\widehat{F} = {\operatorname{arg}(a) \mid a \in A} \cup {\operatorname{att}(a,b) \mid (a,b) \in R}$$

$$\pi_{cf} = \left\{ \begin{array}{ll} \operatorname{in}(X) & \leftarrow & \operatorname{not} \operatorname{out}(X), \operatorname{arg}(X) \\ \operatorname{out}(X) & \leftarrow & \operatorname{not} \operatorname{in}(X), \operatorname{arg}(X) \\ & \leftarrow & \operatorname{in}(X), \operatorname{in}(Y), \operatorname{att}(X, Y) \end{array} \right\}$$

Result: For each AF F, $cf(F) \equiv \mathcal{AS}(\pi_{cf}(\widehat{F}))$

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Encoding

$$\pi_{stable} = \left\{ \begin{array}{ll} \operatorname{in}(X) & \leftarrow & \operatorname{not} \operatorname{out}(X), \operatorname{arg}(X) \\ \operatorname{out}(X) & \leftarrow & \operatorname{not} \operatorname{in}(X), \operatorname{arg}(X) \\ & \leftarrow & \operatorname{in}(X), \operatorname{in}(Y), \operatorname{att}(X, Y) \\ \operatorname{defeated}(X) & \leftarrow & \operatorname{in}(Y), \operatorname{att}(Y, X) \\ & \leftarrow & \operatorname{out}(X), \operatorname{not} \operatorname{defeated}(X) \end{array} \right\}$$

Result: For each AF F, $stable(F) \equiv \mathcal{AS}(\pi_{stable}(\widehat{F}))$

ASPARTIX - System Description

ASPARTIX - System Description cont. dbai

Semantics and types of AFs incorporated in ASPARTIX:

- admissible, complete, stable, preferred, grounded, ideal, stage, semi-stable and cf2;
- Preference-based AFs, Value-based AFs, Bipolar AFs, Dynamic AFs and AFs with Recursive Attacks.

- AFs became very important in Artificial Intelligence. They provide a popular tool for modeling and evaluating conflicting knowledge.
- Problems associated to AFs are in general intractable, therefore we translate them to ASP.
- Web front-end of ASPARTIX is freely available.

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

Complexity

	stable	adm	pref	comp	ground
Cred	NP-c	NP-c	NP-c	NP-c	in P
Skept	coNP-c	(trivial)	Π_2^P -c	in P	in P

[Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Coste-Marquis et al. 05]

Complexity of Argumentation

	stable	adm	pref	comp	ground
Cred	NP-c	NP-c	NP-c	NP-c	in P
Skept	coNP-c	(trivial)	Π_2^P -c	in P	in P

Recall: Data-Complexity of Datalog

	stratified programs	with negation	with neg. and disjunction
\models_c	P-c	NP-c	Σ_2^P -c
\models_s	P-c	coNP-c	Π_2^P -c

[Dantsin, Eiter, Gottlob, Voronkov 01]

FACULTY OF !NFORMATICS

Tested Systems:

- Grounders: DLV, Iparse, GrinGo
- Solvers: DLV, smodels, cmodels, clasp, claspD, gnt

Testing:

- Randomly generated AFs from 90 to 200 arguments with edge density from 10% to 30%.
- In total 21303 tests were performed.

Admissible Extensions:

Preferred Extensions:

