Decomposing Finite Closure Operators by Attribute Exploration

Daniel Borchmann

TU Dresden, Institut für Algebra
Motivation

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context \((G, M, I)\):

- **NextClosure**

\[\text{input: } M, X \mapsto \rightarrow X \]

- **Close-by-One**

\[\text{input: } (G, M, I) \]

Can Close-by-One be applied to an arbitrary closure operator \(c\)?
Motivation

Implications and formal contexts
Motivation

Implicitations and formal contexts

formal context \rightsquigarrow few implications

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure

input: $M, X \mapsto X''$

Close-by-One

input: (G, M, I)

Can Close-by-One be applied to an arbitrary closure operator c?
Motivation

Implications and formal contexts

formal context \rightsquigarrow few implications via NextClosure

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure input: M,

Close-by-One input: (G, M, I)

Can Close-by-One be applied to an arbitrary closure operator c?
Motivation

Implications and formal contexts

formal context \rightsquigarrow few implications \rightsquigarrow via NextClosure
implications \rightsquigarrow small formal context
Motivation

Implications and formal contexts

formal context \leadsto few implications via NextClosure
implications \leadsto small formal context ?
Motivation

Implications and formal contexts

- formal context \leadsto few implications via NextClosure
- implications \leadsto small formal context ?

How can be compute for a given set of implications a small corresponding formal context?
Motivation

Implications and formal contexts

formal context \mapsto few implications via NextClosure
implications \mapsto small formal context ?

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)
Implications and formal contexts

formal context \rightsquigarrow few implications via NextClosure
implications \rightsquigarrow small formal context

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure
Motivation

Implications and formal contexts

formal context ⇨ few implications via NextClosure
implications ⇨ small formal context

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context \((G, M, I)\)

\[
\text{NextClosure} \quad \text{input: } M, X \mapsto X''
\]
Motivation

Implications and formal contexts

formal context \leadsto few implications \leadsto small formal context

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

- NextClosure \quad input: $M, X \mapsto X''$
- Close-by-One
Motivation

Implications and formal contexts

formal context \leadsto few implications \leadsto via NextClosure
implications \leadsto small formal context \leadsto ?

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure input: $M, X \mapsto X''$
Close-by-One input: (G, M, I)
Motivation

Implications and formal contexts

formal context \Rightarrow few implications via NextClosure
implications \Rightarrow small formal context ?

How can be compute for a given set of implications a small corresponding formal context?

Algorithms to compute the intents of a formal context (G, M, I)

NextClosure input: $M, X \mapsto X''$
Close-by-One input: (G, M, I)

Can Close-by-One be applied to an arbitrary closure operator c?
Decomposing Closure Operators

Definition

Let M be a finite set and let $c : \mathcal{P}(M) \rightarrow \mathcal{P}(M)$. Then c is a closure operator on M if and only if

- c is monotone: $\forall A, B \subseteq M : A \subseteq B \implies c(A) \subseteq c(B)$,
- c is extending: $\forall A \subseteq M : A \subseteq c(A)$,
- c is idempotent: $\forall A \subseteq M : c(c(A)) = c(A)$.
Decomposing Closure Operators

Definition
Let M be a finite set and let $c : \mathcal{P}(M) \to \mathcal{P}(M)$. Then c is a closure operator on M if and only if

- c is monotone: $\forall A, B \subseteq M : A \subseteq B \implies c(A) \subseteq c(B)$,
- c is extending: $\forall A \subseteq M : A \subseteq c(A)$,
- c is idempotent: $\forall A \subseteq M : c(c(A)) = c(A)$.

Definition
A formal context $\mathbb{K} = (G, M, I)$ is a decomposition of c if and only if

$$\text{Int}(\mathbb{K}) = c[\mathcal{P}(M)]$$

i.e., the intents of \mathbb{K} are precisely the closed sets of c.
Lemma

The formal context

\[K_c = (c[\Psi(M)], M, \exists) \]

is a decomposition of \(c \).
Lemma

The formal context

\[K_c = (c[\mathcal{P}(M)], M, \exists) \]

is a decomposition of \(c \).

Definition

The formal context \(K_c \) is called the \textit{trivial decomposition of} \(c \).
Lemma

Every object-clarified and object-reduced decomposition of a closure operator c can be embedded into K_c.
Lemma

Every object-clarified and object-reduced decomposition of a closure operator \(c \) can be embedded into \(K_c \).

\(K_c \) is therefore the biggest possible decomposition (up to object renaming).
Lemma

Every object-clarified and object-reduced decomposition of a closure operator c can be embedded into K_c.

K_c is therefore the biggest possible decomposition (up to object renaming).

But what about the smallest possible decomposition?
Definition

The *canonical decomposition of c* is the uniquely determined object-reduced subcontext of K_c.

Lemma

The canonical decomposition of c is the smallest possible decomposition of c, i.e., it can be embedded into every other decomposition of c.

Can we compute the canonical decomposition without computing the trivial one?
Definition

The *canonical decomposition of c* is the uniquely determined object-reduced subcontext of \mathbb{K}_c.

Lemma

The canonical decomposition of c is the smallest possible decomposition of c, i.e., it can be embedded into every other decomposition of c.
Definition

The canonical decomposition of c is the uniquely determined object-reduced subcontext of K_c.

Lemma

The canonical decomposition of c is the smallest possible decomposition of c, i.e., it can be embedded into every other decomposition of c.

Can we compute the canonical decomposition without computing the trivial one?
Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?
Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

- a set M of attributes and
Reconsidering the Problem

Given a closure operator c on a set M. Then what do we have?

- a set M of attributes and
- the operator $X \mapsto X'' = c(X)$, computed in any decomposition of c.
Given a closure operator \(c \) on a set \(M \). Then what do we have?
- a set \(M \) of attributes and
- the operator \(X \mapsto X'' = c(X) \), computed in any decomposition of \(c \).

We therefore have the logic of every decomposition of \(c \), i.e., we can decide whether an implication \(A \rightarrow B \) holds in a decomposition of \(c \) by checking

\[
B \subseteq c(A).
\]
Given a closure operator c on a set M. Then what do we have?

- a set M of attributes and
- the operator $X \mapsto X'' = c(X)$, computed in any decomposition of c.

We therefore have the logic of every decomposition of c, i.e., we can decide whether an implication $A \rightarrow B$ holds in a decomposition of c by checking

$$B \subseteq c(A).$$

So can we do attribute exploration?
Using Attribute Exploration

Turning the closure operator into an expert: Given an implication $A \rightarrow B$

- if $B \subseteq c(A)$ accept,
Using Attribute Exploration

Turning the closure operator into an expert: Given an implication $A \rightarrow B$
- if $B \subseteq c(A)$ accept,
- otherwise deny.
Using Attribute Exploration

Turning the closure operator into an expert: Given an implication $A \rightarrow B$

- if $B \subseteq c(A)$ accept,
- otherwise deny.

Then $A \rightarrow B$ does not respect $c(A)$
Using Attribute Exploration

Turning the closure operator into an expert: Given an implication $A \rightarrow B$
- if $B \subseteq c(A)$ accept,
- otherwise deny.

Then $A \rightarrow B$ does not respect $c(A)$ and $c(A)$ is an intent of every decomposition of c.
Using Attribute Exploration

Turning the closure operator into an expert: Given an implication $A \rightarrow B$

- if $B \subseteq c(A)$ accept,
- otherwise deny.

Then $A \rightarrow B$ does not respect $c(A)$ and $c(A)$ is an intent of every decomposition of c.

Therefore provide $c(A)$ as a counterexample.
Turning the closure operator into an expert: Given an implication $A \rightarrow B$

- if $B \subseteq c(A)$ accept,
- otherwise deny.

Then $A \rightarrow B$ does not respect $c(A)$ and $c(A)$ is an intent of every decomposition of c.

Therefore provide $c(A)$ as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!
Using Attribute Exploration

Turning the closure operator into an expert: Given an implication $A \rightarrow B$

- if $B \subseteq c(A)$ accept,
- otherwise deny.

Then $A \rightarrow B$ does not respect $c(A)$ and $c(A)$ is an intent of every decomposition of c.

Therefore provide $c(A)$ as a counterexample.

Now attribute exploration can be used to compute a decomposition of c!

But this will not always yield the canonical decomposition of c.
Maximal Counterexamples

For an invalid implication $A \rightarrow B$, $c(A)$ is a counterexample, but it is not the only one.
Maximal Counterexamples

For an invalid implication $A \rightarrow B$, $c(A)$ is a counterexample, but it is not the only one.

Every closed set $C \supseteq A$ with $B \not\subseteq C$ is a counterexample for $A \rightarrow B$.

Lemma

Let $N \in c[P(M)]$. Then N is infimum-irreducible in $(c[P(M)], \subseteq)$ if and only if there exists an $n \in M \setminus N$ such that N is maximal in $(c[P(M)], \subseteq)$ with respect to not containing n.

Idea

If $B \not\subseteq c(A)$, then choose $x \in B \setminus c(A)$ and maximize $N \supseteq c(A)$ with respect to $x \not\in N$. Then call N a maximal counterexample for $A \rightarrow B$.

Maximal Counterexamples

For an invalid implication \(A \rightarrow B \), \(c(A) \) is a counterexample, but it is not the only one.

Every closed set \(C \supseteq A \) with \(B \not\subseteq C \) is a counterexample for \(A \rightarrow B \).

Lemma

Let \(N \in c[\mathcal{P}(M)] \). Then \(N \) is infimum-irreducible in \((c[\mathcal{P}(M)], \subseteq)\) if and only if there exists an \(n \in M \setminus N \) such that \(N \) is maximal in \((c[\mathcal{P}(M)], \subseteq)\) with respect to not containing \(n \).
Maximal Counterexamples

For an invalid implication $A \rightarrow B$, $c(A)$ is a counterexample, but it is not the only one.

Every closed set $C \supseteq A$ with $B \nsubseteq C$ is a counterexample for $A \rightarrow B$.

Lemma

Let $N \in c[P(M)]$. Then N is infimum-irreducible in $(c[P(M)], \subseteq)$ if and only if there exists an $n \in M \setminus N$ such that N is maximal in $(c[P(M)], \subseteq)$ with respect to not containing n.

Idea

If $B \nsubseteq c(A)$, then choose $x \in B \setminus c(A)$ and maximize $N \supseteq c(A)$ with respect to $x \notin N$.
Maximal Counterexamples

For an invalid implication $A \rightarrow B$, $c(A)$ is a counterexample, but it is not the only one.

Every closed set $C \supseteq A$ with $B \not\subseteq C$ is a counterexample for $A \rightarrow B$.

Lemma

Let $N \in c[\mathcal{P}(M)]$. Then N is infimum-irreducible in $(c[\mathcal{P}(M)], \subseteq)$ if and only if there exists an $n \in M \setminus N$ such that N is maximal in $(c[\mathcal{P}(M)], \subseteq)$ with respect to not containing n.

Idea

If $B \not\subseteq c(A)$, then choose $x \in B \setminus c(A)$ and maximize $N \supseteq c(A)$ with respect to $x \not\in N$. Then call N a *maximal counterexample* for $A \rightarrow B$.
Corollary

Attribute exploration using maximal counterexamples yields as the final context of the exploration the canonical decomposition of c.
Fix $M := \{0, \ldots, 10\}$.

Randomly generate formal contexts K with attribute set M.

Compute the canonical decomposition of $X \mapsto X''$ using the naive algorithm or attribute exploration with maximal counterexamples.
Experiments

- Fix $M := \{0, \ldots, 10\}$.
- Randomly generate formal contexts \mathcal{K} with attribute set M.
Fix $M := \{0, \ldots, 10\}$.
Randomly generate formal contexts \mathbb{K} with attribute set M.
Compute the canonical decomposition of $X \mapsto X''$ using
Fix $M := \{0, \ldots, 10\}$.

Randomly generate formal contexts \mathbb{K} with attribute set M.

Compute the canonical decomposition of $X \mapsto X''$ using

- the naive algorithm
Experiments

- Fix $M := \{0, \ldots, 10\}$.
- Randomly generate formal contexts \mathcal{K} with attribute set M.
- Compute the canonical decomposition of $X \mapsto X''$ using
 - the naive algorithm
 - simple attribute exploration
Fix $M \equiv \{0, \ldots, 10\}$.

Randomly generate formal contexts \mathcal{K} with attribute set M.

Compute the canonical decomposition of $X \mapsto X''$ using

- the naive algorithm
- simple attribute exploration
- attribute exploration with maximal counterexamples
Experimental Results

Number of intents vs. Runtime.
Experimental Results

Number of intents vs. Runtime.

Number of pseudo-intents vs. Runtime.
Experimental Results (cont.)

Calls of c vs. Runtime.
An Unexpected Observation

Number of intents vs. Number of pseudo-intents.
Further Research

Open Questions

Complexity of decomposing closure operators?

Canonical decomposition might be exponentially large in $|M|$

How to represent c?

Correlation between number of intents and number of pseudo-intents?
Open Questions

- Complexity of decomposing closure operators?
Further Research

Open Questions

- Complexity of decomposing closure operators?
 - Canonical decomposition might be exponentially large in $|M|$
Further Research

Open Questions

- Complexity of decomposing closure operators?
 - Canonical decomposition might be exponentially large in $|M|$?
 - How to represent c?
Further Research

Open Questions

- Complexity of decomposing closure operators?
 - Canonical decomposition might be exponentially large in $|M|$
 - How to represent c?
- Correlation between number of intents and number of pseudo-intents?
Thank You.