

Hannes Strass (based on slides by Michael Thielscher) Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Least Herbrand Models

Lecture 5, 6th Nov 2023 // Foundations of Logic Programming, WS 2023/24

Previously ...

- The semantics of (definite) logic programs is given by a standard first-order model theory.
- SLD resolution is **sound**: For every successful SLD derivation of $P \cup \{Q_0\}$ with *computed* answer substitution θ , we have $P \models Q_0 \theta$.
- SLD resolution is **complete**: If θ is a *correct* answer substitution of Q, then
 - for every selection rule
 - there exists a successful SLD derivation of $P \cup \{Q\}$ with cas η
 - such that $Q\eta$ is more general than $Q\theta$.

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 2 of 29

Ground Implication Trees Constitute Herbrand Models

Lemma 4.26

Consider Herbrand interpretation I, atom A, program P.

- $I \models A$ iff ground(A) $\subseteq I$
- $I \models P$ iff for every $A \leftarrow B_1, \ldots, B_n \in ground(P)$,

 $\{B_1,\ldots,B_n\} \subseteq I$ implies $A \in I$

Lemma 4.28

The Herbrand interpretation

 $\mathcal{M}(P) := \{A \mid A \text{ is the root of some ground implication tree w.r.t. } P \}$ is a model of *P*.

Slide 3 of 29

Least Herbrand Models

Computing Least Herbrand Models

History

Turing-Completeness

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 4 of 29

Least Herbrand Models

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 5 of 29

Least Herbrand Model (1)

Theorem (Model Intersection Property)

Let *P* be a definite logic program and \mathcal{K} be a non-empty set of Herbrand models of *P*. Then $\bigcap \mathcal{K}$ is again a Herbrand model of *P*.

Proof.

- Employing Lemma 4.26, assume that $A \leftarrow B_1, \ldots, B_n \in ground(P)$.
- If $\{B_1, \ldots, B_n\} \subseteq \bigcap \mathcal{K}$, then for each $K \in \mathcal{K}$ we have $\{B_1, \ldots, B_n\} \subseteq K$.
- Thus for each $K \in \mathcal{K}$, since K is a Herbrand model of P, we get $A \in K$.
- Hence $A \in K$ for each $K \in \mathcal{K}$, thus $A \in \bigcap \mathcal{K}$.

Note: This property does not hold for (sets of) general (non-Horn) clauses.

Corollary

The set $\bigcap \{ I \mid I \text{ is a Herbrand model of P} \}$ is the least Herbrand model of *P*.

Least Herbrand Model (2)

Theorem 4.29

 $\mathcal{M}(P)$ is the least Herbrand model of P.

Proof.

Let *I* be a Herbrand model of *P* and let $A \in \mathcal{M}(P)$. We prove $A \in I$ by induction on the number *i* of nodes in the ground implication tree w.r.t. *P* with root *A*. It then follows that $\mathcal{M}(P) \subseteq I$.

i = 1: *A* is a leaf implies $A \leftarrow \in ground(P)$ implies $I \models A$ (since $I \models P$) implies $A \in I$

 $i \rightsquigarrow i+1$: A has direct descendants B_1, \ldots, B_n (roots of subtrees) implies $A \leftarrow B_1, \ldots, B_n \in ground(P)$ and $B_1, \ldots, B_n \in I$ (I.H.) implies $A \leftarrow B_1, \ldots, B_n \in ground(P)$ and $I \models B_1, \ldots, B_n$ implies $I \models A$ (since $I \models P$) implies $A \in I$

Ground Equivalence

Theorem 4.30

For every ground atom *A*: $P \models A$ if and only if $\mathcal{M}(P) \models A$.

Proof.

" \Rightarrow ": $P \models A$ and $\mathcal{M}(P) \models P$ implies $\mathcal{M}(P) \models A$ (semantic consequence). " \leftarrow ": Let $A \in \mathcal{M}(P)$. Show for every interpretation *I*: $I \models P$ implies $I \models A$. Define $I_H = \{A \mid A \text{ ground atom and } I \models A\}$ the Herbrand interpretation of *I*. $I \models P$ implies $I \models A \leftarrow B_1, \dots, B_n$ for all $c = A \leftarrow B_1, \dots, B_n \in ground(P)$ implies if $I \models B_1, \ldots, I \models B_n$ then $I \models A$ for all $c \in ground(P)$ implies if $B_1 \in I_H, \ldots, B_n \in I_H$ then $A \in I_H$ for all $c \in ground(P)$ (Def. I_H) implies $I_H \models P$ (by Lemma 4.26; thus I_H is a Herbrand model of *P*) implies $A \in I_H$ (since $A \in \mathcal{M}(P)$ and $\mathcal{M}(P)$ least Herbrand model of P) implies $I \models A$ (by Def. I_H)

Slide 8 of 29

Computing Least Herbrand Models

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 9 of 29

Complete Partial Orders

Definition

Let (A, \sqsubseteq) be a partially ordered set, i.e. $\sqsubseteq \subseteq A \times A$. (cf. Lecture 2)

- $a \in A$ is the **least** element of $X \subseteq A$: $\iff a \in X$ and $a \sqsubseteq x$ for all $x \in X$
- $b \in A$ is an **upper bound** of $X \subseteq A$: $\iff x \sqsubseteq b$ for all $x \in X$
- $a \in A$ is the **least upper bound** of $X \subseteq A$ (Notation: $a = \bigsqcup X$) : $\iff a$ is the least element of $\{b \in A \mid b \text{ is an upper bound of } X\}$

Definition

The pair $(\mathcal{A}, \sqsubseteq)$ is a **complete** partial order (**cpo**) : \iff

- \mathcal{A} contains a least element (denoted by \emptyset),
- for every ascending chain a₀ ⊑ a₁ ⊑ a₂... of elements of A, the set X = {a₀, a₁, a₂, ...} has a least upper bound.

Some Properties of Operators

Definition

Let $(\mathcal{A}, \sqsubseteq)$ be a CPO and $T: \mathcal{A} \to \mathcal{A}$ be an operator.

- *T* is **monotonic** (or **order-preserving**) : \iff for all $I_1, I_2 \in \mathcal{A}$: $I_1 \sqsubseteq I_2$ implies $T(I_1) \sqsubseteq T(I_2)$
- *T* is **finitary** : \iff for every infinite ascending chain $I_0 \sqsubseteq I_1 \sqsubseteq ...,$

 $\bigsqcup \{T(I_0), T(I_1), \ldots\} \text{ exists and } T\left(\bigsqcup \{I_0, I_1, \ldots\}\right) \sqsubseteq \bigsqcup \{T(I_0), T(I_1), \ldots\}$

• *T* is **continuous** :⇔ *T* is monotonic and finitary

Intuitively, a continuous operator preserves least upper bounds:

$$T\left(\bigsqcup \{I_0, I_1, \ldots\}\right) = \bigsqcup \{T(I_0), T(I_1), \ldots\}$$

The other inclusion follows from *T* being monotone: Since $I_0 \sqsubseteq I_1 \sqsubseteq \ldots$ is a chain and *T* is monotone, $T(I_0) \sqsubseteq T(I_1) \sqsubseteq \ldots$ is again a chain and $\bigsqcup \{T(I_0), T(I_1), \ldots\}$ exists. Since $I_i \sqsubseteq \bigsqcup \{I_0, I_1, \ldots\}$ for any $i \in \mathbb{N}$ and *T* is monotone, $T(I_i) \sqsubseteq T(\bigsqcup \{I_0, I_1, \ldots\})$. Thus $T(\bigsqcup \{I_0, I_1, \ldots\})$ is an upper bound of $\{T(I_0), T(I_1), \ldots\}$ and $\bigsqcup \{T(I_0), T(I_1), \ldots\}$ is $\Box (\bigsqcup \{I_0, I_1, \ldots\})$.

Iterating Operators

Definition

```
Let (\mathcal{A}, \sqsubseteq) be a CPO, T: \mathcal{A} \rightarrow \mathcal{A}, and I \in \mathcal{A}.
```

```
T\uparrow 0 (l) := l

T\uparrow (n+1)(l) := T(T\uparrow n(l))

T\uparrow \omega (l) := \bigsqcup \{T\uparrow n(l) \mid n \in \mathbb{N}\}
```

Similarly, define

 $T\uparrow \alpha := T\uparrow \alpha(\emptyset)$

for $\alpha = 0, 1, 2, \ldots, \omega$

By the definition of a complete partial order: If the sequence $T\uparrow 0(I), T\uparrow 1(I), T\uparrow 2(I), ...$ is increasing, then $T\uparrow \omega(I)$ exists.

Slide 12 of 29

Fixpoints and Pre-Fixpoints

Definition

Let $T: \mathcal{A} \to \mathcal{A}$ be an operator and $I \in \mathcal{A}$.

- *I* is a **pre-fixpoint** of $T :\iff T(I) \sqsubseteq I$
- *I* is a **fixpoint** of $T :\iff T(I) = I$

Theorem 4.22 (Kleene's fixpoint theorem)

If *T* is a continuous operator on a CPO (A, \sqsubseteq), then $T \uparrow \omega$ exists and is the least fixpoint of *T*.

Proposition 4.23

Let $(\mathcal{A}, \sqsubseteq)$ be a partially ordered set and $T: \mathcal{A} \to \mathcal{A}$ be a monotone operator. If *T* has a least pre-fixpoint π , then π is also the least fixpoint of *T*.

Proof Idea: If π is the least element of $\{\rho \in \mathcal{A} \mid T(\rho) \sqsubseteq \rho\}$ then $T(T(\pi)) \sqsubseteq T(\pi)$ since T is monotone, thus $\pi \sqsubseteq T(\pi)$, that is, $T(\pi) = \pi$.

One-Step Consequence Operator

Definition

Consider the cpo $(\mathfrak{I}, \subseteq)$ with $\mathfrak{I} = \{I \mid I \text{ is a Herbrand interpretation}\}$. Let *P* be a program. Define the operator $T_P: \mathfrak{I} \to \mathfrak{I}$ as follows:

 $T_P(I) := \{A \mid A \leftarrow B_1, \dots, B_n \in ground(P), \{B_1, \dots, B_n\} \subseteq I\}$

Lemma 4.33

Let *P* be a program.

(i) T_P is finitary.

(ii) T_P is monotonic.

Thus T_P is continuous and its least fixpoint is given by $T_P \uparrow \omega = T_P \uparrow \omega(\emptyset)$.

*T_P***-Operator: Example (1)**

Consider the (propositional) program $P = \{p \leftarrow, q \leftarrow p, r \leftarrow r\}$. The operator T_P maps as follows: $I \longrightarrow T_P(I)$ $\{p, q, r\}$ Least fixpoint $\{p, q\}$ $\{p, r\} \blacktriangleleft \{q, r\}$ Sec..... $\{r\}$ {p}

Sector Construction

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 15 of 29

Quiz: *T*_P**-Operator**

Recall: $T_P(I) := \{A \mid A \leftarrow B_1, \dots, B_n \in ground(P), \{B_1, \dots, B_n\} \subseteq I\}.$

Quiz

Consider the following (definite) logic program: ...

T_P-Operator: Example (2)

Consider the logic program $P = \{p \leftarrow, q \leftarrow q, s, r \leftarrow p\}$.

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 17 of 29

*T_P***-Characterization**

Slide 18 of 29

Characterization Theorem

Theorem 4.34

- $\{A \mid A \text{ ground atom}, P \models A\}$
- = M(P)
- = least Herbrand model of P
- = least pre-fixpoint of T_P
- = least fixpoint of T_P
- = $T_P \uparrow \omega$

(Theorem 4.30) (Theorem 4.29) (Lemma 4.32) (Proposition 4.23) (Theorem 4.22)

Success Sets

Definition

The **success set** of a program *P* is the set of all ground atoms *A* for which there exists a successful SLD derivation of $P \cup \{A\}$.

Theorem 4.37

For a ground atom *A*, the following are equivalent: (i) $\mathcal{M}(P) \models A$ (ii) $P \models A$ (iii) Every SLD tree for $P \cup \{A\}$ is successful (iv) *A* is in the success set of *P*

History

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 21 of 29

Timeline

Slide 22 of 29

Groupe de recherche en

Rapport de recherche

Alain Colmerauer (1941–2017)

- French computer scientist
- Natural language processing, PROLOG, constraint logic programming
- Knight of the French Legion of Honour (1986), AAAI Fellow (1991)

) CC BY-SA 4.0 Alain David

Robert Anthony Kowalski (b. 1941)

- American-British logician and computer scientist
- Logic programming, event calculus, abductive logic programming
- Doctoral advisor of David Warren, Keith Clark
- AAAI Fellow (1991), IJCAI Award for Research Excellence (2011)

Selection Function vs. Selection Rule

Recall

A program clause $A \leftarrow B_1, \ldots, B_n$ is a (definite) FOL clause $A \lor \neg B_1 \lor \ldots \lor \neg B_n$.

Definition

A **selection function** assigns to each non-empty clause *C* a literal $L \in C$.

Observation

- For a fact (unit clause) *A*, any selection function must select *A*.
- For a negated query $\neg(B_1, \ldots, B_n)$ (i.e. a clause $\neg B_1 \lor \ldots \lor \neg B_n$), any selection function must select a negative literal.
- For a program clause, a positive or a negative literal can be selected.
- Selecting a negative literal: Forward chaining (e.g. Datalog)
- Selecting the positive literal: Backward chaining (SLD resolution)
 A selection rule restricts the selection function to (negated) queries.

FOL Resolution vs. SLD Resolution

Recall

For program *P* and query B_1, \ldots, B_n , we want to show $P \models B_1, \ldots, B_n$.

Observation

In first-order logic, $P \models B_1 \land \ldots \land B_n$ iff $P \cup \{\neg (B_1 \land \ldots \land B_n)\}$ is unsatisfiable.

- We use FOL resolution to show that $P \cup \{\neg B_1 \lor \ldots \lor \neg B_n\}$ is unsatisfiable.
- A backward-chaining selection function will always select positive literals from program clauses.
- So the only negative literals to resolve on can come from the (negated) query.
- Thus the ensuing resolution is linear in the sense that a (negated) query is involved in every step.

Turing-Completeness

Least Herbrand Models (Lecture 5) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 26 of 29

Definite Clauses as Programming Language?

First-order clauses in combination with SLD resolution constitute a Turing-complete computation mechanism.

Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ can be cast as a logic program P_M :

- states $q \in Q$ represented by constants
- input/tape alphabet symbols $a \in \Gamma$ represented by unary functions
- words $w = a_1 a_2 \cdots a_n \in \Gamma^*$ represented as terms $t_w = a_1 (a_2 (\cdots a_n (e) \cdots))$
- thus the empty word ε is represented by the constant e
- tape content to the left of the head is in reverse: $t_w^R = a_n(a_{n-1}(\cdots a_1(e)\cdots))$
- configuration vqw of the TM represented by query $conf(t_v^R, q, t_w)$

Definite Clauses as Programming Language!

First-order clauses in combination with SLD resolution constitute a Turing-complete computation mechanism.

• transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{l,n,r\}}$ expressed by clauses like

 $conf(V, q, a(W)) \leftarrow conf(b(V), s, W)$ $conf(V, q, e) \leftarrow conf(b(V), s, e)$ for each $(s, b, r) \in \delta(q, a)$ for each $(s, b, r) \in \delta(q, \Box)$

• acceptance is ensured via facts

 $\begin{array}{ll} conf(V,q,a(W)) \leftarrow & \text{for each } q \in F, a \in \Gamma \text{ with } \delta(q,a) = \emptyset \\ conf(V,q,e) \leftarrow & \text{for each } q \in F \text{ with } \delta(q,\Box) = \emptyset \end{array}$

Theorem

TM *M* accepts *w* iff $P_M \cup \{conf(e, q_0, t_w)\}$ has a successful SLD derivation.

Conclusion

Summary

- Definite Horn clauses possess the model intersection property.
- Thus each definite logic program has a **unique least Herbrand model**.
- The least fixpoint of a program's **one-step consequence operator** *T*_{*P*} coincides with its least Herbrand model.
- First-order clauses in combination with SLD resolution constitute a **Turing-complete** computation mechanism.

Suggested action points:

- Find a (non-Horn) clause *C* with two Herbrand models I_1, I_2 where $I_1 \cap I_2 \not\models C$. (See Slide 6.)
- Show that T_P is monotonic.

