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Previously ...

« The semantics of (definite) logic programs is given by a standard
first-order model theory.

+ SLD resolution is sound: For every successful SLD derivation of PU {Qo}
with computed answer substitution 6, we have P = Q0.

+ SLD resolution is complete: If 6 is a correct answer substitution of Q, then
- for every selection rule
- there exists a successful SLD derivation of PU {Q} with cas n
- such that Qn is more general than Q6.

P sip Qon = P = Qo6
n more general than 6
proof theory model theory
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Ground Implication Trees Constitute
Herbrand Models

Consider Herbrand interpretation /, atom A, program P.
« [ = Aiff ground(A) C |
* | = Piff for every A < By, ..., B, € ground(P),

{B1,...,Bp} ClimpliessA e |

The Herbrand interpretation
M(P) := {A | Ais the root of some ground implication tree w.r.t. P}

is a model of P.
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Least Herbrand Models
Computing Least Herbrand Models
History

Turing-Completeness
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Least Herbrand Models
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Least Herbrand Model (1)

Let P be a definite logic program and X be a non-empty set of Herbrand
models of P. Then (X is again a Herbrand model of P.

Proof.

+ Employing Lemmma 4.26, assume that A < By,..., B, € ground(P).

* If{By,...,Bn} CNX, then for each K € X we have {Bs,...,Bn} CK.

+ Thus for each K € X, since K is a Herbrand model of P, we get A € K.

* HenceA € K foreach K € X, thusA € N X. O

Note: This property does not hold for (sets of) general (non-Horn) clauses.

The set({/|/is a Herbrand model of P } is the least Herbrand model of P.
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Least Herbrand Model (2)

Theorem 4.29
M(P) is the least Herbrand model of P.

Proof.

Let / be a Herbrand model of P and let A € M(P).
We prove A € | by induction on the number i of nodes in the ground
implication tree w.r.t. P with root A. It then follows that M(P) C /.
i=1: Aisaleaf implies A« € ground(P)
implies /= A(since/ = P)
implies Ael
i~ i+1: Ahasdirect descendants By, ..., B, (roots of subtrees)
implies A<« By,...,B, € ground(P)and By, ...,B, € 1 (I.H.)
implies A« By,...,By, € ground(P)and | =By, ...,By
implies /= A(sincel = P)
implies Ael O
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Ground Equivalence

Theorem 4.30
For every ground atom A: P = Aif and only if M(P) = A.

Proof.

“=" P = Aand M(P) = P implies M(P) = A (semantic consequence).
“<": Let A € M(P). Show for every interpretation /: | = Pimplies | = A.
Define Iy = {A| A ground atom and / = A} the Herbrand interpretation of /.

=P

implies /=A<« Bq,...,Byforallc=A« By,...,B, € ground(P)

implies if/=By,...,1 = Bythen /= Aforall c € ground(P)

implies ifBy €ly,...,By, € lythen A € Iy for all ¢ € ground(P) (Def. Iy)

implies Iy = P (by Lemma 4.26; thus Iy is a Herbrand model of P)

implies A € Iy (since A € M(P) and M(P) least Herbrand model of P)

implies | = A (by Def. Iy) Ol
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Computing Least Herbrand Models
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Complete Partial Orders

Definition

Let (A, C) be a partially ordered set, i.e. C C A x A. (cf. Lecture 2)
« ae Aistheleast elementof X C A <= a&XandaLC xforallx e X

* be Aisanupper boundof X C A <= xLCbforallx eX

* a € Aisthe least upper bound of X C A (Notation: a = | | X)
= aistheleast element of {b € A | bis an upper bound of X}

Definition
The pair (A, C) is a complete partial order (cpo) «—
+ A contains a least element (denoted by 0),

+ for every ascending chainap C a1 C a; ... of elements of A,
the set X = {ao, 01,02, ...} has a least upper bound.
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Some Properties of Operators
Definition
Let (A,C) bea CPO and T: A — A be an operator.

+ T is monotonic (or order-preserving)
= foralll,l; € A: |1 C I, implies T(/1) C T(l,)

+ Tisfinitary < for every infinite ascending chainlp C /1 C ...,

| [{TUo), T(), ...} exists and T(|_|{/0,/1,...}) C | [{TUo) T(h), ...}
« Tis continuous <= T is monotonic and finitary
Intuitively, a continuous operator preserves least upper bounds:

T(|—|{IO’/1""}) = | [{T"o), T(h), .. .}

The other \ncluswon follows from T being monotone Since Ip C /1 C ... is a chain and T is monotone, T(lg) C T(/;) C ... is again a chain and

LI{T(p). TH }estts Since /; EU{ ,...}foranyie Nand Tis monotone TN TS T(U{lo 11, ---}). Thus T(| | {lp, I1,...}) is an upper
boundof{T/o yand [J{T(p), T ) SYETWUAlo - )
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Iterating Operators

Definition
Let (A,C)beaCPO, T: A — A,and | € A.

T10() := 1/
T+ 1) () == T(TTn()
Ttw(l):=| |{Ttn() | n € N}

Similarly, define
TTa := TTa(9) fora=0,1,2,...,w

By the definition of a complete partial order:
If the sequence TT0(/), T11(/), T12(/),... is increasing, then TTw (/) exists.
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Fixpoints and Pre-Fixpoints

LetT: A — A be an operatorand / € A.
+ [is a pre-fixpointof T <= T()C/
« lisafixpointof T <= T() =1

If T is a continuous operator on a CPO (A, C), then T1w exists and is the least
fixpoint of T.

Let (A, C) be a partially ordered setand T: A — A be a monotone operator.
If T has a least pre-fixpoint m, then m is also the least fixpoint of T.

Proof Idea: If T is the least element of {p € A | T(p) C p} then T(T(m)) C T(m)
since T is monotone, thus m C T(m), that is, T(rr) = m.
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One-Step Consequence Operator

Definition
Consider the cpo (J, ) with I = {/| I is a Herbrand interpretation}.
Let P be a program. Define the operator Tp: J — J as follows:

Tp(l):= {A|A « Byq,...,B, € ground(P), {B1,...,Bn} C 1}

Lemma 4.33

Let P be a program.
(i) Tp is finitary.

(ii) Tp is monotonic.

Thus Tp is continuous and its least fixpoint is given by TpTw = TpTw(0).
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Tp-Operator: Example (1)
Consider the (propositional) programP ={p «, q < p, r«r}.

The operator Tp maps as follows: [ s > Tp(/)

Least fixpoint {p, q} {p r} < {q,r}

[0 R — {q} R {r}
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Quiz: Tp-Operator

Recall: Tp(/) ;= {A|A « By,...,B, € ground(P),{B1,...,Bn} C1}.

Consider the following (definite) logic program: ...
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Tp-Operator: Example (2)
Consider the logic program P = {p <, q < q,s, r < p}.
{p.q.r s}

pre-fixpoints {q.r,s}

{r.q} | | {g.s} ... {r,s}
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Tr-Characterization

A Herbrand interpretation / is a model of P iff

Te(h) € 1

Proof.

=P
iff foreveryA <« By,...,B, € ground(P):

{B1,...,Bp} ClimpliesA e/ (by Lemma 4.26)
iff for every ground atom A: A € Tp(/) impliesA €/
iff Tp(l) C 1
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Characterization Theorem

{A|Aground atom,P =A}

= M(P) (Theorem 4.30)
= |east Herbrand model of P (Theorem 4.29)
least pre-fixpoint of Tp (Lemma 4.32)
= least fixpoint of Tp (Proposition 4.23)
= Trlw (Theorem 4.22)
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Success Sets

The success set of a program P is the set of all ground atoms A for which
there exists a successful SLD derivation of P U {A}.

For a ground atom A, the following are equivalent:
(i) M(P) [= A
(iyP=A
(iii) Every SLD tree for PU {A} is successful
(iv) Ais in the success set of P
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History
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Alain Colmerauer (1941-2017)

* French computer scientist

* Natural language processing, PROLOG,
constraint logic programming

* Knight of the French Legion of Honour
(1986), AAAI Fellow (1991)

(C) CC BY-SA 4.0 Alain David

Robert Anthony Kowalski (b. 1941)

* American-British logician and computer scientist

+ Logic programming, event calculus,
abductive logic programming

» Doctoral advisor of David Warren, Keith Clark

« AAAI Fellow (1991), IJCAI Award for
Research Excellence (2011)

(C) CC BY 3.0 Yongyuth Perm-

poontanalarp
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Selection Function vs. Selection Rule
Recall
A program clause A« By, ..., By is a (definite) FOL clause AV =By V...V =B.

Definition

A selection function assigns to each non-empty clause C a literal L € C.

Observation

For a fact (unit clause) A, any selection function must select A.

For a negated query —(By, ..., Bp) (i.e. a clause =By V...V =By), any
selection function must select a negative literal.

For a program clause, a positive or a negative literal can be selected.

Selecting a negative literal: Forward chaining (e.g. Datalog)
Selecting the positive literal: Backward chaining (SLD resolution)

A selection rule restricts the selection function to (negated) queries.
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FOL Resolution vs. SLD Resolution

Recall

For program P and query By, ..., By, we want to show P |= By, .. ., B.

Observation
In first-order logic, P = B1 A ... ABn iff PU{=(B1 A ... ABp)} is unsatisfiable.

We use FOL resolution to show that PU {=B7 V...V =By} is unsatisfiable.
A backward-chaining selection function will always select positive literals
from program clauses.

So the only negative literals to resolve on can come from the (negated)
query.

Thus the ensuing resolution is linear in the sense that a (negated) query is
involved in every step.
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Turing-Completeness
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Definite Clauses as Programming Language?

First-order clauses in combination with SLD resolution constitute a
Turing-complete computation mechanism.

Turing machine M = (Q, 2, T, 6, qo, F) can be cast as a logic program Py:

+ states g € Q represented by constants

* input/tape alphabet symbols a € I represented by unary functions

* wordsw = a10,---a, € [ represented as terms t, = a1(az(---ap(e)---))

+ thus the empty word ¢ is represented by the constant e

* tape content to the left of the head is in reverse: t? = a,(a,-1(--- a1(e)---))
« configuration vqw of the TM represented by query conf(tf, g, t)
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Definite Clauses as Programming Language!

First-order clauses in combination with SLD resolution constitute a
Turing-complete computation mechanism.

« transition function §: Q x I — 22x/={/n1} expressed by clauses like

conf(V, g, a(W)) « conf(b(V), s, W) for each (s,b,r) € 8(q, a)
conf(V, g, e) < conf(b(V),s, e) for each (s, b, r) € 6(q,0)

* acceptance is ensured via facts

conf(V, g, a(W)) < foreachg € F,a € I with §(g,a0) = @
conf(V,q, e) « for each g € F with §(g,0) = ¢

TM M accepts w iff Py, U {conf(e, go, tw)} has a successful SLD derivation.

TECHNISCHE Least Herbrand Models (Lecture 5) r'Y .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 28 of 29 E:g;‘gg_“g';:‘:
DRESDEN Foundations of Logic Programming, WS 2023/24 [



Conclusion

Summary

Definite Horn clauses possess the model intersection property.
Thus each definite logic program has a unique least Herbrand model.

The least fixpoint of a program’s one-step consequence operator Tp
coincides with its least Herbrand model.

First-order clauses in combination with SLD resolution constitute a
Turing-complete computation mechanism.

Suggested action points:

Find a (non-Horn) clause C with two Herbrand models /4, >, where
Iy Nl = C. (See Slide 6.)

Show that Tp is monotonic.
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