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Previously . . .
• The semantics of (definite) logic programs is given by a standardfirst-order model theory.• SLD resolution is sound: For every successful SLD derivation of P∪ {Q0}with computed answer substitution θ, we have P |= Q0θ.• SLD resolution is complete: If θ is a correct answer substitution of Q, then– for every selection rule– there exists a successful SLD derivation of P∪ {Q} with cas η– such that Qη is more general than Qθ.

P ⊢SLD Q0η ⇐⇒ P |= Q0θ
ηmore general than θ
proof theory model theory
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Ground Implication Trees Constitute
Herbrand Models
Lemma 4.26
Consider Herbrand interpretation I, atom A, program P.
• I |= A iff ground(A) ⊆ I

• I |= P iff for every A← B1, . . . ,Bn ∈ ground(P),
{B1, . . . ,Bn} ⊆ I implies A ∈ I

Lemma 4.28
The Herbrand interpretation

M(P) := { A | A is the root of some ground implication tree w.r.t. P }
is a model of P.
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Overview

Least Herbrand Models
Computing Least Herbrand Models
History
Turing-Completeness
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Least Herbrand Models
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Least Herbrand Model (1)
Theorem (Model Intersection Property)
Let P be a definite logic program and K be a non-empty set of Herbrandmodels of P. Then ⋂

K is again a Herbrand model of P.
Proof.
• Employing Lemma 4.26, assume that A← B1, . . . ,Bn ∈ ground(P).
• If {B1, . . . ,Bn} ⊆ ⋂

K, then for each K ∈ K we have {B1, . . . ,Bn} ⊆ K .
• Thus for each K ∈ K, since K is a Herbrand model of P, we get A ∈ K .
• Hence A ∈ K for each K ∈ K, thus A ∈ ⋂

K.
Note: This property does not hold for (sets of) general (non-Horn) clauses.
Corollary
The set ⋂

{ I | I is a Herbrand model of P } is the least Herbrand model of P.
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Least Herbrand Model (2)
Theorem 4.29
M(P) is the least Herbrand model of P.

Proof.
Let I be a Herbrand model of P and let A ∈M(P).We prove A ∈ I by induction on the number i of nodes in the groundimplication tree w.r.t. P with root A. It then follows thatM(P) ⊆ I.
i = 1: A is a leaf implies A← ∈ ground(P)implies I |= A (since I |= P)implies A ∈ I

i⇝ i + 1: A has direct descendants B1, . . . ,Bn (roots of subtrees)implies A← B1, . . . ,Bn ∈ ground(P) and B1, . . . ,Bn ∈ I (I.H.)implies A← B1, . . . ,Bn ∈ ground(P) and I |= B1, . . . ,Bnimplies I |= A (since I |= P)implies A ∈ I
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Ground Equivalence
Theorem 4.30
For every ground atom A: P |= A if and only ifM(P) |= A.
Proof.
“⇒”: P |= A andM(P) |= P impliesM(P) |= A (semantic consequence).
“⇐”: Let A ∈M(P). Show for every interpretation I: I |= P implies I |= A.
Define IH = {A | A ground atom and I |= A} the Herbrand interpretation of I.

I |= Pimplies I |= A← B1, . . . ,Bn for all c = A← B1, . . . ,Bn ∈ ground(P)implies if I |= B1, . . . , I |= Bn then I |= A for all c ∈ ground(P)implies if B1 ∈ IH, . . . ,Bn ∈ IH then A ∈ IH for all c ∈ ground(P) (Def. IH)implies IH |= P (by Lemma 4.26; thus IH is a Herbrand model of P)implies A ∈ IH (since A ∈M(P) andM(P) least Herbrand model of P)implies I |= A (by Def. IH)
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Computing Least Herbrand Models
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Complete Partial Orders
Definition
Let (A,⊑) be a partially ordered set, i.e. ⊑ ⊆ A×A. (cf. Lecture 2)
• a ∈ A is the least element of X ⊆ A :⇐⇒ a ∈ X and a ⊑ x for all x ∈ X

• b ∈ A is an upper bound of X ⊆ A :⇐⇒ x ⊑ b for all x ∈ X

• a ∈ A is the least upper bound of X ⊆ A (Notation: a =
⊔
X):⇐⇒ a is the least element of {b ∈ A | b is an upper bound of X}

Definition
The pair (A,⊑) is a complete partial order (cpo) :⇐⇒
• A contains a least element (denoted by ∅),
• for every ascending chain a0 ⊑ a1 ⊑ a2 . . . of elements of A,the set X = {a0,a1,a2, . . .} has a least upper bound.
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Some Properties of Operators
Definition
Let (A,⊑) be a CPO and T : A→ A be an operator.
• T ismonotonic (or order-preserving):⇐⇒ for all I1, I2 ∈ A: I1 ⊑ I2 implies T (I1) ⊑ T (I2)• T is finitary :⇐⇒ for every infinite ascending chain I0 ⊑ I1 ⊑ . . .,⊔

{T (I0), T (I1), . . .} exists and T

(⊔
{I0, I1, . . .}

)
⊑

⊔
{T (I0), T (I1), . . .}

• T is continuous :⇐⇒ T is monotonic and finitary
Intuitively, a continuous operator preserves least upper bounds:

T

(⊔
{I0, I1, . . .}

)
=

⊔
{T (I0), T (I1), . . .}

The other inclusion follows from T being monotone: Since I0 ⊑ I1 ⊑ . . . is a chain and T is monotone, T (I0) ⊑ T (I1) ⊑ . . . is again a chain and⊔
{T (I0), T (I1), . . .} exists. Since Ii ⊑ ⊔

{I0 , I1 , . . .} for any i ∈ IN and T is monotone, T (Ii ) ⊑ T(
⊔
{I0 , I1 , . . .}). Thus T(⊔ {I0 , I1 , . . .}) is an upperbound of {T (I0), T (I1), . . .} and ⊔

{T (I0), T (I1), . . .} ⊑ T(
⊔
{I0 , I1 , . . .}).
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Iterating Operators
Definition
Let (A,⊑) be a CPO, T : A→ A, and I ∈ A.

T↑0 (I) := I

T↑(n + 1) (I) := T (T↑n(I))
T↑ω (I) := ⊔

{T↑n(I) | n ∈ IN}
Similarly, define

T↑α := T↑α (∅) for α = 0, 1, 2, . . . ,ω
By the definition of a complete partial order:
If the sequence T↑0 (I), T↑1 (I), T↑2 (I), . . . is increasing, then T↑ω (I) exists.
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Fixpoints and Pre-Fixpoints
Definition
Let T : A→ A be an operator and I ∈ A.
• I is a pre-fixpoint of T :⇐⇒ T (I) ⊑ I

• I is a fixpoint of T :⇐⇒ T (I) = I

Theorem 4.22 (Kleene’s fixpoint theorem)
If T is a continuous operator on a CPO (A,⊑), then T↑ω exists and is the leastfixpoint of T .
Proposition 4.23
Let (A,⊑) be a partially ordered set and T : A→ A be a monotone operator.If T has a least pre-fixpoint π, then π is also the least fixpoint of T .
Proof Idea: If π is the least element of {ρ ∈ A | T (ρ) ⊑ ρ} then T (T (π)) ⊑ T (π)since T is monotone, thus π ⊑ T (π), that is, T (π) = π.
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One-Step Consequence Operator

Definition
Consider the cpo (I,⊆) with I = {I | I is a Herbrand interpretation}.
Let P be a program. Define the operator TP : I→ I as follows:

TP(I) := { A | A ← B1, . . . ,Bn ∈ ground(P), {B1, . . . ,Bn} ⊆ I }

Lemma 4.33
Let P be a program.
(i) TP is finitary.(ii) TP is monotonic.
Thus TP is continuous and its least fixpoint is given by TP↑ω = TP↑ω(∅).
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TP-Operator: Example (1)
Consider the (propositional) program P = {p←, q← p, r ← r}.
The operator TP maps as follows: I TP(I)

∅

{p} {q} {r}

{p,q} {p, r} {q, r}

{p,q, r}

Least fixpoint
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Quiz: TP-Operator

Recall: TP(I) := { A | A ← B1, . . . ,Bn ∈ ground(P), {B1, . . . ,Bn} ⊆ I }.
Quiz
Consider the following (definite) logic program: . . .
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TP-Operator: Example (2)
Consider the logic program P = {p←, q← q, s, r ← p}.

∅

{p} {q} {r} {s}

{p,q} {p, r} {p, s} {q, r} {q, s} {r, s}

{p,q, r} {p,q, s} {p, r, s} {q, r, s}

{p,q, r, s}

pre-fixpoints
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TP-Characterization

Lemma 4.32
A Herbrand interpretation I is a model of P iff

TP(I) ⊆ I

Proof.
I |= Piff for every A← B1, . . . ,Bn ∈ ground(P):
{B1, . . . ,Bn} ⊆ I implies A ∈ I (by Lemma 4.26)iff for every ground atom A: A ∈ TP(I) implies A ∈ Iiff TP(I) ⊆ I
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Characterization Theorem

Theorem 4.34
{ A | A ground atom,P |= A }= M(P) (Theorem 4.30)= least Herbrand model of P (Theorem 4.29)= least pre-fixpoint of TP (Lemma 4.32)= least fixpoint of TP (Proposition 4.23)= TP↑ω (Theorem 4.22)
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Success Sets

Definition
The success set of a program P is the set of all ground atoms A for whichthere exists a successful SLD derivation of P∪ {A}.
Theorem 4.37
For a ground atom A, the following are equivalent:

(i)M(P) |= A

(ii) P |= A

(iii) Every SLD tree for P∪ {A} is successful
(iv) A is in the success set of P
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History
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Timeline
1965: John Alan Robinson: The resolution principle
1970: Alain Colmerauer: Q-systems
1971: Robert Kowalski & Donald Kuehner: SL-Resolution
1971: Alain Colmerauer: Logic grammars
1972: Colmerauer et al.: PROLOG
1974: Robert Kowalski & Maarten van Emden: Least fixpoint semantics
1983: David H.D. Warren: PROLOG compiler

“. . . received a grant of 180,000 Francs . . . ”
“It can be interesting to know how the money has been spent . . . ”
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Alain Colmerauer (1941–2017)
• French computer scientist
• Natural language processing, PROLOG,constraint logic programming
• Knight of the French Legion of Honour(1986), AAAI Fellow (1991) (C)
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• American-British logician and computer scientist
• Logic programming, event calculus,abductive logic programming
• Doctoral advisor of David Warren, Keith Clark
• AAAI Fellow (1991), IJCAI Award forResearch Excellence (2011)
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Selection Function vs. Selection Rule
Recall
A program clause A←B1, . . . ,Bn is a (definite) FOL clause A∨¬B1 ∨ . . . ∨ ¬Bn.
Definition
A selection function assigns to each non-empty clause C a literal L ∈ C.
Observation
• For a fact (unit clause) A, any selection function must select A.
• For a negated query ¬(B1, . . . ,Bn) (i.e. a clause ¬B1 ∨ . . . ∨ ¬Bn), anyselection function must select a negative literal.
• For a program clause, a positive or a negative literal can be selected.
• Selecting a negative literal: Forward chaining (e.g. Datalog)• Selecting the positive literal: Backward chaining (SLD resolution)

A selection rule restricts the selection function to (negated) queries.
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FOL Resolution vs. SLD Resolution
Recall
For program P and query B1, . . . ,Bn, we want to show P |= B1, . . . ,Bn.
Observation
In first-order logic, P |= B1 ∧ . . . ∧ Bn iff P∪ {¬(B1 ∧ . . . ∧ Bn)} is unsatisfiable.
• We use FOL resolution to show that P∪ {¬B1 ∨ . . . ∨ ¬Bn} is unsatisfiable.
• A backward-chaining selection function will always select positive literalsfrom program clauses.
• So the only negative literals to resolve on can come from the (negated)query.
• Thus the ensuing resolution is linear in the sense that a (negated) query isinvolved in every step.
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Turing-Completeness
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Definite Clauses as Programming Language?

First-order clauses in combination with SLD resolution constitute a
Turing-complete computation mechanism.

Turing machine M = (Q, Σ, Γ , δ,q0, F) can be cast as a logic program PM:• states q ∈ Q represented by constants
• input/tape alphabet symbols a ∈ Γ represented by unary functions
• words w = a1a2 · · ·an ∈ Γ∗ represented as terms tw = a1(a2(· · ·an(e) · · · ))• thus the empty word ε is represented by the constant e
• tape content to the left of the head is in reverse: tRw = an(an–1(· · ·a1(e) · · · ))• configuration vqw of the TM represented by query conf (tRv ,q, tw)
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Definite Clauses as Programming Language!
First-order clauses in combination with SLD resolution constitute a
Turing-complete computation mechanism.

• transition function δ : Q× Γ → 2Q×Γ×{l,n,r} expressed by clauses like
conf (V ,q,a(W))← conf (b(V ), s,W) for each (s,b, r) ∈ δ(q,a)

conf (V ,q, e)← conf (b(V ), s, e) for each (s,b, r) ∈ δ(q,□)
• acceptance is ensured via facts

conf (V ,q,a(W))← for each q ∈ F ,a ∈ Γ with δ(q,a) = ∅
conf (V ,q, e)← for each q ∈ F with δ(q,□) = ∅

Theorem
TM M accepts w iff PM ∪ {conf (e,q0, tw)} has a successful SLD derivation.
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Conclusion
Summary
• Definite Horn clauses possess themodel intersection property.
• Thus each definite logic program has a unique least Herbrand model.
• The least fixpoint of a program’s one-step consequence operator TPcoincides with its least Herbrand model.
• First-order clauses in combination with SLD resolution constitute a

Turing-complete computation mechanism.
Suggested action points:
• Find a (non-Horn) clause C with two Herbrand models I1, I2 where

I1 ∩ I2 ̸|= C. (See Slide 6.)
• Show that TP is monotonic.
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