When Horn is All You Need

Implication Basis

- $h \rightarrow D$
- $m \rightarrow D$
- $D, R \rightarrow \bot$

Implications don't capture that

- everyone is a Democrat or a Republican;
- a Democrat would not vote against both *h* and *m*.

#Congressmen	R	D	h	m
123	×			
116		×	×	×
72		×		×
40		×	×	
• • •	•••			

 $A \rightarrow B$ holds if every object with A has B.

- R: Republican
- h: handicapped infants
- D: Democrat
- m: mx-missile

Implication Basis

The Logic of the Context

•
$$h \rightarrow D$$

•
$$m \rightarrow D$$

•
$$D, R \rightarrow \bot$$

$$\Phi(\mathbb{K}) = (R \land \neg D \land \neg h \land \neg m) \lor$$

$$(\neg R \land D \land h \land m) \lor$$

$$(\neg R \land D \land \neg h \land m) \lor$$

$$(\neg R \land D \land h \land \neg m)$$

#Congressmen	R	D	h	m
123	×			
116		×	×	×
72		×		×
40		×	×	

 $A \rightarrow B$ holds if every object with A has B.

• R: Republican

h: handicapped infants

D: Democrat

Implication Basis

The Logic of the Context

$$\Psi(\mathbb{K}) = (h \to D) \land \qquad \Phi(\mathbb{K}) = (R \land \neg D \land \neg h \land \neg m) \lor$$

$$(m \to D) \land \qquad (\neg R \land D \land h \land m) \lor$$

$$(D \land R \to \bot) \qquad (\neg R \land D \land \neg h \land m) \lor$$

$$(\neg R \land D \land h \land \neg m)$$

#Congressmen	R	D	h	m
123	×			
116		×	×	×
72		×		×
40		×	×	

• R: Republican

D: Democrat

h: handicapped infants

Implication Basis

The Logic of the Context

$$\Psi(\mathbb{K}) = (\neg h \lor D) \land \qquad \Phi(\mathbb{K}) = (R \land \neg D \land \neg h \land \neg m) \lor$$

$$(\neg m \lor D) \land \qquad (\neg R \land D \land h \land m) \lor$$

$$(\neg D \lor \neg R) \qquad (\neg R \land D \land \neg h \land m) \lor$$

$$(\neg R \land D \land h \land \neg m)$$

		•	
R	D	h	m
×			
	×	×	×
	×		×
	×	×	
		× × ×	* * * * * * * * * * * * * * * * * * *

Horn CNF

Full DNF

(at most one non-negated literal per clause)

$$\Phi(\mathbb{K}) \models \Psi(\mathbb{K})$$

$$\Psi(\mathbb{K}) \not\models \Phi(\mathbb{K})$$

• R: Republican

h: handicapped infants

D: Democrat

Implication Basis

•
$$h \rightarrow \neg R$$

•
$$\neg R, \neg h \rightarrow m$$

•
$$m \rightarrow \neg R$$

•
$$\neg R, \neg m \rightarrow h$$

•
$$R \rightarrow \neg h, \neg m$$

•
$$\neg h, \neg m \rightarrow R$$

•
$$h, \neg h \rightarrow \bot$$

•
$$m, \neg m \rightarrow \bot$$

Adding negations

Literal context

#Congressmen	R	¬R	h	¬h	m	¬m
123	×			×		×
116		×	×		×	
72		×		×	×	
40		×	×			×

• R: Republican

• $\neg R$: Democrat

• *h*: handicapped infants

Implication Basis

•
$$h \rightarrow \neg R$$

•
$$\neg R, \neg h \rightarrow m$$

•
$$m \rightarrow \neg R$$

•
$$\neg R, \neg m \rightarrow h$$

•
$$R \rightarrow \neg h, \neg m$$
 • $\neg h, \neg m \rightarrow R$

•
$$\neg h, \neg m \rightarrow R$$

•
$$h, \neg h \rightarrow \bot$$
 • $m, \neg m \rightarrow \bot$

$$m, \neg m \rightarrow \bot$$

An implication basis of a literal context can be logically redundant.

It fully captures the logic of the context: its models correspond precisely to the object intents of the context.

Adding negations

Literal context

#Congressmen	R	¬R	h	¬h	m	¬m
123	×			×		×
116		×	×		×	
72		×		×	×	
40		×	×			×

R: Republican

 $\neg R$: Democrat

h: handicapped infants

$$\Phi(\mathbb{K}) \equiv \Psi(\mathbb{K})$$

Literal Contexts

With atoms and their negations, we can express an arbitrary clause:

$$m_1 \lor \dots \lor m_k \lor \neg m_{k+1} \lor \dots \lor \neg m_n$$

$$\updownarrow$$

$$\neg m_1, \dots, \neg m_k, m_{k+1}, \dots, m_n \rightarrow \bot$$

and, hence, an arbitrary CNF and an arbitrary Boolean function.

 \bot is a shorthand for $\{m_1, \neg m_1\}$

Disjunctive Contexts

With atoms and disjunctions over them, we can express an arbitrary clause:

$$m_1 \lor \dots \lor m_k \lor \neg m_{k+1} \lor \dots \lor \neg m_n$$

$$\updownarrow$$

$$m_{k+1}, \dots, m_n \to (m_1 \lor \dots \lor m_k)$$

and, hence, an arbitrary CNF and an arbitrary Boolean function.

$$\bigvee \varnothing = \bot$$

In a disjunctive context,
$$M = \{ \bigvee Q \mid Q \subseteq P \}$$
 for a set P of propositional atoms.

When Horn Is All You Need

- If the attributes of a context K are
 - propositional atoms and their negations
 - or all possible disjunctions of propositional atoms,
- then the validity of any formula in K can be determined from its implication basis.

• We call attribute sets with this property implication-exact.

 φ is valid in \mathbb{K} if $\Phi(\mathbb{K}) \models \varphi$

Coherent Attribute Sets

An attribute subset $C \subseteq M$ is coherent if $\left(\bigwedge_{m \in C} m\right) \land \left(\bigwedge_{m \in M \setminus C} \neg m\right)$ is satisfiable.

- $\{\neg R, h, h \lor m, m\}$ and $\{\neg R\}$ are coherent
- \emptyset , $\{R, \neg R\}$, and $\{R, h\}$ are not coherent

• If M is implication-exact, then M is not coherent and $\bigwedge M \equiv \bot$.

#Congressmen	R	¬R	h	h V m	m
123	×				
116		×	×	×	×
72		×		×	×
40		×	×	×	

Coherent Attribute Sets

- Object intents must be coherent.
- For $C \subseteq M$, define

$$\varphi_{\overline{C}} := \left(\bigvee \neg m \right) \lor \left(\bigvee m \right)$$

$$m \in C \qquad m \in M \backslash C$$

• For coherent $C_1 \neq C_2$:

$$\varphi_{\overline{C_1}} \not\equiv \varphi_{\overline{C_2}} \qquad C_1 \not\models \varphi_{\overline{C_1}} \qquad C_2 \models \varphi_{\overline{C_1}}$$

• Contexts with different sets of object intents validate different sets of formulae.

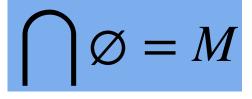
Necessary Conditions

- Contexts with different sets of object intents validate different sets of formulae.
- Assume that the attribute set *M* is implication-exact.
- A context can have any collection of coherent sets as its object intents.
- Contexts with different sets of object intents have different implication sets.
- No coherent set is equal to the intersection of other coherent sets.
 - Removing any object intent must change the implication set.

Necessary Conditions

- No coherent set is equal to the intersection of other coherent sets.
 - Removing any object intent must change the implication set.
- Every (object-clarified) context with an implication-exact attribute set is object-reduced.
- For coherent $C \subseteq M$, define

$$Exc(C) := C \to \int \{D \mid C \subset D \text{ and } D \text{ is coherent}\}\$$



• Coherent set C is the only coherent set not respecting Exc(C).

Sufficient Conditions

- Assume that, for every coherent C, it is the only coherent set not respecting Exc(C).
- For a context $\mathbb{K} = (G, M, I)$, define

$$\Sigma_{\mathbb{K}} = \{ Exc(C) \mid C \text{ is coherent but } g' \neq C \text{ for all } g \in G \}$$

- We have $\Phi(\mathbb{K}) \equiv \Sigma_{\mathbb{K}} \equiv \Psi(\mathbb{K})$.
- *M* is implication-exact.

When Horn Is All You Need

The following conditions are equivalent:

- An attribute set *M* is implication-exact
- $\Phi(\mathbb{K}) \equiv \Psi(\mathbb{K})$ for every context \mathbb{K} with attribute set M
- $C \neq \bigcap \{D \mid C \subset D \text{ and } D \text{ is coherent} \}$ for every coherent $C \subseteq M$
 - That is, the implication Exc(C) is respected by all coherent sets except C

When Horn Is All You Need

Example

- Propositional atoms: $P \cup Q$, $P \neq \emptyset$
- Attribute set:

$$M = \{ p_1, \neg p_1, \dots, p_k, \neg p_k, \quad q_1, q_2, (q_1 \lor q_2), \dots, q_\ell, (q_1 \lor q_\ell), (q_2 \lor q_\ell), \dots, (q_1 \lor \dots \lor q_\ell) \}$$

$$\{ \bigvee A \mid A \subseteq Q, A \neq \emptyset \}$$

• Let $C \subseteq M$ be coherent.

C includes p_i or $\neg p_i$ for all i

- If $Q \subseteq C$, then C has no coherent proper supersets.
- Otherwise, every coherent proper superset of C includes $\bigvee (Q \backslash C)$.

 $\bigvee (Q \backslash C) \notin C$

- $C \neq \bigcap \{D \mid C \subset D \text{ and } D \text{ is coherent}\}$, and M is implication-exact.
- It follows that $\{p_1, \neg p_1, ..., p_k, \neg p_k, q\}$ is also implication-exact (for any q).

Concept Lattices

- A finite lattice is isomorphic to the concept lattice of a literal context if and only if it is atomistic and □-complemented [1].
- The concept lattice of a disjunctive context is distributive. Every distributive lattice is isomorphic to the concept lattice of a disjunctive context.
- Can anything be said about an arbitrary implication-exact attribute set?

[1] Rodríguez-Jiménez, J.M., Cordero, P., Enciso, M., Rudolph, S.: Concept lattices with negative information: A characterization theorem. Inf. Sci. **369**, 51–62 (2016)

Logical Basis

Implication Basis

•
$$h \rightarrow \neg R$$

•
$$\neg R, \neg h \rightarrow m$$

•
$$m \rightarrow \neg R$$

•
$$\neg R, \neg m \rightarrow h$$

•
$$R \rightarrow \neg h, \neg m$$

•
$$\neg h, \neg m \rightarrow R$$

•
$$h, \neg h \rightarrow \bot$$
 • $m, \neg m \rightarrow \bot$

$$m, \neg m \rightarrow \bot$$

An implication basis of a logical context can be logically redundant.

How to (efficiently) compute a (compact) logically nonredundant basis?

Literal context

#Congressmen	R	¬R	h	¬h	m	¬m
123	×			×		×
116		×	×		×	
72		×		×	×	
40		×	×			×

R: Republican

 $\neg R$: Democrat

h: handicapped infants