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Dr hab. Emanuel Kieroński, University of Wroc law (co-Betreuer)

Gutachter:
Prof. Dr. rer. nat. Sebastian Rudolph, Technische Universität Dresden
Prof. Dr.in techn. Magdalena Ortiz, Technischen Universität Wien

Fachreferent:
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Abstract

Formal ontologies are of significant importance in artificial intelligence, playing a central role in the
Semantic Web, ontology-based information integration, or peer-to-peer data management. In such scenarios,
an especially prominent role is played by description logics (DLs) – a robust family of logical formalisms
used to describe ontologies and serving as the logical underpinning of contemporary standardised ontology
languages. To put knowledge bases to full use as core part of intelligent information systems, much
attention is being devoted to the area of ontology-based data-access, with conjunctive queries and their
generalisations such as positive conjunctive two-way regular path queries being employed as a fundamental
querying formalism. The most expressive exemplars of description logics feature advanced constructors
for roles and path expressions. Among the most powerful knowledge representation formalisms on the
verge of decidability, are the DLs from the Z family. For its most expressive proponent, ZOIQ (a.k.a.
ALCHbSelf

reg OIQ), featuring nominals (O), role inverses (I), and number restrictions (Q), querying is
undecidable and even decidability of knowledge-base satisfiability is open, owing to the intricate interplay
of the three mentioned features. Restricting the interaction of O, I, and Q however (or excluding one of
the features altogether) leads to beneficial model-theoretic properties, which give rise to upper bounds of
ExpTime for knowledge-base satisfiability and 2ExpTime for querying.

Aiming for better understanding of the “expressive power versus computational complexity” trade-off
for the Z family of DLs, we provide a more fine-grained complexity analysis for the query entailment
problem over ontologies. In the thesis we focus on tame fragments of ZOIQ, namely the fragments in
which either one the three features from {I, O, Q} is dropped or the class of models is restricted to
the so-called quasi-forests. We employ the query languages ranging from (unions of) conjunctive queries
((U)CQs) to positive two-way regular path queries (P2RPQs). We mostly follow the classical semantics of
entailment, but we also provide several results in the “finite-model” scenario. The most important results
of the thesis are summarised below.
1. We provide a complete classification of the complexity of the query entailment problem (for various query
languages discussed above) for tamed fragments of ZOIQ under the classical semantics. This involves
several new ingredients such as: (i) a uniform exponential-time algorithm based on Lutz’s spoiler technique
for the entailment of unions of conjunctive queries for ALCHbreg, (ii) new lower bounds for (rooted and
unrooted) conjunctive query entailment over ALCSelf ontologies, and (iii) a novel reduction from the
entailment of P2RPQs to the satisfiability problem for tamed ZOIQ, yielding a uniform 2ExpTime
upper bound for all the considered logics. As a preliminary step towards lifting the above results to the
realm of data complexity, we establish that the satisfiability of tamed ZOIQ is NP-complete.
2. Under the finite model semantics, we focus on UCQs only. With the proviso that the finite satisfiability
problem for ZIQ is ExpTime-complete, we also provide a complete picture of the complexity of the
query entailment problems. The key insight is that ZOI and ZOQ are finitely controllable.
3. We conclude the thesis by investigating the decidability border of further extensions of the Z family
of DLs. Our goal is to understand whether the class of regular languages present in path expressions in
Z is maximal for guaranteeing decidability of the underlying logic. We provide a series of undecidability
results involving simple, non-regular languages (a subclass of visibly pushdown languages).

Our proofs rely on well-established model- and graph-theoretic definitions. What is more, most of
them generalise (in a uniform way) and solidify multiple results known by the DL community. Our proofs
are also easily adjustable to freshly defined logics, without the need to reproduce nearly-identical proofs.
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1.1 A Very Brief Introduction

Formal ontologies play a crucial role in artificial intelligence, serving as the backbone of various applica-
tions such as the Semantic Web [BHS05], health and life sciences [HRG+96, McG99], natural language
processing [GBFF91], ontology-based information integration [Noy04], and peer-to-peer data manage-
ment [CDGLR04]. In reasoning about graph-structured data, a significant role is played by description
logics (DLs) [BHLS17], a robust family of logical formalisms serving as the logical foundation of contem-
porary standardised ontology languages, including OWL 2 by the W3C [GHM+08, HKP+12]. To put
ontologies to full use as core part of intelligent information systems, much attention is being devoted
to the area of ontology-based data-access, with conjunctive queries and their generalisations such as
positive conjunctive two-way regular path queries being employed as a fundamental querying formal-
ism [Ov12, BOv15]. Among many features present in extensions of the basic description logic ALC, an
especially useful one is ·reg, supported by the popular Z-family of description logics [CEO09]. With ·reg one
can specify regular path constraints, allowing the user to navigate graph-structured data. In recent years
many extensions of ALCreg for ontology engineering were proposed [BCOv14, COv16, Ort10, Ort23].

Among the most powerful knowledge representation formalisms on the verge of decidability, are the
members of the Z family of DLs. For its most expressive proponent, ZOIQ (a.k.a. ALCHbSelf

reg OIQ),
featuring nominals (O), role inverses (I), number restrictions (Q), role hierarchies (H), safe boolean
combinations of roles (b), regular path constraints (reg), and the Self operator querying is undecidable
and even decidability of knowledge base satisfiability is open, owing to the intricate interplay of the three
mentioned features O, I, and Q. Restricting the interaction of O, I, and Q however (or excluding one of
the features altogether) leads to beneficial model-theoretic properties, which give rise to upper bounds of
ExpTime for knowledge base satisfiability and 2ExpTime for querying. There is a two-fold motivation
behind studying fragments of ZOIQ. First, the members of the Z family of DLs encode the members
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2 Chapter 1. Introduction

of the SR family [CEO09, Prop. 5.1], i.e. the family of logical frameworks that underpin the logical
core of OWL 2 by the W3C [HKP+12]. Hence, effective procedures and model-theoretic properties for
extensions of Z transfer to the extensions of SR. Second, the core fragment of Z, called ALCreg, turns out
to be a notational variant of Propositional Dynamic Logic [FL79] – a popular and well-studied program
specification language. Thus, the results on the Z family can reach and influence the community working
on formal methods in computer science.

1.2 Research Objectives and Methodology

This dissertation focuses on a fine-grained complexity analysis of the query entailment problem over
ontologies, as defined below (consult Preliminaries if needed). The word “finite” in the problem description
below determines that instead of testing if all models of a knowledge-base K (usually composed of an
ABox A and a TBox T ) satisfy a query q, we restrict our attention to all finite models. In addition to the
above, we consider two ways of measuring the complexity of the query entailment problem: the combined
complexity where both K and q contribute equally to the size of the input, and the data complexity where
the T and q are fixed beforehand and only the ABox A varies.

(Finite) entailment of Q queries over DL-Knowledge-Bases (KBs)
Parameters: Description logic DL, and a class of queries Q

Input: A KB K := (A, T ) (A is an ABox and T is a DL-TBox), a query q ∈ Q

Question: Does K |=(fin) q hold?

A very ambitious goal is to provide a complete characterisation of the complexity of the query entailment
problem under both semantics and both complexity measures for all fragments of ZOIQ (obtained
by dropping some features from ALCHbSelf

reg OIQ) that extend ALC, and query languages that are (i)
local queries (namely conjunctive queries and their positive boolean combinations) (ii) regular queries
(conjunctive two-way regular path queries and their positive boolean combinations). Quick calculations
reveal that there are at least 2 · 2 · 27 · 4 = 2048 possible theorems to establish. Fortunately, many of them
are already present in the literature [Ov12], being established in the last twenty years. On the negative
side, fresh results tend to be incremental and sketchy, and the provided proofs are not robust (in the sense
that slight extensions of the underlying logic require fresh proofs). We prefer to avoid such a fiddle.

Our thesis aims to partially solve the above problem in an elegant way. More precisely:
• Our approach should be efficient, namely it should cover multiple logics in a single go. For this

reason, we mostly focus on so-called tamed ZOIQ, a logic that serves as a common umbrella for
ZIQ, ZOQ, and ZOI, which are all the currently-known maximal decidable fragments of ZOIQ.

• Our approach should be robust, i.e. it should be possible to employ the developed techniques as
a black box in the future for freshly defined logics, without the need to produce nearly-identical
proofs (or even worse, leaving such proofs as an exercise to the reader). Thus, our primary aim is
to design meta-algorithms rather than algorithms. This remark of course applies only to the upper
bounds; the lower bound proofs should be as general as possible, i.e. should hold for logics of the
form ALCΘ for a smallest possible set of features Θ ⊆ {I, O, Q, b, H, Self, ·reg}.

• Our approach should rely on variants of well-established formalisms from model theory. In the thesis
we employ tailored notions of forest models (including so-called quasi-forest models) and unravellings,
and explore broad classes of graphs that locally resemble trees.

• Our approach towards querying should be logic-independent, namely the presented method should
rely on the syntax of the query, but not on the syntax of the underlying logic (with the exception
of core logics such as ALC). This thesis advocates the satisfiability problem as the main object of
study, providing numerous reductions from query entailment problem to satisfiability.

Unfortunately the author of this thesis failed to fully solve such an ambitious task. However, we
believe that we made significant progress towards the full classification of syntactic fragments of ZOIQ.
We describe our setting and our research methodology below.



1.3. Organisation of the Thesis. Our Results and Their Significance 3

1. Our ontology languages of choice are any syntactic fragments of ZOIQ that extend ALC, in which
we disallow at least one of the three dangerous features O, I, and Q. To explain our decision, we
stress that obtaining tight complexity results on the query entailment problem even for ALCOIQ
is currently out of reach, and remains the most challenging open problem in the DL community.

2. Our query languages are: conjunctive queries (CQs), unions thereof (UCQs), positive existential
queries (PEQs), conjunctive regular path queries (CRPQs), and positive two-way regular path queries
(P2RPQs). The lower bounds are mostly provided for CQs, PEQs, or CRPQs, while the matching
upper bounds are given either for UCQs or for P2RPQs.

3. We mostly focus on the classical semantics, but we also provide results for the class of local queries
under the finite model semantics. Rather than designing novel algorithms, we prove meta-theorems
such as finite controllability that allow us to transfer the previously established results from the
unrestricted setting to the finite one. Note that the entailment of regular queries over ontologies in
the finite is very difficult to reason about. A quite recent breakthrough was done by Gutowski et
al. [GGIM22], namely they proved that the finite entailment of conjunctive regular path queries for
ALC is 2ExpTime-complete. Unfortunately, the their approach breaks if nominals or inverses are
allowed in the ontology language, and does not seem to apply to the DL Z and beyond.

4. We mostly focus on combined complexity of the query entailment problem, but whenever possible,
we also offer results on the data complexity. Quite recently, we obtained an important result showing
that the satisfiability problem for ZOIQ over quasi-forest models is NP-complete w.r.t. the data
complexity. We are confident that these results can be lifted (by adapting approach from a recent
work of Jung et al. [GIJM23]) to the proof of coNP-completeness of the entailment of P2RPQs over
any logic between ALC and (tamed) ZOIQ. We leave the details for future work.

The current state of the art is quite intricate, but many relevant results can be found in an excellent
survey by Ortiz and Šimkus [Ov12]. We are currently working on a simple web application that will
illustrate all the relevant results from the literature. For instance, the complete picture of the combined
complexity of the query entailment under the classical semantics can be summarised as follows. The
relevant references here are the work of the author with his supervisor [BR23, BR19], as well as the works
of Rudolph and Glimm [Rud16, RG10], Lutz [Lut08a], and Ngo et al. [NOv16].

Logic DL UCQs PEQs CRPQs P2RPQs

ALC ⊆ DL ⊆ ALCHbregQ Exp-c. 2Exp-c 2Exp-c 2Exp-c
ALCSelf ∪ ALCI ∪ ALCO ⊆ DL ⊆ ZIQ ∪ ZOQ ∪ ZOI 2Exp-c. 2Exp-c 2Exp-c 2Exp-c
ALCOIQ ⊆ DL ⊆ ALCHbSelfIOQ dec. dec. ? ?
ALCOIQreg ⊆ DL ⊆ ZOIQ ? ? undec. undec.

1.3 Organisation of the Thesis. Our Results and Their Significance

The thesis is naturally split into four parts (not counting the technical background given in Chapter 2).
1.3.1 Part I : Query Entailment in Forest-Friendly Description Logics
We first consider the query entailment problem for less expressive members of the Z family of DLs. Our
main motivation here was to establish the precise complexity of the finite and unrestricted entailment of
(unions of) CQs for plain Z. While the 2ExpTime upper bound was known [CEO09, Thm. 4.3] for quite
a long time, it was not a priori clear whether this upper bound is tight, especially in the light of ALC
and S (without transitivity in queries) having lower complexity of the query entailment than the other
members of their family (see Chapter 5 for a more detailed discussion). In Chapter 6 we show that this is
indeed the case, presenting a novel lower bound for ALC with the Self operator.

Main Theorem 1
The finite and unrestricted conjunctive query entailment problems for ALCSelf-TBoxes are 2ExpTime-
hard. Thus, both finite and unrestricted CQ entailment problem over Z-TBoxes is 2ExpTime-hard.
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Our proof goes via encoding of computational trees of alternating Turing machines working in exponential
space and follows a general hardness-proof-scheme by Lutz [Lut08a, Section 4]. However, to adjust the
schema to ALCSelf, novel ideas are required: the ability to speak about self-loops is exploited to produce
a single query that traverses trees in a root-to-leaf manner and to simulate disjunction inside CQs,
useful to express that certain paths are repeated inside the tree. We supplement the lower bound given
above with a tight exponential-time meta-algorithm for fragments of the DL Z that do not involve the
Self operator. We start by introducing the classes C∅fr and C fin

∅fr of locally-forward and finitely locally-
forward description logics, called in this thesis also (finitely) ∅-forest-friendly. These are classes of ontology
languages extending1 ALC∩ in which any description logic DL ∈ C fin

∅fr (resp. DL ∈ C∅fr) enjoys a property
that each (finitely) satisfiable DL-knowledge-base K has a (finite) model that locally resembles (formalised
by means of homomorphic equivalence) a forward tree. Afterwards, we revisit a classical algorithm for
conjunctive querying ALCHQ designed by Lutz [Lut08b] based on the spoiler technique, and improve the
technique in several ways: (i) our algorithm can be applied to unions of CQs rather than plain CQs, (ii) our
algorithm works for any logic DL ∈ C∅fr, (iii) our algorithm can be applied to the finite query entailment
problem for logics from C fin

∅fr . Despite the employment of Lutz’s technique, most of our proofs are done
from scratch in order to adjust them to the new, more abstract and more general, setting. In particular,
in the case of finite model reasoning, or in reasoning about logics with global cardinality constraints, the
intended models are no longer trees (and hence the proof sketches by Lutz that work for SHQ cannot be
taken for granted in our setting). We establish the following theorem.

Main Theorem 2
Let DL be any (finitely) ∅-forest-friendly description logic with ExpTime-complete (finite) knowledge-
base satisfiability problem. Then the (finite) entailment problem for unions of conjunctive queries over
DL-knowledge-bases is ExpTime-complete. In particular both finite and unrestricted entailment of
unions of conjunctive queries in ZQ without the Self operator is ExpTime-complete.

In recent years, it has become apparent that various modelling features of DLs affect the complexity
of conjunctive query entailment in a rather strong sense. It was first shown independently by Ortiz
et al. [OvE08] and by Lutz [Lut08a] that CQ entailment is exponentially harder than the consistency
problem for ALC extended with inverse roles (I). Shortly after, a combination of transitivity and role
hierarchies (SH) was shown as another culprit of higher worst-case complexity of reasoning [ELOv09].
Finally, also nominals (O) turned out to be problematic [NOv16]. Nevertheless, there are also more benign
DL constructs regarding the complexity of CQ entailment. Examples are counting (Q) [Lut08b] (the
complexity stays the same even for expressive arithmetical constraints [BBR20]), role-hierarchies alone (H)
[EOv12] or a tamed use of higher-arity relations [Bed21a]. Our results, summarised below, provide a
complete classification on when the complexity of the query entailment is the same as the complexity of
the satisfiability of the underlying description logic.

Feature θ with name ALCθ∩ ∈ C∅fr? SAT=CQEnt?
functionality F and various counting: N /Q/SCC
trans. closure ·∗, regular expr. ·reg, fixed-points µgood

role hierar. H, safe boolean comb. of roles b
[new!]

inverses of roles I
nominals Obad

transitivity S, complex role inclusions R
bad self-loops Self [new!]

We stress that our technique can be used as a black box also for freshly defined “forward” logics. To do
so, one may need to check if a given logic belongs to the class of (finite) ∅-forest-friendly DLs. This task

1The use of a role conjunction operator ∩, allowing for specifying that two elements are connected via a conjunction of
roles, is essential for our querying algorithm to work. See Preliminaries for the definition.



1.3. Organisation of the Thesis. Our Results and Their Significance 5

is however relatively difficult, due to the quite technical definition of (finitely) ∅-forest-friendliness. To
simplify such a process, we propose several sufficient conditions based on novel model-theoretic notions of
unravellings. Their definitions are given in Chapter 5. Hence, with a bit of luck, this relatively tedious task
boils down to routine proofs involving structural induction. What is more, each of our constructions is
supplemented with a handy list of properties preserved by our unravellings, that can simplify the reasoning
even further. As an example, we provide tight complexity bounds for statistical extensions of ALC.

Main Theorem 3
Finite entailment of unions of conjunctive queries for ALCSCC with ERCBoxes is ExpTime-complete.

Last but not least, our technique provides tight complexity bounds also for logics involving the Self
operator and/or the inverse operator I. Note however that in this case the complexity jumps exponentially.
The appropriate model-theoretic definitions are slightly different, but we made a lot of effort to make our
constructions understandable. For instance, by employing the revised version of Lutz’s spoiler technique
and a novel method of pumping models from Section 5.4, we derive an exponential-time reduction from
the (finite) query entailment for ZIQ to its finite satisfiability problem.

Part I of this thesis revises and generalises material that was published in the following journals:
[BR23] B. Bednarczyk and S. Rudolph, “How to Tell Easy from Hard: Complexity of Conjunctive Query

Entailment in Extensions of ALC”, in Journal of Artificial Intelligence Research (2023).
[Bed21c] B. Bednarczyk, “Statistical EL is ExpTime-complete”, Information Processing Letters (2021).

The JAIR paper [BR23] is in turn based on the following conference papers and unpublished drafts:
[BBR20] F. Baader, B. Bednarczyk and S. Rudolph, “Satisfiability and Query Answering in Description

Logics with Global and Local Cardinality Constraints”, in 24th European Conference on Artificial
Intelligence (ECAI 2020).

[BR22] B. Bednarczyk and S. Rudolph, “The Price of Selfishness: Conjunctive Query Entailment for
ALCSelf Is 2ExpTime-Hard”, in 36th AAAI Conference on Artificial Intelligence (AAAI 2022).

[Bed21b] B. Bednarczyk, “Lutz’s Spoiler Technique Revisited: A Unified Approach to Worst-Case Optimal
Entailment of Unions of Conjunctive Queries in Locally-Forward Description Logics”, in ArXiV.

1.3.2 Part II: Quasi-Forest Satisfiability of ZOIQ

In Chapter 7 we study the data complexity of the satisfiability problem for decidable sublogics of ZOIQ.
In particular we establish NP-completeness of ZIQ, ZOQ, and ZOI. As all the mentioned DLs possess
the quasi-forest model property (i.e. every satisfiable knowledge-base (KB) has a forest-like model), for
the uniformity of our approach we focus on the satisfiability of ZOIQ over quasi-forests. Calvanese et
al. [CEO09] proved that quasi-forest-satisfiability of ZOIQ is ExpTime-complete w.r.t. the combined
complexity. Unfortunately, their approach is automata-based and relies on an internalisation of ABoxes
inside ZOIQ-concepts, and thus cannot be used to infer tight bounds w.r.t. the data complexity.

We employ the algorithm of Calvanese et al. as a black box and design a novel algorithm for quasi-
forest-satisfiability of ZOIQ-KBs. In our approach we construct a quasi-forest model step-by-step, i.e.
we construct its root part (the clearing) separately from its subtrees. Our algorithm first pre-computes
(an exponential w.r.t. the size of the TBox but of constant size if the TBox is fixed) set of quasi-forest-
satisfiable ZOIQ-concepts that indicate possible subtrees that can be “plugged in” to the clearing of the
intended model. Then it guesses (in NP) the intended clearing and verifies its consistency in PTime
based on the pre-computed concepts and roles. For the feasibility of our “modular construction” a lot
of bookkeeping needs to be done. Most importantly, certain decorations are employed to decide the
satisfaction of automata concepts and number restrictions by elements in an incomplete and fragmented
forest. The first type of decorations, given an automaton A, aggregate information about existing paths
realising A and starting at one of the roots of the intended model. As a single such path may visit several
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subtrees, we cut such paths into relevant pieces and summarise them by means of “shortcut” roles and
ZOIQ-concepts describing paths fully contained inside a single subtree. The second type of decorations
“localise” counting in the presence of nominals, as the nominals may have successors outside their own
subtree and the clearing. These two “small tricks”, obfuscated by various technical difficulties, are the
core ideas behind our quasi-forest-satisfiability algorithm.

Main Theorem 4
The satisfiability problem for (tamed fragment of) ZOIQ is NP-complete w.r.t. the data complexity.
In particular, the satisfiability problems for ZIQ, ZOQ, and ZOI are NP-complete.

We conclude with Chapter 8 by presenting how our algorithm can be adapted to the entailment prob-
lem of rooted queries over ZIQ. The key idea here is to guess an “initial segment” of a quasi-forest with
no query match, and check if it can be extended to a full model of the input KB. A novel coNExpTime
lower bound for ALCSelf is also provided.

Main Theorem 5
The entailment problem for unions of rooted conjunctive queries over ZIQ-KBs is coNExpTime-
complete. The lower bound holds already for ALC extended with the Self operator.

The content of Part II will appear in:
[Bed24a] B. Bednarczyk, “Data Complexity in Expressive Description Logics With Path Expressions”,

accepted to the 33rd International Joint Conference on Artificial Intelligence (IJCAI 2024).

1.3.3 Part III: Entailment of Queries in Expressive Fragments of ZOIQ

The next part of the thesis addresses the problem of entailment of regular queries (more precisely: positive
two-way regular path queries, P2RPQs) in expressive members of the Z family of DLs. To unify our
approach, we focus on tamed ZOIQ, namely the fragment of ZOIQ that possesses the quasi-forest
counter-model property (also discussed in the previous section). This allows us to handle ZIQ, ZOQ, and
ZOI in a single proof. In Chapter 9 we employ a certain “proof-like calculus” for deriving query matches in
quasi-forest models. Its application allows us to exponentially reduce the P2RPQ entailment problem over
tamed ZOIQ to its satisfiability problem, exponentially improving previous results [CEO09, Thm. 4.3]
concerning ZIQ and ZOQ (which relied on the unary encoding of counters in number restrictions).

Main Theorem 6
Entailment of positive two-way regular path queries over (tamed) ZOIQ-KBs (in particular, KBs
written in ZOQ, ZIQ, ZOI) is 2ExpTime-complete.

These results were already presented in:
[BR19] B. Bednarczyk and S. Rudolph, “Worst-Case Optimal Querying of Very Expressive Description

Logics with Path Expressions and Succinct Counting”, in Twenty-Eighth International Joint Con-
ference on Artificial Intelligence (IJCAI 2019).

In Chapter 10 we study whether we can lift the results concerning the entailment of local queries
(positive existential queries, PEQs, namely positive boolean combinations of conjunctive queries) to the
description logics ZIQ, ZOQ, and ZOI, i.e. the most expressive fragments of ZOIQ. Our main result
here is that ZOQ and ZOI are finitely controllable, meaning that a PEQ is entailed if and only if
it is finitely entailed. Alternatively, the finite controllability property tells us that the existence of a
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countermodel for the entailment of the query is equivalent to the existence of a finite such countermodel.
This model-theoretic property allows us to transfer 2ExpTime-completeness of the entailment problem
for PEQs (that follows either from the original paper on ZOIQ [CEO14] or from the previous section
of the thesis) for ZOQ and ZOI to the finite-world scenario. What is more, by applying the spoiler
technique intensively studied in Part I, we can exponentially reduce the finite PEQ entailment problem
for ZIQ to its finite knowledge-base satisfiability problem. This is optimal, modulo the conjecture that
knowledge-base satisfiability problem for ZIQ in the finite is ExpTime-complete, which is quite probable.
Unfortunately, we were not able to prove this conjecture and even show the decidability of the finite
satisfiability problem for ZIQ-TBoxes. This is probably due to the fact that the decidability results for
logics with inverses and counting are usually obtained via integer programming, which does not seem to
be suitable for dealing with regular path constraints.

Main Theorem 7
The logics ZOQ and ZOI are finitely controllable. This implies that the problem of finite entailment
of positive existential queries for them is 2ExpTime-complete. Moreover, if the finite satisfiability for
ZIQ is ExpTime-complete, then finite entailment of PEQs over ZIQ-KBs is 2ExpTime-complete.

Roughly speaking, our proof method is as follows. We start from a finite-branching quasi-forest model I
for a knowledge-base K (written either in ZOI or ZOQ) that violates a query q (say, with K atoms).
Without loss of generality, we can assume that whether an element requires a witness for the satisfaction
of some existential restriction, then such a witness is always reachable by a path going downward the forest
(and then possibly “jumping” to a nominal). The key ingredient in our construction is the identification
of certain substructures of I, that are based on downward types, i.e. the isomorphism types of subtrees of
depth K rooted at some element from I. For every downward type π we select one representative, then
extend it in a minimal way by providing witnesses for its root for all existential restrictions of the form
∃A.C appearing in K, and finally make such a substructure sibling- and parent-closed. Note that a path
witnessing the satisfaction of existential restrictions of the form ∃A.C are finite by definition. We call
such modified representatives components. The intended finite model of K that violates q is constructed
by taking a sufficiently many isomorphic copies of components, and them linking them in a clever way.

The above results were already presented in the following paper:

[BK22] B. Bednarczyk and E. Kieroński, “Finite Entailment of Local Queries in the Z Family of De-
scription Logics”, in Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022).

We stress that obtaining complexity results (or even decidability) for the finite entailment of (non-local)
queries over extensions of ALC is currently beyond the author’s reach. See the discussion in Section 1.2.
We also apologise for the content of Part III not being as polished as the rest of the thesis. In the nearest
future we aim to rewrite the material collected here and publish it in a journal.

1.3.4 Part IV : A Step Beyond the Z Family of DLs

The last part of the thesis focuses on further extensions of ALCreg, the core fragment of all the members
of the Z family of DLs. In Chapter 11 we generalise path expressions present in ALCreg by allowing for
non-regular languages. One prominent candidate is the class of visibly pushdown languages [AM09], a
well-behaved subclass of deterministic context-free languages. A canonical visibly pushdown language
is r#s# := {rnsn | n ∈ N}. While the extension of ALCreg with path expressions involving visibly
pushdown languages (ALCvpl) was shown to be decidable by Löding and Serre [LLS07], we obtained several
undecidability results for extensions of ALCvpl with popular features supported by W3C ontology languages.
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Main Theorem 8
The concept satisfiability problem is undecidable for ALCvpl extended either with nominals or the
Self operator. What is more, the entailment problem for conjunctive regular path queries, extended
with atoms involving the non-regular language r#s#, is undecidable already for ALC-TBoxes.

For the case of ALCvpl with the Self operator, we provide a reduction from the undecidable problem
of non-emptiness of the intersection of deterministic one-counter automata (DOCA) [Val73, p. 75].

dI
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The key idea is that every language recognized by DOCA can be made visibly-pushdown in a projective
sense, namely by enlarging the alphabet, for each letter a, with a trio of letters (a, c), (a, i), and (a, r)
representing the action of DOCA on the stack after reading such letters a. In our reduction, we represent
words by means of linear structures under the name of metawords. A metaword representing abbac
is given above. We then label metawords with concepts, representing fragments of accepting runs of DOCAs.

In the case of ALCvpl with nominals and the query entailment problem, we provide a reduction from
the tiling problem of either a finite rectangle or an octant. For instance, in the case of ALCvplO, we
represent the solution to the tiling problem as so-called snakes (depicted on the right hand side).
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The key idea behind the proofs is to employ the non-regular language r#s# := {rnsn | n ∈ N} to
measure distances between elements and ensure that they are equal. For more details consult Chapter 11.

This part of the thesis is based on the following journal paper:
[Bed24b] B. Bednarczyk, “Exploring Non-Regular Extensions of Propositional Dynamic Logic with

Description-Logics Features”, in Logical Methods in Computer Science (2024),
which is the full version of:

[Bed23] B. Bednarczyk, “Beyond ALCreg: Exploring Non-Regular Extensions of PDL with Description
Logics Features”, in Logics in Artificial Intelligence - 18th European Conference (JELIA 2023).

This work also received the best student paper award at JELIA 2023.
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Motivation

The role of this chapter is to introduce and fix the notations used throughout the thesis. Let us be frank
about the expectations: this work does not intend to be a textbook (as there are far better books on the
market) and is dedicated to researchers and experienced PhD students working in the area of computational
logic. We assume familiarity with: näıve set theory [WJ96, Part 1], basics on syntax and semantics of
first-order logic [Lib04, Sec. 2.1], standard description logics [BHLS17, Sec. 2.1–2.3], query entailment
over description logic ontologies [Ov12, Sec 1–6, Sec. 8], regular and context-free languages [Sip13, Sec.
1–2], Turing machines [Sip13, Sec. 3], computability and (un)decidability [Sip13, Sec. 4–5], as well as the
usual complexity classes [Lib04, Sec. 2.3] including the alternating complexity classes [Sip13, Sec. 10.3].

As usual, we employ N to denote the set of non-negative integers and Zn to denote the set {0, 1, . . . , n−1}.
We use “square bracket” notation to denote images of functions, e.g. f [X] denotes the image of X via f .

2.1 Basics on the Description Logic ALC

Until the end of the thesis we fix countably infinite pairwise disjoint sets of individual names NI, concept
names NC, and role names NR. We usually denote individual names with a,b,c, concept names with A, B, C,

11
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and role names with r , s, t. Starting from NC and NR, the set CALC of ALC-concepts is built using the
following concept constructors: negation (¬), conjunction (⊓), existential restriction (∃), and the bottom
concept (⊥), with the grammar:

C, D ::= ⊥ | A | ¬C | C ⊓ D | ∃r .C,

where C, D ∈ CALC , A ∈ NC and r ∈ NR. As convenient abbreviations, we often employ disjunction
C ⊔ D := ¬(¬C ⊓ ¬D), universal restriction ∀r .C := ¬∃r .¬C, the top concept ⊤ := ¬⊥, and – not quite as
widely used – “inline-implication” C → D := ¬C ⊔ D and “inline-equivalence” C ↔ D := (C → D) ⊓ (D →
C). The set CEL of EL-concepts is defined similarly, by dropping negation from the above grammar.

Assertions are expressions of the form C(a), r(a,b), or ¬r(a,b) for individual names a,b ∈ NI, concepts
C ∈ CALC , and role names r ∈ NR. An ALC-general-concept-inclusion (ALC-GCI) has the form C ⊑ D
for ALC-concepts C, D ∈ CALC . We use C ≡ D as a shorthand for the joint occurrence of the two GCIs
C ⊑ D and D ⊑ C. An ALC-knowledge-base (ALC-KB) K := (A, T ) is composed of a finite set A (called
ABox) of assertions and a finite set T (called ALC-TBox) of ALC-GCIs. We call the elements of A ∪ T
axioms. The set of all individual names appearing in K is denoted with ind(K).

The semantics of ALC is defined via interpretations I := (∆I , ·I) composed of a non-empty set ∆I ,
called the domain of I, and an interpretation function ·I , mapping individual names to elements of ∆I ,
concept names to subsets of ∆I , and role names to subsets of ∆I × ∆I . This mapping is inductively
extended to concepts via

⊥I := ∅,

(¬C)I := ∆I \ CI ,

(C ⊓ D)I := CI ∩ DI ,

(∃r .C)I := {d | ∃e ∈ CI . (d, e) ∈ rI},

and finally used to define satisfaction of assertions and GCIs in an interpretation I by letting

I |= C ⊑ D if and only if CI ⊆ DI ,

I |= C(a) if and only if aI ∈ CI ,

I |= r(a,b) if and only if (aI ,bI) ∈ rI ,

I |= ¬r(a,b) if and only if (aI ,bI) /∈ rI .

Structures are like interpretations, with the only exception that the assignment of individual names may
be partial, that is some individual names from NI may not be “used”. An interpretation I satisfies a
knowledge base K := (A, T ) (or that I is a model of K, written: I |= K) if it satisfies all axioms of A ∪ T .
An interpretation I is finite (resp. countable) if its domain ∆I is finite (resp. countable). A knowledge
base is (finitely) consistent (or (finitely) satisfiable) if it has a (finite) model, and (finitely) inconsistent
(or (finitely) unsatisfiable) otherwise.

Example 2.1. Consider an interpretation I with ∆I := Z8, defined as follows and depicted below:
• aI := 4,bI := 5 and all other individual names from NI are interpreted as 1.
• GI := {0, 4, 7}, RI := {1, 2, 3, 5, 6}, BI := {2, 4}, and all other concepts names are interpreted as ∅,
• rI := {(0, 1), (1, 2), (1, 4), (6, 7)}, sI := {(0, 1), (1, 4), (4, 3), (4, 5), (5, 4), (7, 7)}, and all other role names

from NR are interpreted as ∅.
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Consider a knowledge base K := ({s(a,b), ¬r(b,a), B(a)}, {⊤ ⊑ R ⊔ ∃s.⊤, R ≡ ¬G}). It is easy to verify that
I satisfies K, and thus we can write I |= K. Note that I is a finite model of K.
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Given a structure I and a pair of elements d, e ∈ ∆I , we employ ConcI(d) := {C ∈ NC | d ∈ CI} to
denote the set of all atomic concepts satisfied by d in I, and use RolI(d, e) := {r ∈ NR | (d, e) ∈ rI}
to denote the set of all atomic roles satisfied by the pair (d, e) in I. For a given set of individual names
N ⊆ NI we use NI to denote the set of N-named domain elements of I, namely the set of all d ∈ ∆I

for which d = aI holds for some name a ∈ N. The elements from ∆I \ NI are called N-anonymous. With
ind(I) := {a ∈ NI | aI ∈ ∆I} we collect all individual names whose interpretation appears in a structure I.

Example 2.2. Consider I from Example 2.1. We have ConcI(4) = {G, B}, RolI(0, 1) = {r , s}, while
RolI(1, 0) = ∅. The element 4 is {a,b}-named, while the elements from {0, 1, 2, 3, 5, 6, 7} are {a}-anonymous.

All notions from this section can be easily lifted to any logic DL semantically extending ALC. We say
that a logic1 DL extends a logic DL′ if every DL′-concept C in one can compute in polynomial time (at
most) polynomially larger, logically equivalent, DL-concept. For instance, ALC extends the modal logic K,
ALCb extends ALCH, ALCreg extends Propositional Dynamic Logic, and ALCSCC extends ALCHQ.

2.2 A Tiny Bit of Graph Theory

We revisit the classical notions of substructures, paths and connectivity. Let I be an interpretation.
The restriction of I to a set S ⊆ ∆I , is the structure I↾S defined according to the following conditions:

∆I↾S := S, rI↾S := rI ∩ (S × S), AI↾S := AI ∩ S, aI↾S := aI if aI ∈ S and is undefined otherwise,

for all A ∈ NC, r ∈ NR and a ∈ NI. A substructure of I is any of its restrictions I↾S for any S ⊆ ∆I .
An undirected path (resp. a directed path) of length k−1 in an interpretation I is a finite word

ρ := ρ1ρ2 . . . ρk composed of elements from ∆I , such that for any index 1 ≤ i < k we have that
(ρi, ρi+1) ∈ rI or (ρi+1, ρi) ∈ rI for some role name r ∈ NR (or just (ρi, ρi+1) ∈ rI in the case of
directed paths). We use ∥ρ∥ to denote the length of ρ (note that ∥ρ∥ = |ρ|−1). An element e ∈ ∆I is
reachable from d ∈ ∆I via an (un)directed path if there exists an (un)directed path ρ in I for which
ρ1 = d and ρ|ρ| = e. In this case we also say that ρ starts from d and ends in e. A cycle is a path from an
element to itself. We say that I is connected if any of its domain elements are reachable from any other
via an undirected path. A structure J is a connected component of I if it is a ⊆-maximal (in the sense of
inclusion of domains) connected substructure of I. The k-neighbourhood of d in I, denoted with Nbdk

I(d),
is the restriction of I to elements reachable from d in I by undirected paths of length at most k.

Example 2.3. Consider the interpretation I from Example 2.1. It has two connected components, namely
I↾{0,1,2,3,4,5} and I↾{6,7} (visualised as the letters “H” and “I”). The element 5 is reachable from 0 via a
(directed) path ρ := (0, 1, 4, 5). Note that ∥ρ∥ = 3. Moreover, 4 reaches 2 via an undirected path. Finally, we
have Nbd0

I(0) = I↾{0}, Nbd1
I(0) = I↾{0,1}, Nbd2

I(0) = I↾{0,1,2,4}, and Nbd3
I(0) = I↾{0,1,2,3,4,5} for all k ≥ 3.

2.3 Morphisms

Let I and J be structures, and let N be a subset of NI. An N-homomorphism f : I → J if a function that:
• maps elements from ∆I to ∆J ,
• preserves individual names from N, i.e. for all a ∈ N if aI is defined then aJ = f(aI),
• preserves atomic concepts, i.e. for all d ∈ ∆I and all A ∈ NC we have that d ∈ AI implies f(d) ∈ AJ ,
• preserves atomic roles, i.e. for all pairs (d, e) ∈ (∆I × ∆I) and all r ∈ NR we have that (d, e) ∈ rI

implies (f(d), f(e)) ∈ rJ .
An N-isomorphism f : I → J is a bijection such that f and f−1 are N-homomorphisms. We write

I ◁N J to indicate the existence of an N-homomorphism from I to J . In this case I is said to be N-
homomorphically mapped to J . Structures I and J are N-homomorphically equivalent, written: I ⇄N J ,

1We have decided not to formally define what a logic is, suggesting that this notion should rather be understood naively.
This can be made formal by means of abstract model theory, see the thesis of Piro [Pir12, Sec. 1.2].
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if I ◁N J and J ◁N I hold. Finally, I and J are N-isomorphic, written: I ∼=N J , if there exists an
N-isomorphism between them. We often use the term homomorphism (resp. isomorphism) rather than
∅-homomorphism (resp. ∅-isomorphism). It is well-known that the composition of N-homomorphisms is
also an N-homomorphism, and that the composition of N-isomorphisms is also an N-isomorphism.

Example 2.4. Consider structures I1, I2, I3 depicted below. Observe that there is a homomorphism from
I1 to I2 but not vice versa, and that I2 and I3 are homomorphically equivalent, but not isomorphic.

1

2 3

r s ◁ 4

s

r

⇄ 5

s

6

s

r

s

s

r

We write f◦g to denote the composition of morphisms f : I → I ′ and g : I ′ → I ′′ (i.e. we employ more
“category-theory-friendly” syntax of composition, rather than the classical one).

2.4 Conjunctive Queries and Their Local Generalisations

Queries employ variables from a countably infinite set NV, which is disjoint from NI ∪ NC ∪ NR.
A conjunctive query (CQ) is a conjunction of atoms of the form r(x, y) or A(z), where r is a role name, A
is a concept name and x, y, z are variables. More expressive query languages are also considered: a union
of conjunctive queries (UCQ) is a disjunction of CQs and a positive existential query (PEQ) is a positive
boolean combination of CQs (i.e. can be generated with the grammar: q ::= A(x) | r(x, y) | q ∧ q | q ∨ q).
Any PEQ can be converted to a UCQ of (possibly) exponential size by turning it into disjunctive normal
form. Let q be a PEQ and let I be a structure. The set of variables appearing in q is denoted with Var(q)
and the number of atoms of q (i.e. the size of q) is denoted with |q|. The fact that r(x, y) appears in q is
indicated with r(x, y) ∈ q. Whenever some subset V ⊆ Var(q) is given, let q↾V denote the sub-query of q
where all the atoms containing any variable outside V are removed (whenever it does not lead to ambiguity).

Example 2.5. Consider a PEQ q := A(x)∧(r(x, y)∨(B(x)∧s(x, z))). We have |q| = 4 and Var(q) = {x, y, z},
and that q↾{x,y} = A(x) ∧ (r(x, y) ∨ B(x)) (i.e. the atom s(x, z) got removed). Note that q is equivalent to a
union of conjunctive queries q1 ∨ q2, for CQs q1 := A(x) ∧ B(x) ∧ s(x, z), and q2 := A(x) ∧ r(x, y).

Let π : Var(q) → ∆I be a variable assignment. We write I |=π q whenever the boolean expression
obtained from q by replacing each atom of the form A(x) (resp. r(x, y)) with the truth value of π(x) ∈ AI

(resp. (π(x), π(y)) ∈ rI) evaluates to true. We say then that π is a match for q and I. The interpretation I
satisfies q (denoted with: I |= q) whenever I |=π q for some match π. The definitions are lifted to knowledge
bases: q is (finitely) entailed by a knowledge base K (written: K |=(fin) q) if every (finite) model I
of K satisfies q. The entailment relations |= and |=fin may not coincide, as witnessed by Example 2.6.
When I |= K but I ̸|= q, we call I a countermodel for K and q. Note that q is (finitely) entailed by K if
there is no (finite) countermodel for K and q.

Example 2.6 (Example 3 from [GIJ18]). The description logic S extends ALC with axioms of the form
trans(r) for role names r ∈ NR that are satisfied by an interpretation I if and only if rI is transitive. Let K
be an S-KB composed of the following axioms: (i) trans(r), and (ii) ⊤ ⊑ ∃r .⊤. Note that axiom (ii) enforces
the presence of an infinite r-path in every model of K. Let q := r(x, x) be a conjunctive query. Note that
there are infinite models that satisfy K but violate q, for instance I with ∆I := N that interprets r as the
“less-or-equal relation ≤”. However, by a combination of transitivity and finiteness, every finite model of K
has an element decorated with an r-self-loop (and thus satisfies the query q). Hence K ̸|= q but K |=fin q.

Every conjunctive query q can be seen as a structure Iq := (Var(q), ·Iq ) that interprets concept names
A ∈ NC as AIq := {x | A(x) ∈ q}, role names r ∈ NR as rIq := {(x, y) | r(x, y) ∈ q}, and does not
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interpret individual names. This implies that any match π for an interpretation I and a conjunctive
query q can be seen as an NI-homomorphism (as well as ∅-homomorphism) from Iq to I.

Example 2.7. Consider a CQ q := R(x2)∧B(x2)∧r(x1, x2)∧s(x1, x4)∧G(x4) for which Iq can be visualised as:

12 4r sR, B G

Let I and T be the interpretation and the TBox from Example 2.1. Then I |= q, which can be witnessed
by the match π : xi 7→ i. However, we have T ̸|= q. This can be seen by taking an example model J of T
composed of a single “red” element that interprets all role names as ∅. Clearly J ̸|= q, and thus T ̸|= q.

For a given CQ q, a structure I, a match π : Var(q) → ∆I , we define the equivalence relation ≈π as
{(x, y) ∈ Var(q) × Var(q) | π(x) = π(y)}. We use square brackets to denote equivalence classes, e.g. [x]≈π

denotes the equivalence class of x w.r.t ≈π. We define the image of q via π and denote it with π[q], as a
structure J with ∆J := Var(q)/≈π that for all a ∈ NI, A ∈ NC, r ∈ NR satisfies the conditions below:

• aJ is defined only if there exists a variable x for which π(x) = aI . In this case aJ := [x]≈π
.

• d ∈ AJ only if there exist a variable x such that d = [x]≈π
, and A(x) ∈ q.

• (d, e) ∈ rJ only if there exist variables x, y such that (d, e) = ([x]≈π , [y]≈π ), and r(x, y) ∈ q.
Note that π[q] usually differs from the substructure of I induced by π[Var(q)].

For the class of path-shaped conjunctive queries, namely the conjunctive queries whose query structure
looks like a path, we often employ an alternative path syntax for conciseness. Thus, by a path-shaped
conjunctive query we understand an expression of the form

(A0?; r1; A1?; r2; A2?; . . . ; An−1?; rn; An?)(x0, xn)

with all ri ∈ NR and Ai ∈ NC ∪ {⊤}, serving as a shorthand for
n∧

i=0
Ai(xi) ∧

n∧
i=1

ri(xi−1, xi).

Whenever Ai happens to be ⊤, it will be removed from the expression; this does not create ambiguities.
For instance, the query r ; A?; r ; s; B? stands for r(x0, x1) ∧ A(x1) ∧ r(x1, x2) ∧ s(x2, x3) ∧ A(x3). We stress
that the alternative syntax for path-shaped CQs is just syntactic sugar and our queries should not be
mistaken e.g. for regular path queries (RPQs).

We conclude by discussing the differences between our definitions of queries and the ones that are
present in the literature. We first discuss the presence of answer variables and individual names in queries.

Remark 2.8. First, our queries are always assumed to be boolean, i.e. we do not allow for answer variables.
This assumption is done [GLHS08, p. 164] w.l.o.g. as answer variables can be simulated with quantified
variables and additional concept names. Second, individual names are not present in atoms in queries. This
is again w.l.o.g. as one can proceed for any knowledge-base K := (A, T ) and any PEQ q as follows. Take any
individual name a appearing in query q and proceed as follows: (i) introduce a fresh variable xa and fresh
concept name Aa, (ii) replace each atom α in q involving a by α ∧ Aa(xa), (iii) replace every occurrence of
the individual name a in q by xa, and (iv) append Aa(a) to the ABox A. Let q′, K′ be the resulting query
and the resulting knowledge base. It is not too difficult to show that K |=(fin) q if and only if K′ |=(fin) q′.

The second remark is about the presence of “special” roles in queries.

Remark 2.9. We would like to stress that in the thesis we stick to the usual definition of conjunctive queries,
meaning that we only allow for role names and concept names in query atoms. This is crucial for certain
complexity results present in the literature. For instance, the query entailment problem (to be defined)
for the description logic S is known to be coNExpTime-hard [ELOv09, Thm. 2], but it is decidable in
ExpTime [Lut08b, Thm. 1] if role names that are stated to be transitive do not appear in queries.
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2.5 Database-Inspired Decision Problems

We next recall important definitions of database-inspired reasoning problems considered in this thesis.
The first problem that we consider, called the (finite) satisfiability problem is parametrised by a logic DL

and asks whether an input DL-knowledge-base is (finitely) satisfiable. Here we mention a few results
on ALC and related logics. It is well-known that ALC has the finite model property (FMP) [LAHS04,
Cor. 4.3], i.e. every satisfiable ALC-KB has a finite model. In other words, the satisfiability and the finite
satisfiability problems coincide. This positive result on ALC can be further generalised to several very
expressive description logics including SHOQ [LAHS04, Cor. 4.3], ZOQ and ZOI [BK22, Thm. 3.1], as
well as to expressive decidable fragments of first-order logics, including the guarded [Grä99, Thm. 3.10],
and guarded-negation [BtCS15, Thm. 3.4] fragments. Check Pratt-Hartmann’s textbook [PH23] for more.

(Finite) DL-KB satisfiability problem
Parameters: Description logic DL

Input: A DL-knowledge-base K
Question: Does K have a (finite) model?

The second one, called the (finite) query entailment problem, is additionally parametrised by a query
language Q. It asks whether an input DL-knowledge-base (finitely) entails an input query from Q. The
query entailment problem is at least as computationally difficult as the satisfiability problem (note that
only an unsatisfiable knowledge base entails the ⊥ query). The “query entailment analogue” of the finite
model property is called finite controllability. The class of queries Q is finitely controllable for a description
logic DL if for every DL-KB K and every query q ∈ Q we have that K |= q if and only if K |=fin q.
It is known that ALC (and its generalisation to the guarded fragment) is finitely controllable [BGO14,
Thm. 1.2] for the class of positive existential queries. The same results hold also for the very expressive DLs
ZOI and ZOQ [BK22, Thm. 3.1]. The notion of finite controllability for classes of queries beyond positive
existential queries were recently studied by Figueira et. al [FFB20]. Regarding the complexity results, the
satisfiability problem [DL96, Thm. 6] and the CQ-entailment problem for ALC [OvE08, Thm. 6] (and
even ALCHQ [Lut08b, Thm. 1]) are ExpTime-complete, while the PEQ-entailment problem for ALC
was shown to be 2ExpTime-hard [Ov14, Thm. 1]. The 2ExpTime upper bound can be obtained even
for very expressive extensions of ALC and regular queries extending PEQs [CEO09, Thm. 5.23].

(Finite) entailment of Q queries over DL-KB
Parameters: Description logic DL, and a class of queries Q

Input: A DL-knowledge base K, and a query q ∈ Q

Question: Does K |=(fin) q hold?

In a typical setting of the query entailment problem, both a knowledge base and a query are treated
equally when measuring the input. It turns out however, that in “practical applications” input ontology
and input queries are relatively small, whilst an input database (ABox) can be huge. To take this “practical”
view into account, we consider the data complexity [Var82] version of the query entailment problem, where
both the TBox and the query are parameters of the problem (thus their sizes are treated as constants), and
the input to the problem is just an ABox. In this setting the complexity of the query entailment problem
drops drastically. For instance, the query entailment problem for ALCI is 2ExpTime-complete [Lut08a,
Thm. 2], but just coNP-complete [GLHS08, Thm. 35] with respect to the data-complexity.

(Finite) entailment of Q queries over DL-KB w.r.t Data Complexity
Parameters: Description logic DL, a DL-TBox T , a class of queries Q, and a query q ∈ Q

Input: An ABox A
Question: Does (A, T ) |= q hold?
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The last problem that we consider is the classical query containment problem [CV93] tailored to the
ontology-mediated setting [COv11, BLW12]. A relatively short definition is presented below.

(Finite) containment of Q queries over DL-TBoxes
Parameters: Description logic DL, and a class of queries Q

Input: A DL-TBox T , and queries q1, q2 ∈ Q

Question: Does every (finite) model I of T that satisfies q1 also satisfy q2?

2.6 A Bit of Automata Theory

Let Σ be a finite alphabet (usually a finite subset of NR), and let ε denote the empty word. A nonde-
terministic finite automaton (NFA) A is tuple (Σ, Q, I, F, T), where Q is a finite set of states, I ⊆ Q is a
set of initial states, F ⊆ Q is a set of final states, and T is a transition relation of type T ⊆ ((Q × Σ) × Q).
A deterministic finite automaton (DFA) is an NFA whose transition relation is a function. A partial
semiautomaton (PSA) A [Gin68] is a nondeterministic finite automaton (NFA) that does not specify its
initial and final states. For states q and q′ of A, Aq,q′ denotes the corresponding NFA with the initial
(resp. final) state q (resp. q′). Given a finite word w := a1 . . . an over Σ, a run of A on w is a sequence
q0 →a1 q1 →a2 . . . →an

qn where q0 ∈ I and for all i < n we have (qi, ai+1, qi+1) ∈ T. A run is accepting
if qn ∈ F. We call a word accepted by A if there is an accepting run of A on it. A language is any set of
finite words. The language L(A) of A is the set composed of all words accepted by A. We say that a
language L ⊆ Σ∗ is regular if there exists an NFA recognising it, i.e. there exists an NFA A for which
L(A) = L. For more details on regular languages consult Sipser’s textbook [Sip13, Sec. 1].

Regular expressions over an alphabet Σ are defined with the following grammar:

R1,R2 ::= ε | a | ∅ | (R1 + R2) | (R1 ◦ R2) | (R1)∗,

for a ∈ Σ. The language L(R) of a regular expression R is defined inductively: L(a) := {a}, L(ε) := {ε},
L(∅) := ∅, L(R1 + R2) := L(R1) ∪ L(R2), L(R1 ◦ R2) := {wv | w ∈ L(R1), v ∈ L(R2)}, L(R∗

1) :=
{ε}∪L(R+

1 ), and L(R+
1 ) :=

⋃∞
n=1 L(Rn

1 ). Here R1 := R and Rn+1 := Rn◦R. The ·∗ and ·+ operators are
called, respectively, the Kleene star and Kleene plus. It is well-known that for every regular expression R

there exists an NFA A of polynomial size (w.r.t. total number of symbols in R) for which L(R) = L(A).

Example 2.10. Let A := ({a, b}, {q0, q1}, {q0}, {q0}, {(q0, a, q1), (q1, a, q0), (q0, b, q0), (q1, b, q1)}) be a de-
terministic finite automaton. It is easy to verify that the language of A is composed of all words from {a, b}∗

that have an even number of “a”. Moreover, L(A) = L(b∗(ab∗ab∗)∗).

Let A := (Σ, Q, I, F, T) be an NFA. For q, q′ ∈ Q we use Aq,q′ to denote the automaton (Σ, Q, {q}, {q′}, T),
i.e. the automaton obtained from A by setting the initial state to q and the final state to q′. Analogously,
Aq denotes the automaton (Σ, Q, {q}, F, T), i.e. A with the initial state switched to q. For future purposes
we also introduce the automaton A− := (Σ−, Q, F, I, T−), where Σ− is a fresh alphabet composed of
“inverted” symbols a− for a in Σ, with initial and final states swapped and the state transitions flipped: the
transition (q′, a−, q) belongs to T− if and only if (q, a, q′) ∈ T. We call A− the reverse automaton of A.
Note that the language of the reverse automaton A− is the reverse of the language of A in the following
sense: a word (a1a2 . . . an) is in L(A) if and only if the word (a−

n a−
n−1 . . . a−

1 ) belongs to L(A−).

2.7 Description Logics with Path Expressions

We treat the set Σall := NR ∪ {C? | C ∈ NC} as an infinite alphabet. Let ALL and REG be the classes of
all Turing-recognizable (resp. all regular) languages of finite words over any finite subset of Σall. When
reasoning in the Z family of DLs, we also employ simple roles from in place of role names (see Section 2.9).

Given a language L ∈ ALL we say that a path ρ realises L or that ρ is an L-path (both denoted
with ρ |= L) if L contains a word w1r1 . . . w|ρ|−1r|ρ|−1w|ρ|, where all ri is a (simple) roles and all wi are
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(possibly empty) sequences of tests, satisfying (ρi, ρi+1) ∈ rI
i and ρi ∈ CI for all i ≤ |ρ| and tests C? in wi.

The above-defined notions are lifted (in an obvious way) to other objects “recognizing” languages, such
as various notions of automata, regular expressions, Turing machines, and so on. For instance, if L is
recognizable by an automaton A, we may speak about A-paths. For convenience, we will also say that
e ∈ ∆I is L-reachable from d ∈ ∆I (or alternatively that the element d L-reaches e) whenever there
exists an L-path ρ that starts from d and ends in e.

The logic ALCall extends ALC with concept constructors of the form ∃ML.C, where L ∈ ALL, C
is an ALCall-concept, and ML is any Turing machine [Sip13, Sec. 3.1] recognizing L. Their semantics
is as follows: (∃ML.C)I is the set of all d ∈ ∆I that can L-reach some e ∈ CI , and ∀ML.C stands
for ¬∃ML.¬C. The logic ALCreg is a restriction of ALCall in which languages existential restrictions are
given by NFA (or by regular expressions for convenience). The logic ALCreg is a notational variant of the
well-known Propositional Dynamic Logic [FL79], popular in the community of formal verification.

2.8 Conjunctive Regular Path Queries and Beyond

Given a class C of languages that is a subclass of ALL, the class of C-enriched Positive Existential Queries
(abbreviated as C-PEQs) is defined with the following syntax:

q, q′ ::= ⊥ | A(x) | r(x, y) | L(x, y) | q ∨ q′ | q ∧ q′,

where A ∈ NC, r ∈ NR, L ∈ C, and x, y are variables from a countably-infinite set NV. Their semantics
is defined as an expected generalisation of the semantics for PEQs: L(x, y) evaluates to true under a
variable assignment π : NV → ∆I if and only if π(x) can L-reach π(y) in I. In total analogy to Section 2.4,
we define C-CQs as disjunction-free C-PEQs, and C-UCQs as disjunctions of C-CQs (or, in other words,
C-PEQs in which disjunction is allowed only at the outermost level). We identify ∅-PEQs with PEQs.

We are particularly interested in the class of REG-PEQs and REG-CQs, more commonly known as
(Positive) Conjunctive Regular Path Queries [FLS98] (short: (P)CRPQ). In most of the cases we assume
that the regular languages appearing in PRPQs are presented as regular expressions. We also consider
a (even more expressive) class of two-way CRPQs (denoted C2RPQ) that is defined in total analogy to
CRPQ but with the notion of regular languages over finite subsets of NR replaced by regular languages
over extended alphabets being finite subsets of Σall ∪{r− | r ∈ NR}. The semantics of the key components,
namely L-paths from Section 2.7, is defined in almost the same way: the only difference is that we interpret
the “inverted” role names r− as (relational) inverses of roles (see Section 2.9.2 for a related feature).

Example 2.11. Suppose that a genealogical tree employs a hasParent role. The query q := hasParent(z, x)∧
hasParent(z, y) ∧ (hasParent∗ ◦ (hasParent−)∗)(x, y) is then satisfied by any variable assignment π mapping
x,y,z to triples for which π(x) and π(y) are (possibly distant) relatives having a common child π(z).

For more examples of CRPQs employed in the description-logic-based setting, consult the paper by
Bienvenu et. al [BOv15, Sec. 3], or the survey by Bienvenu and Ortiz [BO15, Sec. 6.1]. Conjunctive regular
path queries have also real-life applications as they serve as building blocks for querying graphs-structured
databases [Bar13, AAB+17], including SPARQL [HS13], the W3C standard for querying RDF data, as
well as G-Core [AAB+18], Cypher [FGG+18], and the ongoing standardisation project of GQL [FGG+23].

2.9 Primitive Extensions of Description Logics

We recall various DL modelling features present in the literature with their definitions.

2.9.1 Role Inclusions and Safe Boolean Combinations of Roles

Role hierarchies, denoted with (H), allow for specifying inclusions between atomic roles by means of an
extra axiom type of the shape r ⊆ s for role names r , s ∈ NR. Formally I |= (r ⊆ s) if and only if rI ⊆ sI .
Safe boolean role combinations [RKH08] (b) introduce a notion of a simple role, that is defined inductively
as follows: (i) every role name is simple, (ii) inverted role is simple if the logic admits (I), and (iii) if r , s
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are simple then so are r ∩ s, r ∪ s, and r \ s. The semantics of simple roles follows by the usual set-theoretic
semantics of operations ∪, ∩, \. Simple roles can then be employed in existential and universal restrictions
(and in number restrictions if the logic admits them), replacing the usual notion of roles.

Example 2.12. Role hierarchies can express that a hasMother role is a special case of hasParent role via
hasMother ⊆ hasParent. With (b) available, one can also use the role union hasMother ∪hasFather in place of
hasParent role (e.g. to avoid redundancy in data). Note that a concept (∃(s \r).⊤) ⊑ ⊥ is equivalent to a role
inclusion (r ⊆ s). Thus (b) subsumes (H). Moreover, disjointness of roles can be expressed via ⊤ ⊑ ∀(r ∩ s).⊥.

2.9.2 Self-loops, Nominals, and Inverses

The feature (I) (inverses of roles) introduces, per each role name r ∈ NR, a fresh role name r− interpreted
by I via (r−)I := {(e, d) | (d, e) ∈ rI}. The feature (O) (nominals) introduces, per each individual name
a ∈ NI, a fresh concept {a}, interpreted by I via {a}I := {aI}. The feature (Self) introduces concepts of
the form ∃r .Self for role names r ∈ NR, that are interpreted by I via (∃r .Self)I := {d ∈ ∆I | (d, d) ∈ rI}.

Example 2.13. A combination of self-loops and nominals can express that Gilderoy Lockhart is a narcis-
sist via a GCI {GilderoyLockhart} ⊑ ∃loves.Self. In the presence of (I) and the role isParent, the role isChild
can be eliminated and replaced with isParent−.

2.9.3 Counting

Qualified number restrictions (Q) extend the definition of concepts with constructs of the form (≥n r).C,
where n ∈ N is a number, r ∈ NR is a role name, and C is a concept. They are interpreted by I via

d ∈ ((≥n r).C)I if and only if |{e ∈ ∆I : (d, e) ∈ rI and e ∈ CI}| ≥ n.

Constructs for other comparison symbols, namely <, ≤, >, and = are defined analogously. In unqualified
number restrictions (N ), the concept C in the expression (≥n r).C must be ⊤ (and is usually omitted).
Functionality (F) allows us for specifying, by means of a new axiom type of the form func(r), that a given
role name r must be interpreted as a functional relation, i.e. whenever (d, e) ∈ rI and (d, e′) ∈ rI holds
in an interpretation I satisfying func(r), then e = e′ must hold. Note that (Q) can express (N ), and
that (N ) can express (F). If inverses of roles (I) are allowed in the logic, the inverted roles are allowed
to appear in number restrictions and functionality statements. We always assume that number values
appearing in number restrictions are encoded in binary, implying that storing such a number requires
only logarithmically many bits rather than linearly many. This may influence the complexity of the logic:
a good example is modal logic with global counting operators that is ExpTime-complete under unary
encoding of numbers [AHD10, Thm. 4.2], but NExpTime-complete otherwise [ZST13, Thm. 5].

Example 2.14. Using number restrictions we can specify that He-Who-Must-Not-Be-Named created 7 hor-
cruxes, i.e. in interpretation I the element VoldemortI should belong to the concept ((=7 created).Horcrux)I .

2.9.4 Presburger Counting (SCC)
Counting features from the previous section can be generalised even further by employing the quantifier-
free fragment of Boolean Algebra with Presburger Arithmetic (abbreviated as QFBAPA). For presentation,
we closely follow Baader et al. [BBR20, Sec. 2]. See also the recording of our ECAI’20 talk [Bed20].

We start with an introduction of the logic QFBAPA. The basic building blocks of QFBAPA are set
terms. They are defined inductively, starting from set variables, and the set constants ∅ and U . More
complex set terms are obtained by the application of boolean operators (intersection ∩, union ∪, and
complement ·c) on other set terms. Set terms s, t can be used to state equality and inclusion constraints,
having the form s = t and s ⊆ t. Presburger Arithmetic (PA) expressions are built from integer constants
and set cardinalities |s| using addition as well as multiplication with an integer constant. Cardinality
constraints are of the form k = ℓ, k < ℓ, N dvd ℓ, where k, ℓ are PA expressions, N is an integer constant, and
dvd stands for division. A QFBAPA formula is a boolean combination of set and cardinality constraints.
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Example 2.15. Let S, R, and T be set variables. Then ∅ ∪ (Sc ∩ (T ∪ R)c) ⊆ Rc ∩ (S ∪ U) is an example
set constraint, while 5 dvd 2 · |T c ∪ S| + (−3) · |U ∩ S| is an example PA expression.

A substitution σ assigns a finite set σ(U) to U , the empty set to ∅, and subsets of σ(U) to set variables.
It is extended to set terms by interpreting the boolean operations ∩, ∪, and ·c as set intersection, set union,
and set complement w.r.t. σ(U), respectively. The substitution σ satisfies the set constraint s = t (resp.
s ⊆ t) if σ(s) = σ(t) (resp. σ(s) ⊆ σ(t)). It is further extended to a mapping from PA expressions to integers
by interpreting |s| as the cardinality of the finite set σ(s), and interpreting addition and multiplication
with an integer constant in the usual way. The substitution σ satisfies the cardinality constraint k = ℓ if
σ(k) = σ(ℓ), k < ℓ if σ(k) < σ(ℓ), and N dvd ℓ if the integer constant N is a divisor of σ(ℓ). The notion
of satisfaction of a boolean combination of set and cardinality constraints is now defined in an obvious
way by interpreting ∧, ∨, ¬ as in propositional logic. The substitution σ is a solution of the QFBAPA
formula φ if it satisfies φ in this sense. A QFBAPA formula φ is satisfiable if it has a solution. Kunčak
and Rinard [KR07, p. 222] proved NP-completeness of the satisfiability problem for QFBAPA.

We are finally ready to introduce the DL feature called (SCC). It enlarges the set of concept constructors
of the underlying logic with concepts of the form succ(α), where α is either a set constraint or a cardinality
constraint that employ role names and already defined concepts in place of set variables. Their formal
semantics is presented next with the proviso that we consider only finitely branching interpretations, i.e.
interpretations I such that for every domain element d ∈ ∆I the set

⋃
r∈NR

{e | (d, e) ∈ rI} is finite.
This assumption may be questionable; consider the paper by Baader and De Bortoli [BD19, p. 206] for
a discussion of other semantics of QFBAPA. For a given element d ∈ ∆I the substitution σI

d assigns
the finite set

⋃
r∈NR

{e | (d, e) ∈ rI} to U , the empty set to ∅, and the sets {e | (d, e) ∈ rI} to r
and AI ∩

⋃
r∈NR

{e | (d, e) ∈ rI} to A, where r ∈ NR and A ∈ NC are viewed as set variables. The
interpretation function ·I and the substitutions σI

d for d ∈ ∆I are inductively extended to concepts by
interpreting the boolean operators ⊓, ⊔, ¬ in the usual way and the successor expressions succ as follows:

succ(α)I := {d ∈ ∆I | the substitution σI
d satisfies α},

σI
d (succ(α)) := succ(α)I ∩

⋃
r∈NR

{e | (d, e) ∈ rI}.

Example 2.16. Baader [Baa17, Lem. 1] proved the equality ((≥n r).C)I = succ(|C ∩ r | ≥ n)I for any
finitely-branching interpretation I, concept C, and a role name r . Thus (SCC) subsumes (Q). Baader [Baa17,
p. 49] provides an example that ALCSCC can define employers that employ more no-relatives than relatives
with Employer ⊓ succ (2 · |related ∩ employs| < employs), or that creatures have even number of legs via
Creature ⊓ succ (2 dvd |hasLimb ∩ Leg|), without the need of specifying how many legs a respective creature
actually has.

2.9.5 Transitivity and Composition

Transitivity (S) allows us for specifying, by means of a new axiom type of the form trans(r), that a given
role name r is interpreted as a transitive relation. The feature (R) allows us for specifying chains of
complex role inclusions [HKS06, p. 2–3] that generalise transitivity. We omit the definition as we will never
use it in the thesis. We usually assume that if a role name r occurs in a transitivity statement trans(r)
or on the right hand side of a complex role inclusion, it is disallowed from number restrictions. This is
often required to guarantee decidability. There are exceptions however [GGBIG+19, BKW21, GIJM23].
The feature (·reg) allowing for regular expressions in existential restrictions was given in Section 2.7.

2.9.6 Fixed-Points

The next feature (µ) is quite technical. It extends the underlying description logic DL with fixed-points.
For its definition we closely follow the description of µALCQ by De Giacomo and Lenzerini [DL97, Sec. 4].

Let NF be a countably-infinite set of fixed-point variables, that is pairwise disjoint from NC, NR,
and NV . The logic µDL extends the set of concepts constructors of a logic DL with the use of variables X
from NF (treated as atomic concepts), and two new “quantified expressions” (called fixed-point operators)
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µX.C and νX.C, where C is a concept, with the restriction that only a variable X occurring positively
in C can be bound by a fixpoint µ/ν in µX.C and νX.C. By positive we mean that every free occurrence
of a variable X is under an even number of negations. A valuation η on an interpretation I is a mapping
that assigns variables from NF to subsets of ∆I . For a given valuation η, we use η[X/E] to denote the
valuation identical to η with the exception of η[X/E](X) := E.

Take an interpretation I and a valuation η. We define the semantics of concepts by associating to I
and η an extension function ·Iη mapping concepts to subsets of ∆I as follows:

XI
η := η(X) for all variables X,

(µX.C)I
η :=

⋂{
E ⊆ ∆I | CI

η[X/E] ⊆ E
}

,

(νX.C)I
η :=

⋃{
E ⊆ ∆I | E ⊆ CI

η[X/E]

}
,

and with all concepts without variables and fixed-point operators interpreted as usual. The notion of GCIs
C ⊑ D (where both C and D do not contain free fixed-point variables) is lifted to the case with valuation
function in a natural way, by requiring that I |= C ⊑ D if and only if for all valuation functions η we have
(I, η) |= CI

η ⊆ DI
η . The notion of knowledge bases and their satisfaction is defined analogously. For more

intuitions and results on fixed-points and (extensions of) µALC (more commonly known as µ-calculus)
we highly recommend reading the excellent survey by Bradfield and Walukiewicz [BW18].

Example 2.17. In functional programming we usually define lists as inductive datatypes such that: (i) the
empty list is a list, (ii) a node that has exactly one successor that is a list is also a list, and (iii) nothing else
is a list. Let EmptyList and Node be concept names that are interpreted as disjoint concepts, and let succ
be a role name. Then, the following µALCQ-GCI defines a list [DL97, p. 93–95]:

List ≡ µX.
(
EmptyList ⊔ [Node ⊓ (=1 succ).⊤ ⊓ ∃succ.X]

)
.

2.10 The Very Expressive Description Logic ZOIQ

The description logic ALCHbSelf
reg IOQ (abbreviated as ZOIQ) is a very expressive logic whose decidability

status up to this day remains open2 [Rud16, p. 255]. Its three maximal subfragments, namely ZIQ,
ZOI, and ZOQ are decidable though, and only ExpTime-complete [CEO09, Thm. 3.11]. Some progress
towards solving the satisfiability problem of ZOIQ was done by Jung et al. [JLZ20, Thm. 14&Thm. 18].

We start by presenting a grammar that defines atomic concepts B, concepts C, atomic roles r , simple
roles s and roles t for ZOIQ, where o is an individual name, A is a concept name, and p is a role name:

B ::= A | {o} | ⊤ | ⊥
C ::= B | ¬C | C ⊓ C | C ⊔ C | ∀t.C | ∃t.C | ∀⊤.C | ∃⊤.C | (⩾n s).C | (⩽n s).C | ∃s.Self
r ::= p | p−

s ::= r | s ∩ s | s ∪ s | s \ s
t ::= s | t + t | t ◦ t | t∗ | C?

The usual definitions regarding interpretations, satisfaction, knowledge bases and so on are lifted from
the case of ALC in a straightforward way (consult Section 2.1 if needed). For completeness and convenience,
semantics of concepts and roles for ZOIQ is summarised by Table 2.1. We define ZIQ, ZOQ, and ZOI
by dropping from the syntax of ZOIQ, respectively, nominals, role inverses, and number restrictions. We
stress that in the case of ZOQ, role inverses are also forbidden in the corresponding notion of simple roles.

2ZOIQ is wrongly claimed to be undecidable by Jung, Lutz, and Zeume [JLZ20] in the last 7 lines of their KR 2020
paper. Unfortunately as confirmed by our personal communication with Jean Jung, their proof does not work.
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Table 2.1: Concepts and roles in ZOIQ.

Name Syntax Semantics

bottom / top ⊥ / ⊤ ∅ / ∆I

nominal {o} {oI}
concept negation ¬C ∆I \ CI

concept intersection C1 ⊓ C2 CI
1 ∩ CI

2
concept union C1 ⊔ C2 CI

1 ∪ CI
2

existential restriction ∃t.C {d | ∃e ∈ CI . (d, e) ∈ tI}
universal restriction ∀t.C {d ∈ ∆I : ∀e ∈ ∆I . (d, e) ∈ tI → e ∈ CI}
qualified number restriction (⩽n s).C {d ∈ ∆I : |{e ∈ CI : (d, e) ∈ sI}| ≤ n}
qualified number restriction (⩾n s).C {d ∈ ∆I : |{e ∈ CI : (d, e) ∈ sI}| ≥ n}
Self concept ∃s.Self {d | (d, d) ∈ sI}
universal role ⊤ ∆I × ∆I

inverse role p− {(e, d) | (d, e) ∈ pI}
role intersection s1 ∩ s2 sI

1 ∩ sI
2

role union s1 ∪ s2, t1 + t2 sI
1 ∪ sI

2 , tI
1 ∪ tI

2
role difference s1 \ s2 sI

1 \ sI
2

role concatenation t1 ◦ t2 {(c, e) | ∃d ∈ ∆I .(c, d) ∈ tI
1 ∧ (d, e) ∈ tI

2 }
Kleene star t∗ ⋃∞

i=0(tI)i

concept test C? {(d, d) | d ∈ CI}

We next make precise the content of ABoxes and TBoxes in ZOIQ. This is illustrated by Table 2.2
below, assuming that a,b ∈ NI, A ∈ NC, r ∈ NR, s, t are simple roles, and C, D are ZOIQ-concepts.
We stress that our definition of ABoxes do not involve complex concepts, i.e. concepts that are not just
concept names. This decision is crucial for the forthcoming section on the data complexity of ZOIQ and
its fragments. Otherwise, as TBoxes can be internalised with ALCreg-concepts [BCM+03, p. 186], already
the ABox satisfiability problem would be ExpTime-hard for ALCreg (and thus also for ZOIQ).

Table 2.2: ABoxes and TBoxes in ZOIQ.

Axiom α I |= α, if

C ⊑ D CI ⊆ DI TBox T
s ⊆ t sI ⊆ tI

A(a) aI ∈ AI ABox A
r(a,b) (aI ,bI) ∈ rI

a ≈ b aI = bI

¬α I ̸|= α

As a common umbrella for reasoning about decidable fragments of ZOIQ, we focus on tamed ZOIQ.
It comprises all ZOIQ-KBs possessing a certain model-theoretic property related to forest-like models
dubbed quasi-forest (defined in Chapter 7). Tamed ZOIQ strictly subsumes ZIQ, ZOQ, and ZOI.

Definition 2.18 A ZOIQ-KB K has the quasi-forest hom-cover property (QFHC) if for every
model I of K there is an ind(K)-homomorphism from I into some quasi-forest model I ′ of K.
Tamed ZOIQ consists of all ZOIQ-KB exhibiting the QFHC.



2.10. The Very Expressive Description Logic ZOIQ 23

Normal Form for ZOIQ.

To simplify reasoning about ZOIQ-knowledge-bases we transform them into a suitable polynomial-time
computable Scott’s normal form [BK22, Sec. 2]. Such a normal form involves automaton roles [Ngu20,
Sec. 2.2] and existential restrictions of the form ∃A.C for each automaton A over finite subsets of Σall
extended with simple roles, defined and interpreted as in Section 2.7.

Definition 2.19 A ZOIQ-TBox is in Scott’s normal form if all its GCIs are in the following forms:

A ≡ {o}, A ≡ B, A ≡ ¬B, A ≡ B⊓B′, A ≡ (⩾n r).⊤, A ≡ ∃Aq,q′ .⊤, A ≡ ∃r .Self, s = s′

where A, B, B′ ∈ NC ∪ {⊤, ⊥}, r is a role name, s and s′ are simple roles, A is an NFA, and o is an
individual name. A ZOIQ-KB is in Scott’s normal form if so is its TBox.

The main goal of this section is to sketch the proof that every ZOIQ-KB can be turned into Scott’s
normal form in PTime. We first get rid of the universal role from concepts of the form ∀⊤.C and ∃⊤.C.

Lemma 2.20 (follows from the PhD thesis of M. Ortiz) For any ZOIQ-KB K := (A, T ) there exists
a ZOIQ-KB K′ := (A⊤, T ′) of size polynomial in |K| and computable in polynomial time w.r.t. |K|
such that the universal role ⊤ does not occur in K′, and all the conditions below hold.

• K′ is tamed ZOIQ if and only if K is.
• For all logics DL ∈ {ZOQ, ZOI, ZIQ} we have that if K is in DL then so is K′.
• A⊤ := A∪{s⊤(a1,a2), . . . , s⊤(an−1,an), s⊤(an,a1)}, where s⊤ is a fresh role name, and a1, . . . ,an

is some enumeration of individual names from A.
• K′ is satisfiable if and only if K is.
• For every P2RPQ q we have K′ ̸|= q if and only if K ̸|= q.

Proof sketch. The desired rewriting is given by Ortiz [Ort10, p. 39, l. 7–17] in her PhD Thesis,
together with its correctness proof [Ort10, Proof of Prop. 3.1.5: l .27 p. 40 – l. 7 p. 41]. By anal-
ising her proof, it is not hard to see that all the conditions from Lemma 2.20 indeed hold.

Before moving forward, we introduce a handy notion of (model) conservative extensions.

Definition 2.21 We say that a ZOIQ-KB K′ is a conservative extension of a ZOIQ-KB K if (i)
every model of K′ is also a model of K, and (ii) every model of K can be extended (by reinterpreting
symbols that appear in K′ but not in K) to a model of K′.

Note that the transformation by Ortiz employed in the proof of Lemma 2.20 does not yield a conservative
extension of the input KB. We also point out that if a KB K′ is a conservative extension of K then for all
P2RPQs that use only concept and role names that are present in K, then K′ |= q if and only if K |= q.

For the next lemma, we first introduce a measure of the complexity of ZOIQ-concepts.

Definition 2.22 The complexity of a ZOIQ-concept C, denoted cmp(C), is defined inductively as:
• cmp(C) = 0 if C ∈ NC ∪ {⊤, ⊥}.
• cmp(C) = 1 if C = {o} for some individual name o ∈ NI.
• cmp(C) = 1 if C has the form ∃s.Self.
• cmp(C) = 1 + cmp(D) if C = ¬D for some ZOIQ-concept D.
• cmp(C) = 1 + cmp(C1) + cmp(C2) if C = C1 ⊓ C2 or C = C1 ⊔ C2 for ZOIQ-concepts C1, C2.
• cmp(C) = 1 + cmp(t) + cmp(D) if C has the form either ∃t.D or ∀t.D, and cmp(t) denotes the

sum of the complexities of all concepts E for which the test E? appears in t.
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• cmp(C) = 1 + cmp(D) if C has the form either (⩾n s).D or (⩽n s).D.
By the complexity of GCIs C ⊑ D and C ≡ D we mean the number cmp(C) + cmp(D). The
complexity of a TBox is the sum of the complexities of its GCIs. A GCI is flat if it has the form
A ≡ B, where cmp(A) = 0 and cmp(B) ≤ 1. A TBox is flat if all its GCIs are flat.

By employing a rewriting algorithm based on a routine renaming technique, we show that every
ZOIQ-KB can be made flat. This is illustrated by the pseudocode below. Given a TBox T and concepts
D and B, by T [D/B] we mean the TBox obtained by replacing all occurrences of D in T with B.

Procedure 1: Making ZOIQ-TBoxes flat.
Input: A ZOIQ-TBox T that does not contain the universal role ⊤ and ≡.
Output: A flat ZOIQ-TBox T ′, which is a conservative extension of T .

1 Let T ′ := T . // We start from T and recursively rewrite it.

2 while T ′ contains a GCI C ⊑ D do
3 Replace C ⊑ D with ⊤ ≡ ¬C ⊔ D. // Correctness: by the semantics of implication.

// Observation: from now on all GCIs in T ′ have the form A ≡ C, where the complexity of A is 0.

4 while T ′ is not flat do
5 Let A ≡ C be any GCI from T ′ of maximal complexity. // By design: cmp(A) = 0, cmp(C) ≥ 2.

// Below we consider all possible shapes of C. As cmp(C) ≥ 2, no other option is possible.

6 If C = ¬D then T ′′ := (T ′[D/B] ∪ {B ≡ D}) for a fresh concept name B.
7 If C = D ⊗ D′ or C = D′ ⊗ D for ⊗ ∈ {⊓, ⊔} and cmp(D) > 0 then

T ′′ := (T ′[D/B] ∪ {B ≡ D}) for a fresh concept name B.
8 If C = Qt.D for Q ∈ {∃, ∀,⩽n,⩾n} and cmp(D) > 0 then let T ′′ := (T ′[D/B] ∪ {B ≡ D}) for

a fresh concept name B.
9 If C = Qt.E for Q ∈ {∃, ∀} and cmp(E) = 0 then take any concept D with cmp(D) > 0 for

which D? appears in t and let T ′′ := (T ′[D?/B?] ∪ {B ≡ D}) for a fresh concept name B.
10 T ′ := T ′′.
11 Return T ′.

We now provide several useful observations concerning Procedure 1, needed to establish its correctness.
They follow immediately by analysing the above algorithm.

Observation 2.23. Let T be an input for Procedure 1. Then the following properties hold.
1. The TBox T ′ constructed in Steps 1–3 of Procedure 1 is equivalent to T , has the size linear in |T |,

and its complexity is at most twice the complexity of T .
2. In each iteration of the while loop in Step 4 of Procedure 1 applied to the TBox T ′ and a GCI A ≡ C

we see that:
(I) the GCI B ≡ D appended in Steps 5–9 have strictly smaller complexity than the GCI A ≡ C,

(II) the GCI (A ≡ C)[D/B] is either flat or its complexity is smaller than the complexity of A ≡ C,
(III) hence, the total number of GCIs in T ′ having the maximal complexity decreases and the com-

plexity of the resulting TBox does not increase,
(IV) the resulting TBox T ′′ is a conservative extension of T ′ (it suffices to interpret B equally to D),
(V) the difference between the size of T ′′ and |T ′| can be bounded by a constant,

(VI) and if T ′ is in ZIQ, ZOQ, or ZOI, then so is T ′′.
3. The total number of iterations of the while loop in Step 4 of Procedure 1 is bounded by the total

number of subconcepts of T ′ constructed in Steps 1–3 of Procedure 1 (and hence, is linear in |T |).

Based on Observation 2.23 and analysis of the above pseudocode, we conclude:

Lemma 2.24 For every ZOIQ-TBox T that does not employ the universal role ⊤, one can compute
with Procedure 1 in polynomial time a polynomially larger flat conservative extension T ′ of T such
that for all logics DL ∈ {ZOQ, ZOI, ZIQ} we have that if T is in DL then so is T ′.
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Proof sketch. Let T ′ be the result of Procedure 1 applied to a ZOIQ-TBox T . Its termination
in polynomial time w.r.t. |T | is due to Items 1 and 3 from Observation 2.23. From the 4th
Step of Procedure 1 and its termination, we see that T ′ is flat. The fact that T ′ is a conser-
vative extension of T is due to Item 2(IV) of Observation 2.23. The fact that T ′ is bounded
polynomially w.r.t. |T | is due to Item 2(V) of Observation 2.23. Finally, the fact that T ′ be-
long to the same sublogic of ZOIQ as T does, follows from Item 2(VI) of Observation 2.23.

As the next and final step, we rewrite flat ZOIQ-TBoxes to Scott’s normal form.
Procedure 2: From flat ZOIQ-TBoxes to Scott’s normal form.

Input: A flat ZOIQ-TBox T that does not contain the universal role ⊤.
Output: A ZOIQ-TBox T ′ in Scott’s normal form, which is a conservative extension of T .

1 Let T ′ := T . // We start from T and recursively rewrite it.

2 while T ′ is not in Scott’s normal form we take any axiom α ∈ T ′ violating it and do
// Below we consider all possible shapes of the axiom α. No other option is possible.

3 If α = s ⊆ s′ then T ′ := (T ′ \ {α}) ∪ {s ∪ r = s′} for a fresh role name r .
// Correctness follows from the semantics of ∪.

4 If α = (A ≡ B ⊔ B′) then T ′ := (T ′ \ {α}) ∪ {A ≡ ¬C, C ≡ D ⊓ D′, D ≡ ¬B, D′ ≡ ¬D′} for
fresh concept names C, D, D′ ∈ NC. // Here we use the equivalence of B ⊔ B′ and ¬(¬B ⊓ ¬B′).

5 If α = (A ≡ ∃s.Self) for s ̸∈ NR then T ′ := (T ′ \ {α}) ∪ {A ≡ ∃r .Self, r = s} for a fresh role
name r ∈ NR. // Obvious renaming.

6 If α = (A ≡ ∃t.B) then we construct an NFA A equivalent to the regular expression t ◦ B?
with a starting state q and a single final state q′, and let T ′ := (T ′ \ {α}) ∪ {A ≡ ∃Aq,q′ .⊤}.
// Clearly the concepts ∃t.B and ∃(t ◦ B?).⊤ are equivalent. The construction of an NFA from a

regular expression is a classical result. This can be done with Thompson’s construction [Tho68]

and results in a polynomial-size NFA [GH15, Thm. 6] w.r.t. a given regular expression.

7 If α = (A ≡ ∀t.B) then T ′ := (T ′ \ {α}) ∪ {A ≡ ¬C, C ≡ ∃t.D, D ≡ ¬B} for fresh C, D ∈ NC.
// Concepts ∀t.B and ¬(∃r .¬B) are equivalent. The GCI C ≡ ∃t.D will be simplified recursively.

8 If α = (A ≡ (⩾n s).B) then T ′ := (T ′ \ {α}) ∪ {A ≡ (⩾n r).⊤, r ∪ r ′ = s, ⊤ ≡ ∀r .B,
⊥ ≡ ∃r ′.B} for a fresh role names r and r ′. // Here we employ two fresh role names r and r ′ to

divide s-successors (with the axiom r ∪ r ′ = s) into disjoint sets of r-successors (precisely the

ones satisfying B, guaranteed by the GCI ⊤ ≡ ∀r .B) and r ′-successors (the ones not satisfying

B, as guaranteed by the GCI ⊥ ≡ ∃r ′.B). In the presence of such axioms, the concepts (⩾n s).B
and (⩾n r).⊤ are clearly equivalent. We then simplify ⊤ ≡ ∀r .B recursively.

9 If α = (A ≡ (⩽n s).B) then T ′ := (T ′ \ {α}) ∪ {A ≡ ¬D, C ≡ ¬B, D ≡ (⩾n+1 s).C} for fresh
concept names C, D ∈ NC. // We use the equivalence of concepts (⩽n s).B and ¬(⩾n+1 s).¬B.

The GCI D ≡ (⩾n+1 s).C will be simplified recursively.

10 Return T ′.

Lemma 2.25 For every flat ZOIQ-TBox T that does not employ the universal role ⊤, one can
compute with Procedure 2 in polynomial time a polynomially larger flat conservative extension T ′

of T such that for all logics DL ∈ {ZOQ, ZOI, ZIQ} we have that if T is in DL then so is T ′.

Proof sketch. By analysing Procedure 2 we see that for each axiom α we (recursively) produce
at most 8 axioms in Scott’s normal form, each of size linear w.r.t. the input TBox. Moreover,
the number of recursive calls needed to rewrite an axiom α is bounded by 3 (the worst case
happens for GCIs of the form A ≡ (⩽n s).B). Hence, for an input T , Procedure 2 terminates
in polynomial time w.r.t. |T | and produces a TBox T ′ of polynomial size w.r.t. |T |. The
resulting TBox is in Scott’s normal form, which follows by analysing the GCIs produced by
Steps 3–9 and the condition in the while loop from Step 2. Note that our transformation does
not introduce nominals, inverses, or number restrictions in case they were not present in the
input. Hence, the resulting TBox is in the same fragment of ZOIQ as the input TBox. Finally,
it can be readily checked that the TBoxes produced in Steps 3–9 of Procedure 2 from a given
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TBox T ′, are indeed conservative extensions of T ′. The correctness of our transformations is
provided in the comments appearing in our pseudocode.

We can now combine Lemma 2.25, Lemma 2.24, and Lemma 2.20 to provide a proof that ZOIQ-KBs
can be turned into Scott’s normal form in PTime. The statement of the forthcoming lemma is written
in a slightly unexpected way, to make it applicable also in sections concerning the data complexity.

Lemma 2.26 For every ZOIQ-TBox T we can compute in PTime a ZOIQ-TBox T ′ in Scott’s
normal form that possibly employs a fresh role name s⊤, such that for every ABox A we have:

• if T is in DL ∈ {ZIQ, ZOQ, ZOI} then T ′ is also in DL,
• (A, T ) is satisfiable if and only if (A⊤, T ′) is satisfiable, and
• for every P2RPQ q that uses only concepts and roles present in T we have that (A, T ) |= q if

and only if (A⊤, T ′) |= q,
where A⊤ := A ∪ {s⊤(a1,a2), . . . , s⊤(an−1,an), s⊤(an,a1)} for some enumeration a1, . . . ,an of individ-
ual names appearing in A.

Proof sketch. Take a ZOIQ-TBox T and an ABox A. Let A⊤ be as defined above. Call a
ZOIQ-TBox T ′ neat if it satisfies the three conditions from Lemma 2.26. We first apply
Lemma 2.20 to compute (in polynomial time) a neat ZOIQ-TBox T0 that does not use the
universal role. Second, we invoke Lemma 2.24 to compute (in PTime) a flat ZOIQ-TBox T1
from T0. Observe that the TBox T1 is neat. Indeed, the first condition of being neat follows
from the statement of Lemma 2.24. The remaining two conditions follow from the fact that
T1 is a conservative extension of T0. Third, we apply Lemma 2.25 to compute (in PTime) a
ZOIQ-TBox T ′ in Scott’s normal form from T1. Once more, T1 is neat. The first condition is
explicitly mentioned in Lemma 2.25. The other two conditions follow by the fact that T ′ is a
conservative extension of T1. Hence, the TBox T ′ is as desired.
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Motivation and Our Contribution

In the quest to find computational logics, Moshe Vardi [Var96] asked his famous question “Why Is Modal
Logic So Robustly Decidable?”. As it turned out, one of the prominent answers is the so-called tree
model property of modal logics [GO07, Cor. 24] and their generalisations to the guarded fragment [Grä99,
Sec. 3.3] and beyond [BBV16, Sec. 4][FLOR23, Thm. 7]. In ontology-based querying, due to the presence
of individual names in ABoxes, an analogous role is played by forests [Ov12, Sec. 8.1].

This chapter is intended to serve as an introduction to different notions of forests and trees that will
play crucial roles in abstract generalisations of the description logics ALC, ALCI, ALCSelf, and ALCISelf.
Our ambition is to cover multiple description logics in one go, without the need of reproducing nearly-
identical proofs for freshly defined logics. Hence, nearly all of the forthcoming notions will be parametrised
by a set of features Θ ⊆ {I, Self}, indicating what kind of DL-like features we have in mind when producing
a definition, a proof, or an algorithm. We hope that such a parametrisation will not obfuscate the content
of the forthcoming chapters too much, and in general we found it better than copy-pasting proofs.

Overview of the Chapter and Prerequisites

We assume that the reader is familiar with the definition of ALCISelf, and Sections 2.1–2.5 from Pre-
liminaries. We start by defining a suitable notion of “forest-like” structures in Section 3.1 as well as
setting up the terminology employed in later parts of the thesis. Next, in Section 3.2 we will see the
correspondence between tree-shaped queries and concepts in the spirit of the well-known rolling-up tech-
nique [HT00, Sec. 4]. We conclude with Section 3.3 which relaxes the notion of “forest-likeness” to (local)
neighbourhoods, and introduces broad families of forest-friendly description logics that we will study later.

3.1 Treelike structures

Throughout the chapter we employ the standard set-theoretic reconstruction of the notion of a tree as a
prefix-closed subset of D∗ for some non-empty D (dubbed the data domain). We use ⪯ to denote the
prefix-ordering on D∗ (d ⪯ e holds if d is a prefix of e), and · to denote concatenation. We assume that D

is equipped with a linear order <D. If D equals N, the symbol <D denotes the usual ordering of integers.

29
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Definition 3.1 Let Θ be a subset of {I, Self}. We say that an interpretation I is a Θ-forest if its
domain is a prefix-closed subset of D+ (for some non-empty set D) without ε, and for all role names
r and all pairs (d, e) ∈ rI at least one of the following cases hold.

(a) Both d and e belong to D.
(b) There exists c ∈ D such that e = d · c.
(c) I ∈ Θ and there exists c ∈ D such that d = e · c.
(d) Self ∈ Θ and d = e.

We omit the parameter Θ whenever it can be deduced from the context or it is not important. The
elements d from D ∩ ∆I are called roots. A Θ-tree is a connected Θ-forest with a single root.

For a Θ ⊆ {I, Self} we write ALCΘ to denote the extensions of ALC with features from Θ. As an
example, we identify ALC∅ with ALC, and ALC{I, Self} with ALCISelf . The presented notion of Θ-forests
serves as a common umbrella for different notions of “tree-like” structures, naturally appearing in the
context of reasoning in ALCΘ with conjunction of roles. For instance, the presence of the letter “I” in
Θ reflects the “two-wayness” of underlying forest models [Lut08b, p. 8], while the presence of Self in Θ
indicates a possible appearance of self-loops. We illustrate these notions with an example below.

Example 3.2. Consider the interpretation I depicted below. It is easy to see that I is an {I, Self}-forest.
After removing all self-loops, the resulting structure is an {I}-forest. After removing all arrows going from
child to a parent, the resulting structure is a {Self}-forest. Finally, after removing both self-loops and reversed
edges, the resulting structure is a ∅-forest. The restriction of I to the set {0, 00, 000, 001, 0010} is a tree.
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When working with forests we employ tailored terminology from graph theory [Die17, Sec. 1.5]. If two
different domains elements satisfy d ⪯ e we say that d is an ancestor of e (or, alternatively, that e is a
descendant of d). The set of all descendants of an element d in a forest I is denoted DescI(d). If e is of
the form d · c for some c ∈ D, we say that d is a parent of e (or, alternatively, e is a child of d). The set of
all children of an element d in a forest I is denoted ChldsI(d). An element with no child is called a leaf,
and an element without a parent is called a root. Whenever two elements have the same parent, we call
them siblings. The subtree rooted at d in I, denoted with I [d⪯], is the restriction of I to {d} ∪ DescI(d).
Finally, a branch in I is a sequence of elements d1, d2, . . . from ∆I such that for any index i ≥ 0 if di+1
exists, then di+1 is a child of di. For brevity, we also use the notion of Θ-reachability, which is understood
as reachability via undirected paths if I ∈ Θ and as reachability via directed paths otherwise. Similarly, to
define the notion of Θ-connectivity, we replace the notion of reachability in its definition by Θ-reachability.

Example 3.3. Let I be the {I, Self}-forest from Example 3.2. Consider the element 20. It has a unique child,
namely 200. Hence, ChldsI(20) = {200}. The set of descendants of 20, denoted DescI(20), is {200, 2000, 2001, 2002}.
The roots of I are 0, 1, 2, and 3, while the leaves of I are 000, 0010, 1000, 1001, 2000, 2001, and 2002. An ex-
ample branch of I is the sequence 2, 20, 200.
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We conclude the section by lifting the notion of “being a forest” to models of knowledge bases.

Definition 3.4 Let N be a non-empty set of individual names. We say that a forest I is N-rooted if:
• for all names a ∈ N we have that aI is defined and it is a root of I, and
• for each root d ∈ ∆I there exists a name a ∈ N for which d = aI .

A forest model of a knowledge base K is an ind(K)-rooted forest that satisfies K.

For convenience we also define ∅-rooted forests to be trees. This design decision may seem awkward,
but it significantly reduces the total number of different cases that we need to consider in the forthcoming
proofs. Moreover, it fits nicely with the fact that ABox-free knowledge bases written in the extensions of
ALC often have tree models rather than forest models [BHLS17, Sec. 3.5].

3.2 Correspondence between Θ-trees and ALCΘ∩

We next revisit the well-known rolling-up technique [HT00, Sec. 4] of transforming tree-shaped conjunctive
queries into concepts, and provide a link between Θ-trees and ALCΘ∩-definable properties. Let q be a
conjunctive query that is Θ-tree-shaped, i.e. the query q viewed as an interpretation Iq is a Θ-tree. Our
goal is to construct, for every variable x ∈ Var(q), an ALCΘ∩-concept Subtx

q stating that d ∈ (Subtx
q)I

holds whenever the subtree of Iq rooted at the variable x can be mapped below d in I (made precise
in Lemma 3.6). A formal, inductive definition is given next. The main idea behind the definition is to
traverse the input tree in a bottom-up manner, describing its shape with ALCΘ∩ concepts, and gradually
“rolling-up” the input Θ-tree into smaller chunks until the root is reached.

Definition 3.5 For a Θ-tree-shaped conjunctive query q and any of its variables v ∈ Var(q) we define
an ALCΘ∩-concept Subtv

q as:

Subtv
q := ⊔

A(v)∈q

A ⊓ ⊔

r(v,v)∈q only if Self∈Θ

∃r .Self ⊓ ⊔

u∈Chlds(v)

∃

 ⋂
r(v,u)∈q

r ∩
⋂

r(u,v)∈q only if I∈Θ

r−

 .Subtu
q ,

where the empty conjunctions and intersections are omitted in the definition. We employ Matchq as
an abbreviation of Subtvr

q with vr being the root of Iq.

As every query atom contributes to exactly one subconcept of Matchq, we infer that the size of Matchq
is linear in |q|. The following lemma is folklore in the description logic community.

Lemma 3.6 For any interpretation I, any Θ-tree-shaped CQ q and any of its variables v ∈ Var(q), the
following equivalence holds: d ∈ (Subtv

q)I if and only if there exists a homomorphism h : I [v⪯]
q → I

satisfying h(v) = d, where I [v⪯]
q denotes the subtree of Iq rooted at the variable v.

Proof. We prove the statement inductively on the ordering ≺ (i.e. the strict ⪯). We start from
the base case, i.e. when x is ≺-maximal (x is a leaf). The domain of I [x⪯]

q is then precisely {x}.
• From d ∈ (Subtx

q)I to the existence of a homomorphism h : I [x⪯]
q → I satisfying h(x) = d.

It suffices to show that h preserves concepts and self-loops (in the case Self ∈ Θ). Consider
a concept name A ∈ NC for which x ∈ AI[x⪯]

q . By the definition of Ix
q we infer A(x) ∈ q.

Hence, by Definition 3.5, the concept name A appears in the first “big conjunct” of Subtx
q .

As d ∈ (Subtx
q)I , we conclude that h(x) (which is equal to d) belongs to AI . To deal with

self-loops, we consider a role name r ∈ NR for which (x, x) ∈ rI[x⪯]
q . Then, we proceed

analogously, relying on the semantics of Self and the second “big conjunct” of Subtx
q .

• From the existence of a homomorphism h : Ix
q → I, defined as h(x) := d, to d ∈ (Subtx

q)I .
We simply consider all conjuncts from Subtx

q and prove the membership of d in them.
Take any of them. There are only two possible options: either the selected conjunct is A
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for some concept name A ∈ NC or is ∃r .Self for some role name r ∈ NR (when Self ∈ Θ).
We can apply Definition 3.5 to infer that A(x) ∈ q (and r(x, x) ∈ q in the second case)
By the definition of Ix

q , we get x ∈ AI[x⪯]
q (and (x, x) ∈ rI[x⪯]

q in the second case). By the
fact that h is a homomorphism, we infer that h(x) (which is equal to d) belongs to AI ,
and that (h(x), h(x)) (which is equal to (d, d)) belongs to rI . Hence, d belongs to each
conjunct of Subtx

q , resulting in d ∈ (Subtx
q)I , as desired.

Now, as we are done with the base case, let us assume that x is not ≺-maximal, and that for
all variables y with x ≺ y the statement of the lemma holds. There are two cases to consider.

• From d ∈ (Subtx
q)I to the existence of a homomorphism h : I [x⪯]

q → I satisfying h(x) = d.
From the fact that d ∈ (Subtx

q)I and from the last “big conjunct” from Definition 3.5, we
obtain that for each variable y ∈ Chlds(x) there is a domain element dy ∈ ∆I satisfying:

(d, dy) ∈

 ⋂
r(x,y)∈q

rI ∩
⋂

r(y,x)∈q

(r−)I

 and dy ∈ (Subty
q)I . (♣)

Moreover, by the induction hypothesis, for every y ∈ Chlds(x) there is a homomorphism
hy : (Subty

q)I → I with hy(y) = dy. Let us define a function h : I [x⪯]
q → I as h(x) := d

and for all z ∈ Var(q) we set h(z) := hy(z), where y ∈ Chlds(x) such that y ⪯ z.
We first explain why the definition of h is correct, and then explain why h is indeed a
homomorphism, finishing the proof. The correctness of the definition comes directly from
the fact that I [x⪯]

q is a Θ-tree: any variable is then either the root of I [x⪯]
q or has the

unique ancestor being a child of the root. Now, to argue that h is a homomorphism, we
establish the preservation of concepts and roles by h. To see that h preserves concepts and
self-loops, we either (a) use the same reasoning as in the base case for the root variable,
or (b) invoke an inductive hypothesis that hy are homomorphisms for other variables. For
the preservation of roles, let us consider any role name r ∈ NR with rI[x⪯]

q non-empty.
Due to Θ-tree-shapedness of I [x⪯]

q , it suffices to consider to following four cases.
(i) The set rI[x⪯]

q contains a pair (x, x). This case is already resolved.
(ii) The set rI[x⪯]

q contains a pair of the form (x, y) for some y ∈ Chlds(x). Observe
that if (x, y) ∈ rIx

q holds for some variable y ∈ Chlds(x) then r(x, y) ∈ q, and by
Equation (♣) we conclude that the pair (h(x), h(y)), equal to (d, dy), belongs to rI .

(iii) The set rI[x⪯]
q contains a pair of the form (y, x) for some y ∈ Chlds(x). Once more,

observe that if (y, x) ∈ rIx
q holds for some variable y ∈ Chlds(x) then r(y, x) ∈ q.

By Equation (♣) we again conclude that the pair (h(x), h(y)), which is equal to (d, dy),
belongs to (r−)I . Thus the pair (h(y), h(x)) belongs to rI .

(iv) The set rI[x⪯]
q contains a pair of the form (z, v) where none of z and v is equal to x.

As Ix
q is a Θ-tree, we deduce that there is a unique variable y from Chlds(x) satisfying

y ⪯ z. Hence, from the fact that hy is a homomorphism, we conclude (h(z), h(v)) ∈ rI .
This completes the proof that h is a desired homomorphism.

• From the existence of a homomorphism h : Ix
q → I, satisfying h(x) = d, to d ∈ (Subtx

q)I .
It suffices to show that d satisfies all the conjuncts from Subtx

q . Showing that d belongs
to the first two conjuncts (i.e. the ones responsible for atoms of the form A(x) and self-
loops r(x, x)) can be done in precisely the same way as in the base case. Thus, we focus on
the last “big conjunct”. Let ∃

(
∩r(x,y)∈qr ∩ ∩r(y,x)∈qr−) .Subty

q be any of its components,
and let dy := h(y). Let hy be the restriction of h to {z | y ⪯ z}. Note that hy : I [y⪯]

q → I
is a homomorphism satisfying hy(y) = dy. Thus, we may invoke the inductive assumption,
to deduce dy ∈ (Subty

q)I . It remains to show that (d, dy) ∈ ∩r(x,y)∈qrI ∩ ∩r(y,x)∈q(r−)I .
Take any atom r(x, y) ∈ q. By the definition of Ix

q , we conclude that (x, y) ∈ rI[x⪯]
q . Since

h is a homomorphism, we get that (h(x), h(y)) (which is equal to (d, dy)) belongs to rI ,
as required. The case of inverted roles (when I ∈ Θ) is analogous. Thus, d ∈ (Subtx

q)I .
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We established soundness of both implications, which by induction concludes the proof.

By unravelling the definition of Matchq and by applying Lemma 3.6 for the root variable of q, as an
immediate consequence we conclude Corollary 3.7. Informally, it states that any element belonging to the
interpretation of Matchq “detects” a match of the tree-shaped conjunctive query q.

Corollary 3.7
For any Θ-tree-shaped conjunctive query q there exists an ALCΘ∩-concept Matchq of size linear in |q|
such that (Matchq)I is non-empty if and only if there exists a homomorphism h : Iq → I.

3.3 Locally Treelike Structures and Forest-Friendly Logics

As our next step, we are going to define suitable classes of structures that from the local point of view
are indistinguishable from Θ-forests. The intuition is that in (n, N, Θ)-forests any sufficiently small (i.e.
of radius n) neighbourhood resembles either a Θ-tree or a (suitably rooted) Θ-forest.

Definition 3.8 Let n ∈ N be a positive integer, and let N ⊆ NI be a set of names. An interpretation I
is (n, N)-locally Θ-forest (short: (n, N, Θ)-forest) if and only if every n-neighbourhood J in I is
(ind(J ) ∩ N)-homomorphically equivalent to some (ind(J ) ∩ N)-rooted Θ-forest.

For convenience, we refer to (n, N, Θ)-forests for unspecified yet parameters as locally-forest-like inter-
pretations. Note that locally-forest-like structures may contain cycles composed of anonymous elements.

Remark 3.9. Consider a ∅-tree In (right), and a structure Jn (left) that is composed of In and its mirrored
image glued together, both depicted below. Clearly In and Jn are homomorphically-equivalent, which implies
that Jn is a (2n, ∅, ∅)-forest. On the other hand, In is acyclic and Jn contains an undirected cycle of size
greater than n. Thus locally-forest-like structures may contain arbitrarily large undirected cycles.
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We next employ (n, N)-locally Θ-forests as “coverings” of other interpretations. The property below is
inspired by the quasi-forest homomorphism covers by Bourhis, Krötzsch, and Rudolph [BKR14, Prop. 1].

Definition 3.10 A knowledge base K is (finitely) Θ-coverable if for any (finite) model I of K and
for every positive integer n ∈ N, there exists a (finite) (n, ind(K))-locally Θ-forest model J of K that
covers I, i.e. any n-neighbourhood from J can be ind(K)-homomorphically-mapped to I.

We conclude the section by employing Definition 3.10 to define various classes of description logics.
We give their definition first, and supplement it afterwards with a bunch of instructive examples.

Definition 3.11 A description logic DL is said to be (finitely) Θ-forest-friendly if all DL-KBs are
(finitely) Θ-coverable. We use CΘfr and C fin

Θfr to denote, respectively, the classes of Θ-forest-friendly
and finitely Θ-forest-friendly description logics.
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The above definition may seem to be artificial as it relies on a somehow ad-hoc notion of coverability.
What actually matters when reasoning about logics that are forest-friendly, is the following key property.

Lemma 3.12 For any description logic DL from C
(fin)
Θfr , any DL-KB K and any UCQ q :=

∨m
i=1 qi,

K ̸|=(fin) q implies the existence of a (finite) (|q|, ind(K))-locally Θ-forest countermodel for K and q.

Proof. Let I be a (finite) countermodel for K and q. By the fact that K is (finitely) Θ-coverable
we infer the existence of a (finite) (|q|, ind(K), Θ)-forest model for K that covers I, which will
be the desired (|q|, ind(K), Θ)-forest countermodel J for K and q. By contraposition, suppose
that J satisfies q. Then J |=π qi holds for some 1 ≤ i ≤ m and some match π. Observe that
the connected components of J ↾{π(x)|x∈Var(qi)} are of size at most |q|. Hence, they can be
homomorphically mapped to I by assumption. This implies I |= qi, which results in I |= q.

We now turn our attention to examples of logics that are forest-friendly. We are also going to dedicate
Chapter 5 to sufficient conditions for description logics to be (finitely) forest-friendly, which can serve in
the future as a tool for generating examples of forest-friendly logics. We say that a description logic DL
has the Θ-forest countermodel property if for any DL-KB K and any PEQ q whenever K ̸|= q holds there
exists a Θ-forest model of K that violates q. By adapting existing proofs of Lutz [Lut08b, p. 8], we can
show that the logics ALCΘ have the aforementioned property and thus they belong to CΘfr. Interestingly,
they also belong to the class C fin

Θfr. Another prominent example is the logic ALCIQ, an extension of
ALCI with counting. One can show that ALCIQ has the {I}-forest countermodel property, for instance
by employing a suitable notion of unravelling [BHLS17, p. 64]. However, as soon as we stick to finite
models, the {I}-forest (counter)model property is lost (e.g. consider an ontology defining an infinite path
composed of functional and backwards-functional relations). In the later part of the thesis we establish
that ALCIQ is finitely {I}-forest-friendly, so some form of forest-likeness can be regained in the finite.
The role of “locality” is crucial here. There are also description logics for which only the finite model
semantics makes sense. This includes the logic ALCSCC extended with ERCBoxes [BBR20], i.e. positive
boolean combinations of linear inequalities over the domain (such constraints trivialise outside the realm of
finite models). We will see that this logic is finitely ∅-forest-friendly. Finally, let us mention that extending
ALC with nominals, transitivity, self-loops, or complex role inclusions spoil its forest-friendliness.
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Motivation and Our Contribution

The spoiler technique by Carsten Lutz [Lut08b] is a classical technique that given a DL-knowledge-base K
and a conjunctive query q, reduces the entailment problem (does K |= q hold?) to the satisfiability problem
of a sequence of carefully crafted DL∩-knowledge-bases (where DL∩ extends DL with conjunctions of roles).
The spoiler technique was originally used by Lutz [Lut08b, Thm. 1] to establish ExpTime-completeness
of conjunctive query entailment for SHQ (for queries forbidding transitive roles), but some of its variations
were also used for the query entailment problem for SHIQ [GLHS08, Thm. 32] and SHOQ [GHS08,
Thm. 9], for the query entailment over temporal and probabilistic knowledge bases [Koo19, BBL15], as
well as for the query non-emptiness problem [BBLW16, Thm. 16]. In this chapter we revisit the spoiler
technique and propose a meta-algorithm solving the query entailment problem for certain classes of
description logics. To do so, we closely follow the original work of Lutz [Lut08b, p. 3—8], aiming to reuse
as much material from his work as possible. While from the bird’s eye our proof scheme and Lutz’s one
are roughly the same, we adjust and improve his technique in several ways stated below.

(i) We propose a meta-algorithm (instead of a single algorithm) that is additionally parametrized by a
set of features Θ ⊆ {I, Self}, and thus we cover a plethora of extensions of ALC with a single proof.

(ii) Our proofs and a meta-algorithm are logic-independent (in contrast to all previous works) and rely on
natural model-theoretic notions from Section 3.3. In particular, this means that our meta-algorithm
can be applied to any (finitely) Θ-forest-friendly description logic, making it useful as a black box
for future use for freshly defined logics.

(iii) In contrast to the original work of Lutz [Lut08b], our meta-algorithm is applicable to the entailment
problem of unions of conjunctive queries (not just conjunctive queries), and can be used to infer
complexity bounds in terms of data complexity (not only the usual combined complexity).

(iv) Our meta-algorithm can be employed for reasoning in the finite model semantics. To the best of
our knowledge — excluding our works and logics that are finitely controllable — there are no work
that employs the spoiler technique and which can be applied to the finite model setting.

35
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As a prominent application of our meta-algorithm, the next chapter will provide a complete picture
of the complexity of the query entailment problem – for (unions of) conjunctive queries – over various
description logics extending ALC and contained in ZOIQ that do not simultaneously employ the features
I, O, and Q. Be cautious however. Despite being worst-case optimal, our algorithm is just complexity-
theoretic, and thus completely useless in practice. For a practical algorithm a good idea would be to
investigate further the so-called “knots technique” of Eiter, Ortiz, and Šimkus [EOv12] (see also works of
Eiter et. al for a gentle introduction to the topic [EOv08, ELOv09]).

Overview of the Chapter and Prerequisites

We assume familiarity with Chapter 3 and its prerequisites. Starting from an informal explanation of Lutz’s
spoiler technique (Section 4.1), the following sections describe the required components: fork rewritings
(Section 4.2), splittings (Section 4.3), spoilers (Section 4.4), and finally the meta-algorithm announced in
the “motivations” (Section 4.6). The reader may find the forthcoming content quite technical.

4.1 An Informal Explanation of Lutz’s Spoiler Technique

We start by giving a rather informal explanation of Lutz’s spoiler technique, dedicated to the readers
who are not familiar with the original work of Lutz on querying ALCHQ [Lut08b, Sec. 3].1 Most of the
forthcoming notions are very similar to those from the work of Lutz [Lut08b, Sec. 3] and actually we
aimed at reusing as much material from his work as possible. However, many of our statements require
separate proofs in order to make them logic-independent and adjustable to Θ-forest-friendly DLs.

Our goal is to decide, given a (finitely) Θ-coverable DL-KB K and a conjunctive query q, whether
K |=(fin) q holds, which boils down to checking if there is a (finite or arbitrary, depending on the problem)
countermodel for K and q. Due to Lemma 3.12 we can restrict our attention to (|q|, ind(K), Θ)-forests.
An important observation is that a match π of q over an (|q|, ind(K), Θ)-forest I induces a very specific
partition of Var(q), namely π divides the variables of q into three disjoint categories: (i) the variables
mapped to the N-named elements of I, (ii) the variables forming Θ-subtrees “dangling” from some of
the N-named elements of I and (iii) the variables forming Θ-trees that lie “far” from N-named elements.
The notion of a splitting abstractly describes such a partition, independently of the choice of π and I.
The existence of a splitting compatible with a (|q|, ind(K), Θ)-forest I implies that I |= q holds and vice
versa. Hence, to establish K ̸|=(fin) q, it suffices to find a (finite) (|q|, ind(K), Θ)-forest model IW of K such
that no splitting is compatible with it, or, in other words, IW that spoils all the splittings. To do so, for a
splitting Πq of the query q we design a DL-KB KW

Πq
, called a spoiler for Πq, with the intended meaning that

every (|q|, ind(K))-locally Θ-forest-like model of K∪KW

Πq
spoils its compatibility with Πq. The construction

of spoilers employs, among other ingredients, the well-known rolling-up technique [HT00, Sec. 4], already
introduced in Section 3.2, useful to detect Θ-tree-shaped query matches from points (ii)–(iii) above. For
feasibility of the “rolling-up” technique, we additionally require that DL extends ALCΘ∩, i.e. for every
ALCΘ∩-concept one can compute in polynomial time (at most polynomially larger) equivalent concept
in DL. Having the splittings defined, we prove that (finite) (|q|, ind(K), Θ)-forest models of K ∪

⋃
Πq

KW

Πq

are also (finite) countermodels for K and q. This establishes a Turing-reduction from the query entailment
problem to satisfiability: the query entailment problem can be solved by doubly-exponentially many (w.r.t
the sizes of K and q) satisfiability checks of exponentially larger (w.r.t the sizes of K and q) DL-KBs.

The presented algorithm has optimal (doubly-exponential) worst-case time complexity, for descrip-
tion logics with ExpTime-complete satisfiability problem that involve inverses [Lut08a, Thm. 2] or
self-loops [BR22, Thm. 8.2] (consult Chapter 6 for our 2ExpTime-hardness proof for querying ALCSelf).
However, in the case of ∅-forest-friendly description logics the above methods yield a non-optimal complex-
ity, e.g. entailment of conjunctive queries over ALC-KBs is “only” ExpTime-complete [EOv12, Cor. 3].
To get the optimal (exponential) upper bound in such a case, we parallelise the construction of

⋃
Πq

KW

Πq
.

1Lutz works with SHQ, an extension of ALCHQ with transitive roles, but he does not allow for transitive roles in queries.
This is crucial since their presence makes the CQ entailment problem exponentially harder [ELOv09, Thm. 1]. Hence, Lutz’s
work is more about querying ALCHQ than SHQ.
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This means, intuitively, that the KB
⋃

Πq
KW

Πq
is going to be divided into exponentially many chunks called

super-spoilers KW
⋆

q with the meaning that K ̸|=(fin) q if and only if K∪KW
⋆

q has a (finite) (|q|, ind(K), ∅)-forest
model for some super-spoiler KW

⋆

q . We then show that each super-spoiler is only of polynomial size and
that the set of super-spoilers can be enumerated in a single exponential time. This provides a Turing
reduction from the (finite) query entailment problem to exponentially many (finite) satisfiability checks
of polynomial-size DL-KBs, which yields an optimal complexity in the case of ∅-forest-friendly DLs.

4.2 Step I: Rolling-Up Concepts and Fork Rewritings

Let us recall that in Section 3.2 we established a tight correspondence between Θ-tree-shaped conjunctive
queries and ALCΘ∩-concepts. Informally, for a given Θ-tree-shaped conjunctive query q, we can employ
Corollary 3.7 to produce an ALCΘ∩-concept Matchq for which any element in the interpretation of
Matchq “detects” a possible match of q. Hence, relying on Corollary 3.7 we can design an algorithm for
the entailment problem for Θ-tree-shaped queries: for a given input query q and an input knowledge base
K, it suffices to check whether K ∪ {⊤ ⊑ ¬Matchq} is satisfiable. Unfortunately, the presented method of
detecting query matches works only for Θ-tree-shaped queries. To detect matches of arbitrary CQs, we
require a stronger match-detection mechanism, namely the notions of fork rewritings and splittings.

A conjunctive query can induce many different query matches, possibly of arbitrary shapes. In our
case, however, query matches are of a very specific form due to the local-forest-likeness of target structures.
For instance, suppose that a query q contains a fork, that is a subquery of the form r(z, x) ∧ s(y, x), and
that the query q is satisfied in a ∅-tree I (as witnessed by some match π). As every non-root element
in a tree has a unique parent, this clearly implies that the variables z and y are mapped via π to the
same element, and hence, can be “considered equal”. A similar situation occurs for {I}-trees and forks
involving inverted roles. Finally, in the case when self-loops are allowed in trees, it is possible for a query
atom r(z, x) to collapse into a self-loop, i.e. z and x are identified by a query match. We formalise this
intuition with the forthcoming notion of fork rewritings [Lut08b, p. 4], intended to remove this kind of
“redundancy” from queries.

Definition 4.1 Given CQs q and q′, we say that the q′ is obtained from q by Θ-fork elimination
(notation: q ⇝Θ

fe q′) if q′ is obtained by identifying some pair of variables y and z in q for which:
• [forth(y, z)]: there exist some atoms α(y, x) and β(z, x) in q,
• [back(y, z)]: I ∈ Θ and there exist some atoms α(x, y) and β(x, z) in q,
• [mixed(y, z)]: I ∈ Θ and there exist some atoms α(y, x) and β(x, z) in q, or
• [loop(y, z)]: Self ∈ Θ and there exists some atom α(y, z) in q.

The pairs (y, z) satisfying [forth(y, z)] are called ∅-forks, the ones satisfying [back(y, z)] or [mixed(y, z)]
are called {I}-forks, and the pairs satisfying [loop(y, z)] are called {Self}-forks. We refer to them
jointly as Θ-forks for a suitable Θ ⊆ {I, Self}, meaning that θ-forks are also Θ-forks whenever θ ⊆ Θ.

y z

x

⇝∅
fe

forth(y, z)

yz

x

α β αβ

y z

x

⇝{I}
fe

back(y, z)

yz

x

α β α β

y z

x

⇝{I}
fe

mixed(y, z)
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x

α β α β

y

z

α ⇝{Self}
fe

loop(y, z)

yz

α

A CQ q′ is called a Θ-fork rewriting of q if q′ can be obtained from q by applying Θ-fork-
elimination of q, possibly multiple times. When the fork elimination process is applied exhaustively
on q we say that the resulting query, denoted maxfrΘ(q), is a maximal Θ-fork rewriting of q.

To gain more intuitions on how fork elimination works, consult Example 4.2. To guide the reader even
further, we discuss the notion of maximal fork rewritings in more detail, and present several auxiliary
lemmas relating matches of queries and their fork rewritings (see Lemma 4.4 and Corollary 4.8).
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Example 4.2. Consider a conjunctive query q := r(x, y)∧r(x, z)∧s(y, v)∧r(v, z)∧A(x)∧B(y)∧C(z)∧D(v).
By applying either [forth(x, v)] (for the subquery r(x, z)∧r(v, z)) or [mixed(x, v)] (for the subquery r(x, y)∧
s(y, v)) we obtain the following fork rewriting of q: r(xv, y) ∧ s(xv, y) ∧ r(xv, z) ∧ B(y) ∧ A(xv) ∧ D(xv) ∧ C(z),
where the variable xv is fresh. Consult Figure 4.1. One can further apply [loop(xv, y)] to obtain the query
r(xyv, z) ∧ r(xyv, xyv) ∧ s(xyv, xyv) ∧ B(xyv) ∧ A(xyv) ∧ D(xyv) ∧ C(z) for a fresh variable xyv. Further
application of [loop(xyv, z)] yields the maximal {I, Self}-fork rewriting of q, namely maxfr(q) := r(xyzv, xyzv)∧
s(xyzv, xyzv) ∧ B(xyzv) ∧ A(xyzv) ∧ D(xyzv) ∧ C(xyzv) for a fresh variable xyzv.

x A

yB z C

v D

r r

s r

y

B

xv

A, D
z

C

r

s

r

Figure 4.1: An example conjunctive query (left) and one of its fork rewritings (right).

The rest of the section is dedicated to proving useful properties of fork rewritings. First, note that
maximal fork rewritings are not really interesting when the Self operator is present in Θ, i.e. any connected
query maximally rewrites into a “self-loop-shaped” query, as presented in Example 4.2. In stark contrast,
maximal ∅-fork rewritings will play an instrumental role when reasoning about ∅-forest-friendly logics,
allowing us for obtaining tighter complexity bounds. Not spoiling the fun yet, we present an important
result of Lutz. In his proof [Lut08b, Appendix A], Lutz employs a handy convention that variables in
queries are sets (initially treating variables as singleton sets), and the “identification of variables” x and y
in ∅-fork rewritings is implemented by replacing x and y in the query with their union x ∪ y.

Lemma 4.3 (Lemma 1 by Lutz [Lut08b]) Every conjunctive query has a unique (up to a variable
renaming) maximal ∅-fork rewriting.

A rather immediate application of Definition 4.1 yields that the entailment of a fork rewriting of a
query implies the entailment of the input query itself. The proof goes via a routine induction.

Lemma 4.4 Let q and q′ be conjunctive queries, such that q′ is obtained from q by Θ-fork rewriting.
Moreover, let I be a structure and π′ be a match for q′ and I. Then I |= q, and one can compute a
match π for q and I for which the images π[Var(q)] and π′[Var(q′)] are equal.

Proof. Suppose I |= q′. Since q′ is a Θ-fork rewriting of q, we can find a derivation qn ⇝Θ
fe

qn−1 ⇝Θ
fe . . .⇝Θ

fe q0 with q = qn and q0 = q′. Reasoning inductively, it suffices to show that for
all indices 0 ≤ i < n we have that I |= qi implies I |= qi+1. Then we conclude the lemma by tak-
ing i := (n−1). Assume I |= qi. Then there is a homomorphism hi : Iqi

→ I. Since qi+1 ⇝Θ
fe qi

holds, we can find the variables x, y, z such that (i) Var(qi)\{x, y, z} = Var(qi+1)\{x, y, z}, and
(ii) qi was obtained from qi+1 by replacing each occurrence of x or y in any atoms with z . Hence,
let f : Iqi+1 → Iqi be a function satisfying f(x) = f(y) = z and f(v) = v for all other variables.
From (i) and (ii) we immediately infer that f is a homomorphism. Thus (f ◦ hi) : Iqi+1 → I is
a homomorphism, establishing I |= qi+1. The rest of the lemma follows by our construction.

Note that the reverse direction of Lemma 4.4 does not hold, as witnessed by the example below.

Example 4.5. Consider the query q := r(z, x)∧ s(y, x) and its ∅-fork-rewriting q′ := r(yz, x)∧ s(yz, x). Let I
be any structure with ∆I := {x, y, z}, rI := {(z, x)}, and sI := {(y, x)}. Clearly I |= q but I ̸|= q′.
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We next link Θ-trees, Θ-tree-shaped queries, and Θ-fork-rewritings in the following two lemmas.

Lemma 4.6 Let I ̸∈ Θ, q be a connected conjunctive query, I be a structure, and π be a match for
q and I such that (i) π[q] is a Θ-tree, and (ii) there are no Θ-forks (x, y) in q satisfying π(x) = π(y).
Then q is Θ-tree-shaped.

Proof. We2 proceed inductively w.r.t. (2Var(q) \{∅}, ⊆), where the inductive assumption states
that for all non-empty sets V ∈ 2Var(q) for which q↾V is connected, we have that q↾V is Θ-tree-
shaped. Then the statement of the lemma follows. For the base case, consider any singleton V
for which q↾V contains at least one atom. Then π[q↾V] is isomorphic to q↾V, and thus is a
Θ-tree by the assumption. Hence, q↾V is Θ-tree-shaped. For the inductive step, suppose V has
the form V′ ∪ {v} for some v. For brevity, we say that a variable x points to a variable y if
some atom of the form α(x, y) belongs to q↾V. Suppose that q↾V is connected. This implies
the existence of a partition V1, V2, . . . , Vn of variables from V′, such that (i) for all i ≤ n the
query q↾Vi

is connected (thus Θ-tree-shaped by the inductive assumption), (ii) for all i ̸= j

there are no variable from Vi that points to a variable from Vj (i.e. these sets induce the
“connected components” of q↾V′), and (iii) for every i ≤ n there is u ∈ Vi such that u points
to v or vice versa. The key property required to establish Θ-tree-shapedness of q↾V is that for
every index i ≤ n there exists precisely one variable ui ∈ Vi that points to v or vice versa (and
even more specifically, there is at most one index i for which ui points to v). Observe that:
(A) There are no pair of distinct variables u and w that point to v.

Indeed, as π[q↾V] is a Θ-tree, this implies that π(w) = π(u), contradicting the assumption
that all such ∅-forks were eliminated from q.

(B) If v points to ui ∈ Vi, then ui is the root variable of q↾Vi
.

Indeed, otherwise we would have a ∅-fork involving ui, v and the parent w of ui. This,
together with the fact π[q↾V] is a Θ-tree, yields π(w) = π(v). Similarly to the previous
case, this contradicts the fact that all such ∅-forks were eliminated from q.

(C) For all i ≤ n there are no (possibly equal) w, u ∈ Vi such that w points to v and v points to u.
Suppose such variables w and u exist. Then, by the previous observation, u would be the
root variable of q↾Vi

. Hence, there exists a directed cycle ρ in q↾Vi∪{v} that contains the
variables v, u, and w. If Θ is empty, we get a contradiction with the acyclicity of π[q].
Otherwise, whenever Θ = {Self}, the image of ρ via π collapses into a self-loop. This
implies π(u) = π(v) and contradicts the fact that {Self}-forks are not present in q.

We next sketch the proof that q↾V is Θ-tree-shaped. First, let ui, for each i ≤ n, be the
unique variable from Vi that either points to v or v points to it (note that both cases cannot
happen simultaneously by the third observation, and that uniqueness of ui is guaranteed by
the combination of the three above observations). Second, let S be the set of all indices i for
which v points to ui. Then the query q restricted to {v} ∪

⋃
s∈S Vs is Θ-tree-shaped: its root

is v and it has all of us “assigned” as children (here we rely on the fact that the sets Vs are
pairwise-disjoint and there are no atoms employing variables simultaneously from Vs and Vs′

for s ̸= s′). If S contains all the indices from {1, 2, . . . , n} then we are done. Otherwise there
is a unique (by the first observation) index 1 ≤ j ≤ n that is not in S and for which uj points
to v. It is not too difficult to see that the query q↾V is also Θ-tree-shaped: the query q↾Vj

is a
Θ-tree by the inductive assumption and the tree rooted to v simply becomes a subtree of uj .

We next establish the proof of the analogous statement for the case of I ∈ Θ.

Lemma 4.7 Let I ∈ Θ, q be a connected conjunctive query, I be a structure, and π be a match for
q and I such that (i) π[q] is a Θ-tree, and (ii) there are no Θ-forks (x, y) in q satisfying π(x) = π(y).
Then q is Θ-tree-shaped.

2I thank Jan Otop for suggesting this simple, inductive proof-approach.
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Proof. We argue along the lines of the proof of Lemma 4.7, employing the same inductive
assumption and the same naming scheme (thus consult the previous proof when in doubt).
The base case is exactly the same as in Lemma 4.6, so we focus on the inductive step only.
Recall that our main goal is to show that there is no index i for which there are different
u, w ∈ Vi pointing to v (or vice versa). Towards a contradiction, assume that such index i

and u, w ∈ Vi exist. Observe that π(v) ̸= π(u) and π(w) ̸= π(u). Indeed, this follows from
the fact that we either eliminated such forks in the case of Self ∈ Θ, or π(v) would carry a
self-loop, contradicting the fact that it is a {I}-tree. Next, we show that (♡): if ρ is a path
in q↾Vi

composed of pairwise-different elements, then the elements π(ρ1), . . . , π(ρ|ρ|) are also
pairwise-different. The proof is via reductio ad absurdum. Suppose that there are i < j for
which π(ρi) = π(ρj). If j = i+1 we get a contradiction employing the same reasoning as for the
proof of π(v) ̸= π(u). If j = i+2 we get a contradiction from the fact that such {I}-forks are
not present in q. Finally, if j > i+2 then we have that π[q] contains a cycle of length greater
than 2, contradicting its Θ-tree-shapedness. We now employ observation (♡) as follows. Let ρ

be any path from u to w in q↾Vi
that is composed of pairwise-different elements (guaranteed

by connectedness of q↾Vi
). Then (by the choice of u and w) vρv is a cycle in q↾V∪{v}. We

claim that π(v) is pairwise-different from the images of the elements from ρ. Recall that we
have already established that π(v) ̸= π(u) and π(v) ̸= π(w). Hence, suppose that there is an
index 1 < i < |ρ| for which π(v) = π(ρi). This however yields the existence of a cycle of length
more than 2 in π[q], namely π(ρi) . . . π(ρ|ρ|)π(v). A contradiction with the Θ-tree-shapedness
of π[q]. Hence, π(v) is pairwise-different from all the images of elements of ρ. Then the image
of vρv via π is again a long cycle, contradicting Θ-tree-shapedness of π[q].
To establish Θ-tree-shapedness of q↾V it suffices to show that it does not contain cycles of

length greater than 2 (self-loops are handled separately in case Self ̸∈ Θ by employing the
fact about tree-shapedness of the image of q via π). Recall that we proved that such cycles
are present in no subquery of the form q↾Vi∪{v}. This in turn can be lifted to the general case
by employing the fact that there are no atoms involving variables from Vi and Vj for i ̸= j.
Thus q↾V is indeed Θ-tree-shaped, which concludes the proof.

By summarising Lemma 4.6 and Lemma 4.7 we can now conclude Corollary 4.8.

Corollary 4.8
If Θ ⊆ {I, Self}, q is a connected conjunctive query, I is a structure, and π is a match for q and I
such that the image of q via π is a Θ-tree then the Θ-fork-rewriting q′, obtained by eliminating all
Θ-forks (x, y) from q satisfying π(x) = π(y), is Θ-tree-shaped.

It would be tempting to generalise Lemma 4.6 and Lemma 4.7 to the case of N-rooted Θ-forests. Such
a generalisation would be, however, false as witnessed by the following example.

Remark 4.9. Consider the query q and the {a,b}-rooted ∅-forest I depicted below. Clearly I |= q holds,
as witnessed by the match π := {x1 7→ aI , x2 7→ bI , x3 7→ 3, x4 7→ 4}. In particular, Iq is not an {a,b}-rooted
∅-forest (after interpreting a as x1 and b as x2) while its image via π is an {a,b}-rooted ∅-forest. However,
the variables x1 and x2 cannot be identified by a ∅-fork, even though π(x1) = π(x2).

q :=

x1 x2

x3 x4

r

r r I :=

a b

3 4

r

r r

We conclude by providing an upper bound on the total number of queries produces by Θ-fork rewritings.
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Lemma 4.10 Let q be a conjunctive query with m variables, and let ForkRewrsΘ(q) denote the set
of all Θ-fork rewritings of q. Then ForkRewrsΘ(q) contains at most mm queries, and the elements of
ForkRewrsΘ(q) can be enumerated in time exponential w.r.t |q|.

Proof sketch. Under the naming convention of Lutz, mentioned shortly before Lemma 4.3, it
becomes apparent that every Θ-fork rewriting of q can be identified with a partition of variables
from Var(q) (but not necessarily vice versa). Thus, the size of ForkRewrsΘ(q) is clearly bounded
by the m-th Bell number, and hence by mm. For the algorithm enumerating Θ-fork rewrit-
ings, we proceed as follows. We first fix an auxiliary enumeration for variables x0, x1, . . . , xm−1
from q. Note that the fork elimination can be applied to q at most (m−1) times. Thus any
Θ-fork rewriting qk of q that is obtained with a derivation q ⇝Θ

fe q2 ⇝Θ
fe . . . ⇝Θ

fe qk can be
represented as a sequence (i1, j1), (i2, j2), . . ., (ik−1, jk−1) where each pair (iℓ, jℓ) represents the
indices of variables (integers between 0 and (m−1)) of the Θ-fork (xiℓ

, xjℓ
) that were identified

in the ℓ-th Θ-fork elimination. Hence, it suffices to first iterate through the possible values
of k (from 0 to m−1), then iterate through all possible sequences of length k of pairs of in-
dices (i1, j1), (i2, j2), . . ., (ik, jk), and then eliminate (if possible) the corresponding Θ-forks.

4.3 Step II: Splittings

The following notion of splittings [Lut08b, p. 4] provides an abstraction of how a conjunctive query q
matches a (|q|, N, Θ)-forest, while referring neither to a concrete interpretation nor to a concrete match.
Intuitively, the role of splittings is to partition the variables of some fork rewriting q of the input query,
depending on the three possible scenarios: (i) either a variable v is expected to be mapped to one of the
N-named elements, or (ii) v, together with some other variables, are expected to be mapped such that
they form a Θ-subtree dangling from one of the N-named elements, or (iii) v is expected to be mapped
somewhere “further down” inside the structure, being disconnected from the N-named elements.

Definition 4.11 Fix N ⊆ NI, Θ ⊆ {I, Self}, and a CQ q. An (N, Θ)-splitting ΠN
q of q is a tuple

ΠN
q := (Roots, name, SubTree1, SubTree2, . . . , SubTreen, root-of, Trees) ,

where the sets Roots, SubTree1, . . . , SubTreen, Trees induce a partition of Var(q), name : Roots → N
is a function naming the roots, and root-of : {1, 2, . . . , n} → Roots assigns to each SubTreei an
element from Roots. Moreover, to be an (N, Θ)-splitting, ΠN

q has to satisfy all the conditions below:
(a) The query q↾Trees is a conjunction of variable-disjoint Θ-tree-shaped queries.
(b) The queries q↾SubTreei

are Θ-tree-shaped for all indices i ∈ {1, 2, . . . , n}.
(c) For any atom α(x, y) ∈ q we have that the variables x, y belong to the same set or there exists

an index i ∈ {1, 2, . . . , n} for which either:
(i) root-of(i) = x, x ∈ Roots, y ∈ SubTreei, and y is the root of q↾SubTreei

,
(ii) root-of(i) = y, y ∈ Roots, x ∈ SubTreei, and x is the root of q↾SubTreei

.
(d) For every 1 ≤ i ≤ n, taking xi as the root of q↾SubTreei

, we have that either (i) there is an atom
r(root-of(i), xi) in q, or (ii) I ∈ Θ and there is an atom r(xi, root-of(i)) in q.

It may help to think that a splitting represents an abstraction of an image of the query in a target struc-
ture, consisting of named roots, corresponding to the ABox part of the model, together with some of their
subtrees and of some auxiliary Θ-trees lying somewhere detached from the roots. Consult Example 4.12.
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Example 4.12. Consider an {a,b,c}-rooted {I, Self}-forest I depicted below and a (non-tree-shaped) CQ q:

q := (A(x0) ∧ r(x0, x1) ∧ r(x1, x0) ∧ B(x1)) ∧ (s(x0, x00) ∧ r(x00, x000) ∧ r(x000, x000))
∧ (r(x01, x0) ∧ s(x01, x010) ∧ r(x010, x0100)) ∧ (A(x200) ∧ r(x200, x2001) ∧ B(x2001) ∧ s(x0010, x0010)) .
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Roots := {x0, x1}

SubTree1 := {x00, x000}

SubTree2 := {x01, x010, x0100}

Trees := {x200, x2001, x0010}

name(x0) := a, name(x1) := b

root-of(1) := x0, root-of(2) := x0

Note that I (depicted on the left) satisfies q, which is witnessed by a match π : xi 7→ i (this match is
depicted by the highlighted areas of the picture). Now consider the ({a,b,c}, {I, Self})-splitting Π{a,b,c}

q :=(
Roots, name, SubTree1, SubTree2, root-of, Trees

)
defined on the right-hand side of the picture. We encour-

age the reader to consult Definition 4.11 and check that this is indeed a splitting (the highlighted areas
correspond to its components). Moreover, such a splitting is compatible with I (see: Definition 4.14).

Similarly to Lemma 4.10, we would like to bound the total number of (N, Θ)-splittings of a given
conjunctive query and sketch a worst-case optimal algorithm for their enumeration.

Lemma 4.13 Let q be an m-variable CQ and N be a finite set of names. Then SpltsN,Θ(q), the set
of all (N, Θ)-splittings of q, has size at most m2m · |N|m. Moreover, its members can be enumerated
in time e(|q|, |N|) for some exponential function e that becomes polynomial for a fixed query q.

Proof sketch. Recall that splittings are tuples of the form (Roots, name, SubTree1, . . ., SubTreen,
root-of, Trees) for some integer 0 ≤ n ≤ |Var(q)|. As an over-approximation, we view the
function name as a function of type Var(q) → N, and the function root-of as a function
of type Var(q) → Var(q). Clearly, there are |N|m and mm of such functions. The remaining
components for a splitting induce a partition of variables of q, and hence their number can
be bounded by the m-th Bell number, and consequently by mm. The desired bound from the
statement of the lemma follows now by the multiplication principle.
The enumeration of candidates for splittings from SpltsN,Θ(q) can be done by: (A) enumerat-

ing all possible subsets of Var(q) to obtain Roots, then (B) enumerating3 all functions from N
to Roots, (C) enumerating possible values n from 0 to |Var(q) \ Roots|, (D) enumerating all
n-partitions of (Var(q) \ Roots), (E) enumerating all assignments {1, 2, . . . , n} → Roots and
all assignments {1, 2, . . . , n} → (Var(q) \ Roots) to find the “root variable” of each component.
The steps (A), (D), and (E) can be implemented to work in time exponential w.r.t |q|, the
step (C) works in time polynomial w.r.t |q|, while the step (B) works in time exponential
w.r.t log2(|N|) · |Roots|, and thus exponential w.r.t |q| + |N| (but polynomial w.r.t |N| if q is
fixed). Given a candidate ΠN

q := (Roots, name, SubTree1, . . ., SubTreen, root-of, Trees) for
a splitting, testing conditions (a) and (b) of Definition 4.11 can be done in time polynomial
w.r.t |ΠN

q | with a classical use of the DFS algorithm. Verification of the two other conditions
of Definition 4.11 can be done by analysing the shape of the query q (again, implementable to
work in time polynomial w.r.t |ΠN

q |). This concludes the design of our algorithm. Its running
time is simply the product of the running times of each enumeration and verification step.

3This can be achieved, e.g. by enumerating all bitstrings of length log2(|N|) · |Roots|.
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We finish the section by showing that splittings indeed fulfil their purposes. In order to do it, we first
introduce an intermediate definition of compatibility of a splitting with a given (|q|, N, Θ)-forest.

Definition 4.14 Let N ⊆ NI be a set of names, q be a conjunctive query, and I be a (|q|, N, Θ)-forest.
We say that an (N, Θ)-splitting ΠN

q of q is compatible with I if all the conditions below are satisfied.
(A) For each component q̂ of q↾Trees there exists a d in (Matchq̂)I . (see: Section 3.2.)
(B) For all atoms A(x) ∈ q with x ∈ Roots we have (name(x))I ∈ AI .
(C) For all atoms α(x, y) ∈ q with x, y ∈ Roots we have

(
name(x)I , name(y)I) ∈ αI .

(D) For all indices i ∈ {1, 2, . . . , n} and xi being the root of q↾SubTreei
, the following equation holds:

name(root-of(i))I ∈

∃

 ⋂
r(root-of(i),xi)∈q

r ∩
⋂

r(xi,root-of(i))∈q only if I∈Θ

r−

 .Matchq↾SubTreei

I

.

We next present lemmas that link together all the notions presented so far. The main goal here is to
establish the equivalence between the satisfaction of a query and the existence of a compatible splitting.
The forthcoming proofs are quite delicate and rely on exhaustive case analysis. Most of the time this
becomes relatively tedious, so we welcome the reader to skip the forthcoming proofs for the first-time
reading.

Lemma 4.15 Let q, N, Θ, and I be as in Definition 4.14. Suppose that there is a Θ-fork rewriting
q′ of q and an (N, Θ)-splitting ΠN

q′ of q′, such that ΠN
q′ is compatible with I. Then I |= q.

Proof. By Lemma 4.4 it suffices to prove I |= q′. We construct h : Var(q′) → ∆I as follows:
• For every root variable x ∈ Roots we put h(x) := (name(x))I .
• Fix an index 1 ≤ i ≤ n. By Item (b) of Definition 4.11 we know that the query q′↾SubTreei

is Θ-tree-shaped. Let xi be its root. Moreover, by Item (D) of Definition 4.14 there exists
an element di ∈ ∆I that belongs to the interpretation of Matchq′↾SubTreei

and satisfies:

(
name(root-of(i))I , di

)
∈

 ⋂
r(root-of(i),xi)∈q′

rI ∩
⋂

r(xi,root-of(i))∈q′ only if I∈Θ

(r−)I

 (♠)

By Θ-tree-shapedness of q′↾SubTreei
and Lemma 3.6, there exists a homomorphism hi from

Iq′↾SubTreei
to I with hi(xi) = di. Thus we can simply put h(x) := hi(x) for all x ∈ SubTreei.

• Take any component q̂ of q′↾Trees, which by Item (a) of Definition 4.11 is Θ-tree-shaped.
By compatibility of ΠN

q′ with I and Item (A) of Definition 4.14 we infer the existence of
an element d ∈ ∆I in the interpretation of Matchq̂. By invoking Corollary 3.7, we obtain
a homomorphism hq̂ : Iq̂ → I. Finally, we put h(x) := hq̂(x) for all x ∈ Var(q̂).

We claim that h is indeed a function. This follows by the fact that (i) the sets Roots, SubTree1,
. . ., SubTreen, Trees induce a partition of Var(q′), (ii) all Θ-tree-shaped queries from Trees
are variable-disjoint, and (iii) the employed homomorphism are functions themselves. Hence, it
remains to show that h is a homomorphism from Iq′ to I. Proving the preservation of atomic
concepts and self-loops (in case Self ∈ Θ) by h is immediate: for root variables we employ
Item (B) of Definition 4.14, while for the other variables we rely on the fact that the value
of h is then defined via another homomorphism. To see that h preserves roles, we take any
atom α(x, y) ∈ q′. We establish (h(x), h(y)) ∈ αI with a case analysis relying on Item (c) of
Definition 4.11 . There are four possible cases to consider, based on the location of x and y.

• Both x and y belong to Roots. Then (h(x), h(y)) =
(
name(x)I , name(y)I) holds, and the

inclusion of (h(x), h(y)) in αI follows from Item (C) of Definition 4.14.
• There exists an index 1 ≤ i ≤ n such that x, y ∈ SubTreei. Then (x, y) ∈ α

Iq′↾SubTreei

holds. By equality (h(x), h(y)) = (hi(x), hi(y)) and the fact that hi is a homomorphism,
we conclude the inclusion of (h(x), h(y)) in αI .
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• Both x and y belong to Trees. From the fact that (x, y) ∈ αIq′ we know that x and y are
in the same Θ-subtree of q̂ of Trees. Thus (x, y) ∈ αIq̂ . Now it suffices to apply the fact
that hq̂ is a homomorphism and the equality (h(x), h(y)) = (hq̂(x), hq̂(y)) to conclude the
desired inclusion of (h(x), h(y)) in αI .

• The variables x and y belong to different sets. From Item (c) of Definition 4.11, we know
that there are two cases to consider. In the first case we know that x ∈ Roots and there
is an index i for which root-of(i) = x and y = xi ∈ SubTreei is the root of q↾SubTreei

.
The other case is when the inverse operator is allowed in Θ and the roles of x and y
are swapped. As this case is analogous to the previous one, we omit it. Note that by
Equation (♠) we know that (h(x), h(y)) is actually equal to

(
name(root-of(i))I , di

)
for

some already-fixed di ∈ ∆I . Finally, by applying the first part of Equation (♠), we get
that (h(x), h(y)) =

(
name(root-of(i))I , di

)
belongs to αI , as required.

This establishes that h is indeed a homomorphism, finishing the proof.

As a preliminary step towards the reverse direction of Lemma 4.15, we introduce a handy notion
of (N, Θ)-simple matches. They reflect the intuition that our queries match interpretations resembling
Θ-forests, and hence such matches should themselves look like Θ-forests and they should not contain the
“redundancy” in variables that may occur in the presence of Θ-forks. Consult Definition 4.1 if needed.

Definition 4.16 Let q, N, Θ, and I be as in Definition 4.14. A match π : Var(q) → ∆I is an
(N, Θ)-simple match if (i) the image Jπ := π[J ] of each connected component J of Iq via π is an
(ind(Jπ) ∩ N)-rooted Θ-forest, and (ii) there are no Θ-fork (x, y) in q satisfying π(x) = π(y).

We stress that despite the fact that π is an (N, Θ)-simple, there still can be variables x and y satisfy-
ing π(x) = π(y). The following example illustrates a difference between simple and non-simple matches.

Example 4.17. Consider the (4, ∅, ∅)-forest I depicted below, and the conjunctive query q := r(x1, x2) ∧
r(x1, x3) ∧ r(x2, x4) ∧ r(x3, x5) ∧ r(x2′ , x4) ∧ r(x3′ , x5) ∧ r(x1′ , x2′ ) ∧ r(x1′ , x3′ ) (having the same shape as I).
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The mapping π : xi 7→ i, xi′ 7→ i′ is clearly a match for q and I, but it is not a simple. Yet another match for q
and I is π′ : xi 7→ i, xi′ 7→ i. By eliminating forks involving elements having equal image via π, q gives raise
to a fork rewriting q′ := r(x1, x2) ∧ r(x1, x3) ∧ r(x2, x4) ∧ r(x3, x5) of q, obtained by identifying the “primed”
variables with their “non-primed” counterparts. Note that the match π′′ : xi 7→ i for q′ and I is (∅, ∅)-simple.

We next see that every query has a Θ-fork rewriting that enjoys an (N, Θ)-simple match.

Lemma 4.18 Fix q, N, Θ, and I as in Definition 4.14 and suppose that I |= q. Then there exists a
Θ-fork rewriting q′ of q, and a match π′ : Var(q′) → ∆I that is (N, Θ)-simple.

Proof. Let π be any match witnessing I |=π q. We first modify π to make its image look
like a Θ-forest. Take any maximal connected substructure J of Iq, that is induced by some
V ⊆ Var(q′). Moreover, let Jπ := π[J ] be the image of J via π. Note that |J | ≤ |q|. By the
fact that I is a (|q|, N, Θ)-forest, we infer the existence of an (ind(Jπ) ∩ N)-homomorphisms f

from Jπ to some (ind(Jπ) ∩ N)-rooted Θ-forest J ′ and g from J ′ to I. We next redefine π so
that it maps any variable v from V to g(f(π(v))). As composition of homomorphisms is also a
homomorphism, the resulting mapping is a match for q and I. What is more, this guarantees
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that the image of V by π constitutes an (ind(Jπ) ∩ N)-rooted Θ-forest. We repeat the process
for all maximal connected substructures J of Iq. Call the resulting match π′. Finally, we let q′

be the query obtained by exhaustively eliminating Θ-forks (x, y) from q for which π′(x) = π′(y)
holds. Note that π′, modulo a trivial renaming required after identifying variables during fork
elimination, is the desired (N, Θ)-simple match for q′ and I. This concludes the proof.

Knowing Lemma 4.18, we will see how the satisfaction of conjunctive queries implies the existence of
splittings. We define a suitable splitting first, and in consecutive lemmas we establish its correctness.

Definition 4.19 Having q, N, Θ, and I as before, suppose that π is an (N, Θ)-simple match witness-
ing I |= q. We define the canonical (N, Θ)-splitting of q w.r.t. π as

ΠN
q := (Roots, name, SubTree1, SubTree2, . . . , SubTreen, root-of, Trees) ,

where the consecutive definitions of each of the components are provided below.
• The set Roots is composed of all variables x ∈ Var(q) for which π(x) is an N-named element

of I. For all such variables x we set name(x) := a for any corresponding a ∈ N.
• We say that a variable x is Θ-dangling from a root if there exists a variable xr ∈ Roots and

either (i) some atom r(xr, x) belongs to q, or (ii) I ∈ Θ and some atom r(x, xr) belongs to q. Let
V be the ⊆-maximal set of variables from (Var(q) \ Roots) that are Θ-dangling from the roots.
We put n := |V| and fix an ordering x1, x2, . . . , xn on the members of V. We use x1

r , x2
r , . . . , xn

r to
denote any roots from which xi are dangling. For each index 1 ≤ i ≤ n we put root-of(i) := xi

r,
and define SubTreei as the set composed of xi and of all the variables that are Θ-reachable
from the variable xi in the query structure of q restricted to the set Var(q) \ Roots.

• The set Trees is composed of all remaining variables.

The following three lemmas establish correctness of the above definition of a canonical splitting.

Lemma 4.20 The components of the canonical splitting from Definition 4.19 are well-defined.

Proof. We employ the naming scheme from Definition 4.16. The function name is well-defined
from the fact that every N-named element is {a}-named for at least one name a from N. The
function root-of is well-defined as every variable from V has a root from which it is dangling
(by design). Hence, it suffices to show that the sets Roots, SubTree1, . . ., SubTreen, Trees
form a partition of Var(q). While the fact that the union of these sets is equal to Var(q) follows
from their construction and the definition Trees, we need to show that these sets are pairwise
disjoint. By construction, the sets Roots and Trees are disjoint from the other sets. Thus, it
suffices to consider any pair i ̸= j and establish the disjointness of SubTreei and SubTreej .
Towards a contradiction suppose that SubTreei ∩ SubTreej ≠ ∅, i.e. there exists a variable
v that is Θ-reachable from both xi and xj (the elements selected in the construction of V,
different by definition) in the query structure of q restricted to, respectively, SubTreei and
SubTreej . Consider the following cases:

1. SubTreei = {xi} and SubTreej = {xj}. This implies that v = xj or v = xi, and contradicts
the fact that each of the above sets is a singleton.

2. I ̸∈ Θ and v = xj (the case of v = xi is analogous). Then there exists a variable u in
SubTreei as well as some atoms r(u, xj) and s(xj

r , xj) are present in the query q. Note
that it suffices to show that the images of u, xj , and xj

r via π are pairwise-different. Indeed,
by the (N, Θ)-simplicity of π and by N-anonymity of π(u) and π(xj), this contradicts the
fact that I restricted to {π(u), π(xj

r ), π(xj)} is an N′-rooted Θ-forest for some non-empty
subset N′ of N containing the name assigned to xj

r . First, the inequality π(xj) ̸= π(xj
r )

follows from the fact that π(xj
r ) is N-named while π(xj) is not by its inclusion in SubTreei.

Second, the inequality π(u) ̸= π(xj
r ) follows from the fact that we eliminated all such
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∅-forks from q (see the definition of (N, Θ)-simple matches). Third, we establish the
inequality π(xj) ̸= π(u) via an indirect proof. Suppose that π(xj) = π(u) holds, which
implies that some N-anonymous element d := π(u) carries an r-self-loop (i.e. (d, d) ∈ rI).
If Self ̸∈ Θ, we have a contradiction with the fact that I restricted to {d} was supposed
to be an ∅-tree. Otherwise, we have a contradiction with the fact that we exhaustively
applied {Self}-fork elimination on q for all pairs having equal image via π.

3. I ∈ Θ and v = xj (the case of v = xi is analogous). Let J be the connected component of Iq
containing all of xi, xj , xj

r , and xj
r (guaranteed by the assumption on SubTreei ∩SubTreej ,

and the fact that xi and xj are dangling from their roots xj
r , and xj

r ). Moreover, let
Jπ := π[J ] be the image of J via π. By Lemma 4.18 we have that Jπ is an (N∩ ind(Jπ))-
rooted Θ-forest. Let ρ := ρ1 . . . ρm be a shortest (undirected) path from xi to xj in Iq
restricted to SubTreei (it exists by the assumption). We are going to prove inductively
that for every ℓ < m we have that π(ρℓ+1) in Jπ is a child of π(ρℓ) in Jπ. This would yield
a contradiction with the fact ρm (= xj) is mapped to a child of a root (the distance is too
big). For the base of our induction, observe that π(ρ2) is a child of π(ρ1) due to the fact that
π(ρ2) is N-anonymous (otherwise ρ2 would be a member of Roots). Take ℓ > 2 and suppose
that the inductive assumption holds for all indices lower than ℓ. From the facts that all
members of ρ are N-anonymous and Jπ is an (N∩ ind(Jπ))-rooted Θ-forest, there are only
three possible options: (i) π(xℓ) is a son of π(xℓ−1), (ii) π(xℓ) = π(xℓ−2) (informally: the
path ρ goes down and then returns back), (iii) Self ∈ Θ and π(xℓ−1) = π(xℓ) (informally:
the element ρℓ−1 enters a self-loop). The second and the third case clearly cannot happen
as the match π is (N, Θ)-simple (such forks were eliminated!). Hence, π(xj) is indeed a
son of π(xj−1), concluding the proof of this sub-case.

4. The variable v is different from xi and xj . The case of I ∈ Θ is already solved by the
previous case (i.e. the union of paths from xi to v and from xj to v leads from xi to vj),
hence assume I ̸∈ Θ. The proof is will be roughly the same as the proof of the second case,
so we prefer to keep its description short. From the assumption we infer the existence
of variables u and w in SubTreei as well as some atoms r(w, v) and s(u, v). Once more,
we aim at showing that the images of u, v, and w are pairwise different, which will lead
us to a contradiction with the (N, Θ)-simplicity of the match π. All three inequalities
are obtained in precisely the same way as before. The first one, namely π(u) ̸= π(w),
follows from the fact that we eliminated all such ∅-forks from q. The two remaining
inequalities, namely π(v) ̸= π(w) and π(u) ̸= π(v), can be established by copy-pasting
(modulo variable renaming) the proof of the third inequality of the second case.

The above case analysis implies the sets Roots, SubTree1, . . ., SubTreen, Trees indeed are a
partition of Var(q). This concludes the proof that components of ΠN

q are well-defined.

Lemma 4.21 The canonical splitting defined in Definition 4.19 is an (N, Θ)-splitting.

Proof sketch. We follow Definition 4.11 and establish the correctness of all its items. As the
reader should now be familiar with all the “tricks” required to complete the proof, we provide
a proof sketch only. Let us start with Item (a). Given a variable v ∈ Trees, let Tv denote the
set of all variables w that are Θ-reachable in q↾Trees. What is more, let T to be a ⊆-minimal set
of variables v whose union of Tv equals to Trees. We need to show that for any v ̸= u the sets
Tv and Tu are disjoint, and the queries q↾Tv are Θ-tree-shaped. The first part can be shown
in total analogy to the case analysis done in the proof of Lemma 4.20, and hence we omit the
proof. The second part can be shown as follows. Take any v ∈ T, and note that (i) q↾Tv is
connected by design, and (ii) all elements of Tv are mapped via π to N-anonymous elements (by
design of Trees). Hence, by the fact that π is (N, Θ)-simple, the image of q↾Tv via π is a Θ-tree.
Thus, by invoking Corollary 4.8, we infer that q↾Tv is Θ-tree-shaped. Thus q↾Trees is indeed a
variable-disjoint conjunction of Θ-tree-shaped CQs. The same reasoning also proves Item (b)
of Definition 4.11. Establishing Item (c) of Definition 4.11 can be done with an exhaustive
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case analysis that concerns atoms of the form α(x, y) in q for which x and y are in different
components of a splitting and that violate Item (c). The contradiction arises either (i) by the
presence of a fork (u, v) with π(u) = π(v), or (ii) by the construction of the sets SubTreei

(the definition of “dangling”) and their disjointness. Finally, Item (d) of Definition 4.11 is a
direct consequence of our definition of elements “dangling from the roots”.

Lemma 4.22 The canonical splitting defined for I in Definition 4.19 is compatible with I.

Proof. Item (A) and Item (D) of Definition 4.14 follows from the fact that all components q̂
of q↾Trees as well as all queries q↾SubTreei

are Θ-tree-shaped, and thus the images of their roots
belong to the interpretation of the “query concepts” by Corollary 3.7. Items (B) and (C) of
Definition 4.14 are immediate consequence of the fact that π is a match for q and I.

Summarising all the previous lemmas, we are finally able to establish the reverse direction of Lemma 4.15.

Lemma 4.23 Let q, N, Θ, and I be as in Definition 4.14. If I |= q, then there exists a Θ-fork
rewriting q′ of q and an (N, Θ)-splitting ΠN

q′ of q′, such that ΠN
q′ is compatible with I.

Proof. Suppose I |= q. By Lemma 4.18 there exists a Θ-fork rewriting q′ of q and a variable
assignment π′ : Var(q′) → ∆I that is an (N, Θ)-simple match. Hence, we can apply Defini-
tion 4.19 we infer a canonical (N, Θ)-splitting ΠN

q′ , which is a desired (N, Θ)-splitting splitting
of q′ compatible with I (as follows from Lemma 4.20, Lemma 4.21, and Lemma 4.22).

We conclude the section by compiling Lemma 4.15 and Lemma 4.23 into a single corollary.

Corollary 4.24
Let N ⊆ NI, Θ ⊆ {I, Self}, q be a CQ, and I be a (|q|, N, Θ)-forest. Then I |= q if and only if there
is a Θ-fork rewriting q′ of q and an (N, Θ)-splitting ΠN

q′ of q′ compatible with I.

4.4 Step III: Spoilers

Spoilers [Lut08b, p. 6] are ALCΘ∩-knowledge-bases dedicated for preventing query matches.

Definition 4.25 Fix N ⊆ NI, Θ ⊆ {I, Self}, a CQ q, and an (N, Θ)-splitting ΠN
q with its usual

components (Roots, name, SubTree1, . . . , SubTreen, root-of, Trees). An (N, Θ)-spoiler KW

ΠN
q

for ΠN
q

is an ALCΘ∩-KB containing at least one of the following axioms:
(A) ⊤ ⊑ ¬Matchq̂ for some Θ-tree-shaped query q̂ being a Θ-connected component of q↾Trees.
(B) ¬A(a) for some atom A(x) ∈ q with x ∈ Roots and a := name(x).
(C) ¬r(a,b) from some atom r(x, y) of q with x, y ∈ Roots and (a,b) := (name(x), name(y)).
(D) ¬Ci(a), where a := name(root-of(i)) and an ALCΘ∩-concept Ci, for some index 1 ≤ i ≤ n and

for a variable xi denoting the root variable of q↾SubTreei
, is defined as follows

Ci := ∃

 ⋂
r(root-of(i),xi)∈q

r ∩
⋂

r(xi,root-of(i))∈q, only if I∈Θ

r−

 .Matchq↾SubTreei
.

Observe the correspondence between Items (A)–(D) of the above definition and Items (A)–(D) from
Definition 4.11. These cases can be seen as potential ways of “blocking” the compatibility of a splitting.
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Following Lutz [Lut08b, p. 7] we say that a role conjunction r1 ∩ . . . ∩ rn ∩ s−
1 ∩ . . . ∩ s−

m occurs in a
conjunctive query q if we can find two variables v and v from Var(q) for which equations

{r ∈ NR | r(v, v′) ∈ q} = {r1, r2, . . . , rn} and {s ∈ NR | s(v′, v) ∈ q} = {s1, s2, . . . , sm}

hold. Similarly, we speak about concept and role names that occur in the query q. Note that the role
conjunctions, concept and role names that are used in Definition 4.14 occur in q. We can first show:

Lemma 4.26 Let N, Θ, q, and ΠN
q be as in Definition 4.25, and let m := |Var(q)|. Then there are

at most (|q|2 · m2 · 22m) · |N|4 ⊆-minimal (N, Θ)-spoilers KW

ΠN
q

for ΠN
q , and each of them is of size

at most linear in |q|. Moreover, the set of all ⊆-minimal (N, Θ)-spoilers can be enumerated in time
polynomial w.r.t. (|q|2 · m2 · 22m) · |N|4.

Proof sketch. The number of queries in axioms from Item (A) of Definition 4.25 is bounded
by the total number of subsets of Var(q) (thus 2m), and every such axiom is of size linear
in |q| (Corollary 3.7). The number of axioms from Item (B) of Definition 4.25 can clearly be
bounded by |q| · |N|, and every such axiom is of constant size. Similarly, the number of axioms
from Item (C) of Definition 4.25 can clearly be bounded by |q| · |N|2, and every such axiom
is of constant size. Finally, we see that the choice of a, xi and its root variable, and a subset
of variables from Var(q) completely determines the axiom Item (D) of Definition 4.25 (note
that the role conjunction present there occurs in q). Reasoning analogously to the first case,
we can bound the total number of such axioms by |N| · m2 · 2m and bound their sizes by some
function linear in |q|. We are done by simplifying (2m) · (|q| · |N|) · (|q| · |N|2) · (|N| · m2 · 2m).
The enumeration of ⊆-minimal spoilers can be done by enumerating axioms from each of the

cases from Definition 4.25 relying on Corollary 3.7 to construct “rolling-up” concepts.

By collecting spoilers for all possible splittings we obtain super spoilers. The first part of their definitions
ensures that super spoilers “spoil” compatibility of all possible splittings, while the second part of the
definition keeps sizes of super spoilers under control (and suggests a way of their construction).

Definition 4.27 Let (N, Θ, q) be as in Definition 4.25. We say that an ALCΘ∩-KB KW
⋆

q is an (N, Θ)-
super-spoiler for q if for all Θ-fork-rewritings q′ of q and for all (N, Θ)-splittings ΠN

q′ of q′ we
have that KW

⋆

q is an (N, Θ)-spoiler for ΠN
q′ . Moreover, we require that KW

⋆

q is functional, i.e. for
every axiom α present in KW

⋆

q there exists a Θ-fork-rewriting q′ of q and an (N, Θ)-splitting ΠN
q′ such

that {α} is an (N, Θ)-spoiler for ΠN
q′ of the form mentioned by Items (A)–(D) of Definition 4.25.

“Functionality” in the above definition is intended to play the role analogous to “⊆-minimality”.
Checking whether a super-spoiler does not contain a super-spoiler as a strict subset is however, costly.

The forthcoming lemmas show that the existence of an (N, Θ)-super-spoiler indeed “spoils” the (finite)
entailment of an input conjunctive query over (finite) (|q|, N, Θ)-forests. Consult the following lemmas.

Lemma 4.28 Let (N, Θ, q) be as in Definition 4.25, and let I be a (|q|, N, Θ)-forest. Then I ̸|= q
implies the existence of a (N, Θ)-super-spoiler KW

⋆

q for q for which I |= KW
⋆

q .

Proof. We inductively construct a sequence K0 := ∅, K1, . . . of ALCΘ∩-KBs converging to an
(N, Θ)-super-spoiler for q. To do so, we first fix some ordering on pairs Pi := (q′, ΠN

q′) of Θ-fork
rewritings q′ and (N, Θ)-splittings of q′, and then proceed inductively with the i-th such pair.
Note that ΠN

q′ is not compatible with I. Indeed, Lemma 4.15 would then imply I |= q. Thus,
there is at least one item of Definition 4.14 that is violated and there exists the corresponding
axiom α for which I ̸|= α holds. Let β be the corresponding “negated” axiom from Defini-
tion 4.25. We put Ki := Ki−1 ∪ {β}. From the definition of a spoiler and by construction,
we see that Ki is an (N, Θ)-spoiler for Pi as well as for all previous pairs. Moreover, I |= β.
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There are only finitely many pairs Pi to consider, hence we can take KW
⋆

q to be the last knowl-
edge base on the list. Clearly I |= KW

⋆

q , and thus KW
⋆

q is the desired (N, Θ)-super-spoiler for q.

Lemma 4.29 Let (N, Θ, q) be as in Definition 4.25, and let I be a (|q|, N, Θ)-forest. Then the
existence of a (N, Θ)-super-spoiler KW

⋆

q for q for which I |= KW
⋆

q holds implies that I ̸|= q.

Proof. Take an (N, Θ)-super-spoiler KW
⋆

q for q guaranteed by the statement of the lemma. To-
wards a contradiction, suppose that I |= q. Hence, by Lemma 4.23 we infer the existence of
a Θ-fork rewriting q′ of q and an (N, Θ)-splitting ΠN

q′ of q′ that is compatible with I. By the
fact that KW

⋆

q is an (N, Θ)-super-spoiler for q we also know (by Definition 4.27) that it is a
spoiler for ΠN

q′ . This means that at least one of the conditions (A)–(D) from Definition 4.25
applied to ΠN

q′ hold, contradicting the compatibility of ΠN
q′ with I.

Relying on the presented lemmas we can provide a reduction from the (U)CQ entailment problem to
the problem of checking the existence of an (ind(K), Θ)-super-spoiler spoiling the (finite) satisfiability of K.

Lemma 4.30 Let DL be a (finitely) Θ-forest-friendly description logic extending ALCΘ∩, K be a DL-
knowledge-base and q :=

∨m
i=1 qi be a union of conjunctive queries. Then K ̸|=(fin) q if and only if for

each query qi there exists an (ind(K), Θ)-super-spoiler KW
⋆

qi
, and K ∪

⋃m
i=1 KW

⋆

qi
is (finitely) satisfiable.

Proof. Suppose K ̸|=(fin) q, and take any (finite) (|q|, ind(K), Θ)-forest model I of K that
violates q (guaranteed by Lemma 3.12). This in particular means that for each 1 ≤ i ≤ n

we have that I ̸|= qi. By Lemma 4.28 we obtain an (ind(K), Θ)-super-spoilers KW
⋆

qi
for each qi

for which I |= KW
⋆

qi
. Thus I |= K ∪

⋃
i KW

⋆

qi
, implying (finite) satisfiability of K ∪

⋃
i KW

⋆

qi
. For

the other direction, suppose that K′ := K ∪
⋃m

i=1 KW
⋆

qi
is (finitely) satisfiable. Then by Defini-

tion 3.11 we know that K′ is (finitely) Θ-coverable. Thus, by Definition 3.10 there exists a
(finite) (|q|, ind(K))-locally Θ-forest model J of K′ that covers I. After multiple applications of
Lemma 4.28 we know that J ̸|= qi for all 1 ≤ i ≤ m. Hence, J ̸|= q, concluding K ̸|=(fin) q.

4.5 Step IV: Enumerating Super-Spoilers

In this section we obtain upper bounds on the total number of super-spoilers and their sizes. We also
provide a worst-case optimal algorithm for their enumeration. We conclude by showing how these bounds
and the presented algorithm can be exponentially improved in the case of (N, ∅)-super-spoilers. Indeed:

Lemma 4.31 Let N, Θ, q be as in Definition 4.25, let m := |Var(q)|, and let SupSplN,Θ(q) denote
the set of all (N, Θ)-super-spoilers for q. We have that:

(i) |SupSplN,Θ(q)| ≤ (m3m · |N|m)(|q|2·m2·22m)·|N|4 , and
(ii) every KW

⋆

q from SupSplN,Θ(q) has size linear in (m3m · |q|) · |N|m,
(iii) the set SupSplN,Θ(q) can be enumerated in time doubly-exponential w.r.t |q|+|N|.

Moreover, given an ALCΘ∩-KB K we can verify in time exponential w.r.t |q|+|N|+|K| (but polynomial
w.r.t |N|+|K| whenever the query q is fixed) whether K is an (N, Θ)-super-spoiler for q.

Proof sketch. By “functionality” mentioned in Definition 4.27 we know that every (N, Θ)-
super-spoiler can be “over-approximated” with a function that takes a pair (q′, ΠN

q′) of a
Θ-fork-rewriting q′ of q and an (N, Θ)-splitting ΠN

q′ of q′, and returns a corresponding (N, Θ)-
spoiler. Applying Lemma 4.10, Lemma 4.13, and Lemma 4.26 we conclude that there are at
most (mm · m2m · |N|m)(|q|2·m2·22m)·|N|4 different super-spoilers. For the size of a single super-
spoiler, we proceed analogously. By the multiplication principle, a single super-spoiler has size
bounded by the total number of fork rewritings multiplied by the total number of splittings,
and multiplied by the maximal size of a single spoiler. The aforementioned lemmas together
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with the size of a single spoiler from Lemma 4.26 shows that a single super-spoiler has size at
most (mm) · (m2m · |N|m) · (c · |q|) for some constant c.
The enumeration of super-spoilers can be done by enumerating Θ-fork-rewritings (Lemma 4.10

yields an exponential function w.r.t. |q|), then enumerating the corresponding splittings
(Lemma 4.13 yields an exponential function e(|q|, |N|) that becomes polynomial when q is
fixed), and then selecting a single corresponding spoiler (Lemma 4.26 gives a polynomial algo-
rithm w.r.t. (|q|2 · m2 · 22m) · |N|4). A possible implementation would be simply to enumerate
all bit-strings of length [(mm · m2m · |N|m)] · log2((|q|2 · m2 · 22m) · |N|4) that encode, per each
fork-rewriting and splitting, an index of the selected spoiler. Hence, the enumeration process
can be done in time exponential w.r.t [(mm · m2m · |N|m)] · log2((|q|2 · m2 · 22m) · |N|4), and thus
doubly-exponential w.r.t. |q|+ |N|. Finally, to check whether a given ALCΘ∩-KB K is a (N, Θ)-
super-spoiler, we can enumerate all Θ-fork-rewritings, all corresponding (N, Θ)-splittings, and
all corresponding (N, Θ)-spoilers and check if some o of them appear in K (this step can be done
in time linear in |K|, the running times of the other steps are specified above). The running time
of this algorithm is bounded by the product of the running times of each of its components.

This concludes the case of (N, Θ)-super-spoilers for Θ ̸= ∅. Relying on the notion of maximal ∅-fork
rewriting and work by Lutz [Lut08b, Lemma 4–5], we will exponentially improve the bounds from Lemma 4.31.

Definition 4.32 Let q be a CQ, and q⋆ be the maximal ∅-fork-rewriting of q, and let Reach(v) denote
the set all variables from q⋆ that are ∅-reachable from v in Iq⋆ . We define QTree(q) as the set of
all ∅-tree-shaped queries obtained by selecting any variable v of q⋆ and restricting q⋆ to Reach(v).
In symbols:

QTree(q) :=
{

q⋆↾Reach(v) | v ∈ Var(q⋆), q⋆↾Reach(v) is ∅-tree-shaped
}

.

Clearly |QTree(q)| is polynomial w.r.t |maxfr(q)|, and thus also in |q|. As it turns out, only trees from
QTree(q) are relevant for (N, ∅)-super-spoilers, as illustrated by the following Lemma 4.33.

Lemma 4.33 Let N and q be as before, q′ be a ∅-fork-rewriting of q, ΠN
q′ := (Roots, name, SubTree1, . . . ,

SubTreen, root-of, Trees) be an (N, ∅)-splitting of q′. Moreover, let q′
1, q′

2, . . . , q′
k be the disconnected

components of q′↾Trees, and x1
r , x2

r , . . . , xn
r be the root variables of the corresponding ∅-tree-shaped

queries q′↾SubTreei
. The following hold true:

(i) q′
i belong QTree(q) for all 1 ≤ i ≤ k,

(ii) q′↾SubTreei
belong QTree(q) for all 1 ≤ i ≤ n, and

(iii) the role conjunctions
⋂

{r | r(root-of(i), xi
r) ∈ q′} occur in maxfr(q).

Proof sketch. A notational variant of a proof by Lutz [Lut08b, Lemma 4] following his naming
convention [Lut08b, Appendix A] Watch out! There is a glitch in Lutz’s proof. In the induc-
tive assumption no. 4, there should be {v, v′} ≠ {v, v′}∩Sj ̸= ∅ rather than {v, v′}∩Sj ̸= ∅.

We can now invoke Lemma 4.33 to describe the shapes of (N, ∅)-super-spoilers more carefully.

Lemma 4.34 Let N ⊆ NI be finite, q be a CQ, and let KW
⋆

q be an (N, ∅)-super-spoiler for q. Then
all the axioms contained in KW

⋆

q are of one of the following forms:
(A′) ⊤ ⊑ ¬Matchq̂ for some ∅-tree-shaped query q̂ ∈ QTree(q),
(B′) ¬A(a) for some name a ∈ N and a concept name A occurring in maxfr(q),
(C′) ¬r(a,b) for some names a,b ∈ N and a role name r occurring in maxfr(q),
(D′) (¬∃ (s1 ∩ s2 ∩ . . . ∩ sk) .Matchq̂) (a) for some ∅-tree-shaped q̂ ∈ QTree(q), name a ∈ N, and a

role conjunction s1 ∩ s2 ∩ . . . ∩ sk that occurs in maxfr(q).
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Proof. Take any (N, ∅)-super-spoiler for q, and let α be any of its axioms. We show that α is
of the shape mentioned above. If α is of the form of Item (B) or Item (C) of Definition 4.25
we are done by the fact that (1) if r or A occurs in q then it also occurs in the maximal ∅-fork-
rewriting, and (2) name assigns values from N. If α is of the form of Item (A) of Definition 4.25
we simply invoke Lemma 4.33. Applying all mentioned arguments we are also done with the
case when α has the form from Item (D) of Definition 4.25.

Finally, we employ Lemma 4.34 to provide the analogue of Lemma 4.31 and conclude the section.

Lemma 4.35 Let N, q, and m be as in Lemma 4.31. We have that:
(i) |SupSplN,∅(q)| is exponential w.r.t |q|+|N|,

(ii) every KW
⋆

q from SupSplN,∅(q) has size polynomial w.r.t |q| + |N|, and
(iii) the set SupSplN,∅(q) can be enumerated in time exponential w.r.t |q|+|N|.

Moreover, given an ALC∩-KB K we can verify in time exponential w.r.t |q|+|N|+|K| whether K is
an (N, ∅)-super-spoiler for q (and in time polynomial w.r.t |N| + |K| if the query q is fixed).

Proof sketch. The set |QTree(q)| is bounded polynomially in |q|, and clearly can be computed
in time polynomial w.r.t. |q|. The same holds for the maximal ∅-fork-rewriting q⋆ of q. To
bound the size of (N, ∅)-super-spoilers and their total number, we invoke Lemma 4.34 and see
that the total number of such axioms can be bounded, respectively, by |QTree(q)|, |q| · |N|,
|q| · |N|2 and |q| · |QTree(q)| · |N|. For their sizes, we simply invoke the fact that all “rolling-up”
concepts are of polynomial size are w.r.t |q| (see also Corollary 3.7).
We enumerate (N, ∅)-super-spoilers by enumerating all ALC∩-KBs containing only the axioms

stated in Lemma 4.34 (requires time exponential in |N| + |q| by selecting appropriate atoms
from the query q⋆ or “rolling-up” concepts obtained from ∅-tree-shaped queries from QTree(q)).
To check if a knowledge-base K is indeed an (N, ∅)-super-spoiler, we iterate through all ∅-fork-
rewritings with Lemma 4.10 (there are only mm of them), and all (N, ∅)-splittings for them
(in time guaranteed by Lemma 4.13). Then we apply the definition of (N, ∅)-spoilers to check
if the considered knowledge-base indeed blocks the splitting, which can be performed, after
fixing an N-spoiler and an N-splitting, in polynomial time w.r.t |q|+|N|+|K|. The execution
times are multiplied, so the overall algorithm works in time exponential in |N|+|q|.

4.6 Step V: The Algorithm

We are now ready to present a meta-algorithm for deciding the (finite or unrestricted) entailment problem
for unions of conjunctive queries over (finitely) Θ-forest-friendly description logics extending ALCΘ∩. This
yields optimal algorithms for (finitely) Θ-forest-friendly DLs with ExpTime-complete (finite) satisfiability
problem. We present a pseudocode below, and then establish its correctness.

Procedure 3: (Finite) UCQ entailment over (finitely) Θ-forest-friendly DLs extending ALCΘ∩.
Input: UCQ q :=

∨m
i=1 qi and DL-KB K, where DL ∈ CΘfr (and DL ∈ C fin

Θfr in the finite case).
1 If K is not (finitely) satisfiable return True. // Checkable in SATDL(|K|)).
2 foreach selection of (ind(K), Θ)-super spoilers KW

⋆

q1
, . . . , KW

⋆

qm
for q1, . . . , qm

// In expexp(|ind(K)|+|q|) by Lemma 4.31 but in exp(|ind(K)|+|q|) for empty Θ by Lemma 4.35.

3 do
4 If K ∪

⋃
i KW

⋆

qi
is (finitely) satisfiable return False.

// In SATDL(exp(|K| + |q|)) by Lemma 4.31 but in SATDL(poly(|K| + |q|)) by Lemma 4.35 for empty Θ.

5 return True.

In the following lemma we establish correctness of the presented algorithm.
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Lemma 4.36 Procedure 4 returns True if and only if K |=(fin) q. Moreover, there exists a polynomial
function poly, an exponential function exp, and a doubly-exponential function expexp, for which
Procedure 4 can be implemented to work in time expexp(|K| + |q|) · SATDL(exp(|K|+|q|)) for non-
empty Θ and in time exp(|K| + |q|) · SATDL(poly(|K|+|q|)) for empty Θ, where SATDL denotes the
worst-case optimal running time of the (finite) satisfiability problem for DL-KBs.

Proof. For the first statement of the lemma we consider the following cases. If K is not
(finitely) satisfiable then it entails every query. Our procedure returns True in this case. If K is
(finitely) satisfiable but does not (finitely) entail q, then by Lemma 4.30 there are (ind(K), Θ)-
super-spoilers KW

⋆

qi
for qi such that K ∪

⋃
i KW

⋆

qi
is (finitely) satisfiable and hence, the fourth

line of the algorithm returns False. Otherwise, K is (finitely) satisfiable and (finitely) en-
tails q. Thus again, by lemma 4.30, there are no such (ind(K), Θ)-super-spoilers and so the
(finite) satisfiability test in the 4th line of Procedure 4 will never succeed. Hence, the 5th
line will be executed, returning True. The second part of the lemma follows by multiplying
running times of each component of the algorithm, stated in Lemma 4.31 and Lemma 4.35.

Relying on the above lemma, we conclude our main theorem of this chapter.

Theorem 4.37
Let DL be any (finitely) Θ-forest-friendly DL DL, extending ALCΘ∩, that has the (finite) DL-KB-
satisfiability problem decidable in time SATDL(·). Then there exists a polynomial, an exponential, and
a doubly-exponential function poly, exp, and expexp, such that the (finite) UCQ-entailment problem
over DL-KB is decidable, for an input DL-KB K, and a UCQ q, in time bounded by

• expexp(|K| + |q|) · SATDL(exp(|K|+|q|)) if Θ is non-empty, and
• exp(|K| + |q|) · SATDL(poly(|K|+|q|)) if Θ is empty.

The most important application of our work is when the (finite) knowledge base satisfiability problem
for DL is ExpTime-complete. Then the function exp(|K|+ |q|) ·SATDL(poly(|K|+|q|)) reduces to a single
exponential, and hence, we have the following corollary (where the matching lower bounds follow either from
ALC [Sch91, Prop. 3], or from querying ALCI [Lut08a, Thm. 2] and ALCSelf [BR22, Thm. 8.2]).

Corollary 4.38
Let DL be as in Theorem 4.37 and assume that it has ExpTime-complete (finite) knowledge-base
satisfiability problem. Then the (finite) UCQ entailment problem over DL-KBs is 2ExpTime-
complete for non-empty Θ and ExpTime-complete for empty Θ.

As the last remark: any positive existential query q can be transformed into a UCQ
∨

i qi, in which the
total number of queries is exponential w.r.t |q|, but the size of each qi is only polynomial w.r.t |q|. Thus
the 2nd step of Procedure 4 can be implemented to work in time doubly-exponential w.r.t |q|+|N|. This
yields us 2ExpTime upper bound for (finite) PEQ-entailment over any logics mentioned in Corollary 4.38.
The matching lower bound holds already for ALC [Ov14, Thm. 1].

Corollary 4.39
For any description logic DL satisfying conditions from Corollary 4.38 we have that the (finite) PEQ
entailment problem over DL-KBs is 2ExpTime-complete.

By reasoning in a similar way, one can obtain similar results for the query entailment problem for the
case when the size of the problem is measured in terms of data complexity. We present the algorithm first.
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Procedure 4: (Finite) UCQ non-entailment over (finitely) Θ-forest-friendly DLs ext. ALCΘ∩.
Input: ABox A.
Fixed: A UCQ q :=

∨m
i=1 qi and an DL-TBox T , where DL ∈ CΘfr (DL ∈ C fin

Θfr in the finite case).
1 Guess (ind(A), Θ)-super spoilers the queries KW

⋆

q1
, . . . , KW

⋆

qm
for q1, . . . , qm. // In NP by Lemma 4.31.

2 If K ∪
⋃

i KW
⋆

qi
is (finitely) satisfiable return False and return True otherwise.

// Data-complexity the same as for checking the (finite) satisfiability of K.

After reading the above algorithm, the following theorem follows quite easily.

Theorem 4.40
Suppose that DL is a (finitely) Θ-forest-friendly description logic that extends ALCΘ∩ and has
NP-complete (in terms of data-complexity) satisfiability problem. Then the (finite) PEQ-entailment
problem over DL-KB (in terms of data-complexity) is coNP-complete.

Proof sketch. Correctness of Procedure 4 can be shown as in the proof of Lemma 4.36, while
the bounds on the running time of the algorithm follow from the NP-completeness of the sat-
isfiability problem for DL, and coNP-hardness result for ALC by Schaerf [Sch93, Thm. 3.2].
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Motivation and Our Contribution

In recent years, it has become apparent that various modelling features of DLs affect the complexity of
conjunctive query entailment in a rather strong sense. Let us focus on the most popular DL, namely ALC.
It was first shown independently by Ortiz et al. [OvE08, Thm. 6] and by Lutz [Lut08a, Thm. 2] that CQ
entailment is exponentially harder than the consistency problem for ALC extended with inverse roles (I).
Shortly after, a combination of transitivity and role hierarchies (SH) was shown as another culprit of
higher worst-case complexity of reasoning [ELOv09, Thm. 1]. Finally, also nominals (O) turned out to
be problematic [NOv16, Thm. 9]. Nevertheless, there are also more benign DL constructs regarding the
complexity of CQ entailment. Examples are counting (Q) [Lut08b, Thm. 1] (the complexity stays the same
even for expressive arithmetical constraints [BBR20, Thm. 21]), role-hierarchies alone (H) [EOv12, Cor. 3]
or a tamed use of higher-arity relations [Bed21a, Thm. 20]. Despite the considerable effort in establishing
the complexity of the query entailment problem over ALC extended with various primitive features, for
many of the extensions the precise computational complexity is still unknown. To be more precise, the
complexity of CQ entailment problem for ALC extended with any of safe-boolean role combinations (b),
transitive closure of roles (·+), regular role expressions (·reg), fixed points (µ), or the self operator (Self)
was not known. Doubly-exponential upper bounds for querying any of the mentioned logics follow from
existing results, e.g. from the results on the Z family of DLs [CEO09] or from the results on the guarded-
negation fixpoint logic [BtCS15]. However, it is not at all clear whether such complexity bounds are tight.
And even more intriguingly, we do not know whether the previously established upper bounds for CQ
entailment can be adapted to a slightly more general class of queries, namely to the case of entailment of
unions of conjunctive queries (UCQs). While it is known that for the case of ALCH, the complexities of
querying with CQs and UCQs coincide [Ort10, Thm. 6.5.1], the case of ALCQ is not yet resolved. There
is no reason to believe that for some DL the complexity of UCQ entailment differs from the complexity of
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UCQ entailment, but jumping to the class of even more expressive queries, like positive existential queries
(PEQs) or conjunctive regular path queries (CRPQs) result in an increase of complexity [Ov14, Thm. 1].

The aim of this section is to provide robust answers to the questions above, and more generally,
to clarify why the query entailment problem for certain extensions of ALC is computationally harder
than their knowledge base satisfiability problem while for others the complexities coincide. Recall that in
Section 3.3 we introduced the broad class of (finitely) Θ-forest friendly description logics, and in Section 4.6
we provided an efficient algorithm for query entailment over such logics. Unfortunately, the definition of
Θ-forest friendly DLs (Definition 3.11) is quite involved and it is not a priori clear how to check whether
a freshly defined logic is or is not (finitely) Θ-forest friendly. To simplify checking forest-friendliness, we
propose several sufficient conditions based on novel model-theoretic notions of unravellings or “pumping”.
With such conditions in hand and a bit of luck, the relatively tedious task of deciding forest-friendliness
boils down to routine proofs involving structural induction. What is more, each of our constructions is
supplemented with a handy list of properties preserved by our unravellings or pumping, that can simplify
such reasoning even further. Together with a novel lower bound for ALCSelf tackled in the next section,
our results yield a complete classification of the “querying-satisfiability trade-off” for ALC extended with
popular primitive1 features. This is summarised by the table below; references for logics having harder
query entailment than satisfiability were given above.

Feature θ with name ALCθ∩ ∈ C∅fr? SAT=CQEnt?
functionality F and various counting: N /Q/SCC
trans. closure ·∗, regular expr. ·reg, fixed-points µgood

role hierar. H, safe boolean comb. of roles b
[new!]

inverses of roles I
nominals Obad

transitivity S, complex role inclusions R
bad self-loops Self [new!]

The features F , N , Q, H and b are subsumed by SCC, while ·∗ and ·reg are subsumed by µ [BCM+03,
p. 204]. Hence, µALCSCC is a super-logic that comprises all the positive features together.

Overview of the Chapter and Prerequisites

We assume familiarity with Chapter 3 and its prerequisites. Material from Chapter 4 is not required.
Our agenda is as follows. In Sections 5.1–5.3 we focus on ∅-forest-friendly logics, and in Section 5.4 we

focus on Θ-forest-friendly logics for Θ containing the “inverse-role” feature I. We first introduce a concept
of forward unravellings that turn interpretations into (usually infinite) ∅-forests. If the satisfaction of
DL-KBs is preserved under such unravellings, then DL is ∅-forest-friendly. To obtain suitable conditions
in the finite model reasoning scenario, we develop the notion of scattered forward unravellings. Their main
advantage is that the scattered forward unravellings of finite interpretations are indeed finite whilst from
the queries’ view point they are indistinguishable from infinite ∅-forests. We conclude that DL is finitely
∅-forest-friendly whenever the satisfaction of any DL-KB is preserved under scattered forward unravellings.
Then we discuss the case of logics expressing statistical constraints over the domain, and see how the
notion of scattered forward unravellings can be adjusted to them. We conclude with an appropriate model
transformation2 that transforms (finite) interpretations into ones that are locally-Θ-forest-like (for Θ
containing I). This generalises the model-pumping construction by Baader et al. [BBR19, Sec. 5.2] and
significantly simplifies developments of Ibáñez-Garćıa et al. [ILS14, Sec. 3] and Otto [Ott12, Sec. 3.2].

1Note that we do not consider role axioms like role disjointness or reflexivity from SROIQ [HKS06] as primitives, as
they can be expressed with other features.

2Developed after a series of email exchanges with Ian Pratt-Hartmann, and is also included in his recent book [PH23].
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5.1 Forward Unravellings

Forward unravellings make interpretations ∅-forest-shaped. Such a notion differs only slightly from classical
unravellings [BHLS17, Def. 3.21]. The crucial difference is that forward unravellings preserve substruc-
tures induced by the selected named individuals. More precisely, the sequences starting with two named
individuals are excluded from the domain and roles linking named individuals are assigned “manually”(cf.
the last item from Definition 5.1). Before reading the definition we suggest consulting Figure 5.1.

Definition 5.1 Let N ⊆ NI be a non-empty set of names. An N-rooted forward unravelling of
an interpretation I is an interpretation I #‰ω

N := (∆I
#‰ω

N , ·I
#‰ω

N ) satisfying all four conditions below:
1. The domain of I #‰ω

N consists of all non-empty words of elements from ∆I , except those, where
the first two elements are named or where two consecutive elements are “disconnected”. In
symbols: ∆I

#‰ω
N := (∆I)+ \(

NI · NI · (∆I)∗ ∪ (∆I)∗ · {de | d, e ∈ ∆I , RolI(d, e) = ∅} · (∆I)∗ )
.

For convenience, we do not syntactically distinguish elements from ∆I and single-letter words
from ∆I

#‰ω
N . In particular, this means that ∆I ⊆ ∆I

#‰ω
N . We often use last, i.e. the function that

maps a sequence to its last element.
2. For all individual names a ∈ N we have aI

#‰ω
N = aI and for all other names a ∈ (NI \ N) there is

some b ∈ N fulfilling aI
#‰ω

N = bI
#‰ω

N .
3. For any concept name A ∈ NC the equality AI

#‰ω
N = {w | last(w) ∈ AI} holds.

4. For all role names r ∈ NR we define rI
#‰ω

N as the intersection of ∆I
#‰ω

N × ∆I
#‰ω

N and the set(
rI ∩ (NI × NI)

)
∪
{

(w, w · d) | (last(w), d) ∈ rI
}

.

Intuitively, the above set is composed of two parts, where the first component preserves N-named
parts, while the other one preserves roles, mimicking the classical unravelling.
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Figure 5.1: An interpretation I (left) with a fragment of its {a,b,c}-rooted forward unravelling I #‰ω
{a,b,c}

(right). Note that I #‰ω
{a,b,c} is a forest with two connected components. Nodes of the same colour satisfy the

same atomic concepts.

It is not difficult to see that forward unravellings produce forest-shaped interpretations that can be
homomorphically mapped to the original structures.

Lemma 5.2 Let I be an interpretation, N ⊆ NI be a set of names and let I #‰ω
N be any N-rooted

forward unravelling of I. Then I #‰ω
N is N-rooted ∅-forest-shaped and the function last : ∆I

#‰ω
N → ∆I is

an N-homomorphism from I #‰ω
N to I.
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Proof. I #‰ω
N is an N-rooted ∆I-∅-forest. To see that I #‰ω

N is a ∅-forest we observe that its domain
is prefix-closed (follows from Item 1 of Definition 5.1) and that it satisfies all forests’ criteria
on roles (by Item 4 of Definition 5.1). The N-rootedness follows from Item 2 of Definition 5.1.
For the second claim, it suffices to show that last satisfies every item from the definition of
a homomorphism. The preservation of individual names from N by last follows immediately
from Item 2 of Definition 5.1. Similarly, the preservation of concepts follows from Item 3 of
Definition 5.1. Lastly, to show that last preserves roles, take any two elements u, v ∈ ∆I

#‰ω
N

satisfying (u, v) ∈ rI
#‰ω

N . We aim to prove that (last(u), last(v)) ∈ rI holds. There are two cases
to consider: either both u, v are N-named or at least one of u ̸= v is not named. For the first
case, note that u, v are single elements. Thus, we infer that u = last(u) and v = last(v) hold and
by the first part of the equation in Item 4 of Definition 5.1 we conclude (last(u), last(v)) ∈ rI .
Finally, if one of u, v is not named, we have that v = u · d holds for some d ∈ ∆I . By applying
the second part of the equation in Item 4 of Definition 5.1, we infer (last(u), last(v)) ∈ rI .

This leads us to a sufficient condition for a description logic to be ∅-forest-friendly.

Definition 5.3 A description logic DL is preserved under forward unravellings if for all DL-
knowledge-bases K we have that I |= K implies I #‰ω

ind(K) |= K.

Membership of such logics to the class of ∅-forest-friendly logics follows rather immediately.

Theorem 5.4
If a description logic DL is preserved under forward unravellings then DL is ∅-forest-friendly.

Proof. By unfolding Definition 3.11 and Definition 3.10, it suffices to take any satisfiable DL-
KB K, its model I and any n ∈ N and show that there exists an (n, ind(K), ∅)-forest model
J |= K, whose all n-neighbourhoods can be ind(K)-homomorphically-mapped to I. Take J
to be I #‰ω

ind(K), and take any of its n-neighbourhoods J ′. Since last is an ind(K)-homomorphism
from J to I, it is also an ind(K)-homomorphism from J ′ to I. This concludes the proof.

We conclude by presenting several useful properties of forward unravellings that helps for a quick test
to see whether the modelhood of some knowledge base is preserved.

Property 5.5. Let I be an interpretation, let N ⊆ NI be a set of names and let I #‰ω
N be any N-rooted forward

unravelling of I. Then the following conditions are satisfied:
(A) The interpretations I and I #‰ω

N restricted to all N-named elements are isomorphic.
(B) For any concept name A ∈ NC we have that AI is non-empty if and only if AI

#‰ω
N is. Similarly, for any

role name r ∈ NR we have that rI is non-empty if and only if rI
#‰ω
N is.

(C) For any w ∈ ∆I
#‰ω
N we have ConcI(last(w)) = ConcI #‰ω

N
(w). Moreover, for all v satisfying (w, v) ∈ rI

#‰ω
N

for some r ∈ NR, we have RolI(last(w), last(v)) = RolI #‰ω
N

(w, v).

(D) For any w ∈ ∆I
#‰ω
N we have that w in I #‰ω

N and last(w) in I have the same number of successors satisfying
the same roles and concepts. Formally, for any non-empty set of role names R ⊆ NR and any set of
concept names C ⊆ NC we have that the cardinalities of the two sets below coincide:{

v ∈ ∆I
#‰ω
N | ConcI #‰ω

N
(v) = C and RolI #‰ω

N
(w, v) = R

}
,{

e ∈ ∆I | ConcI(e) = C and RolI(last(w), e) = R
}

.

(E) For any w ∈ ∆I
#‰ω
N we have that w and last(w) are directed-path-equivalent, meaning that:



5.1. Forward Unravellings 59

• If ρ with ρ1 := w is a (possibly infinite) directed path in I #‰ω
N then ρ′, defined as ρ′

i := last(ρi) for
all i, is a directed path in I such that for all i we have ConcI #‰ω

N
(ρi) = ConcI(ρ′

i), and for all i > 1
we have RolI #‰ω

N
(ρi−1, ρi) = RolI(ρ′

i−1, ρ′
i).

• If ρ with ρ1 := last(w) is a (possibly infinite) directed path in I then ρ′ defined as:
(i) ρ′

1 := w, and
(ii) ρ′

i := ρi if both ρ′
i−1 and ρi are N-named, and ρ′

i := ρ′
i−1ρi otherwise for all remaining i,

is a directed path in I #‰ω
N such that for all i we have ConcI #‰ω

N
(ρ′

i) = ConcI(ρi), and for all i > 1
we have RolI #‰ω

N
(ρ′

i−1, ρ′
i) = RolI(ρi−1, ρi).

Proof. We will proceed with each of the items separately.
(A) The last function restricted to NI , is actually the identity function, so it suffices to show

that it is also a homomorphism. This already follows from Lemma 5.2.
(B) For the first part, take any element d ∈ CI . Then d ∈ CI

#‰ω
N . Similarly, if w ∈ CI

#‰ω
N then

last(w) ∈ CI . Hence CI is non-empty if and only if CI
#‰ω

N is. For the second part, let
us take (d, e) ∈ rI . Then if both d, e are N-named, then by construction (d, e) ∈ rI

#‰ω
N .

Otherwise we have that (d, de) ∈ rI
#‰ω

N . For the other direction assume that (w, v) ∈ rI
#‰ω

N

holds. Then we again distinguish two cases: if both w, v are N-named then w, v ∈ ∆I

and we infer (w, v) ∈ rI by the manual assignment of roles between named elements.
Otherwise by definition we have (last(w), last(v)) ∈ rI , yielding the desired equivalence.

(C) Depending on whether both w and v are N-named or not, the result follows either from
the first or from the second part of the equation in Item 4 of Definition 5.1. The equality
between ConcI(last(w)) and ConcI #‰ω

N
(w) follows from Item 3 of Definition 5.1.

(D) Fix C, R, w and d := last(w) as in the statement of Property 5.5. We first show that last
is a bijection between the sets last[A] := {last(v) | v ∈ A} and A defined below:{

v ∈ ∆I
#‰ω

N | C = ConcI #‰ω
N

(v) and R = RolI #‰ω
N

(w, v)
}

,

Surjectivity is obvious, so we focus on injectivity only. Take any u, v ∈ A that are mapped
to the same element by last. This implies that u = u0e and v = v0e for some (possibly
empty) words u0, v0 ∈ (∆I)∗ and e ∈ ∆I . There are three cases to consider:

• Both u0, v0 are non-empty. Then u0, v0 are equal to w as (w, v) ∈ rI
#‰ω

N for some r ∈ R
and the second part of the equation in Item 4 of Definition 5.1 holds. Thus u = v.

• Both u0, v0 are empty. Then obviously v = u holds.
• One of u0, v0 is empty and the other one is not. W.l.o.g assume u0 = ε and v ̸= ε.

Then by construction of I #‰ω
N (more precisely the first part of the equation in Item 4

of Definition 5.1) we infer that w is N-named and that u is N-named, and that
both w and u are single-element sequences. Since v has length at least two, it is
not named. Thus by the second part of the equation in Item 4 of Definition 5.1, we
infer w = v0. But this means that v is a two-element sequence composed of N-named
elements, which were excluded from the domain of I #‰ω

N , cf. Item 1 of Definition 5.1.
A contradiction. So such a case is not possible.

Thus last is indeed a bijection between A and last[A].
Our next claim is that the identity function is the bijection between last[A] and B given
below. From that we conclude |A| = |B| (and thus the whole proof) by transitivity of =.

B :=
{

e ∈ ∆I | C = ConcI(e) and R = RolI(last(w), e)
}

.

We show that last[A] ⊆ B and B ⊆ last[A]. The first inclusion follows from the way we
defined roles in the unravelling, cf. Item 4 of Definition 5.1. For the other inclusion we
distinguish the cases depending on whether w is N-named or not.

• w is not N-named.
Take any e ∈ B. Then we have (d, e) ∈ rI for some r ∈ R, and hence we have that
(w, we) ∈ rI

#‰ω
N (by the second item of Item 4 of Definition 5.1). Applying Item (C)

of Property 5.5 we infer that e ∈ A, and thus e ∈ last[A].
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• If w is N-named, then w = d.
Again, take any e ∈ B. Then we have (d, e) ∈ rI for some r ∈ R. If e is N-named then
e is also N-named in I #‰ω

N (by Item 2 of Definition 5.1). Thus, by the first part of the
equation in Item 4 of Definition 5.1, we know that (d, e) = (last(w), last(e)) belongs
to rI

#‰ω
N . By Item (C) of Property 5.5 we infer that e ∈ A, and hence e ∈ last[A].

Otherwise, if e is not N-named, we apply the same reasoning as in the case of an
unnamed w. This concludes the proof.

(E) Immediate from Item 1 of Definition 5.1 and Item (C) of Property 5.5.

Let us explain how Property 5.5 can actually be used for freshly defined DLs.

Remark 5.6. One can employ Property 5.5 to show that forward unravellings, among other properties,
preserve: satisfaction of ABoxes (via Item (A)), existence of “unary-types” and “role-types” (via Item (B)),
cardinality constraints on the total number of successors (via Item (D)), role hierarchies and safe boolean
role combinations (via Item (C)), regular role expressions and fixed points (via Item (E)). The later can be
shown by induction on the complexity of the formula and fixed-point approximations [BW18, p. 5]. It is an
exercise to see that our unravellings usually do not preserve inverse roles, nominals, transitivity or self-loops.

Hence, as a corollary we can infer:

Corollary 5.7
Let Θ be any set of features from Θ ⊆ {H, b, F , N , Q, SCC, reg, µ}. Then ALCΘ has an ExpTime-
complete satisfiability problem, and is preserved under forward unraveling. Hence, the entailment
problem for UCQs over ALCΘ-knowledge-bases is also ExpTime-complete.

Proof. It suffices to establish the result for µALCSCC as it combines all the features mentioned
above. First, µALCSCC can be quite easily encoded into the graded µ-calculus with polynomial
inequalities [HS22, Ex. 2.1(5)] (that subsumes Presburger µ calculus, a notational variant of
µALCSCC), for which the knowledge base problem is ExpTime-complete: it follows by a com-
bination the result by Kupke et al. [KPS22, Thm. 8.7] and the ExpTime-completeness of the
so-called strict one-step satisfiability problem shown by Hausmann et. al [HS22, Remark 4.5].
Second, the fact that µALCSCC is preserved under forward unraveling follows by Remark 5.6.
Thus, by Theorem 5.4 we know that µALCSCC is ∅-forest-friendly. Hence, by Corollary 4.38
we conclude ExpTime-completeness of its query entailment problem.

5.2 Scattered Forward Unravellings

For a certain class of logics, namely for DLs preserved under forward unravellings, forward unravellings
produce ∅-forest (counter)models out of (possibly) non-forest ones. The presented construction is sufficient
to employ Lutz’s spoiler method (described in Chapter 4) over the class of arbitrary structures, but it
is useless once we want to achieve results in the finite-model scenario. The reason is trivial: forward
unravellings of finite interpretations are nearly always infinite. To find a suitable counterpart of forward
unravellings in the finite realm, we design the notion of scattered forward unravellings. Its aim is, given
a threshold n, a set of names N, and a finite interpretation I, to turn I #‰ω

N into a finite (n, N, ∅)-forest
(consult again Definition 3.8 if needed). The construction is a little bit involved and relies on cutting out
finitely many tree-like components from I #‰ω

N and then glueing them together mimicking “parent-to-leaf
connections”, so that any neighbourhood of size n from the desired structure is homomorphically-equivalent
to some n-neighbourhood from the forward unravelling. The novel model construction presented here
took some inspiration from similar constructions, namely the ones by Bednarczyk and Kieroński [BK22,
Sec. 3], by Otto [Ott04, Sec. 4.2], and by Emerson and Halpern [EH85, Sec. 3.5].

We start the construction by defining basic building blocks, called here the components.
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Definition 5.8 Fix a number n ∈ N, a finite set of names N ⊆ NI and a finite interpretation I whose
domain is linearly ordered. We are going to select certain auxiliary substructures of I #‰ω

N .
• The (N, n)-king component I¬ of I is obtained from I #‰ω

N by a restriction to all words from ∆I
#‰ω

N

of length at most 2n+1.
• Call d ∈ ∆I deep whenever there is a word w := u · d in ∆I

#‰ω
N such that |u| > n. The

lexicographically smallest such word w is called the deep realisation of d. The (N, n)-pawn
component I®,d of a deep element d is obtained by restricting I #‰ω

N to all words of the
from w · v, where w is the deep realisation of d and |v| ≤ 2n.

Consult Figure 5.2 for a visualisation. We use I (n, N, I) to denote the set of all components of I, and
L(n, N, I) to denote the maximal number of leaves among all components in I (n, N, I). We assign
a number 1 ≤ ℓ ≤ L(n, N, I) to any leaf in any component of I (n, N, I) and refer to it as this
component’s ℓ-th leaf. For future purposes, we define a function origI #‰ω

N
: (
⋃

I (n, N, I)) → I #‰ω
N that

maps an element from any component to the element from whom it originated. We also employ a
mapping origI that maps elements d to last(origI #‰ω

N
(d)), i.e. origI := origI #‰ω

N
◦ last.

I¬

I #‰ω
N :=

I®,c

I®,d

I®,e

Figure 5.2: Visualization of the selection of components out of the forward unravelling of I.

The king component I¬ is simply the forward unravelling cut off after 2n+1 steps, while each pawn
component I®,d is a subtree of depth 2n rooted at some deep enough copy of some element of ∆I .
We stress that I¬ is a finite N-rooted ∅-forest, while all I®,d are ∅-trees.

Definition 5.9 Take (n, N, I) as in Definition 5.8. The set J (n, N, I) of copies of components is
composed of the king component I¬ from I (n, N, I) and isomorphic copies I(ℓ,s)

®,d,h of pawn compo-
nents I®,d from I (n, N, I) that are indexed by: a deep element d ∈ ∆I , h ∈ {0, 1}, 1 ≤ ℓ ≤ L(n, N, I),
and s ∈

(
∆I ∪ {¬}

)
, that are called, respectively, the target, the hue, the leaf number, and the source

of a component. We often employ ∗ that serves as a wildcard which can be used in place of various
parameters, whenever such parameters are of no importance. For convenience, we will also speak
about the “hue” of a domain element, meaning the “hue” of the unique copy of the pawn component
to which such an element belongs.

The main idea behind the quite loaded notation of I(ℓ,s)
®,d,h is that the root of I(ℓ,s)

®,d,h “can serve as a
d-witness for the ℓ-th leaf of any copy of I®,s of hue 1−h”. Note that it follows immediately from finiteness
of ∆I and n, that the set J (n, N, I) is finite.

We are finally ready to present the definition of n-scattered forward unravellings.

Definition 5.10 Let (n, N, I) are as in Definition 5.8. The (n, N)-scattered-forward-unravelling I #‰n
N

is obtained by taking the disjoint sum of structures from J (n, N, I), and then extending the inter-
pretation of each role name r , with a (u, v) of I #‰n

N , whenever (origI(u), origI(v)) ∈ rI and either
(i) u is the ℓ-th leaf of I¬, and v is the root of I(ℓ,¬)

®,origI(v),0, or

(ii) u is the ℓ-th leaf of I(∗,∗)
®,e,h for some e ∈ ∆I and h ∈ {0, 1}, and v is the root of I(ℓ,e)

®,origI(v),1−h.
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I¬

I(ℓ,¬)
®,d,0

ℓ

ℓ

I(∗,∗)
®,e,h

I(ℓ,e)
®,d,1−h

d

e d

Figure 5.3: Linking components in the construction of (n, N)-scattered unravelling of I, i.e. visualisation of
cases (i) and (ii) from Definition 5.10. The left picture illustrates connections between the king component
and pawn components, while the right picture depicts connections between two pawn components.

Our next goal is to show that the aforementioned construction fulfils its purposes. i.e. that (N, n)-
scattered forward unravellings of finite structures are indeed finite (which we already discussed) and that
they are (n, N, ∅)-forests. As a preliminary step we establish the following lemma.

Lemma 5.11 Assume (n, N, I) are as in Definition 5.8. Then every undirected path in I #‰n
N leading

from a root of some pawn component to any of its leaves has length at least 2n.

Proof. Suppose that there exists an undirected path ρ := ρ1 . . . ρm in I #‰n
N of length less than 2n

for which ρ1 and ρm are, respectively, a leaf and the root of the same pawn component. Note
that ρ contains elements from at least two components, as the root-to-leaf paths in every pawn
component are of length 2n by design. Thus by the construction of I #‰n

N (especially by our way
of “linking” components in Definition 5.10) we know that one of the following cases holds for
any two consecutive elements ρi−1 and ρi of the path ρ:

• ρi−1 and ρi are in the same component,
• ρi−1 is a leaf of some pawn component, say I(∗,∗)

®,∗,h , and ρi is is the root of I(∗,∗)
®,∗,1−h, or

• ρi is a leaf of some pawn component, say I(∗,∗)
®,∗,h , and ρi−1 is is the root of I(∗,∗)

®,∗,1−h.
In particular, the above observation implies that any two consecutive elements of ρ taken
from different components are of different “hue”. Thus ρ has the shape ρ := ρ′

0d1 . . . ρ2kd2k+1,
where the even-numbered paths ρ′

2i are (possibly single-element) leaf-to-leaf paths traversing
a single component, and the odd-numbered elements d2i+1 are roots of components. But this
implies that ρ1 and ρm = d2k+1 belong to components with different “hue”, contradicting the
fact that they belong to the same component. Hence such a path ρ does not exist.

We call an n-neighbourhood safe if it is fully contained in some (copy of a) component, and unsafe
otherwise. A joint application of Lemma 5.11 and the definition of the king component, yield a general
characterisation on how n-neighbourhoods interact with components in scattered unravellings.

Lemma 5.12 With (n, N, I) as in Definition 5.8, let N be any unsafe n-neighbourhood of I #‰n
N .

Then N does not contain any N-named elements, and for all components J of J (n, N, I) sharing
an element with N , we have the following dichotomy: either N contains some leaf of J (we call such
component N -upper) or N contains the root of J (we call such component N -lower).

Proof. Let N be any unsafe n-neighbourhood of I #‰n
N . For the first property, note that if N

would contain an N-named, then by the definition of the king component (the first item of
Definition 5.8) it would be fully contained in the king component, contradicting the unsafety
of I. For the second property, suppose that J is a component that shares an element with N .
As N is unsafe, it is not fully contained in J . Thus, by the construction of cross-component
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connections (Items (i) and (ii) from Definition 5.10) we know that either N contains a leaf
or the root of J , hence J is either N -lower or N -upper. Suppose now that J is both N -
lower and N -upper. This implies that there is a path between the root of J and some of its
leaves (present in N ). As N is an n-neighbourhood, such a path is of length less than 2n. But
this is clearly not possible by Lemma 5.11. Hence, J cannot be both N -lower and N -upper.

N -upper comp.

N -lower comp.

glueing

Figure 5.4: Visualisation of N -lower and N -upper components of some n-neighbourhood N of I #‰n
N . The

right part of the picture presents the notion of glueing, to be defined later.

We next establish that all N -upper components look alike as formalised by Lemma 5.13.

Lemma 5.13 Let (n, N, I) be as in Definition 5.8, and take any unsafe n-neighbourhood N of I #‰n
N .

Then either the only N -upper component is the king component, or there exists a unique element
d ∈ ∆I such that every N -upper component is of the from I(∗,∗)

®,d,∗ . In particular, this means that all
N -upper components are isomorphic.

Proof. Let c1 and c2 be leaves from N -upper components, and let I(∗,∗)
®,e,∗ be the component

to which c1 belongs (the proof for the case when c1 is included in the king component is
completely analogous). We closely follow the proof of Lemma 5.11. Among other things, we
proved there that there is a path ρ between c1 and c2 of length at most n, having the form
ρ := ρ′

0d1 . . . ρ2kd2k+1ρ2k+2, where the even-numbered paths ρ′
2i are (possibly single-element)

leaf-to-leaf paths contained in a single component, and the odd-numbered elements d2i+1 are
roots of components. By assumption, all the elements from ρ′

0 are in I(∗,∗)
®,e,∗ . Suppose that

we have already shown that the elements of ρ′
i belong to I(∗,∗)

®,e,∗ (for parameters ∗ possibly
different from the initial ones), and let us establish the same for the elements from ρ′

i+2. Since
the elements from ρ′

i belong to I(∗,∗)
®,e,∗ , the last element of ρ′

i belongs to I(∗,∗)
®,e,∗ . By the linking

process (i.e. Item (ii) of Definition 5.10), we conclude that di+1 is the root of some I(∗,e)
®,∗,∗ . Analo-

gously, this implies that the first element of ρ′
i+2 belongs to I(∗,∗)

®,e,∗ , yielding that all the elements
of ρ′

i+2 are in I(∗,∗)
®,e,∗ . Hence, by induction, c1 and c2 belong to copies of the same component.

We would like to establish that unsafe n-neighbourhoods are homomorphically-equivalent to ∅-trees.
In the process of doing so, we define a handy operation of glueing, that, intuitively, given an unsafe compo-
nent N will collapse isomorphic components that have common elements with N into a single component.

Definition 5.14 Let (n, N, I) be as in Definition 5.8. Given an unsafe n-neighbourhood N of I #‰n
N , a

glueing glue(I) of N is defined as the restriction of N to all elements from all N -lower components
and all elements from one single N -upper component.

Note that by Lemma 5.13 all N -upper components are isomorphic copies of the same component, thus
the glueing of N is unique up to isomorphism. It follows from the construction of I #‰n

N that the glueing
of a neighbourhood N is a ∅-tree. Moreover, the identity function clearly serves a homomorphism from
glue(N ) to N . A homomorphism in the other direction is established next.
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Lemma 5.15 Let (n, N, I) be as in Definition 5.8, and take any unsafe n-neighbourhood N of I #‰n
N .

Then the glueing glue(N ) of N is a ∅-tree, homomorphically equivalent to N .

Proof. As we already discussed shortly before the proof, the fact that glue(N ) is a ∅-tree follows
from the linking process of components (Definition 5.10), and it is immediate to see that the
identity function is a homomorphism from glue(N ) to N . To craft a homomorphism from N
to glue(N ), let h be a mapping that serves as the identity function of N -lower components
and a function that maps elements from N -upper components to their corresponding ones
in the glue(N )-upper component. Note that h is well-defined as all N -upper components are
isomorphic (as provided by Lemma 5.13). Moreover, h maps ℓ-th leaves of upper components
to the ℓ-th leaf of their isomorphic copy. We would like to point out that when the only N -
component is the king component, then h is the identity function, and hence a homomorphism.
Thus for the rest of the proof we assume that all N -lower components are pawn components. To
see that h is a homomorphism, we take any pair (d, e) ∈ rN and show that (h(d), h(e)) ∈ rglue(N )

holds. Note that by construction of I #‰n
N only the following cases can occur:

• Both d, e are in the same component.
Then we either conclude by the fact that h is the identity function (the case of N -lower
components) or by the fact that any two N -upper components are isomorphic.

• The element d is a leaf of some component and e is the root of some component. Hence,
by invoking Item (i) of Definition 5.10, we know that there exists parameters ℓ and
h for which the element d is the ℓ-th leaf of I(∗,∗)

®,c,h , and c is the root of I(ℓ,c)
®,origI(e),1−h.

We actually know more: every ℓ-th leaf d′ of every I(∗,∗)
®,c,h component satisfies (d′, e) ∈ rN .

In particular, this implies that between the ℓ-th leaf d′ of the unique N -upper component
of glue(N ) and e there is an rglue(N )-role connection. Thus (h(d), h(e)) ∈ rglue(N ) holds.

This concludes the proof that h is indeed a homomorphism.

As an immediate corollary of the previous lemma we conclude the following.

Corollary 5.16
For any finite n ∈ N, any set of names N ⊆ NI, and any finite interpretation I, every (n, N)-scattered-
forward-unravelling I #‰n

N of I is (n, N, ∅)-forest.

Analogously to Definition 5.3, we can define description logics preserved under our new unravellings.

Definition 5.17 A description logic DL is preserved under scattered forward unravellings
if for all finitely satisfiable DL-KBs K, their finite models I, and for all but finitely-many positive
integers n ∈ N, the (n, ind(K))-scattered forward unravelling I #‰n

ind(K) of I is a finite model of K.

Relying on Corollary 5.16 one can finally show that any DL preserved under scattered forward unrav-
ellings is also finitely ∅-forest-friendly. The proof is nearly the same as the proof of Theorem 5.4.

Theorem 5.18
If a DL DL is preserved under scattered forward unravellings then DL is finitely ∅-forest-friendly.

Proof. Take any finitely satisfiable DL-KB K, any of its finite models I, and any positive
integer m ∈ N. It suffices to show that there exists an (m, ind(K), ∅)-forest model J |= K.
Take J := I #‰n

ind(K) for a sufficiently large n greater or equal to m. By preservation under
scattered forward unravellings, we infer J |= K. Together with Corollary 5.16 we derive that
J is a finite (n, ind(K), ∅)-forest (thus also (m, ind(K), ∅)-forest) that covers I, as requested.
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Similarly to the end of the previous section, we conclude with a list of useful properties of scattered
forward unravellings. The idea is that for future applications one can employ Property 5.19 in order to
show preservation of: satisfaction of ABoxes (via Item (A)), existence of “unary-types” and “role-types”
(via Item (B)), cardinality constraints on the total number of successors (via Item (D)), role hierarchies
and safe boolean role combinations (via Item (C)), regular role expressions and fixed points (via Item (E)).
Consult the following lemma:

Property 5.19. Assume that the parameters (n, N, I) are as in Definition 5.8 and let I #‰n
N be any (n, N)-

scattered-forward-unravelling of I. Then the following conditions are satisfied:
(A) The interpretations I and I #‰n

N restricted to all N-named elements are isomorphic.
(B) For any concept name C we have that CI is non-empty iff CI

#‰n
N is non-empty. Similarly, for any role

name r we have that rI is non-empty iff rI
#‰n
N is non-empty.

(C) For any w ∈ ∆I
#‰n
N we have ConcI(origI(w)) = ConcI #‰n

N
(w). Moreover, for all v satisfying (w, v) ∈ rI

#‰n
N

for some r ∈ NR, we have RolI(origI(w), origI(v)) = RolI #‰n
N

(w, v).

(D) For all w ∈ ∆I
#‰n
N we have that w in I #‰n

N and origI(w) in I have the same number of successors satisfying
the same roles and concepts, i.e. an analogue of Item (D) of Property 5.5 holds.

(E) For any w ∈ ∆I
#‰n
N we have that w and origI(w) are directed-path-equivalent, i.e. an analogue of Item (E)

of Property 5.5 holds.

Proof. We proceed with all items one-by-one, showing their satisfaction.
• Proof of Item (A) and Item (B) of Property 5.19.

By the construction of the king component in Definition 5.8, we see that I #‰n
N contains an

isomorphic copy of I #‰ω
N restricted to all words of length at most two. Thus by applying

Item (A) and Item (B) of Property 5.5, we are done.
• Proof of Item (C) of Property 5.19.

Take any w, v and suppose that (w, v) ∈ rI
#‰n

N holds for some r ∈ NR. By Item (C) of
Property 5.5 it suffices to show that:

ConcI #‰ω
N

(origI #‰ω
N

(w)) = ConcI #‰n
N

(w) and RolI #‰ω
N

(origI #‰ω
N

(w), origI #‰ω
N

(v)) = RolI #‰n
N

(w, v).

For the equality between sets of concepts, this follows from the fact that w is just an
isomorphic copy of origI #‰ω

N
(w), according to Definition 5.9. For the equality between sets

of roles, we consider two cases:
(a) w and v are in the same component. Then we are again done by the presence of an

isomorphism between copies and selected fragments of I #‰ω
N .

(b) w and v are in different components, implying that w is a leaf of some component,
while v is the root of some components. We then conclude by our linking process
described in Definition 5.10.

• Proof of Item (D) of Property 5.19.
Take any w ∈ ∆I

#‰n
N , non-empty set of role names R ⊆ NR, and any set of concept names

C ⊆ NC. We consider two cases. In the first one, we assume that w is a leaf of a component.
Then by Item (D) of Property 5.5 it suffices to establish a bijection between the sets{

v ∈ ∆I
#‰n

N | ConcI #‰n
N

(v) = C and RolI #‰n
N

(w, v) = R
}

, and{
v ∈ ∆I

#‰ω
N | ConcI #‰ω

N
(v) = C and RolI #‰ω

N
(origI #‰ω

N
(w), v) = R

}
,

which exists by the fact that components are isomorphic to neighbourhoods of I #‰ω
N . From

now on assume that w is not a leaf of a component. It suffices to prove that

A :=
{

v ∈ ∆I
#‰n

N | ConcI #‰n
N

(v) = C and RolI #‰n
N

(w, v) = R
}

, and

B :=
{

d ∈ ∆I | ConcI(d) = C and RolI(origI #‰ω
N

(w), d) = R
}

.
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are equicardinal. Without loss of generality let us assume that w is a member of a pawn
component (the proof for the king component is analogous), which implies that w is the
ℓ-th leaf of I(∗,∗)

®,e,h for some e ∈ ∆I and h ∈ {0, 1}. To show equicardinality of A and B,
we employ the theorem of Cantor-Bernstein. It suffices to establish that:

– origI #‰ω
N

is an injection from A to B.
The fact that origI #‰ω

N
is a function follows by the linking process of Definition 5.10.

For injectivity, it suffices to see that each v ∈ A is a root of some pawn component
I(ℓ,e)

®,∗,1−h and that per each d ∈ ∆I such a component I(ℓ,e)
®,d,1−h is unique.

– There is an injection from B to A. The mapping f that assigns to each d ∈ B the
root of I(ℓ,e)

®,d,1−h is the desired injection. The fact that f is a function follows again
from the linking process, while injectivity of f is due to the uniqueness of I(ℓ,e)

®,d,1−h.
• Proof of Item (E) of Property 5.19.

For any w ∈ ∆I
#‰n

N we have that w and origI(w) are directed-path-equivalent, that is:
– If ρ with ρ1 := w is a (possibly infinite) directed path in I #‰n

N then ρ′, defined as
ρ′

i := origI(ρi) for all i, is a directed path in I such that for all i we have ConcI #‰n
N

(ρi) =
ConcI(ρ′

i), and for all i > 1 we have RolI #‰n
N

(ρi−1, ρi) = RolI(ρ′
i−1, ρ′

i).
– If ρ with ρ1 := origI(w) is a (possibly infinite) directed path in I then ρ′ defined as:

(i) ρ′
1 := w, and

(ii) ρ′
i := ρi if both ρ′

i−1 and ρi are N-named,
(iii) ρ′

i := ρ′
i−1ρi if ρ′

i−1 is not a leaf of the component,
(iv) ρ′

i is the root of I(ℓ,e)
®,ρi,1−h if ρ′

i−1 is the ℓ-th leaf of I(∗,∗)
®,e,h for some e ∈ ∆I and

h ∈ {0, 1},
(v) ρ′

i is the root of I(ℓ,¬)
®,ρi,0 if ρ′

i−1 is the ℓ-th leaf of I¬,
is a directed path in I #‰n

N such that for all i we have ConcI #‰n
N

(ρ′
i) = ConcI(ρi), and for

all i > 1 we have RolI #‰n
N

(ρ′
i−1, ρ′

i) = RolI(ρi−1, ρi).
Once the construction of ρ′ from ρ (and vice versa) is given, its correctness follows from
Item (C) of Property 5.19.

As a potential application of scattered forward unravellings we can provide results for logics that are
not or are not known to be finitely controllable. A toy example is presented below. This exponentially
improves the doubly-exponential upper bound that follows from the finite satisfiability problem for the
guarded fixed-point negation fragment [BtCS15, Thm. 4.4].

Corollary 5.20
The finite entailment problem for UCQs over µALC-KBs is ExpTime-complete.

Proof. The fact that µALC is preserved under scattered forward unravellings follow from Prop-
erty 5.19, with a routine induction over the complexity of a formula using approximation
semantics of fixed-points [BW18, p. 5] (as also done in the previous section). The satisfiability
of the knowledge-based satisfiability problem for µALC follows from [SV01, Thm. 2], which is
also applicable to the finite satisfiability problem due to the finite model property of µALC
with nominals [Tam15, Thm. 5.17]. Hence, by Theorem 5.18 and Theorem 4.37 we are done.

Note that all logics contained in ZQ are finitely controllable [BK22, Thm. 3.1], and hence the results
concerning their query entailment from Corollary 5.7 can be transferred to the finite-world scenario. On
the other hand, employing scattered forward unravellings one can provide an independent proof of this fact.

Corollary 5.21
The finite entailment problem for UCQs over ZQ-KBs is ExpTime-complete.
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5.3 Scattered Unravellings with Rebalancing

Some description logics can express both local cardinality constraints (i.e. constraints concerning the
role successors of specific individuals) and global cardinality constraints (i.e. constraints on the overall
cardinality of concepts). Prominent examples of such DLs are, e.g. Statistical ALC [PP17], and ALCSCC
with Restricted Cardinality Boxes [Baa17]. In this section we will see how the notion of scattered forward
unravellings can be adjusted so that the construction from the previous section additionally preserves
ERCBoxes, a broad class of linear constraints over the domain.

Definition 5.22 A semi-restricted cardinality constraint is an expression δ of the forma

δ := N1 · xC1 + . . . + Nk · xCk
+ M ≤ Nk+1 · xCk+1 + . . . + Nk+ℓ · xCk+ℓ

,

where all Ci are concept names, xCi are non-negative integer variables, and all Ni as well as M are
non-negative integer constants, for all 1 ≤ i ≤ k+ℓ. A solution s for δ is a mapping of variables to
non-negative integers under which δ evaluates to true. An interpretation I satisfies δ (written I |= δ)
whenever the mapping xC 7→ |CI | is a solution for δ. An extended restricted cardinality box
(ERCBox) [BBR20] is a positive boolean combination of semi-restricted cardinality constraints. The
notion of solutions and satisfaction by an interpretation is lifted to ERCBoxes in the obvious way.

aNote the asymmetry in the definition: we do not allow for “spare” integer constants on the RHS. This is because
we do not want to give cardinality constraints the power to express nominals.

An important property of ERCBoxes is that they enjoy arbitrarily large solutions.

Lemma 5.23 If an ERCBox E has a solution s, then for any positive integer n, the mapping
s′ : x 7→ n · s(x) is also a solution for E . Thus solvable ERCBoxes have arbitrarily large solutions.

Proof. Let δ be a semi-restricted cardinality constraint of the form:

δ := N1 · xC1 + . . . + Nk · xCk
+ M ≤ Nk+1 · xCk+1 + . . . + Nk+ℓ · xCk+ℓ

,

and let s be a solution for δ, i.e. we have that the inequality

(♡): N1 · s(xC1) + . . . + Nk · s(xCk
) + M ≤ Nk+1 · s(xCk+1) + . . . + Nk+ℓ · s(xCk+ℓ

)

as well as the inequality (obtained by weakening (♡))

(♣): N1 · s(xC1) + . . . + Nk · s(xCk
) ≤ Nk+1 · s(xCk+1) + . . . + Nk+ℓ · s(xCk+ℓ

)

evaluate to true. Take a positive integer n > 1, and let sn be a mapping that maps every
variable x to n · s(x). We claim that sn is also a solution for δ. By multiplying both sides of
inequality (♣) by (n−1), adding the inequality (♡), and simplifying the terms we get:

N1 · n · s(xC1) + . . . + Nk · n · s(xCk
) + M ≤ Nk+1 · n · s(xCk+1) + . . . + Nk+ℓ · n · s(xCk+ℓ

),

which by the definition of sn is clearly equal to

N1 · sn(xC1) + . . . + Nk · sn(xCk
) + M ≤ Nk+1 · sn(xCk+1) + . . . + Nk+ℓ · sn(xCk+ℓ

).

This justifies our claim. Next, let s be a solution for an ERCBox E . Then sn (defined as above)
is a solution for at least the same semi-restricted cardinality constraints from E as s. As E is
negation-free, we conclude that sn is also a solution for E , finishing the proof.

Having a finite model I of an ERCBox E , it can happen that none of the scattered forward unravellings
of I is a model of E , as we did not care about statistical quantities of elements in the constructed
models. In order to produce finite models of ERCBoxes, we design a way of “repairing” scattered forward
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unravellings, in order to restore the satisfaction of ERCBoxes. Before we move to the main result, we
introduce a handy notion of forward duplication of domain elements, which is completely independent
from the presented unravellings (and thus can be potentially useful for future applications). The key idea
is to make a copy of an input element and connect it to all neighbours of the original.

Definition 5.24 Let I be an interpretation and let d ∈ ∆I be a domain element. The d-forward-
duplication of I is an interpretation I+d defined as follows:

• ∆I+d := ∆I ·∪ {d′} for a fresh element d′.
• I+d restricted to ∆I is isomorphic to I.
• For each concept name C ∈ NC we have d′ ∈ CI+d if and only if d ∈ CI .
• For each role name r ∈ NR and all e ∈ ∆I we have (d′, e) ∈ rI+d if and only if (d, e) ∈ rI .

We will call d′ a copy of d. We stress that d′ has no “incoming edges” even if d has.

The notion of d-forward-duplication can be exemplified as follows.

Example 5.25. Let I be an interpretation with ∆I := {a, b, c, d, e} defined as follows:
• All individual names are interpreted as a (they are irrelevant for this example).
• AI := {a, c, e}, BI := {b, d}, CI := {d, e}, and all other concept names are interpreted as ∅.
• rI := {(e, d)}, sI

1 := {(d, a)}, sI
2 := {(d, b)}, sI

3 := {(d, c)}, and other role names are interpreted as ∅.
The interpretation I+d, depicted below, has the domain {a, b, c, d, d′, e}. It interprets all individual names
as I do, all concept names are interpreted as in I with an exception of BI+d = {b, d, d′}, and CI+d = {d, d′, e},
and role names are interpreted as in I with an exception of sI+d

1 := {(d, a), (d′, a)}, sI+d
2 := {(d, b), (d′, b)},

and sI+d
3 := {(d, c), (d′, c)}.

d
d′

I

I+d :=

The process of duplication can be repeated multiple times, which we formalise next. Given an interpre-
tation I and a finite set S := {(d1, n1), (d2, n2), . . . , (dk, nk)} ⊆ 2(∆I×N+), the S-forward-duplication of I
is the interpretation obtained by iterative application of di-forward-duplication ni times for each 1 ≤ i ≤ k.
For readers eager to see the definition:

Definition 5.26 Let I be an interpretation and take S := {(d1, n1), (d2, n2), . . . , (dk, nk)} ⊆ 2(∆I×N+).
The S-forward-duplication of I is an interpretation I+S defined as follows:

• ∆I+S := ∆I ·∪ {d(ji)
i | 1 ≤ i ≤ k, 1 ≤ ji ≤ ni}, where all the elements d(j)

i are fresh.
• I+S restricted to ∆I and I are isomorphic.
• For each concept name A ∈ NC we have d(j)

i ∈ AI+S if and only if di ∈ AI .
• For each role name r ∈ NR and all e ∈ ∆I we have (d(j)

i , e) ∈ rI+S if and only if (di, e) ∈ rI .

The key property of duplication, which follows by unfolding Definition 5.26 is as follows:

Fact 5.27. Let I be a finite interpretation. Then for any finite S := {(d1, n1), . . . , (dk, nk)} ⊆ 2(∆I×N+),
and any concept name A ∈ NC, the following equation holds:

|AI+S | = |AI | +
∑

i∈{1,2,...,k}, di∈AI

ni.
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We will first see that our notion of duplication can be used to restore satisfaction of ERCBoxes by
scattered unravellings, and second, that all the good properties of scattered forward unravellings are
preserved by it. More precisely we will show:

Lemma 5.28 Let I be a finite model of an ERCBox E . Then for every positive n ∈ N and every
finite set of names N, there exists a finite set S ⊆ 2(∆I×N+) for which (I #‰n

N )+S |= E .

Proof. Let I be a finite model of an ERCBox E , and let CI := {Cd | d ∈ ∆I} be a set of
fresh concept names per each domain element d ∈ I. Without loss of generality we assume
that I interprets concepts from CI as empty sets. Take J to be the unique interpretation
whose (NC \ CI)-reduct is I, and that interprets Cd as singletons {d}. This implies that the
interpretations of fresh symbols from CI in J are pairwise-disjoint, which we will exploit later.
Moreover, observe that I #‰n

N is the (NC \ CI)-reduct of J #‰n
N .

We rewrite E to make it aware of fresh concept symbols. We proceed with each δ ∈ E :

δ := N1 · xC1 + . . . + Nk · xCk
+ M ≤ Nk+1 · xCk+1 + . . . + Nk+ℓ · xCk+ℓ

and replace it by the inequality δ′ given below:

N1·

∑
d∈CI

1

xCd

+. . .+Nk·

∑
d∈CI

k

xCd

+M ≤ Nk+1·

 ∑
d∈CI

k+1

xCd

 . . .+. . .+Nk+ℓ·

 ∑
d∈CI

k+ℓ

xCd

 .

Moreover, per each concept A mentioned in E we append the inequalities:∑
d∈AI

xCd ≤ xA xA ≤
∑

d∈AI

xCd ,

expressing the obvious relationship between the total number of elements in concepts and
their sizes. Call the resulting ERCBox E ′. Since concept names from CI are interpreted in J
as pairwise-disjoint singleton sets whose union is ∆J , and because E ′ is just a finer-grained
description of E , it should be clear that J |= E ′ if and only if I |= E . Note that by construction,
the variables xCd and xCe for different d ̸= e are linearly independent, in the sense that the
duplicating an element from concept the Cd does not influence the total number of elements
in Ce and vice versa (but can, of course, influence sizes of other concepts).
Consider a solution s : xC 7→ |CJ | for E ′. By Lemma 5.23, we infer that the mapping s′ : xC 7→(
|∆J

#‰n
N | + 1

)
· s(xC), assigning “sufficiently large” values, is also a solution for E ′. By the fact

that scattered unravellings preserve concepts (cf. Item (B) of Property 5.19) we know that for
each variable xCd mapped by s to a positive value (resp. 0), the concepts Cd are non-empty
(resp. empty) in the unravelling. Thus our proof plan is simple: we are going to duplicate
elements d to make the cardinality of the concept Cd in J #‰n

N equal to s′(xCd). Formally, we
take

S :=
{(

d, s′(xCd) − |CJ
#‰n

N
d |

) ∣∣ d ∈ ∆I ,
(
s′(xCd) − |CJ

#‰n
N

d |
)

> 0
}

.

We stress that the value
(
s′(xCd) − |CJ

#‰n
N

d |
)

is always non-negative, as the values of s′ were
taken to be “sufficiently large”. With a bit of routine calculations and Fact 5.27 we conclude
that (J #‰n

N )+S |= E ′. Finally, by the presence of additional inequalities relating concepts from
CI with concepts appearing in E , we conclude that (I #‰n

N )+S |= E holds.

To see that our notion of duplication preserves all the good properties of scattered unravellings, we
are going to show that the analogue of Corollary 5.16 and Property 5.19 hold.
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Lemma 5.29 Suppose that (n, N, I) are as in Definition 5.8, and take any finite S ⊆ 2(∆I×N+). Then
(I #‰n

N )+S is a finite (n, N, ∅)-forest, whose n-neighbourhoods can be N-homomorphically mapped to I.

Proof. Finiteness of (I #‰n
N )+S follows from the following three facts: (i) finiteness of I #‰n

N , (ii)
finiteness of S, and (iii) Fact 5.27. For the rest of the proof, it suffices to employ Lemma 5.15
after observing that the function mapping duplicated elements to their originals (and behav-
ing as the identity function on other elements) is an N-homomorphism from (I #‰n

N )+S to I #‰n
N .

We are ready to proceed with our usual list of properties.

Property 5.30. Assume the parameters (n, N, I, S) as in Lemma 5.29. Then the analogue of Property 5.19
holds, namely:

(A) The interpretations I and (I #‰n
N )+S restricted to all N-named elements are isomorphic.

(B) For any concept name C we have that CI is non-empty if and only if C(I
#‰n
N )+S is non-empty. Similarly,

for any role name r we have that rI is non-empty if and only if r(I
#‰n
N )+S is non-empty.

(C) For any w ∈ ∆(I
#‰n
N )+S we have ConcI(orig⋆

I(w)) = Conc(I #‰n
N )

+S
(w). Moreover, for all v with (w, v) ∈

r(I
#‰n
N )+S for some r ∈ NR, we have RolI(orig⋆

I(w), orig⋆
I(v)) = Rol(I #‰n

N )
+S

(w, v).

(D) For all w from (I #‰n
N )+S we have that w in (I #‰n

N )+S and orig⋆
I(w) in I have the same number of successors

satisfying the same roles and concepts, i.e. an analogue of Item (D) of Property 5.5 holds.
(E) For any w from (I #‰n

N )+S we have that w and orig⋆
I(w) are directed-path-equivalent, i.e. an analogue

of Item (E) of Property 5.5 holds.
The function orig⋆

I mentioned above is the mapping that first maps all duplicates to their originals (and
behaves like identity on other elements) and then employs origI .

Proof sketch. For brevity, let J := (I #‰n
N )+S. Note that, by construction of S-duplication, the

interpretation J restricted to the elements from I #‰n
N and the interpretation I #‰n

N are isomorphic.
Moreover, the process of S-duplication does not affect the named elements of I #‰n

N . Hence,
by transitivity and Property 5.19, we establish Item (A) of Property 5.30. For the remain-
ing properties we proceed as follows. Take any element w and its copy w′. By construction
(see: Definition 5.24) we know that ConcJ (w) = ConcJ (w′) as well as for any v ∈ ∆J we have
RolJ (w, v) = RolJ (w′, v). This also implies that for any directed path ρ in J we have that
wρ is a directed path in J if and only if w′ρ is. The above properties, by transitivity and
Property 5.19 imply the satisfaction of Items (B)–(E) of Property 5.30.

Similarly to the two previous sections we define a new class of description logics.

Definition 5.31 A description logic DL is preserved under scattered forward unravellings
with rebalancing if for all finitely satisfiable DL-KBs K, their finite models I, and for all but
finitely many positive integers n ∈ N, there is a finite set S ⊆ 2(∆I×N+) for which (I #‰n

N )+S |= K.

Once more we establish that preservation under unravellings guarantees being forest-friendly.

Theorem 5.32
If a description logic DL is preserved under scattered forward unravellings with rebalancing then DL
is finitely ∅-forest-friendly.

Proof. Take any finitely satisfiable DL-KB K, any of its finite models I, and any positive
integer m ∈ N. It suffices to show that there exists an (m, ind(K), ∅)-forest model J |= K.
Take J := I #‰n

ind(K) for a sufficiently large n greater or equal to m. By the assumption about
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preservation under scattered unravelling by rebalancing, we infer the existence of a set S, so
that J+S |= K. Thus, what remains to be done is to show that J+S is a finite (n, N, ∅)-forest
that covers I, but this follows from Lemma 5.29.

As an application of Theorem 5.32, one can establish the exact complexity for the UCQ entailment
problem over ALCSCC ontologies extended with ERCBoxes [BBR20, Sec. 2&Def. 6].

Corollary 5.33
The finite UCQ entailment problem for ALCSCC with ERCBoxes is ExpTime-complete.

Proof sketch. Let a knowledge base K be composed of an ABox A, ALCSCC-TBox T , and
an ERCBox E . W.l.o.g. we can assume that (by routine renaming à la Scott) that concept
names appear in K at “quantifier depth” at most one, and that the ERCBox E is of the form
presented in Definition 5.22 (the original definition is slightly broader). Take a finite model
I |= K and any positive integer n, and let J be the (n, ind(K))-scattered-forward-unravelling
of I. Applying Lemma 5.28 we infer the existence of a set S for which J+S |= E . By Item (A)
of Property 5.30 we deduce J+S |= A, and by Item (D) of Property 5.30 we deduce J+S |= T .
Thus J+S |= K. Since J+S is an (n, ind(K), ∅)-forest that covers I (consult Lemma 5.29), thus
by Theorem 5.32 we can conclude that ALCSCC+ERCBoxes is ∅-forest-friendly. The desired
ExpTime upper bound follows now from Corollary 4.38 and the ExpTime-completeness of
the finite satisfiability problem for ALCSCC+ERCBoxes by Baader et. al [BBR20, Thm. 7].

5.3.1 Statistical EL is ExpTime-hard

Interestingly enough, one can show that a very simple form of ERCBoxes, called Probabilistic Conditionals,
causes a blow-up in the complexity of satisfiability for lightweight description logics like EL, leading to
intractability. This closes the gap in complexity results by Peñaloza and Potyka [PP17]. The goal of this
section is to provide a suitable lower bound. We start with auxiliary definitions.

Definition 5.34 The set CEL¬ of EL¬-concepts is defined by a slight extension of the gram-
mar for EL:

C, D ::= ⊤ | A | Ā | C ⊓ D | ∃r .C,

where C, D ∈ CEL¬ , A ∈ NC and r ∈ NR. The semantics of EL¬-concepts is defined as in the case of
EL and ALC with the exception that the concepts of the form Ā have the semantics ĀI := ∆I \ AI .

In contrast to plain EL, the (finite) TBox-satisfiability problem for EL¬ is no longer trivial and
is actually ExpTime-complete [BBL05, Theorem 6]. A straightforward reduction from ALC follows by
turning ALC-TBoxes into NNF, getting rid of disjunction, and replacing negated atomic concepts ¬A by Ā.

Statistical EL, abbreviated as SEL, is a probabilistic description logic introduced a couple of years
ago by Peñaloza and Potyka [PP17, Sec. 4] to reason about statistical properties over finite domains.

Definition 5.35 SEL-ontologies are composed of probabilistic conditionals of the form (C | D) [k, l],
where C, D are EL-concepts from CEL and k, l ∈ Q are rational numbers satisfying 0 ≤ k ≤ l ≤ 1.
An interpretation I satisfies a probabilistic conditional (C | D) [k, l] if

either DI = ∅ or k ≤ |(C ⊓ D)I |
|DI |

≤ l.

The size of SEL-TBoxes is defined as in ALC except that the numbers in probabilistic conditionals
also contribute to the size and are measured in binary. In the satisfiability problem for SEL-ontologies
we ask if there is a finite model I of all probabilistic conditionals from an input SEL-ontology O.
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It is an exercise to show that [PP17, Prop. 4] the usual EL-GCIs D ⊑ C are equivalent to (C | D) [1, 1].
Hence, each EL-TBox can be seen as an SEL-ontology, and we are free to employ GCIs in place of
probabilistic conditionals. We are now ready to prove the main result of this section.

Theorem 5.36
The satisfiability problem for SEL is ExpTime-complete, even if the only numbers allowed in
probabilistic conditionals are 0, 0.5, and 1.

The ExpTime upper bound is due to Lutz and Schröder [LS10, Thm. 9]. We focus on the lower bound.
Let O be an arbitrary EL¬-TBox, and let CO denote the set of all concept names that appear (possibly
under negation) in O. In what follows we are going to design a polynomially-larger SEL-ontology Ored such
that Ored is satisfiable if and only if the input O is satisfiable. It will be composed of two SEL ontologies,
namely Otr and Ocorr, responsible, respectively, for “translating” O into SEL and for guaranteeing the
correctness of the translation. This results in ExpTime-hardness of the satisfiability problem for SEL.

The main idea of the encoding is as follows. We first produce for each concept name A from CO,
two fresh concepts A+, A− ̸∈ CO intuitively intended to contain all members of A and, respectively, all
members of its complement. Due to the lack of negation, we clearly are not able to fully formalise the
above intuition, but the best we can do is to enforce, with the ontology Ocorr, that these concepts are
interpreted as disjoint sets and each of them contains exactly half of the domain. This is sufficient for
our purposes, since with fresh, pairwise different, concepts Real, Real+, Real− ̸∈ CO we can separate the
“real” model of O from the auxiliary parts required for the encoding. Finally, in the “translation” ontology
Otr we state that the restriction of a model of Ored to Real+ satisfies O. The translation simply changes
all occurrences of A (resp. Ā) into A+ (resp. A−) and employs Real+ to relativise concepts.

We start with the definition of Ocorr.

Ocorr :=
{

(A+ | ⊤) [0.5, 0.5] , (A− | ⊤) [0.5, 0.5] , (A+ | A−) [0, 0] | A ∈ {Real} ∪ CO

}
By unfolding the definition of probabilistic conditionals we immediately conclude the following facts.

Fact 5.37. For any A ∈ NC we have that I |= (A | ⊤) [0.5, 0.5] if and only if |∆I | is even and |AI | = 1
2 |∆I |.

Fact 5.38. For any different concept names A, B we have that I |= (A | B) [0, 0] if and only if AI ∩BI = ∅.

Now we focus on the “translating” ontology Otr. Let t be a translation function defined by t(⊤) :=
Real+, t(A) := A+ ⊓ Real+ and t(Ā) := A− ⊓ Real+ for all concept names A ∈ NC as well as t(C ⊓ D) :=
t(C) ⊓ t(D) and t(∃r .C) := Real+ ⊓ ∃r .(t(C) ⊓ Real+) for complex concepts. The ontology Otr is obtained
by replacing each GCI C ⊑ D from O with t(C) ⊑ t(D). Finally, we put Ored := Ocorr ∪ Otr. Note that
the size of Ored is polynomial in |O|. For more intuitions, consult the picture below.

reduction
d2: A, B̄

d3: A, B

d1: Ā, B d′
1: A+, B−

d′
2: A−, B+

d′
3: A−, B−

d3: A+, B+
d2: A+, B−

d1: A−, B+

Real+
Real−

J |= Ored

I |= O

Lemma 5.41

Lemma 5.40

Let us start with an auxiliary notion of interpretations that are good-for-encoding. We say that J is
good-for-encoding if for all concept names A ∈ CO it satisfies AJ = AJ

+ and AJ
− = ∆J \ AJ . The

following lemma relates the translation function t, good-for-encoding interpretations and their submodels.
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Lemma 5.39 (Agreement lemma) Let J be good-for-encoding, and let I be J restricted to RealJ+ .
Then all EL¬-concepts C employing only concept names from CO satisfy CI = t(C)J . Moreover for
such concepts C, D we have: J |= t(C) ⊑ t(D) if and only if I |= C ⊑ D.

Proof. Induction on the shape of concepts C. The cases for C = ⊤, A or Ā for A ∈ NC follow
immediately from the definition of t and the assumptions AJ = AJ

+ and AJ
− = ∆J \ AJ .

The case of C = D ⊓ E follows from the fact that t is homomorphic for ⊓. Hence, the only
interesting case is when C = ∃r .D. Assuming DI = t(D)J we show two inclusions.

• For the first inclusion, take d ∈ (∃r .D)I . Thus d ∈ ∆I(= RealJ+) and there is an e ∈ ∆I

satisfying both (d, e) ∈ rI and e ∈ DI . Note that e ∈ ∆I implies e ∈ RealJ+ . Moreover,
by the equality DI = t(D)J we have e ∈ (Real+ ⊓ t(D))J . Since rI ⊆ rJ holds we infer
that d ∈ (∃r .(Real+ ⊓ t(D)))J , but because d belongs to RealJ+ we can conclude that
d ∈ (Real+ ⊓ ∃r .(Real+ ⊓ t(D)))J = t(∃r .D)J .

• For the opposite direction take d ∈ t(∃r .D)J = (Real+ ⊓ ∃r .(Real+ ⊓ t(D)))J . This
implies that d ∈ RealJ+(= ∆I) as well as that there is an e ∈ RealJ+(= ∆I) witnessing
(d, e) ∈ rJ and e ∈ t(D)J (= DI). Since both d, e belong to ∆I we infer that (d, e) ∈ rI ,
and hence d ∈ (∃r .D)I .

For the last statement of the lemma: to show that J |= t(C) ⊑ t(D) if and only if I |= C ⊑ D
hold, it suffices to invoke the equalities CI = t(C)J and DI = t(D)J .

We employ the agreement lemma to show that the satisfiability of Ored implies the satisfiability of O.

Lemma 5.40 If Ored is satisfiable then so is O.

Proof. Let J be a model of Ored with AJ := AJ
+ (since A does not appear in Ored this can

be assumed w.l.o.g.) for all concept names A from CO. By the satisfaction of Ocorr we know
that AJ

+ and AJ
− are disjoint and thus J is good-for-encoding. Hence, take I to be its induced

subinterpretation with the domain RealJ+ . Applying Lemma 5.39 we know that for each GCI
C ⊑ D from O the satisfaction of J |= t(C) ⊑ t(D) implies I |= C ⊑ D. Thus we get I |= O,
which implies that O is satisfiable.

We next show that the satisfiability of O implies the satisfiability of Ored. In the proof we basically take
a model of O, duplicate each domain element and define the memberships of fresh concepts introduced
by Ored. Such concepts are defined in such a way that if an element from a model I of O is a member
of AI then the corresponding element in a constructed model J of Ored is a member of AJ

+ while its copy
belongs to AJ

− . This way the total number of elements in every concept is equal to half of the domain.

Lemma 5.41 If O is satisfiable then so is Ored.

Proof. Let I |= O, and let ∆I := {d1, d2, . . . , dn}. We define an interpretation J as follows:
1. ∆J := {d1, d′

1, d2, d′
2, . . . , dn, d′

n}.
2. For all concept names A ∈ CO we put

• AJ
+ := AJ := {di | di ∈ AI} ∪ {d′

i | di ̸∈ AI},
• AJ

− := {di | di ̸∈ AI} ∪ {d′
i | di ∈ AI},

• RealJ+ := ∆I and RealJ− := ∆J \ ∆I ,

and for all other concept names B we put BI := ∆I .
3. For each role name r we put rJ := rI .
4. All individual names are interpreted as some auxiliary fixed domain element, say d1.
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We first show J |= Ocorr. To this end, take any concept name A ∈ {Real}∪CO. We prove J |=
(A+ | A−) [0, 0], which by Fact 5.38 is equivalent to showing disjointness of AJ

+ and AJ
− . Assume

the contrary, i.e. that there is a domain element d ∈ AJ
+ ∩ AJ

− . If d = di for some index i then,
by Item 2, it means that di ∈ AI and di ̸∈ AI at the same time, which is clearly not possible.
The case when d = d′

i for some index i is treated similarly. Next, by invoking Item 2 of the
definition of J we can perform some basic calculations:

|AJ
+ | = |{di | di ∈ AI}| + |{d′

i | di ̸∈ AI}| =

|{di | di ∈ AI}| + |{di | di ̸∈ AI}| = |∆I | = 1
2 · |∆J |.

|AJ
− | = |{di | di ̸∈ AI}| + |{d′

i | di ∈ AI}| =

|{d′
i | di ̸∈ AI}| + |{d′

i | di ∈ AI}| = |{d′
1, . . . , d′

n}| = 1
2 · |∆J |.

Hence by Fact 5.37 we get J |= (A+ | ⊤) [0.5, 0.5] and J |= (A− | ⊤) [0.5, 0.5], finishing the
proof of J |= Ocorr. To prove J |= Otr we take any GCI t(C) ⊑ t(D) from Otr. From I |= O,
we know that I |= C ⊑ D. Note that J is good-for-encoding, hence by Lemma 5.39 it follows
that J |= t(C) ⊑ t(D). Thus J |= Otr.

Lemma 5.40 and Lemma 5.41 show that the presented reduction is correct. Since our reduction is poly-
nomial for every EL¬-ontology O, by ExpTime-hardness of EL¬ we can finally conclude Theorem 5.36.

An interesting direction for future work is to study the query entailment problem in the presence of
probabilistic conditionals. We already obtained results for querying ALCSCC+ERCBoxes (that generalise
SEL) in Corollary 5.33, but the presented technique of rebalancing is not applicable to generalisation
of ALC that employ inverses or nominals. It would be also interesting to study fragments of existential
rules [MT14] under the “probabilistic setting”.

5.4 Pumping

In the last three sections we discussed sufficient conditions for testing whether a given description logic is
Θ-forest-friendly, neglecting the case when the set of features Θ is non-empty. In this section, we design
a novel model-theoretic technique, dubbed “pumping”, that will help us in establishing {I, Self}-forest-
friendliness of various logics, including the DL ZIQ. An auxiliary definition first.

Definition 5.42 Let I be an interpretation and ρ := ρ1 . . . ρn ∈ (∆I)∗ be an undirected cycle in I,
and N ⊆ NI be a set of names. We say that ρ an N-cycle if it contains an N-anonymous element
and there is no index i satisfying ρi = ρi+1 or ρi = ρi+2. The N-girth of I, denoted girthN(I), is the
minimal length among all N-cycles in I (and ∞ if I does not contain any such cycles).

The notion of N-girth can be used as an alternative way to see {I, Self}-forest-likeness. Indeed:

Fact 5.43. Let I be an interpretation, n be a positive integer, and N be a finite set of names from NI. Then
from the fact that the N-girth of I is at least n we can conclude that I is an (n, N, {I, Self})-forest.

As an auxiliary step towards defining our “pumping” method, we introduce twists. The key idea is
that, given an interpretation I and its elements c, d, c′, and d′, we replace all role connections between c
and d with these between c′ and d′, and vice versa. Formally:

Definition 5.44 Let I be an interpretation, and c, d, c′, d′ be its domain elements. The (c, d, c′, d′)-
twist of I is the interpretation J of the same domain of I, the same interpretation of individual names
and concept names, but for every role name r ∈ NR, we put rJ := rI \{(c, d), (c′, d′), (d′, c′), (d, c)}∪(

{(c, d) | (c′, d′) ∈ rI} ∪ {(d, c) | (d′, c′) ∈ rI}
)

∪
(

{(c′, d′) | (c, d) ∈ rI} ∪ {(d′, c′) | (d, c) ∈ rI}
)

.
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We can now define the “pumping” of finite interpretations, as formally stated below.

Definition 5.45 Let I be a finite interpretation with ∆I = ZK for some positive integer K, let N ⊆ NI
be a finite set of names, and G be a positive integer. Moreover, let M := K · (1 + K + . . . + KG+1) + 1.
An (N, G)-pumping of I is the last interpretation in a sequence of interpretations I0, I1, . . . (called
an (N, G)-twisting-sequence) for I, defined inductively below.

• The interpretation I0 is defined as the disjoint sum of M isomorphic copies of I.
More formally, (i) we put ∆I0 := ∆I × ZM, (ii) for all individual names a ∈ NI we assign
aI0 := aI , (iii) for all concept names A ∈ NC we set AI0 := AI × ZM, and (iv) for all role
names r ∈ NR we put rI0 = {((d, m), (e, m)) | m ∈ ZM, (d, e) ∈ rI}.

• Suppose that Ii−1 is already defined. If the N-girth of I is at least G we stop the construction.
Otherwise, girthN(Ii−1) < G. Hence, fix any shortest N-cycle ρ in Ii witnessing that girthN(Ii−1)
is less than G. Clearly, |ρ| < G. Fix any pair (ρj , ρj+1) of two consecutive elements of ρ, so
that ρ is N-anonymous. Such a pair exists by design. Note that there exists k ∈ ZM for which
ρj = (d, k) and ρj+1 = (e, k). By the choice of M, the following condition (♡) is satisfied:

(♡) : “there exist elements ϱj := (d, ℓ) and ϱj+1 := (e, ℓ) in Ii−1
such that ρj and ρj+1 are not reachable from

neither ρj , ρj+1, nor any N-named element of Ii−1 with a path of length smaller than G.”
We take any such ϱj and ϱj+1, and define Ii as the (ρj , ρj+1, ϱj , ϱj+1)-twist of Ii−1.

We next elaborate on several useful properties of pumping, starting from its well-definedness.

Lemma 5.46 Let I, K, M, G, I0, I1 . . . be as in Definition 5.45, and suppose that there is a positive
index i ≤ M for which girthN(Ii−1) < G. Then the interpretation Ii is well-defined, namely for every
shortest N-cycle ρ in Ii−1 and every pair (ρj , ρj+1) of consecutive elements of ρ with ρj+1 being
N-anonymous, the condition (♡) from Definition 5.45 holds.

Proof. Take any such ρ and a pair of elements (ρj , ρj+1) from Ii−1. Before we start, a rou-
tine induction reveals that the size of every element in Ii−1 is bounded by K, and for pair
of elements (c, d) from I there are exactly M pairs of elements (c′, d′) in Ii−1 having their
first coordinates equal to (c, d). By the size of 1-neighbourhoods, we know that the total
number of elements reachable by paths of length at most G is bounded by the expression
(1 + K + . . . + KG+1). Hence, the total number of elements reachable from ρj , ρj+1 or the
N-named elements of Ii−1 is bounded by K · (1 + K + . . . + KG+1), i.e. M−1. Thus, by the
pigeonhole principle, we conclude the existence of an appropriate pair ϱj and ϱj+1 satisfying
the condition (♡).

Lemma 5.47 Let I, K, M, G be as in Definition 5.45, and consider any (N, G)-twisting-sequence
I0, I1, . . .. Then such a sequence is finite, and the N-girth of its last element is at least G.

Proof. It suffices to show, for all indices i, that if the N-girth of I is equal to some g smaller
than G, then (i) Ii+1 does not contain N-cycles of length less than g, and that (ii) the total
number of N-cycles of length g in Ii+1 is strictly smaller than the total number of such cycles
in Ii. By construction, note that the N-cycle ρ selected from Ii in the construction of Ii+1 no
longer appears in Ii+1. Moreover, let (ρj , ρj+1, ϱj , ϱj+1) be the 4-tuple for which Ii+1 is the
(ρj , ρj+1, ϱj , ϱj+1)-twist of Ii. Suppose now that there is a new N-cycle ϱ̂ in Ii+1 that does
not appear in Ii. This implies, that ϱ̂ contains as a subword either (i) ρj · ϱj+1, (ii) ϱj · ρj+1,
or their inverses. By the choice of ϱj , ϱj+1 such elements are not reachable neither from ρj ,
ρj+1 nor any N-named elements in Ii in less than G steps, and thus the length of the freshly
created N-cycle is at G. The last statement of the lemma follows now by construction.



76 Chapter 5. Sufficient Conditions for Forest-Friendliness and Their Applications

We next proceed with the desired list of useful properties of “pumping”.

Property 5.48. Let I be a finite interpretation, G be a positive integer, N be a finite set of names, and J
be any (N, G)-pumping of I. Then the analogue of Property 5.19 holds, namely:

(A) The interpretations I and J restricted to all N-named elements are isomorphic.
(B) For any concept name C we have that CI is non-empty if and only if CJ is non-empty. Similarly, for

any role name r we have that rI is non-empty if and only if rJ is non-empty.
(C) For any (d, ℓ) ∈ ∆J we have ConcI(d) = ConcJ ((d, ℓ)). Moreover, for all (e, ℓ′) with ((d, ℓ), (e, ℓ′)) ∈

rJ ∪(r−)J for some r ∈ NR, we have RolI(d, e) = RolJ ((d, ℓ), (e, ℓ′)) and RolI(e, d) = RolJ ((e, ℓ′), (d, ℓ)).
(D) For all (d, ℓ) from J we have that (d, ℓ) in J and d in I have the same number of successors satisfying

the same roles and concepts, i.e. an analogue of Item (D) of Property 5.5 holds.
(E) For any (d, ℓ) from J we have that (d, ℓ) and d are path-equivalent, i.e. an analogue of Item (E)

of Property 5.5 holds.
(F) I and J are homomorphically equivalent.

Proof sketch. The proof is routine and similar to the previous proofs of this chapter, and hence
we only provide its key ingredients. We proceed inductively, over the (N, G)-twisting-sequence
I0, I1, . . . , J used to construct J . The inductive claim states, for all indices i, that:

• For all ℓ ≤ M we have that the 1-neighbourhood of (d, ℓ) in Ii and the 1-neighbourhood
of d in I are isomorphic, for all d ∈ ∆I and ℓ ≤ M.

• The projection onto the first coordinate is a homomorphism from Ii to I, and the mapping
d 7→ (d, 0) is a homomorphism in a reverse direction.

With the above ingredients, establishing the properties (A)–(F) is rather immediate.

To employ the above properties to derive results on freshly defined logics, we propose a broad class of
DLs that are preserved under pumping. The definition is given below.

Definition 5.49 A description logic DL is preserved under pumping if for all finitely-satisfiable
DL-knowledge-bases K, all finite models I of K, all but finitely many positive integers G, and all
(ind(K), G)-pumpings J of I we have that I |= K implies J |= K.

Here comes our standard theorem that relates the logics with forest-friendliness. Indeed:

Theorem 5.50
If a description logic DL is preserved under pumpings then DL is finitely {I, Self}-forest-friendly.

Proof. Take any finitely satisfiable DL-KB K, any of its finite models I, and any positive integer
m ∈ N. Following the definition, it suffices to show that there exists a finite (m, ind(K), {I, Self})-
forest model J |= K that covers I. Take J to be any (ind(K), m)-pumping of I. Note that J
is (m, ind(K), {I, Self})-forest by Fact 5.43. By preservation under pumpings, we infer J |= K.
By Item (F) of Property 5.48 we know that J covers I. This concludes the proof.

Recall that ZIQ is the sublogic of ZOIQ that features role hierarchies (H), (safe) boolean role
combinations (b), counting (Q), inverses of roles (I), the Self operator, and regular path expressions (·reg).
It is not difficult to establish that our pumping method preserves the modelhood of TBoxes that employ
such features. Indeed, the preservation of GCIs involving (H), (b), (I), and Self is due to Item (C) of
Property 5.48, the preservation of GCIs involving (Q) follows from Item (D) of Property 5.48, and the
preservation of GCIs involving (·reg) is due to Item (E) of Property 5.48. Preservation of the satisfaction
of ABoxes is immediate by Item (A) of Property 5.48. Thus:
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Corollary 5.51
The description logic ZIQ is preserved under pumping. Thus, ZIQ is finitely {I, Self}-forest-friendly.

We can now employ Theorem 4.37 to infer the following conditional result. The matching lower bound
follows from the CQ-entailment over ALCI-TBoxes by the result of Lutz [Lut08a, Thm. 2].

Theorem 5.52
If the finite knowledge-base satisfiability problem for ZIQ is ExpTime-complete, the PEQ-entailment
problem over ZIQ-KBs is 2ExpTime-complete.

It is reasonable to conjecture that the finite satisfiability problem for ZIQ-KBs is ExpTime-complete.
Unfortunately, we were not even able to establish decidability of the logic, which remains till now a chal-
lenging open problem. The main difficulty arising when attempting to solve the finite satisfiability problem
for ZIQ is that it seems to require fundamentally different techniques from the one used for ALCIQ
and its generalisations. More precisely, the only currently known technique for dealing with the finite
satisfiability of ALCIQ-KBs relies on a mosaic method and a reduction to integer programming [Pra07,
Thm. 1], which does not seem to be suitable for dealing with regular path expressions.

We provide two further applications of our techniques. It was recently shown by Jung et al. [JLZ20,
Thm. 14, Thm. 18] that the finite knowledge-base satisfiability problems for certain fragments of ZIQ,
called ALCIF1

reg and ALCIF2
reg, are decidable in NExpTime and 2NExpTime, respectively. The

algorithm of Jung et al. [JLZ20, Lemma 17, Lemma 20] is automata-based, and hence it is relatively easy
to accommodate conjunctions of roles and self-loops easily.

Corollary 5.53
Assuming that the algorithms of Jung et al. [JLZ20, L. 17 and L. 20] can be adjusted to accommodate
conjunction of roles ·∩ and the Self operator, the finite entailment of PEQs over knowledge-bases
written in ALCIF1

reg or ALCIF2
reg is decidable, respectively, in 2NExpTime and 3NExpTime.

Finally, we employ Theorem 4.37 to lift the existing results on CQ entailment for fragments of ZIQ
contained in ALCIHbSelf

reg Q to the setting of UCQs and PEQs. The matching lower bound for PEQs holds
already for ALC [Ov14, Thm. 1], and the ExpTime-completeness of the knowledge-base satisfiability
problem follows by work of Pratt-Hartmann [PH23, Thm. 8.22].

Corollary 5.54
Let DL be a description logic that subsumes ALC and is contained in ALCIHbSelf

reg Q. Then the finite
entailment problem for PEQs over DL-KBs is 2ExpTime-complete.

In particular, the above corollary applies to the two-variable guarded fragment of first-order logic with
counting quantifiers, and confirms the conjecture by Ibáñez-Garćıa et al. [ILS14, l. 34–39, col.1, p. 9]
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Motivation and Our Contribution

Our results from previous chapters provide a complete classification of the conjunctive query entailment
problem for extensions of ALC with various features supported by the OWL 2 Web Ontology Language
and the DL SROIQ [HKS06]. However, the mentioned classification does not settle the case of the Self
operator. The Self operator allows us to specify the situation when an element is related to itself by a
binary relationship. Among other things, this allows us to formalise the concept of a “narcissist” with
Narcissist ⊑ ∃loves.Self. Due to the simplicity of the Self operator (it only refers to one element), it is easy
to accommodate for automata techniques [CEO09] or consequence-based methods [ORv10] and thus, so
far, there has been no real indication that the added expressivity provided by Self may change anything,
complexity-wise. Arguably, this impression is further corroborated by the observation that Self features in
two profiles of OWL 2 (the EL and the RL profile), again without harming tractability [KRH08]. We show
however, a rather surprising result, namely that conjunctive query entailment for ALCSelf is exponentially
harder than for ALC. Our proof goes via encoding of computation trees of alternating Turing machines
working in exponential space and follows the general hardness-proof-scheme by Lutz [Lut08a] However, to
adjust the schema to ALCSelf, novel ideas are required: the ability to speak about self-loops is exploited
to produce a single query that traverses trees in a root-to-leaf manner and to simulate disjunction inside
conjunctive queries, useful to express that certain paths are repeated inside the tree. Our hardness result
can be additionally employed to establish 2ExpTime-hardness of query entailment for the Z family (a.k.a.
ALCHbSelf

reg ) of DLs [CEO09], which until now has remained open1 as well as the 2ExpTime-hardness of
querying ontologies formulated in the fluted guarded fragment [Bed21a] with equality.2

1We stress that 2ExpTime hardness of the conjunctive query entailment problem over Z ontologies does not follow
from 2ExpTime-hardness of the same problem for SH since we cannot define in Z that a given role is transitive nor that it
is a transitive closure of another role (to simulate transitivity).

2Self can be expressed with ∀x1selfr(x1)→∃x2 (r(x1, x2) ∧ x1=x2) ∧ ∀x1∀x2r(x1, x2)→(x1=x2→selfr(x2)).

79
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Overview of the Chapter and Prerequisites

We assume that the reader is familiar with basic definitions concerning ALC and ALCSelf, and the definitions
concerning the query entailment problem from Chapter 2. Section 6.1 fixes required definitions concerning
Alternating Turing Machines (ATMs). Then, Section 6.2 presents a high-level overview of our construction.
The goal of Section 6.3, Section 6.4, Section 6.5, and Section 6.6 is to gradually define interpretations
encoding possibly faulty-runs of ATMs. Section 6.7 presents a conjunctive query detecting errors in
encodings of consecutive configurations, and concludes the main theorem of this chapter (Theorem 6.18).

6.1 Extra Preliminaries: Alternating Turing Machines

We first fix the notation of alternating Turing machines over a binary alphabet {0, 1} working in expo-
nential space (simply: ATMs). As a convention, when speaking about ATMs, their configurations and
tape contents, we employ the typewriter font.

Definition 6.1 An ATM is a tuple M := (N, Q, Q∃, sI , sA, sR, T), where Q is a finite set of states
(usually denoted with s); Q∃ ⊆ Q is a set of existential states; sI , sA, sR ∈ Q are, respectively, pairwise
different initial, accepting, and rejecting states; we assume that sI ∈ (Q \ Q∃); T ⊆ (Q × {0, 1}) ×
({0, 1} × Q × {−1, +1}) is the transition relation; and the natural number N (encoded in unary) is
a parameter governing the size of the working tape. We call the states from Q∀ := Q \ Q∃ universal.
The size of M, denoted with |M|, is defined as N + |Q| + |Q∃| + 3 + |T|.

We next discuss the notion of configurations. A configuration of M is a word wsw′ ∈ {0, 1}∗Q{0, 1}∗

with |ww′| = 2N. We call the configuration wsw′ (i) existential (resp. universal) if s is existential (resp. uni-
versal), (ii) final if s is either sA or sR (iii) non-final if it is not final (iv) accepting if s = sA. Successor con-
figurations are defined in terms of the transition relation T. For a, b, c, d ∈ {0, 1} and v, v′, w, w′ ∈ {0, 1}∗

with |v| = |w|, we let wbs′w′ be a quasi-successor configuration of vsav′ whenever (s, a, b, s′, +1) ∈ T, and
we let ws′dbw′ be a quasi-successor configuration of vcsav′ whenever (s, a, b, s′, −1) ∈ T. If additionally
w = v, w′ = v′, and c = d hold we speak of successor configurations.3

Remark 6.2. W.l.o.g we make the following additional assumptions about M. First, for each non-final (i.e.
non-accepting and non-rejecting) state s and every letter a ∈ {0, 1} the set T(s, a) := {(s, a, b, s′, d) ∈ T}
contains exactly two elements, denoted T1(s, a) and T2(s, a). Hence, every configuration has exactly two
successor configurations. Second, for any (s, a, b, s′, d) ∈ T, if s is existential then s′ is universal and vice
versa. Third, the machine reaches a final state no later than after 22N steps (for configuration sequences).
Fourth and last, M never attempts to move left (resp. right) on the left-most (resp. right-most) tape cell.

We next define runs of ATMs. A run of M is a finite tree, with nodes labelled by configurations of M,
that satisfies all the conditions below:

• the root is labelled with the initial configuration sI02N ,
• each node labelled with a non-final existential configuration wsw′ has a single child node which is

labelled with one of the successor configurations of wsw′,
• each node labelled with a non-final universal configuration wsw′ has two child nodes which are

labelled with the two successor configurations (wrt. T1 and T2) of wsw′,
• no node labelled with a final configuration has successors.

Quasi-runs of M are defined analogously by replacing the notions of successors with quasi-successors. Note
that every run is also a quasi-run but not vice versa. An ATM M is (quasi-)accepting if it has an accepting
(quasi)-run, i.e. one whose all leaves are labelled by accepting configurations. By results of Chandra et
al. [CKS81, Corollary 3.6] the problem of checking if a given ATM is accepting is 2ExpTime-hard.

3In words, this corresponds to the common definition of successor configurations, while for quasi-successor configurations,
untouched tape cells may change arbitrarily during the transition.
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6.2 A High-Level Overview of the Encoding

Let M be an ATM. The core contribution of this section is to present a polynomial-time reduction that,
given M, constructs a pair (KM, qM) — composed of an ALCSelf knowledge base and a conjunctive query

— such that KM ̸|= qM if and only if M is accepting. Intuitively, the models of K will encode accepting
quasi-runs of M, i.e. trees in which every node is a meaningful configuration of M, but the tape contents
of consecutive configurations might not be in sync as they should. The query qM will be responsible
for detecting such errors. Hence, the existence of a countermodel for KM and qM will coincide with the
existence of an accepting run of M. The intended models of KM look as follows:

The depicted triangles are called the configuration trees and encode configurations of M. The informa-
tion contained in these configuration trees is “superimposed” on identical configuration units: full binary
trees of height N+1 decorated with many self-loops4 that will provide the “navigational infrastructure”
for the query qM to detect “tape mismatches”. Every such tree has 2N nodes at its N-th level and each of
these nodes represents a single tape cell of a machine. However, somehow unexpectedly, we do not just
label them directly with concepts representing a letter from the alphabet. Instead, every node at the N-th
level also has two children labelled (from left to right) respectively with either 0 and 1, or with 1 and 0.
Whenever the left child is in 0 and the right child is in 1, we think that their parent represents a cell filled
with the letter 0, while the converse situation encodes a cell filled with 1.

encoding of tape cell encoding of tape cell
carrying symbol 0 carrying symbol 1

This encoding will be useful to avoid a seemingly required disjunction in the construction of qM.
Lastly, the roots of configuration units store all remaining necessary information required for encoding:
the current state of M, the previous and the current head position as well as the transition used to arrive
at this node from the previous configuration. Finally, the roots of configuration trees are interconnected
by the role next indicating that (r, r′) ∈ nextI holds if and only if the configuration represented by r′ is a
quasi-successor of the configuration of r.

6.3 Configuration Units

In our encoding, a vital role is played by n-configuration units, which will later form the backbone of
configuration trees. Roughly speaking, each n-configuration unit is a full binary tree of depth n, decorated
with certain concepts, roles, and self-loops. We introduce configuration units by providing the formal
definition, followed by a graphical depiction and an intuitive description. In order to represent configuration

4The concrete purpose of the abundant presence of self-loops will only become clear later, starting from Corollary 6.7.
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units inside interpretations, we employ role names from Runit as well as concept names from Cunit:

Runit := {ℓi, ri, next | 1 ≤ i ≤ n}, Cunit := {Lvl0, Lvli, L, R, Ad0
i , Ad1

i | 1 ≤ i ≤ n}.

Definition 6.3 (configuration unit) Given a positive integer n, an n-configuration unit U is an
interpretation (∆U , ·U ) fulfilling all the conditions below:

• ∆U = {0, 1}≤n := {w ∈ {0, 1}∗ | |w| ≤ n},
• LU \{ε} = {w0 ∈ ∆U }, RU = ∆U \ LU ,
• LvlUi = {w ∈ ∆U | |w| = i}, nextU = {(w, w) | |w| = n},
• ℓ U

i = {(w, w0) | |w| = i−1} ∪ {(w, w) | w ∈ ∆U },
• rU

i = {(w, w1) | |w| = i−1} ∪ {(w, w) | w ∈ ∆U },
• (Adb

i )U = {w ∈ ∆U | |w| ≥ i and its i-th letter is b}.

The following drawing depicts a 2-configuration unit.

As one can see, the nodes in the tree are layered into levels according to their distance from the root.
Nodes at the i-th level are members of the Lvli concept and their distance from the root is equal to i.
Next, each non-leaf node at the i-th level has two children, the left one and the right one (satisfying,
respectively, the concepts L and R) and is connected to them via the role ℓi and ri, respectively. All nodes
are equipped with ℓi- and ri-self-loops and all leaves are additionally endowed with next-loops. With all
nodes inside the tree, we naturally associate their addresses, i.e. their “numbers” when nodes from the
i-th level are enumerated from left to right. In order to encode the address of a given node at the i-th
level, we employ concepts Adb

1, Adb
2, . . . , Adb

i with “values” b either 0 or 1, meaning that a node is in Adb
j

if and only if the j-th bit of its address is equal to b. The most significant bit is Adb
1.

We next proceed with an axiomatisation of n-configuration units in ALCSelf, obtained with the forth-
coming GCIs. As usual in such encodings, we cannot formalise such structures up to isomorphism, but
the axiomatisation provided is sufficient in a sense made formally precise in the subsequent lemmas.

1. Each node is at exactly one level.
(LvlCov) ⊤ ⊑

⊔n
i=0 Lvli

(LvlDisj[i,j]) Lvli ⊓ Lvlj ⊑ ⊥ (with 0 ≤ i < j ≤ n)
2. All nodes carry self-loops for all role names from Runit except next and all leaf nodes (and only

they) carry a next-loop.
(all-loops-but-next) ⊤ ⊑ ⊔s∈Runit\{next} ∃s.Self
(leaves-next-loop) Lvln ≡ ∃next.Self

3. Every node is either a “left” node or a “right” node.
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(LRCov) ⊤ ⊑ L ⊔ R (LRDisj) L ⊓ R ⊑ ⊥

4. Each node at any level 0 ≤ i < n has two successors (one left and one right).
(LsuccLvl[i]) Lvli ⊑ ∃ℓi+1.(Lvli+1) ⊓ ∀ℓi+1.(Lvli+1 → L)
(RsuccLvl[i]) Lvli ⊑ ∃ri+1.(Lvli+1) ⊓ ∀ri+1.(Lvli+1 → R)

5. Address information for the nodes is created bit-wise and propagated down the tree.
That is, once we are in the left (resp. right) node on the i-th level, this node and all nodes further
below will have the i-th bit of their address set to 0 (resp. 1). Below we have 1 ≤ i ≤ n, b ∈ {0, 1}
and 0 ≤ j < i.

(LBitZero[i]) Lvli ⊓ L ⊑ Ad0
i

(AdDisj[i]) Ad0
i ⊓ Ad1

i ⊑ ⊥
(RBitOne[i]) Lvli ⊓ R ⊑ Ad1

i

(AdLvlDisj[i,j]) Adb
i ⊓ Lvlj ⊑ ⊥

(PropBit[i]) Adb
i ⊑ ⊔nj=1 ∀ℓj .Adb

i ⊓ ∀rj .Adb
i

This finishes the axiomatisation of n-configuration units. Let Kn
unit denote the KB composed of all

GCIs presented so far. What remains to be done is to show that our axiomatisation is correct, in the sense
of the following two lemmas. Their proofs are routine, hence the reader may skip them at first reading.

Lemma 6.4 Each n-configuration unit is a model of Kn
unit.

Proof. Let U be an n-configuration unit. We proceed with axioms α of Kn
unit, showing U |= α.

1. Note that ∆U is a set of all binary words of length ≤ n and by definition we have that
w ∈ LvlUi if and only if |w| = i. Since every word w has a unique length, it follows that
U |= (LvlCov) and that U |= (LvlDisj[i,j]) for any indices 0 ≤ j < i ≤ n.

2. By definitions of LvlUn and nextU , we immediately conclude U |= (leaves-next-loop).
Moreover, for any role name s from Runit \ {next}, we conclude U |= ∃s.Self from the
fact that the set {(w, w) |∈ ∆U } is explicitly stated as a part of sU in its definition. Thus,
we infer U |= (all-loops-but-next).

3. The satisfaction of (LRCov) and (LRDisj) by U is due to the equality RU = ∆U \ LU .
4. Suppose i < n. We will show that U |= (LsuccLvl[i]) (the satisfaction of (RsuccLvl[i])

is analogous). Hence, take any w ∈ LvlUi . Then w (by definition of ℓi+1) has exactly
two ℓi+1-successors: w and w0. Moreover, by definition of LvlUi+1 and LU we conclude
that w0 ∈ LvlUi+1 ∩ LU and w ̸∈ Lvli+1. Hence, U |= (LsuccLvl[i]) holds, since w0 is the
required (only) witness for the ∃- (∀-) restriction.

5. To see U |= (LBitZero[i]), it suffices to take any element w ∈ LvlUi ∩ LU . By the first
inclusion we infer that |w| = i and by the second that the last letter of w is 0. Hence, we
are done by the definition of (Adb

i )U . Similarly, we get U |= (RBitOne[i]). The property
U |= (AdDisj[i]) is due to the fact that words from U carry only one letter per position.
Next, to show U |= (AdLvlDisj[i,j]) for any 1 ≤ j < i ≤ n it suffices to see that, by
definition, LvlUj contains words of length = j and (Adb

i )U contains words of length ≥ i.
Thus their intersection is empty, implying the satisfaction of (AdLvlDisj[i,j]). Finally, we
need to prove U |= (PropBit[i]) for 1 ≤ i ≤ n. To this end, note that w ∈ (Adb

i )U is
equivalent to saying that |w| ≥ i and that the i-th letter of w is b. Now observe that, by
definition, that for every s ∈ Runit \ {next} we have that any s-successor of w can only
be w, w0, or w1 (if i ̸= 0). In any case, such a successor has length ≥ i and has its i-th
letter equal to b. Thus its membership in (Adb

i )U follows, finishing the proof.

The proof of the next lemma is established by constructing an n-configuration unit. It starts from an
element d and recursively traverse ℓi and ri roles.
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Lemma 6.5 For any model I of Kn
unit and any d ∈ LvlI0 there is an n-configuration unit U and a

homomorphism h from U into I with h(ε) = d.

Proof. Let U be an n-configuration unit with ε ∈ LU if and only if d ∈ LI , and that interprets
of all role and concept names outside Runit ∪Cunit as empty sets. It is obvious that exactly one
such unit exists. In what follows, we are going to define a function h : ∆U → ∆I inductively.
Denoting the restriction of h to {0, 1}≤k by h≤k, our inductive assumption states, for a given
k ≤ n, that h≤i is defined for all i < k and h≤i is a homomorphism from U↾{0,1}≤k to I.
We first set h(ε) := d. It is immediate to check that h≤0 is indeed a homomorphism (by

I |= (all-loops-but-next) and our assumptions on ε ∈ LU , and on empty interpretations of
symbols outside Runit ∪ Cunit). For the inductive step, suppose that the assumption holds
for some 1 ≤ k ≤ n and take a word w ∈ {0, 1}k−1. We are going to define h(w0) as follows
(the case of h(w1) is symmetric). Note that since h(w) ∈ LvlIk−1 (by the fact that h≤k−1 is a
homomorphism) and since I |= (LsuccLvl[i]) (for i equal to k−1) we conclude the existence of
d′ ∈ LvlIk satisfying (h(w), d′) ∈ ℓI

k . Note that also d′ ∈ LI ∩(Ad0
k)I holds (by I |= (LsuccLvl[i])

and I |= (LBitZero[i]) with i = k). Thus, we simply let h(w0) := d′.
What remains to be shown is the fact that h≤k is a homomorphism from U↾{0,1}≤k to I. We

already know that h≤k−1 preserves concepts and roles, thus we can focus on concepts and roles
involving words of length k. Hence, take any w of length k and proceed with concepts first.
Let A be any concept name and assume that w ∈ AU . Our goal is to show that h(w) ∈ AI . The
cases of A ∈ {Lvlk, L, R, Adb

k} follow immediately from the construction (see the discussion
while defining them). The cases of A = Lvlj with j ̸= k and A = Adb

i with i ≤ k cannot happen
by the definition of n-configuration unit. Thus the only cases left are these with A = Adb

i with
i < k. But this is easy: let w = uv with |v| = 1. By definition of U we have that u ∈ (Adb

i )U .
Since h≤k−1 is a homomorphism, we infer h(u) ∈ (Adb

i )I and, by I |= (PropBit[i]), we conclude
h(w) ∈ (Adb

i )I . Now we proceed with the case of role preservation by h. Reasoning analogously,
we may focus on roles s from Runit and involving w only. Thus, by definition of U , the only
cases are self-loops (that follows by U |= (all-loops-but-next), (leaves-next-loop)) and the roles
ℓU

k and rU
k between the parent of w and w, that follow from the construction.

This finishes the induction, implying that h is indeed a homomorphism from U to I satisfy-
ing h(ε) = d. We conclude by showing that h is injective. Ad absurdum, suppose that there
are u ̸= v ∈ ∆U such that h(u) = h(v). If |u| ̸= |v| we have that h(u) ∈ LvlI|u| ∩ LvlI|v| (by
the definition of U and by preservation of concepts by h). This contradicts I |= (LvlDisj[i,j]).
Otherwise, |u| = |v| but their i-th letters differ. Again, since h is a homomorphism, we conclude
h(v) ∈ (Ad0

i )I ∩ (Ad1
i )I , which violates I |= (AdDisj[i]). Hence, h is injective.

At this point, we would like to give the reader some intuitions on why units are decorated with different
self-loops. First, we show that their presence can be exploited to navigate top-down through a given unit.

Lemma 6.6 Let U be an n-configuration unit. Then for all w ∈ ∆U we have (ε, w) ∈ ℓ1
U ◦ r1

U ◦
. . . ◦ ℓn

U ◦ rn
U with “◦” denoting the composition of relations.

Proof. For simplicity we use sU
i as an abbreviation of ℓ1

U ◦ r1
U ◦ . . . ◦ ℓi

U ◦ ri
U . The proof is by

induction, where the assumption is that for all 1 ≤ i ≤ n we have that all words w of length at
most i satisfy (ε, w) ∈ sU

i . The base case (for w ∈ {ε, 0, 1}) is immediate to verify. Now take
any word w of length at most i+1 and consider the following two cases:

1. |w| ≤ i. Hence, by the inductive assumption we have (ε, w) ∈ sU
i . Since (w, w) ∈ ℓU

i+1 and
(w, w) ∈ rU

i+1, by the definition of composition we conclude (ε, w) ∈ sU
i+1.

2. |w| = i+1. Hence, w = u0 or u1 for some |u| = i. We focus on the first case, the second one
is symmetric. By the inductive assumption we infer that (ε, u) ∈ sU

i . Since (u, u0) ∈ ℓU
i+1

and (w, w) ∈ rU
i+1 we conclude (ε, w) ∈ sU

i+1, which finishes the proof.
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Employing Lemma 6.6 can now conclude that there is a single CQ detecting root-leaf pairs in units.

Corollary 6.7
Let U be an n-configuration unit. There is a single conjunctive query qrl(x0, x2n) with x0, x2n∈Var(qrl)

qrl := (Lvl0?; ℓ1; r1; . . . ; ℓn; rn; Lvln?)(x0, x2n)

which is of size polynomial in n, such that the set M = {(π(x0), π(x2n)) | U |=π qrl} is equal to the
set of root-leaf pairs from U , i.e. LvlU0 × LvlUn .

We encourage the reader to play with the query q := (Lvl0?; ℓ1; r1; Lvl1?; ℓ2; r2; Lvl2?)(x0, x4) and the
example 2-configuration unit U depicted after Definition 6.3. This will make the reader more familiar with
the path-syntax of CQs, provide more intuition on the key role played by self-loops in our construction, and
justify that indeed any root-leaf pair can be assigned to (x0, x4) in an example match π witnessing U |=π q.

6.4 From Units to Configuration Trees

In the next step, we enrich (N+1)-configuration units with additional concepts, allowing the units to
represent a meaningful configuration of our ATM M = (N, Q, Q∃, sI , sA, sR, T). To this end, we employ a
variety of new concept names from Cconf consisting of

Cconf :=
{

HdHere, NoHdHere, Sts, HdPosb
i , HdLeta, Leta, 0, 1 | s ∈ Q, b ∈ {0, 1}, i ∈ {1, . . . , N}, a ∈ {0, 1}

}
.

Before turning to a formal definition we first describe how configurations are structurally represented
in models. Recall that a configuration of M is a word wsw′ with |ww′| = 2N (called tape) and s ∈ Q.
In our encoding, this configuration will be represented by an (N+1)-configuration unit C decorated by
concepts from Cconf. The interpretation C stores the state s, by associating the state concept Sts to
its root. The tape content ww′ is represented by the internal nodes of C: the i-th letter of ww′ (i.e. the
content of the ATM’s i-th tape cell) is represented by the i-th node (according to their binary addresses)
at the N-th level. In case this letter is 0, the corresponding node will be assigned the concept Let0, while
1 is represented by Let1. Yet, for reasons that will become clear only later, the tape cells’ content is
additionally represented in another way: if it is 0, then we label the i-th node’s left child with 0 and its
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right child with 1. The reverse situation is implemented when the node represents the letter 1. Finally,
there is a unique tape cell that is visited by the head of M and the node corresponding to this cell is
explicitly marked by the concept HdHere while all other “tape cell nodes” are marked by NoHdHere. In
order to implement this marking correctly, the head’s position’s address needs to be explicitly recorded.
Consequently, C’s root node stores this address (binarily encoded using the HdPosb

i concepts) and from
there, these concept assignments are broadcast to and stored in all tape cell nodes on the N-th level.
Similarly, we decorate C’s root with the concept HdLeta meaning that the current letter scanned by the
head is a. The structure just described can be visualised on the next page. After this informal description
and depiction, the formal definition of configuration trees should be plausible.

Definition 6.8 (configuration tree) A configuration tree C of M is an interpretation C := (∆C , ·C)
such that C is an (N+1)-configuration unit additionally satisfying:

• There exists a unique state s ∈ Q such that (Sts)C = {ε} and (Sts′)C = ∅ for all s′ ̸= s.
• (LvlN+1)C = 0C ∪ 1C and 0C ∩ 1C = ∅.
• (Let0)C = {w | w0 ∈ 0C , w1 ∈ 1C}, (Let1)C = {w | w0 ∈ 1C , w1 ∈ 0C},

and (Let0)C ∪ (Let1)C = LvlCN .
• There is a unique word whead of length N witnessing

HdHereC={whead} and NoHdHereC=LvlCN \ {whead}.
• For 1 ≤ i ≤ N and b ∈ {0, 1} satisfying whead ∈ (Adb

i )C we puta

(HdPosb
i )C = LvlC0 ∪LvlCN and (HdPos1−b

i )C = ∅.
• HdLetC

a = {ε}, HdLetC
1−a = ∅, where a ∈ {0, 1} is the unique letter with whead ∈ LetC

a .
aThis is well-defined since for any i, we have that whead belongs to exactly one of (Ad0

i )C , (Ad1
i )C by the definition

of a unit.

We next proceed with the corresponding axiomatisation.
1. To express that C is an (N+1)-configuration unit we integrate all the GCIs from KN+1

unit.
2. The root of C is labelled with a unique state concept.

(StCov) Lvl0 ≡
⊔

s∈Q Sts

(StDisj[s,s′]) Sts ⊓ Sts′ ⊑ ⊥ (for all s ̸= s′)
3. To axiomatise the coherent representation of the tape’s content we employ:

(LetDisj) 0 ⊓ 1 ⊑ ⊥
(LetCov) LvlN+1 ≡ 0 ⊔ 1

(LetConDisj) Let0 ⊓ Let1 ⊑ ⊥
(LetConCov) Let0 ⊔ Let1 ≡ LvlN

(EncLetZero) Let0 ⊑ ∀ℓN+1(LvlN+1 → 0) ⊓ ∀rN+1(LvlN+1 → 1)
(EncLetOne) Let1 ⊑ ∀ℓN+1(LvlN+1 → 1) ⊓ ∀rN+1(LvlN+1 → 0)

4. Next, for the concepts HdPosb
1, . . . , HdPosb

N we make sure they encode exactly one proper binary
address (meant to encode the head’s current position) in the root of C. Below we assume 1 ≤ i ≤ N.
(HdPosCov[i]) Lvl0 ⊔ LvlN ≡ HdPos0

i ⊔ HdPos1
i

(HdPosDisj[i]) HdPos0
i ⊓ HdPos1

i ⊑ ⊥
5. Another step is to propagate the head address stored in the root to all nodes on the N-th level of C.

Here we exploit the presence of self-loops and Lemma 6.6, and use the following GCIs (for 1 ≤ i ≤ N
and b ∈ {0, 1}):5

(PropHdPos[i,b]) Lvl0 ⊓ HdPosb
i ⊑ ∀ℓ1∀r1 . . . ∀ℓN∀rN (LvlN → HdPosb

i )
6. We distinguish between the node representing the cell visited by the head (assigning HdHere) and

the other cell nodes (assigning NoHdHere) by having every cell node compare their address (stored
in the Adb

i concepts) with the head address received through the broadcast from the root.
5The same can be achieved without exploitation of self-loops by iteratively propagating the HdPosb

i through the tree,
but the author believes that the presented formulation is elegant and makes the reader get used to the presence of self-loops.
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(HdHereCov) HdHere ⊔ NoHdHere ≡ LvlN
(HdHereEqualAdr) LvlN ⊓ ⊔Ni=1

⊔
b∈{0,1}

(
Adb

i ⊓ HdPosb
i

)
⊑ HdHere

(NoHdHereDiffrAdr) LvlN ⊓
⊔N

i=1
⊔

b∈{0,1}
(
Adb

i ⊓ HdPos1−b
i

)
⊑ NoHdHere

7. We synchronise the letter scanned by the head with its “recording” in the root (below a ∈ {0, 1}).
(HdLetCov) HdLet0 ⊔ HdLet1 ≡ Lvl0
(RetrHdLet[a]) Lvl0 ⊓ ∃ℓ1∃r1 . . . ∃ℓN∃rN(HdHere ⊓ Leta) ⊑ HdLeta

(HdLetUnique[a]) Lvl0 ⊓ HdLeta ⊑ ∀ℓ1∀r1 . . . ∀ℓN∀rN(HdHere → Leta)
This finishes the axiomatisation of configuration trees. For the knowledge base Kconf, composed of

all presented GCIs, we present its correctness in the following lemmas. Similarly to the previous section,
both of them are routine and the reader may omit them at first reading.

Lemma 6.9 Any configuration tree C is a model of Kconf.

Proof. Let C be a configuration tree. We proceed with all axioms α of Kconf showing C |= α.
1. Since C is an (N+1)-configuration unit by definition, by Lemma 6.4 we infer C |= KN+1

unit.
2. The satisfactions C |= (StCov) and C |= (StDisj[s,s′]) follow immediately from the first

item of Definition 6.8.
3. We have C |= (LetDisj) and C |= (LetCov) by the second item of Definition 6.8. Next,

we have C |= (LetConDisj) by the fact that words in LetC
0 and LetC

1 have different last
letters. The satisfaction of (LetConCov) by C is due to the 3rd property in the 3rd
item of Definition 6.8. What remains to show is the satisfaction of (EncLetZero) (the
proof of (EncLetOne) is symmetric), but this is due to the fact that the only ℓN+1- (resp.
rN+1-) successor of any w ∈ LetC

0 (thus also from LvlCN by the previous statement) is w0
(resp. w1) that belong to 0C (resp. 1C) by definition.

4. Before we proceed with the next part of the axiomatisation, we establish a few properties
about concept memberships of whead. First, we have whead ∈ LvlCN by definition (4th
item). Moreover, for every i we have that whead belongs to exactly one of (Ad0

i )C , (Ad1
i )C

by the definition of a unit. Hence, the choice of whead fixes interpretations of Ad0
i , Ad1

i

and, as we will see, also HdPos0
i and HdPos1

i . Indeed, by the 5th item of Definition 6.8,
whenever whead ∈ (Adb

i )C then (HdPosb
i )C = LvlC0 ∪ LvlCN and (HdPos1−b

i )C = ∅, thus also
(HdPosb

i )C ∩ (HdPos1−b
i )C = ∅ and (HdPosb

i )C ∪ (HdPos1−b
i )C = LvlC0 ∪ LvlCN hold. This

establishes C |= (HdPosDisj[i]) and C |= (HdPosCov[i]) for all 1 ≤ i ≤ N.
5. If ε ∈ (Lvl0 ⊓ HdPosb

i )C , then by definition whead ∈ (Adb
i )C . This implies (HdPosb

i )C =
LvlC0 ∪ LvlCN and thus LvlCN ⊆ (HdPosb

i )C , which is even stronger than the meaning of the
GCI (PropHdPos[i,b]). Hence, C |= (PropHdPos[i,b]) for all 1 ≤ i ≤ N and 0 ≤ b ≤ 1.

6. We next focus on proving C |= (HdHereEqualAdr) (the proof of (NoHdHereDiffrAdr) is
symmetric) and C |= (HdHereCov). The second GCI follows by definition, hence we focus
on the first one. Ad absurdum, assume that there is w ∈ (LvlN ⊓ ⊔Ni=1

⊔
b∈{0,1}

(
Adb

i ⊓
HdPosb

i

)
)C but w ̸∈ (HdHere)C . Since w ∈ (LvlN)C we infer |w| = N and, by w ̸∈ (HdHere)C

and the 4th item of Definition 6.8, we infer w ̸= whead. Thus there is a position 1 ≤ k ≤ N
such the k-th letter of w differs from the k-th letter of whead (called it b). So we have
w ̸∈ (Adb

k)C and w ∈ (Ad1−b
k )C (by definition of Adb

i in units). At the same time the 5th
item of Definition 6.8 informs us that (HdPosb

k)C = LvlC0 ∪ LvlCN and (HdPos1−b
k )C = ∅,

which implies w ∈ (HdPosb
k)C and w ̸∈ (HdPos1−b

k )C . This contradicts the fact that
w ∈ (

⊔
b∈{0,1}

(
Adb

i ⊓ HdPosb
i

)
)C .

7. We proceed with the last three GCIs. Satisfaction of (HdLetCov) by C follows by defi-
nition. For (RetrHdLet[a]), assume that its antecedent is non-empty (which means that
it is equal to {ε}). This implies, by the 4th and the last item of Definition 6.8, that
whead ∈ LetC

a . Thus, by definition, HdLetC
a is equal to {ε}, which obviously contains ε.

Hence, C |= (RetrHdLet[a]). Finally, C |= (HdLetUnique[a]) is shown as follows. If the
antecedent of (HdLetUnique[a]) is non-empty then it is equal to {ε}. Thus by the list
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item of Definition 6.8, we have LetC
a = {whead}. Since HdHereC = {whead} (by the 4th

item of Definition 6.8), we conclude HdHereC ⊆ LetC
a . Therefore C |= (HdLetUnique[a]).

Lemma 6.10 For any model I of Kconf and any d ∈ LvlI0 there is a configuration tree C and a
homomorphism h from C into I with h(ε) = d.

Proof. By Lemma 6.5 there is an (N+1)-configuration unit U and a homomorphism h : U → I
with h(ε) = d. Moreover, as the symbols outside Runit ∪ Cunit do not appear in Definition 6.3
we can assume that U interprets them as empty sets. Let C = (∆U , ·C) be an interpretation that
is obtained from changing the meaning of concepts from Cconf as follows: for any C ∈ Cconf
we let CC := {w | h(w) ∈ CU }. All other symbols are interpreted as in U . Clearly h is a
homomorphism from C into I with h(ε) = d. It suffices to prove that C is a configuration tree.
This is done by routine investigation of items from Definition 6.8 and the presented GCIs.

• Let s be the unique state satisfying h(ε) ∈ StI
s : it exists by I |= (StCov) and is unique

by I |= (StDisj[s,s′]). Hence, (Sts)C = {ε} holds. Moreover, (Sts′)C = ∅ for all s′ ̸= Q.
Note that ε ̸∈ (Sts′)C by (StDisj[s,s′]) and for other elements (so from LvlCi for some
i > 0) their membership in (Sts′)C would violate I |=

⊔
s∈Q Sts.

• Similarly, the equalities (LvlN+1)C = 0C ∪ 1C and 0C ∩ 1C = ∅ follow by I |= (LetDisj)
and I |= (LetCov).

• Analogously, we have (Let0)C ∪ (Let1)C = LvlCN by I |= (LetConDisj) and I |= (LetCon-
Cov). Note that this implies (Let0)C ⊆ LvlCN . We next show the equality (♡) : (Let0)C =
{w ∈ ∆U | w0 ∈ 0C , w1 ∈ 1C} (the related equality for Let1 is symmetric). Take any
w ∈ (Let0)C (thus also ∈ LvlCN ). By the fact that C is a unit, we infer that w0 ∈ LvlCN+1
and w1 ∈ LvlCN+1 exist, and moreover w is linked to them, respectively, by the roles ℓC

N+1
and rC

N+1. Hence, by the homomorphic assignment of concepts from Cconf and the satisfac-
tion I |= (EncLetZero) we have that w0 ∈ 0C and w1 ∈ 1C . Hence, the ⊆-relationship of
(♡) follows. For the ⊇-relationship take any w ∈ ∆U s.t. w0 ∈ 0C , w1 ∈ 1C and note that
w ∈ LvlCN and wb ∈ LvlCN+1 hold. Otherwise, by the fact that C is an (N+1)-configuration
unit, the element w0 does not exist or it belongs to LvlCi for i ̸= N+1, which violates
I |= (LetCov). By I |= (LetConCov) we know that w ∈ (Let0)C ∪(Let1)C . If w ∈ (Let0)C

holds then we are done. Thus, assume towards a contradiction that w ∈ (Let1)C . But
then the first conjunct of the consequent of (EncLetOne) is violated, contradicting its
satisfaction by I. Hence (♡) holds.

• Let whead be the unique N-digit binary word whose i-th letter is equal to b iff ε ∈ (HdPosb
i )C

holds. This is well defined due to I |= (HdPosDisj[i]) and I |= (HdPosCov[i]) for all
1 ≤ i ≤ N. It remains to show that this whead indeed plays the role of whead in the sense
of Definition 6.8. Take any 1 ≤ i ≤ N and let b be the i-th letter of whead. We will show
that (HdPos1−b

i )C = ∅ holds. Ad absurdum, assume that it is non-empty and contains
w. By I |= (HdPosCov[i]) we have that either w ∈ LvlC0 or w ∈ LvlCN . The first case
is not possible due to I |= (HdPosDisj[i]) (we already have that ε ∈ (HdPosb

i )C). Thus
w ∈ LvlCN . But then it violates I |= (PropHdPos[i,b]), which by Lemma 6.6 enforces
that w ∈ (HdPosb

i )C . Hence, (♣:) (HdPos1−b
i )C = ∅, which by (HdPosCov[i]) implies

(♣′:) LvlC0 ∪ LvlCN = (HdPosb
i )C . Thus it follows, by definition of whead, that whead ∈

(Adb
i )C iff whead ∈ (HdPosb

i )C , concluding that C satisfies the 5th item of Definition 6.8.
Next, by exploiting (♣) and (♣′) and applying the satisfaction of (HdHereEqualAdr),
(NoHdHereDiffrAdr) and (HdHereCov) by C, we conclude the satisfaction of the 4th
item of Definition 6.8. This, among the other properties, results in HdHereC = {whead}.
Finally, let a be the unique letter satisfying whead ∈ LetC

a (it exists and is unique by I |=
(LetConDisj), (LetConCov)). We claim that HdLetC

a = {ε} and HdLetC
1−a = ∅. Note that

both HdLetC
a and HdLetC

1−a are subsets of {ε} by I |= (HdLetCov), thus it suffices to show
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that ε ∈ HdLetC
a and ε ̸∈ HdLetC

1−a. The first property holds due to I |= (RetrHdLet[a]).
For the second property, towards a contradiction assume that ε ∈ HdLetC

1−a. Hence, by
I |= (HdLetUnique[a]) we conclude that HdHereC = {whead} ⊆ LetC

1−a. But LetC
1−a is

empty by I |= (LetConDisj) and the definition of a. A contradiction.
Hence the interpretation C is indeed a configuration tree, concluding the proof.

6.5 Enriching Configuration Trees

Recall that the purpose of configuration trees is to place them inside a model that describes the run of
the Turing machine M. In particular, this will require to describe the progression of one configuration to
another. In order to prepare for that, we next introduce an extended version of configuration trees that
are enriched by additional information pertaining to their predecessor configuration in a run. To this end,
we use new concept names from

Cenr :=
{

PTrnst, Ini, PHdHere, NoPHdHere, PHdAbv, NoPHdAbv, PHdPosb
i , PHdLeta

}
,

with t ∈ T, 1 ≤ i ≤ N, b ∈ {0, 1}, and a ∈ {0, 1}. We use Cptr to denote {Ini, PTrnst | t ∈ T}.
The concept PTrnst, assigned to the root, indicates the transition, through which the configuration

has been reached from the previous configuration, while Ini is used as its replacement for the initial
configuration. In addition, concepts PHdPosb

i and PHdLeta are attached to the root in order to — in a
way very similar to HdPosb

i and HdLeta — indicate the previous configuration’s head position as well as
the letter stored in that position on the current configuration’s tape. For the sake of our encoding we also
employ the concepts PHdHere, NoPHdHere that play the role analogous to the HdHere and NoHdHere
concepts from configuration-trees.6 For technical reasons, we also introduce the concepts PHdAbv and
NoPHdAbv that will label nodes on the (N+1)-th level if and only if their parent is labelled with the
corresponding concept from {PHdHere, NoPHdHere}.

We proceed with the formal definition of the structures just described.

Definition 6.11 (enriched configuration tree) An enriched configuration tree E of M is an
interpretation E := (∆E , ·E) such that E is a configuration tree additionally satisfying the following
conditions on concepts from Cenr:

• There is exactly one concept C ∈ Cptr for which CE = {ε} and for all C′ ∈ Cptr \ {C} we have
(C′)E = ∅.

• PTrnsE
(s,a,b,s′,d) = {ε} implies (Sts′)E = {ε} for all transitions (s, a, b, s′, d) ∈ T.

• PHdHereE={wphd} and NoPHdHereE=LvlEN \{wphd} for the N-digit binary word wphd encodinga

– the number obtained as whead − d (see: Def. 6.8) whenever PTrnsE
(s,a,b,s′,d) = {ε}, or

– the number 0 in case IniE = {ε}.
• PHdAbvE = {w0, w1 | w ∈ PHdHereE} and NoPHdAbvE = LvlEN+1 \ PHdAbvE .
• (PHdPosb

i )E = LvlE0 ∪LvlEN and (PHdPos1−b
i )E = ∅ for all 1 ≤ i ≤ N and 0 ≤ b ≤ 1 with

wphd ∈ (Adb
i )E .

• PHdLetE
a = {ε} and PHdLetE

1−a = ∅, where a is the unique letter from {0, 1} such that
wphd ∈ LetE

a .
• IniE={ε} implies ε ∈ LE , StE

sI
={ε}, LetE

0 = LvlEN , and HdPos0
i = PHdPos0

i = LvlE0 ∪ LvlEN for
all 1 ≤ i ≤ N.

aHere we exploit that M never attempts to move left (resp. right) on the left-most (resp. right-most) tape cell.

As usual, we supplement the above definition with the corresponding axiomatisation.

6For simplicity, the initial configuration will also carry previous head information, but it will be irrelevant.



90 Chapter 6. Lower Bounds On Querying ALCSelf

1. We ensure that the root unambiguously indicates the previous transition (or initiality).
Below t ̸= t′ ∈ T.

(TrCov) Lvl0 ≡ Ini ⊔
⊔

t∈T PTrnst,

(TrInitDisj[t]) Ini ⊓ PTrnst ⊑ ⊥, (TrDisj[t, t′]) PTrnst ⊓ PTrnst′ ⊑ ⊥.

2. We provide the encoding of the previous head position and the previous letter scanned by the head.
This is done by means of the PHdPosb

i , PHdLeta, PHdHere, and NoPHdHere concepts in analogy
to how it was done for the current head position (see the last four points of the axiomatisation from
the previous section). Below we assume 1 ≤ i ≤ N, b ∈ {0, 1}, and a ∈ {0, 1}.
(PHdPosCov[i]) Lvl0⊔LvlN ≡ PHdPos0

i ⊔PHdPos1
i ,

(PHdPosDisj[i]) PHdPos0
i ⊓ PHdPos1

i ⊑ ⊥,
(PropPHdPos[i,b]) Lvl0 ⊓ PHdPosb

i ⊑ ∀ℓ1∀r1 . . . ∀ℓN∀rN (LvlN → PHdPosb
i ),

(PHdHereCov) PHdHere ⊔ NoPHdHere ≡ LvlN
(PHdHereEqualAdr) LvlN ⊓ ⊔Ni=1

⊔
b∈{0,1}

(
Adb

i ⊓ PHdPosb
i

)
⊑ PHdHere,

(NoPHdHereDiffAdr) LvlN ⊓
⊔N

i=1
⊔

b∈{0,1}
(
Adb

i ⊓ PHdPos1−b
i

)
⊑ NoPHdHere,

(PHdLetCov) PHdLet0 ⊔ PHdLet1 ≡ Lvl0,
(RetrPHdLet[a]) Lvl0 ⊓ ∃ℓ1∃r1 . . . ∃ℓN∃rN(PHdHere ⊓ Leta) ⊑ PHdLeta,
(PHdLetUnique[a]) Lvl0 ⊓ PHdLeta ⊑ ∀ℓ1∀r1 . . . ∀ℓN∀rN(PHdHere → Leta).

3. Next, the concepts PHdAbv and NoPHdAbv are assigned via
(PHdAbvCov) PHdAbv ⊔ NoPHdAbv ≡ LvlN+1,
(PHdAbvDisj) PHdAbv ⊓ NoPHdAbv ⊑ ⊥,
(PropPHdAbv) PHdHere ⊑ ∀ℓN+1∀rN+1LvlN+1 → PHdAbv,
(PropNoPHdAbv) NoPHdHere ⊑ ∀ℓN+1∀rN+1LvlN+1 → NoPHdAbv.

4. We ensure consistency of the current configuration with the previous transition. Below we assume
that (s, a, b, s′, d) ∈ T.

(TransiCons) PTrns(s,a,b,s′,d) ⊑ PHdLetb ⊓ Sts′ ⊓ “PHdPos + d = HdPos”,
where the last right-hand-side expression, specifying decrements or increments of binary encodings
of numbers, is implemented in a usual way [BHLS17, p. 127] via:

N⊔
i=1

(
A0

i ⊓ B1
i ⊓

i−1⊔

j=1
(A1

j ⊓ B0
j ) ⊓

N ⊔

j=i+1

(
(A1

j ⊓ B1
j ) ⊔ (A0

j ⊓ B0
j )
))

with A := PHdPos and B := HdPos if d = +1, and with A and B swapped if d = −1.
5. We encode the initial configuration as follows.

(IC) Ini ⊑ Lvl0 ⊓ L ⊓ StsI
⊓ ⊔Ni=1(HdPos0

i ⊓ PHdPos0
i ) ⊓ ∀ℓ1∀r1. . .∀ℓN∀rN(LvlN→Let0),

For the KB Kenr, composed of all the GCIs presented so far, we show correctness in the following lemmas.
The proofs are routine and similar to proofs from the previous section.

Lemma 6.12 Any enriched configuration tree of E is a model of Kenr.

Proof. Since E is a configuration tree by definition, by Lemma 6.9 we infer E |= Kconf. Hence,
we may focus on the GCIs presented in this section only. For the GCIs from the 2nd group,
we essentially use the same proof that we used for their “non-previous” counterparts the proof
of Lemma 6.9 and thus we do not repeat it here. Satisfaction of (PHdAbvCov) and (PHd-
AbvDisj) follows by the 4th item of Definition 6.11. Next, to prove that also (PropPHdAbv)
is satisfied by E (the proof for (PropNoPHdAbv) is analogous) we take any w ∈ PHdHereE ,
which by definition is equal to wphd and see that the antecedent of the implication on the
right hand of (PropPHdAbv) is satisfied only by wphd0 and wphd1, which are in PHdAbvE by
definition. Next, to show satisfaction of (TransiCons) we assume ε ∈ PTrnsE

(s,a,b,s′,d). Then
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we have ε ∈ PHdLetE
b (by the second to last items of Definition 6.11), ε ∈ StE

s′ (by the
2nd item of Definition 6.11) and that ε ∈ “PHdPos + d = HdPos”E (by correctness of in-
crementation/decrementation of binary encodings and by the 1st subitem of the 3rd item
of Definition 6.11). Thus E |= (TransiCons). Finally, E |= (IC) follows directly from the last
item of Definition 6.11.

Lemma 6.13 For any model I of Kenr and any d ∈ LvlI0 , there is an enriched configuration tree E
and a homomorphism h from E into I with h(ε) = d.

Proof. We follow the proof scheme of Lemma 6.10. By Lemma 6.10, there is a homomorphism h

from a configuration tree C to I with h(ε) = d. Moreover, as the symbols outside Runit∪Cunit∪
Cconf do not appear in Definition 6.8 we can assume that C interprets them as empty sets.
Let E = (∆C , ·U ) be an interpretation that is obtained from changing the meaning of concepts
from Cenr as follows: for any C ∈ Cenr we let CE := {w | h(w) ∈ CC}. All other symbols are
interpreted as in C. Clearly h is a homomorphism from E into I with h(ε) = d and it suffices
to show that E is an enriched configuration tree (we already know that it is a configuration
tree), which is done by routine investigation of Definition 6.11 and the presented GCIs.
The existence of the unique concept C ∈ Cptr claimed in the 1st item of Definition 6.11 is

provided by the first three GCIs, namely the existence is due to (TrCov) and uniqueness due to
(TrInitDisj[t]) and (TrDisj[t, t′]). The 2nd item of Definition 6.11 is due to I |= (TransiCons)
(more precisely, the first conjunct of the rhs). Similarly to the proof of Lemma 6.10, we establish
the existence of a unique wphd and desired properties of concepts PHdHereE , NoPHdHereE ,
(PHdPosb

i )E and PHdLetE
a . Since such a proof is nearly identical (modulo adding the “P”

letter in front of some concept names) to the one from the previous section, we do not re-
peat the details here. Then, the fact that wphd satisfies wphd = whead + d or is equal to 0
in case IniE = {ε} is by, respectively, membership of ε in “PHdPos + d = HdPos”E and
(∀ℓ1∀r1 . . . ∀ℓN∀rN (LvlN → PHdPosb

i ))E , guaranteed by I |= (TransiCons) and I |= (IC). Fi-
nally, the satisfaction of the last item of Definition 6.11 is immediate by I |= (IC).

6.6 Describing Accepting Quasi-Runs

Recall that a quasi-run R of M is simply a tree labelled with configurations of M where the root is
labelled with the initial configuration sI02N . Each node representing an existential configuration has one
child labelled with a quasi-successor configuration, while each node representing a universal configuration
has two children labelled by quasi-successor configurations obtained via different transitions.

In order to represent an accepting quasi-run by a model, we employ the notion of a quasi-computation
tree Q, a structure intuitively defined from some R as follows: replace every node of R by its corre-
sponding configuration tree, adequately enriched with information about its generating transition and the
predecessor configuration. The roots of these enriched configuration trees are linked via the next role to
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express the quasi-succession relation of R. The roots of enriched configuration trees representing universal
configurations are chosen to be labelled with L, their left next-child with L and their right next-child
with R (both corresponding to existential configurations). As expected, the Ini concept decorates the root
of the distinguished enriched configuration tree that represents R’s initial configuration. As our attention
is restricted to accepting quasi-runs R, we require that no enriched configuration tree occurring in Q
carries a rejecting state. We now give a formal definition of such a structure Q.

Definition 6.14 (quasi-computation tree) A quasi-computation tree Q of M is an interpretation
Q := (∆Q, ·Q) satisfying the following properties:

• ∆Q := T × {0, 1}≤N+1, where T isa a prefix-closed subset of {10, 00}∗ · {ε, 0, 1} with w1 ∈ T

implying w0 ∈ T.
• For every w ∈ T, the substructure of Q induced by {w} × {0, 1}≤N+1 is isomorphic to an

enriched configuration tree of M via the isomorphism (w, w) 7→ w.
• (ε,w) ∈ RQ if w ends with 1, otherwise (ε,w) ∈ LQ.
• For any w ̸= w′ and arbitrary w, w′ ∈ {0, 1}≤N+1 we have that ((w, w), (w′, w′)) /∈ sQ holds

for any s ∈ Runit \ {next}.
• nextQ\{(d, d) | ∆Q×∆Q} = {((w, ε), (wb, ε)) | wb,w ∈ T, b ∈ {0, 1}}.
• IniQ = {(ε, ε)}.
• For any w0 ∈ T with (w, ε) ∈ StQ

s and (w, ε) ∈ LetQ
a

– if w1 ∈ T then (w0, ε) ∈ PTrnsQ
T1(s,a) and (w1, ε) ∈ PTrnsQ

T2(s,a),
– if w1 /∈ T then (w0, ε) ∈ PTrnsQ

T1(s,a) or (w0, ε) ∈ PTrnsQ
T2(s,a).

• If (w, w) ∈ HdHereQ and wb ∈ T then (wb, w) ∈ PHdHereQ.
• StQ

sR
= ∅ as well as (w, ε) ∈ StQ

sA
if and only if w ∈ T and w0 ̸∈ T.

aThis is just a scary-looking definition of a binary tree in which nodes at the i-th level have exactly 2 children if i
is even and exactly one child otherwise. We use fraktur letters for quasi-computations.

We move on to provide an appropriate axiomatisation.
1. We incorporate all axioms from Kenr to ensure the indicated substructures correspond to enriched

computation trees.
2. Every non-final existential configuration has one successor configuration while every non-final

universal configuration has two. Final configurations do not have any successors. Below se ∈
Q∀ \ {sA, sR}, se ∈ Q∃ \ {sA, sR}, and sf ∈ {sA, sR}.
(EConfSucc[se]) Stse ⊑ ∃next.L ⊓ ∃next.R
(AConfSucc[sa]) Stsa

⊑ ∃next.⊤ ⊓ ∀next.L
(FinConfSucc[sf ]) Stsf

⊑ ∀next.⊥
3. To transfer the previous head position to the successor configurations we use (1 ≤ i ≤ N, b ∈ {0, 1}):

(TransHeadPos[i, b]) Lvl0 ⊓ HdPosb
i ⊑ ∀next.PHdPosb

i

4. For any s∃ ∈ Q∃ we specify that the corresponding configuration tree linked via next-role is a
successor configuration of the current one.

(TransiExistState) Sts∃ ⊓ HdLeta ⊑
⊔

t∈T(s∃,a) ∀next.PTrnst

5. For every universal state s∀ ∈ Q∀ and a letter a currently scanned by the head there are only two
possible choices of transitions.

(TransiUnivStateL) Sts∀ ⊓ HdLeta ⊑ ∀next.(L → PTrnsT1(s∀,a))
(TransiUnivStateR) Sts∀ ⊓ HdLeta ⊑ ∀next.(R → PTrnsT2(s∀,a))

6. Since we want to have accepting quasi-runs of M only, we state that we never encounter the
rejecting state.

(NoRejectState) StsR
⊑ ⊥
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Let TM be the set of all GCIs presented so far and let AM be an ABox composed of a single axiom
Ini(a) for a fresh individual name a. Put KM := (AM, TM). We claim that:

Lemma 6.15 The knowledge base KM is of size polynomial in |M|. Any accepting quasi-computation
tree Q of M is a model of KM.

Proof. To see Q |= Kenr it suffices to observe that (1) by the 2nd item of Definition 6.14 all the
substructures of Q induced by {w} × {0, 1}≤N+1 are isomorphic to some computation tree and
hence, by Lemma 6.12 they satisfy Kenr, (2) the use of roles from Runit \ {next} is restricted
to enriched configuration trees and hence Q satisfies all the GCIs not involving next and (3)
the only GCI involving next from Kenr is (leaves-next-loop) and it is satisfied in Q due to the
mentioned isomorphism property. Next, the satisfaction of (AConfSucc[sa]), (TransiUnivSta-
teL), and (TransiUnivStateR) by Q is due to the 7th item (1st subitem) of Definition 6.14.
Similarly, we infer that Q |= (EConfSucc[se]) and Q |= (TransiExistState) by the 7th item
(2nd subitem) of Definition 6.14. By the last item of Definition 6.14 we immediately conclude
Q |= (FinConfSucc[sf ]) and Q |= (NoRejectState). Hence, it remains to prove satisfaction of
(TransHeadPos[i, b]), which is immediate by the second to last item of Definition 6.14.

Lemma 6.16 For any model I of KM there exists an accepting quasi-computation tree Q and a
homomorphism h : Q → I with h(ε, ε) = aI .

Proof. We construct a tree T and its origin function f : T → I as follows. First, let ε ∈ T and
f(ε) := aI . We next proceed as follows. Take any word w ∈ T and consider three cases:

• f(w) is labelled with a non-final universal state. Hence, by the first axiom provided, we
know that f(w) has at least two next-successors, one of which is in LI and the other in RI .
Call them, respectively, el, er. Hence, we extend T with the words w0,w1 and extend the
function f with f(w0) := el and f(w1) := er. Repeat the process from w0 and w1.

• f(w) is labelled with a non-final existential state. Then we take its next-successor e and
extend T with w0 and f with f(w0) := e. Repeat the process from w0.

• f(w) is labelled with a final state. No action required.
We associate a word w ∈ T with an enriched configuration tree Ew such that there is a ho-
momorphism gw from Ew to I with f(w) = gw(ε). The existence of Ew and gw is provided
by Lemma 6.13. Finally, we decorate each node of Ew with “Pr” concepts as suggested by the
homomorphism gw. A T-quasi-computation tree Q is then defined by stipulating that, for every
w ∈ T, the substructure of Q induced by {w} × {0, 1}≤N+1 be isomorphic to the decorated Ew.
The homomorphism h : ∆Q → I is then defined componentwise by (w, w) 7→ gw(w), essentially
taking the disjoint unions of the homomorphisms for all enriched configuration trees. Since
all the roles except next are restricted to the components and we made sure that the roots
of Q were created from the elements linked via next-roles, we conclude that h is the claimed
homomorphism.

6.7 Detecting Faulty Runs with a Single Conjunctive Query

We finally have reached the point where querying comes into play. Our last goal is to design one single
conjunctive query that detects “faulty configuration progressions” in quasi-computation trees, meaning
that it matches a pair of two positions in consecutive configuration trees representing the same cell and
being untouched by the head of M yet storing different letters. Note that the lack of such cells in a quasi-
computation tree means that any two consecutive configuration trees represent not only quasi-successor
configuration but actually proper successors and hence the structure as such even represents a “proper”
run. We start by formalising our requirements for such a query:
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Lemma 6.17 There exists a conjunctive query qM of size polynomial in N with two distinguished
variables x, y such that for all quasi-computation trees Q we have Q |=π qM if and only if there
exists a word w, a letter b and a word w of length N+1 such that:

• π(x) = (w, w), π(y) = (wb, w),
• π(y) ∈ NoPHdAbvQ,
• π(x) ∈ 0Q and π(y) ∈ 1Q.

Note the asymmetry in the 3rd bullet point above – we ignore the reverse constellation. Yet, due to our
encoding if the reverse situation occurs then so does the original one. Hence, every mismatch in a sense
causes two inconsistencies from the point of N+1-level nodes. This solves the mystery of introducing level
N+1 in our configuration trees and the particular encoding of tape symbols: it is crucial for catching
faulty progressions by using one single CQ. Before proving Lemma 6.17 we show how it implies the main
theorem here, namely:

Theorem 6.18
Conjunctive query entailment over ALCSelf-KBs is 2ExpTime-hard.

Proof. Since co2ExpTime=2ExpTime, it is sufficient to show that the CQ non-entailment
problem over ALCSelf-KBs is 2ExpTime-hard. Take KM as defined in Section 6.6, and the
query qM as given by Lemma 6.17. Since both KM and qM are of size polynomial w.r.t |M|,
it remains to show that KM ̸|= qM if and only if M is accepting. The “if” direction is easy: we
take an accepting run of M and turn it into a quasi-computation tree Q. By Lemma 6.15 we
conclude Q |= KM. We also have that Q ̸|= q due to the fact that any two consecutive config-
uration trees represent proper successor configurations. For the second direction it suffices to
show that if M is not accepting then KM |= qM. Indeed, assume that M is not accepting and
consider an arbitrary model I of KM (in case KM is unsatisfiable then trivially KM |= qM).
By Lemma 6.16 there is a quasi-computation tree Q and a homomorphism h : Q → I with
h(ε, ε) = aI . But this quasi-computation tree must represent a “faulty” run – in the opposite
case it would correspond to an accepting run of M, which does not exist by assumption. Hence
there must be a match of qM to Q. As query matches are preserved under homomorphisms, we
conclude I |= qM. Thus all models I of KM have matches of qM, which implies KM |= qM.

In the forthcoming query definitions, we employ a convenient naming scheme. By writing q[x, y] we
indicate that the variables x, y ∈ Var(q) are global (i.e. the same across (sub)queries that we might join
together) while its other variables are local (i.e. pairwise different from any variables occurring in other
queries — this can always be enforced by renaming). Going back to the query, we proceed as follows. We
first prepare a query qmain[x, y] with two global distinguished variables x, y that relates any two domain
elements whenever they are leaf nodes of consecutive computation trees. Then qmain[x, y] is combined
with queries qi

adr[x, y] for all 1 ≤ i ≤ N+1 with the intended meaning that x and y have the same i-th
bit of their addresses. Additionally, our final query will require that x be mapped to a node satisfying 0

and y to a node satisfying 1 and NoPHdHere.
To construct qmain[x, y] we essentially employ Lemma 6.6.

Lemma 6.19 There exists a conjunctive query qmain[x, y] of size polynomial in |M| such that for
any quasi-computation tree Q the set Mqmain := {(π(x), π(y)) | Q |=π qmain} is composed precisely
of any pair of leaves of two consecutive configuration trees of Q. Formally:

Mqmain =
{

((w, w),(wb, v)) ∈ ∆Q | |w| = |v| = N+1, b∈ {0, 1}
}

.
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Proof. It suffices to take qmain := qrl[xr, x] ∧ next(xr, yr) ∧ qrl[yr, y]. Let Q |=π qmain. That
Mqmain is a superset of the set above follows from the fact that quasi-computation trees are
computation units and hence, containment follows by Corollary 6.7. We now focus on the other
direction. Note that by the 5th item of Definition 6.14 we know that π(xr) and π(yr) must be
two distinct roots of enriched configuration trees Exr

, Eyr
. By the 4th item of Definition 6.14

we know that the interpretation of the rs and ℓs is restricted to pairs of domain elements
located inside the same enriched configuration tree (and by their definition to configuration
trees and by their definition to configuration units). Since qrl only employs the roles ℓi, ri and
the concepts Lvl0, LvlN+1 we conclude that qrl has exactly the same set of matches in Exr

as
in its underlying unit. Hence, by Corollary 6.7 we know that x (resp. y) is indeed mapped to
a leaf of Exr

(resp. to a leaf of Eyr
), which finishes the proof.

The next part of our query construction focuses on sub-queries qi
adr[x, y] that are meant to relate

leaves having equal i-th bits of addresses. In order to construct it we combine together several smaller
queries, written in path syntax below.

• We let q↓[x, y] := (ℓ1; r1; . . . ; ℓN+1; rN+1)(x, y) define the top-down query. It intuitively traverses an
enriched configuration tree in a top-down manner. Note that q↓[x, y] is actually the major sub-query
of qrl[x, y].

• The ℓi-top-down query qℓi↓[x, y] is similar to q↓[x, y], but with the ℓi; ri part replaced by just ℓi. The
intended behaviour is that again a tree is traversed from root to leaves, but this time, an ℓi edge
must be crossed when going from the (i − 1)-th to the i-th level. The ri-top-down query qri↓[x, y] is
defined alike, by replacing ℓi; ri in q↓[x, y] with ri.

An important ingredient in the construction is the query qi-th bit
=0 [x, y] defined as follows:

LvlN+1(x) ∧ qℓi↓[x ′,x] ∧ next(x ′,y′) ∧ qℓi↓[y′,y] ∧ LvlN+1(y).

In total analogy, we define qi-th bit
=1 [x, y] by using qri↓ instead of qℓi↓. Any match π of the query qi-th bit

=b [x, y]
instantiates the variables x and y in a quasi-computation tree Q according to one of the following two
scenarios: either π(x) = π(y) or π(x) and π(y) are leaves in two consecutive enriched configuration trees
inside the quasi-computation tree and both of these leaves have their i-th address bit set to b. The above
intuition meets its formalisation in:

Lemma 6.20 Let Q be a quasi-computation tree and let Mqi-th bit
=b

:={(π(x),π(y)) | Q |=π qi-th bit
=b }

for b ∈ {0,1}. Then Mqi-th bit
=b

is equal to the union of M b
1 and M b

2 given below:

M b
1 := {((w, w), (w, w))}, M b

2 := {((w, ubv), (wb, u′bv′)) | |u| = |u′| = i−1}.

Proof. We prove the statement for b = 0, the case for b = 1 is symmetric. First we show M0
1 ⊆

Mqi-th bit
=0

. This is easy: for any leaf d = (w, w) we map all variables of qi-th bit
=0 [x, y] into d; this

is a match due to the presence of all the self-loops at the leaves. To show M0
2 ⊆ Mqi-th bit

=0
we

take any d := (w, w) and e := (wb, v). Let π be a variable assignment that maps x to d, y to e,
x ′ to (w, ε), y′ to (wb, ε). The variables of qℓi↓[x ′, x] are mapped to (w, wj), where wj is the
prefix of w of length j following the path from (w, ε) to (w, w) level-by-level. We stress that
((w, wi−1), (w, wi)) ∈ ℓQ

i holds, which is crucial for the construction to work and that every
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(w, wj) node has all ℓ- and r-loops. The variables of qℓi↓[y′, y] are mapped analogously. After
noticing that d, e ∈ LvlQN+1 and that (π(x ′), π(y′)) ∈ nextQ holds, we conclude that π is clearly
a match of qi-th bit

=0 [x, y] to Q.
Now we focus on showing that Mqi-th bit

=0 [x,y] ⊆ M0
1 ∪ M0

2 . Take any match π and note that
x, y must be mapped to leaves. For π(x ′) and π(y′) we consider the two cases:

1. π(x ′) = π(y′). As the roots do not have next-loops, π(x ′) must be a leaf. This implies
that all variables of qℓi↓[x ′, x] map into a single domain element (otherwise we would not
reach a leaf after traversing such a path). Arguing similarly we infer that all variables of
qℓi↓[y′, y] are mapped to the same element. Thus π(x) = π(y) holds.

2. π(x ′) ̸= π(y′). Since all incoming next roles from leaves are self-loops, we conclude that
π(x ′) is the root of some enriched quasi-computation tree and π(y′) is the root of some
corresponding quasi-successor in Q (by the definition of nextQ). By the satisfaction of
qℓi↓[x ′, x] we know that there exists a sequence of domain elements contributing to a path
from π(x ′) to π(x) witnessing its satisfaction. Moreover, note that since the subquery
qℓi↓[x ′, x] leads from the root to a leaf it implies that we necessarily cross the ℓi role at
the (i−1)-th level, meaning that the i-th bit of the address of π(x) is equal to 0. Thus
we infer that π(x) ∈ (Ad0

i )Q. Reasoning analogously we conclude that π(y) ∈ (Ad0
i )Q.

We are now ready to present the query qi
adr[x, y] pairing leaves in consecutive enriched configuration

trees with coinciding i-th address bit. Its correctness is established in Lemma 6.21.

qi
adr[x, y] := qmain[x, y] ∧ qi-th bit

=0 [x, z] ∧ qi-th bit
=1 [z, y].

Lemma 6.21 For any quasi-computation tree Q we have that Mqi
adr

:= {(π(x), π(y)) | Q |=π

qi
adr[x, y]} is composed precisely of the leaf pairs in two consecutive enriched configuration trees of Q

having equal i-th bit of address. Formally:

Mqi
adr

= Mqmain ∩
((

Ad0
i

Q×Ad0
i

Q) ∪
(
Ad1

i

Q×Ad1
i

Q))
.

Proof. By employing the definition of the query, Lemma 6.20 and relational calculus we con-
clude that Mqi

adr
= Mqmain ∩

(
Mqi-th bit

=0
◦ Mqi-th bit

=1

)
= Mqmain ∩

(
(M0

1 ∪ M0
2 ) ◦ (M1

1 ∪ M1
2 )
)

=
Mqmain ∩

(
M0

1 ∪ M1
2 ∪ M0

2
)

= M1
2 ∪ M0

2 , which finishes the proof.

By collecting queries presented in this Section, we are finally ready to present our query

qM :=
N+1∧
i=1

qi
adr[x, y] ∧ NoPHdAbv(y) ∧ 0(x) ∧ 1(y)

by means of which we can conclude with the proof of Lemma 6.17.
Proof of Lemma 6.17. Let qM as defined above and observe that its size is clearly polynomial
in N. Note that qM satisfies our requirements: The 1st item follows from two lemmas: the
fact that x and y are mapped to leaves of two consecutive enriched configuration trees follows
from Lemma 6.19 and the fact that x and y are mapped to nodes having equal addresses
follows from Lemma 6.21 applied for every 1 ≤ i ≤ N+1. The 2nd and the 3rd points hold
since we supplemented our query with NoPHdAbv(y) ∧ 0(x) ∧ 1(y).

Hardness, shown in this chapter, came as a quite surprise to us. The key insight of our proof (and
maybe the take-home message from this section) is that the presence of Self allows us to mimic case
distinction over paths (and hence the handling of disjunctive information) through concatenation, by
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providing the opportunity for one of the two disjuncts to idle by “circling in place”. On a last note, our
result also holds for plain ALCSelf TBoxes, since the only ABox assertion Ini(a) can be replaced by the
concept inclusion ⊤ ⊑ ∃aux.Ini for an auxiliary role name aux.

Corollary 6.22
Conjunctive query entailment over ALCSelf-TBoxes is 2ExpTime-hard. Hence, the conjunctive query
entailment problem for every member of the Z family of DLs is 2ExpTime-hard as well.
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Motivation and Our Contribution

When reasoning about ontologies and complexity, Vardi [Var82] observed that measuring the user’s data
and the background ontology equally is not realistic, as the data tends to be huge in comparison to
the ontology. To provide a more fine-grained notion of complexity, he invented the notion of the data
complexity in which we treat the ontology (TBox) as fixed upfront and only the user’s data (ABox) varies.
The satisfiability problem for DLs is then usually easier in terms of data complexity (NP-complete or
higher) than in terms of combined complexity (ExpTime-complete or higher). For instance, the two-
variable fragment of first-order logic extended with counting [Pra09] (encoding DLs up to ALCBIOQSelf)
is NP-complete, and thus the very expressive DL SROIQ [Kaz08], the logical core of OWL2. Regarding
DLs with path expressions, not much is known, as the NP-completeness of ALCISelf

reg [JLMS18] was
established only recently. We are not aware of any results on data complexity of logics when both regular
expressions and counting or nominals are allowed. Our results intend to fill these gaps.

In this chapter we study the data complexity of ZIQ, ZOQ, and ZOI, namely the maximal decidable
fragments of ZOIQ that possess the so-called quasi-forest model property, a suitable generalisation of
the well-known forest model property for ALC. For the uniformity of our approach, we actually focus on
the satisfiability problem for full ZOIQ but over quasi-forests, and establish its NP-completeness. This
completes the data complexity landscape for decidable fragments of ZOIQ that remained open for more
than a decade, and reproves known results on the SR family of DLs.
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Overview of the Chapter and Prerequisites

We start with Section 7.1 by defining a suitable notion of quasi-forest models. As our notion of quasi-forest
models is slightly different from the one from the literature, we discuss the differences in Section 7.2. Next,
in Section 7.3, we provide a characterisation of how paths in quasi-forests look like and how they can be
decomposed into interesting pieces. Section 7.4 provides suitable definitions of automata decorations: a
toolkit for modular satisfaction of automata constraints in quasi-forests. Similarly, Section 7.5 provides a
similar toolkit for dealing with number restrictions. Section 7.6 defines a relevant notion of summaries of
quasi-forest models, a compact way of representing quasi-forest models of ZOIQ-KBs. Finally, we present
an algorithm to decide quasi-forest satisfiability of ZOIQ in Section 7.8. In addition to that, Chapter 8
shows how the algorithm from Section 7.8 can be used to establish the coNExpTime upper bound for
the entailment for rooted queries in ZIQ.

We assume that the reader is familiar with Section 3.1 and Preliminaries. Be warned! The forthcoming
chapter is the most technical result the author of the thesis ever obtained.

High Level Algorithm Description

To establish NP-completeness of the satisfiability for ZIQ, ZOQ, and ZOI in a uniform and elegant way,
we focus on the satisfiability of ZOIQ over quasi-forests. One of the key ingredients is an exponential
time algorithm for deciding if a ZOIQ-KB has a quasi-forest model [Ort10, L. 3.4.1, Thm. 3.4.2]. While
this algorithm cannot be used directly to solve the satisfiability problem in optimal time, we stress that we
can still employ it as a black-box to decide quasi-forest satisfiability of KBs that have sizes independent
from the ABox. In our approach, we intend to construct a quasi-forest model of an input ZOIQ-KB in
two steps, i.e. we construct its root part (dubbed the clearing) separately from its subtrees. Our algorithm
first pre-computes (an exponential w.r.t. the size of the TBox but of constant size if the TBox is fixed) set
of quasi-forest-satisfiable ZOIQ-concepts that indicate possible subtrees that can be “plugged in” to the
clearing of the intended model. Then it guesses (in NP) the intended clearing and verifies its consistency in
PTime based on the pre-computed concepts and roles. For the feasibility of our “modular construction” a
lot of bookkeeping needs to be done. Most importantly, certain decorations are employed to “relativise” and
decide the satisfaction of automata concepts and number restrictions in an incomplete, fragmented forest.
I. The first type of decorations, given an automaton A, aggregate information about existing paths
realising A and starting at one of the roots of the intended model. As a single such path may visit several
subtrees, we cut such paths into relevant pieces and summarise them by means of “shortcut” roles and
ZOIQ-concepts describing paths fully contained inside a single subtree.
II. The second type of decorations “localise” counting in the presence of nominals, as the nominals may
have successors outside their own subtree and the clearing.

These two “small tricks”, obfuscated by various technical difficulties, are the core ideas behind our
quasi-forest-satisfiability algorithm. See the forthcoming sections for more details.

7.1 Quasi-Forests Models

In this section we adapt a handy notion of quasi-forests [CEO09, Def. 3.2], defined similarly to other
forest-like structures from Section 3.1. In what follows we employ standard set-theoretic reconstruction
of the notion of an N-forest as a prefix-closed subset of N+ without the empty word ε.

Definition 7.1 Let NA
I and NT

I be finite subsets of NI, Root ∈ NC, and child, edge, id ∈ NR.
An interpretation I is an (NA

I , NT
I )-quasi-forest if its domain ∆I is an N-forest,

RootI = ∆I∩N = {aI | a∈NI} = {aI | a∈(NA
I ∪NT

I )},

childI = {(d, d·n) | d, d·n ∈ ∆I , n ∈ N},

edgeI =
⋃

r∈NR
rI ∪ (r−)I ,

idI = {(d, d) | d ∈ ∆I},
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and for all roles rI and all pairs (d, e) ∈ rI at least one of the following conditions hold:
(i) both d and e belong to RootI ,

(ii) one of d or e is equal to oI for some name o ∈ NT
I ,

(iii) (d, e) ∈ idI ∪ childI ∪ (child−)I .
For convenience, we refer to pairs (d, e) ∈ rI satisfying the second condition as backlinks, and the
ones satisfying (d, e) ∈ idI as self-loops. The clearing of I is the restriction of I to RootI . We call
a quasi-forest N-bounded if all nodes have at most N children.

The names from NT
I are dubbed nominals, and will be usually denoted with decorated letters o. Their

interpretations are usually referred as nominal roots. An example quasi-forest is presented in Example 7.2
below. In total analogy to Section 3.1, we employ suitable notions from graph theory such as node, root,
child, parent, or descendant, defined as expected in accordance with ∆I , childI and RootI . For instance,
d is a descendant of c whenever (c, d) ∈ (childI)+.

Example 7.2. An example 3-bounded ({a,b}, {o, ö, ǒ})-quasi-forest I is depicted below. For readability we
have omitted the interpretations of Root, child, id, and edge.
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The element 1 has a unique child 10. The roots of I are 0, 1, 2, and 3. The nominal roots are 1,2, and 3.
The pairs (1, 001), (2000, 1), and (3, 20) are example backlinks.

We next lift the notion of quasi-forests to models of ZOIQ-KBs. Indeed:

Definition 7.3 A quasi-forest model of a ZOIQ-KB K := (A, T ) is an (ind(A), ind(T ))-quasi-
forest satisfying K, where ind(A) and ind(T ) are the sets of all individual names from A and T .

We remark that our notion of quasi-forests slightly differs from the original definition of quasi-forests
by Calvanese et al. [CEO09, Def. 3.2]. We show however, in the next section, that the differences between
these two definitions are negligible. Here comes the last interesting notion required in this section. While
it is not strictly related with the forthcoming algorithm, it will be useful in Chapter 10 to establish that
ZOI and ZOQ are finitely controllable [BK22].

Definition 7.4 Let I be an (NA
I , NT

I )-quasi-forest, and A be an NFA. Call a path ρ1 . . . ρn down-
ward if for all indices i < n we have that either ρi+1 is a child of ρi, or ρi+1 = ρi. A path is
nominal-downward if it has the form ρ·oI ·ρ̂ for some nominal o ∈ NT

I , a downward path ρ, and a
path ρ̂. An element d downward realises an NFA A in I if there exists a downward or nominal-
downward Aq,q′ -path starting from d. We say that A is downward realisable in I if for all pairs
of states q, q′ of A and all elements d in (∃Aq,q′)I , the element d downward realise Aq,q′ .
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The results by Calvanese et al. [CEO09, Prop. 3.3] and Ortiz [Ort10, Lemma 3.4.1, Thm. 3.4.2] advocate
the use of quasi-forest models when reasoning in the Z family of DLs. We state it below.

Lemma 7.5 Consider a knowledge-base K (in Scott’s normal form) written in ZOQ, ZOI, or ZIQ.
Then there exists a polynomial-time computable number N, which is exponential in |T |, such that:

• K is satisfiable if and only if K has an N-bounded quasi-forest model, and
• for all P2RPQs q, we have K ̸|= q if and only if there exists an N-bounded quasi-forest model

of K violating q.
Moreover, if K is written either in ZOQ or ZOI, the quasi-forest models I of K guaranteed in the
above statements have the property that each NFA A that appears in K is downward realisable in I.

We call the quasi-forest (counter)models of ZOIQ-KBs canonical whenever they are N-bounded for
the number N guaranteed by Lemma 7.5. Thus, the lemma above tell us that for the deciding the satisfiabil-
ity and query entailment over ZIQ, ZOQ, and ZOI, only the class of canonical quasi-forest models is rel-
evant. We say that a ZOIQ-KB is quasi-forest satisfiable whenever it has a canonical quasi-forest
model. The quasi-forest satisfiability problem is defined accordingly. The following follows from the work
of Ortiz [Ort10, Lemma 3.4.1, Thm. 3.4.2]. The proof will be given in the next section.

Lemma 7.6 The quasi-forest satisfiability problem for ZOIQ-KBs is ExpTime-complete. In par-
ticular, this implies that the satisfiability of ZIQ, ZOQ, and ZOI-KBs is ExpTime-complete.

7.2 Comparing the Notions of Quasi-Forests Models

In this section we discuss differences between our definition of a quasi-forest model (Definition 7.1 and
Definition 7.3) and the one proposed by Calvanese et al. [CEO09, Def. 3.2] in their seminal paper. As
the original definition of Calvanese et al. contains minor errors1 we adapt the presentation from the PhD
thesis of Ortiz [Ort10, Def. 3.2.2]. We strongly recommend the reader to skip this section at first reading.

Definition 7.7 (Rephrased Def. 3.2.2 from the PhD Thesis of M. Ortiz) Let NK
I be a finite subset

of NI. An interpretation I is an NK
I -Ortiz-forest if its domain ∆I is a connected N-forest satisfying

∆I∩N = {aI | a∈NI} = {aI | a∈NK
I }, and for all roles rI and all pairs (d, e) ∈ rI at least one of the

following conditions hold:
(I) at least one of d or e is NK

I -named,
(II) d = e, d is a child of e, or e is a child of d.

An Ortiz-forest model of a ZOIQ-KB K is an ind(K)-Ortiz-forest satisfying K. An Ortiz-forest
is proper if interprets all “special” names (namely Root, child, id, and edge) as ∅.

Clearly every quasi-forest can be seen as an Ortiz-forest, but not necessarily vice versa. Let us highlight
the crucial differences between these two notions. One obvious difference is that Ortiz-forests do not assume
“special” concept and role names, namely Root, child, id, and edge. Such concepts and roles can be however
easily incorporated. The second difference is more important. Given a ZOIQ-KB K := (A, T ), we see
that Ortiz-forest-models treat all individual names from K as nominals, while our quasi-forests make a
distinction between nominals (that come from the TBox T ) and other individual names (that come from
the ABox A). This leads to a stricter definition of a forest, as the “backlinks to non-nominal roots” are,
in contrast to Ortiz-forests, not allowed in quasi-forests.

Quasi-forests with finitely many non-empty roles can be described in ZOIQ in the following sense.

1The authors forgot to indicate that the roots of their quasi-forests are precisely the interpretations of named individuals.
Without this assumption, every interpretation can be seen as a forest: just make every element a root.
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Lemma 7.8 Let NA
I and NT

I be finite sets of individual names, and R be a finite set of role names.
One can compute a ZOIQ-KB F (of size polynomial w.r.t. (|NA

I |+|NT
I |+|R|)), such that for any

Ortiz-forest I that interprets all the role names outside R ∪ {id, child, edge} as empty sets, we have
I |= F if and only if I is an (NA

I , NT
I )-quasi-forest.

Proof. We provide a rather straightforward axiomatisation of (NA
I , NT

I )-quasi-forests. The de-
sired ZOIQ-KB F is composed of all the axioms stated below.

• (NA
I ∪ NT

I )-named elements are precisely the roots of an (NA
I , NT

I )-quasi-forest.

Root ≡
⊔

a∈(NA
I ∪NT

I )

{a}

• The role name id is interpreted as the identity relation.

⊤ ⊑ ((≤1 id).⊤) ⊓ ∃id.Self

• The role name edge is interpreted as the union of interpretation of all role names from R,
child, id, and their inverses.

⊤ ⊑ ∀

edge \

 ⋃
r∈R∪{child,id}

(r ∪ r−)

.⊥, ⊤ ⊑ ∀

 ⋃
r∈R∪{child,id}

(r ∪ r−)

 \ edge

.⊥

• Backlinks are allowed only between non-root elements and nominal roots.

¬Root ⊑ ∀
(
edge \ (child ∪ child− ∪ id)

)
.

 ⊔
o∈NT

I

{o}


• The interpretation of child forms a forest, i.e. the following three conditions hold.

– Every element has at most one parent.

⊤ ⊑ (≤1 child−).⊤

– Roots are precisely the elements with no parents.

Root ≡ ∀child−.⊤

– Every element reaches a root via the inverse of child relation in a finite num-
ber of steps.

⊤ ⊑ ∃(child−)∗.Root

It can be readily verified that the above axiomatisation does its job.

With the above axiomatisation, we infer the ExpTime-completeness of quasi-forest satisfiability of ZOIQ.

Corollary 7.9 (Lemma 7.6 reformulated.)
For a given number N encoded in binary, deciding whether a ZOIQ-KB has an N-bounded quasi-
forest model is ExpTime-complete. In particular, deciding whether a KB written in ZIQ, ZOQ,
or ZOI has a quasi-forest model is ExpTime-complete.

Proof. Let K := (A, T ) be an input ZOIQ-KB. If K is in ZIQ, ZOQ, or ZOI, we let N be
the exponential bound (w.r.t. |T |) on the branching of quasi-forests, infeed from Lemma 7.5.
Otherwise, let N be as given as an input. We stress that N is given in binary encoding.
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Let F be the ZOIQ-KB from Lemma 7.8, written for NA
I := ind(A), NT

I := ind(T ), and
the set R composed of all role names occurring in K. It remains to check whether K′ :=
(K ∪ F ∪ {⊤ ⊑ (≤N edge).⊤)} has an Ortiz-forest model. By Lemma 7.8 we see that K has
an N-bounded quasi-forest model if and only if K′ has an N-bounded quasi-forest model if
and only if K′ has an N-bounded Ortiz-forest model (dubbed canonical [Ort10, Def. 3.2.2]).
We next follow the automata-based construction by Ortiz. First, we turn [Ort10, Prop. 3.1.5]
K′ into an equivalent ZOIQ-concept C. Next, we construct [Ort10, Prop. 3.3.8, Cor. 3.3.9,
L. 3.4.1] in time linear w.r.t. |C|, a suitable tree automaton (called the fully-enriched tree
automaton) A whose non-emptiness guarantees the existence of a (canonical) Ortiz-forest
model for K′. Based on the properties of the constructed automaton A [Ort10, L. 3.4.1], its
non-emptiness of A can be then decided in exponential time [BLMV08, Cor. 4.3], providing
the desired algorithm. The matching lower bound follows from ALC [BHLS17, Thm. 5.13].

We next establish the quasi-forest countermodel property for DL being either ZIQ, ZOQ, or ZOI,
i.e. the remaining part of Lemma 7.5. Namely, we want to show that for any DL-KB K and a P2RPQ q
we have that K ̸|= q if and only if there exists a quasi-forest model of K with an exponential branching
that violates q. This allow us to transfer previous results on Ortiz-forest models (the analogue of the first
part of Lemma 7.5 but for Ortiz-forests) to our slightly more restricted setting.

Let us start from the case of ZIQ, which follows from existing works [CEO14, Thm. 3.10].

Lemma 7.10 (Follows from works of Calvanese et. al) Lemma 7.5 holds for ZIQ.

Proof. Let K := (A, T ) be a ZIQ-KB and q be a P2RPQ such that K ̸|= q (we take q := ⊥ in
case we are interested only in the satisfiability problem). As K is in ZIQ, we have ind(T ) = ∅.
Moreover, we assume w.l.o.g. that both K and q do not use “special” role and concept names.
By the result of Calvanese et al. [CEO14, Thm. 3.10] there exists the so-called kT ,q-canonical

model I of K that violates q, where kT ,q is a number bounded exponentially w.r.t. joint sizes of
q and T [CEO14, Def. 3.9]. W.l.o.g. we can assume that I interprets special roles and concepts
as empty sets. A careful inspection [CEO14, Def. 3.7] reveals that I is simply an ind(A)-Ortiz-
forest that is kT ,q-bounded and that does not allow for “backlinks”. Hence, by reinterpreting
the concept name Root, and role names edge, child, id as given in Definition 7.1 we get the
desired exponentially-branching (ind(A), ind(T ))-quasi-forest countermodel for K and q.

To establish Lemma 7.5 for ZOQ and ZOI, we first design a suitable notion of unravelling, similar
to the one from Section 5.1. We then employ pruning to make sure that the branching of the resulting
forest is “small”. To achieve our goals, the following handy notion of Θ-paths in quasi-forests is crucial.

Definition 7.11 Let Θ be a subset of {I, Q, O}, NA
I and NT

I be finite sets of individual names, I be
an interpretation, and ρ be a word in (∆I)∗. We call ρ a Θ-path if all the conditions below hold.

• ρ is an undirected path in I if I ∈ Θ, and a directed path in I otherwise.
• ρ starts from some (NA

I ∪ NT
I )-named element.

• There is no index i > 1 for which ρi is NT
I -named.

• There is no index i for which ρi = ρi+1.
• If {Q, I} ⊆ Θ then there is no index i for which ρi = ρi+2.

We employ Θ-paths as the domain of the forthcoming notion of unravelling. The idea behind the first
item of Definition 7.11 is that directionality of paths depend on the presence of the inverse operator I in
the underlying logic. The second item of Definition 7.11 is needed to manually assign roles between the
named elements. The third item of Definition 7.11 guarantees that we do not copy nominals (if they are
present). The fourth item of Definition 7.11 is useful for correct definition of self-loops. Finally, the last
item of Definition 7.11 is needed in order to establish downward realisability of automata for the logic
ZOI (note that this condition simply “clones” a parent of a node and “makes” such a copy a fresh child).
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We are now ready to present the definition of our unravellings. For succinctness, we identify the names
of logics ZΘ with the letter Z concatenated with the letters from Θ, e.g. we identify Z{I, O} with ZOI.

Definition 7.12 Let NA
I and NT

I be finite sets of individual names, Θ be a subset of {I, O, Q}, and
I be an interpretation. The (NA

I , NT
I )-ZΘ-unravelling of I is the interpretation J defined as:

1. The domain ∆J of J is composed of all Θ-paths in I.
2. For all individual names, if a ∈ (NA

I ∪ NT
I ) then aJ := aI . Otherwise aJ := bI for some b ∈ NI.

3. We put AJ := {ρ | last(ρ) ∈ AI} and RootJ = {aJ | a ∈ NI} for all names A ∈ NC \ {Root}.
4. We interpret role names r ∈ NR \ {id, child, edge} as the intersection of ∆J × ∆J and the

union of sets Rr
Root, Rr

Self , Rr , Rr
{I,O}, Rr

I , Rr
O defined below.

Rr
Root := rI ∩ (RootJ × RootJ ).

Rr
Self :=

{
(ρ, ρ) | (last(ρ), last(ρ)) ∈ rI

}
.

Rr :=
{

(ρ, ρ · d) | (last(ρ), d) ∈ rI
}

.

Rr
I :=

{
(ρ·d, ρ) | (d, last(ρ)) ∈ rI , I ∈ Θ

}
.

Rr
O :=

{
(ρ,oJ ) | (last(ρ),oI) ∈ rI ,o ∈ NT

I , O ∈ Θ
}

.

Rr
{I,O} := {(oJ , ρ) | (oI , last(ρ)) ∈ rI ,o ∈ NT

I , {I, O} ⊆ Θ
}

.

The interpretation of “special” role names as defined follows.

idJ := {(ρ, ρ) | ρ ∈ ∆J }, childJ := {(ρ, ρ·d) | ρ, ρ·d ∈ ∆J }, edgeJ :=
⋃

r∈NR\{edge} rJ ∪(r−)J .

Intuitively: (i) Rr
Root handles root-to-root connections, (ii) Rr

Self handles self-loops, (iii) Rr handles
parent-to-child roles, (iv) Rr

I handles child-to-parent roles in the presence of inverses, (v) Rr
O handles

“backlinks” in the presence of nominals, and (vi) Rr
{I,O} handles the inverses of “backlinks”.

The following observation follows immediately from the above definition.

Fact 7.13. Let NA
I and NT

I be finite subsets of NI, and I be a proper (NA
I ∪ NT

I )-Ortiz-forest. Then for
every Θ ⊆ {I, O, Q} the (NA

I , NT
I )-ZΘ-unravelling J of I is an (NA

I , NT
I )-quasi-forest with last being a

homomorphism from J to I (and in particular, for all P2RPQs q we have that I ̸|= q implies J ̸|= q).

A bit more difficult task is to prove that the above unravellings preserve satisfaction of KBs written
in the corresponding logics. Recall that we only consider TBoxes in the following Scott’s normal form:

A ≡ {o}, A ≡ B A ≡ ¬B, A ≡ B ⊓ B′, A ≡ ∃r .Self, s = s′, A ≡ (⩾n r).⊤, A ≡ ∃Aq,q′ .⊤

where A, B, B′ are concept names, r is a role name, s and s′ are simple roles, and A is an NFA, and o
is an individual name. In the case of ZOQ, the inverse operator is disallowed in the definition of simple
roles (and hence also from the alphabet of all NFAs appearing in the KB). In the case of ZOI, we assume
that n = 1 in all number restrictions (⩾n r).⊤. We first show that our unravellings from Definition 7.12
preserve the satisfaction of knowledge-bases written in ZOQ and ZOI. Indeed:

Lemma 7.14 Let K := (A, T ) be a ZOQ-KB in Scott’s normal form, I be a proper Ortiz-forest
model of K, and J be the (ind(A), ind(T ))-ZOQ-unravelling of I. Then J is a quasi-forest model
of K that downward realises all NFAs from K.

Proof sketch. We first observe, by the second item of Definition 7.12, that for all elements d
from J and concept names A ∈ NC \ {Root} we have that:

(♡) : d ∈ AJ if and only if last(d) ∈ AI .
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From (♡) it is immediate to see that J satisfies all the GCIs φ from K of the form φ := A ≡ ¬B,
φ := A ≡ B, or φ := A ≡ B⊓B′. Moreover, Equation (♡) simplifies the proofs of the satisfaction
of GCIs of the form A ≡ C, reducing them to the proof of the fact that for all elements d of
J we have that d ∈ CJ if and only if last(d) ∈ CI . Indeed, assuming the above equivalence
holds we have: d ∈ CJ if and only if (by the above assumption) last(d) ∈ CI if and only if (by
the modelhood of I) last(d) ∈ AI if and only if (by (♡)) d ∈ AJ . This yields J |= (A ≡ C).
Second, we have that for all pairs (d, e) ∈ edgeJ and role names r ∈ NC \ {id, edge, child}:

(♣) : (d, e) ∈ rJ if and only if (last(d), last(e)) ∈ rI .

Note that if (d, e) ∈ edgeJ then, due to the way we interpret role names in ZOQ-unravellings,
there are only four possible options: (i) both d, e are roots of J , or (ii) d = e, or (iii) e is
a child of d, or (iv) e is a nominal. In each of these cases, we conclude the Equation (♣)
by the definitions of sets Rr

Root, Rr
Self , Rr , and Rr

O. Based on Equation (♣) we conclude the
satisfaction of the GCIs of the form s = s′ (for simple roles s, s′) by J . Similarly, by employing
the definition of the set Rr

Self , we conclude the satisfaction of GCIs of the form A ≡ ∃r .Self
by J . The satisfaction of GCIs of the form A ≡ {o} follows from Equation (♡) and the fact
that oJ is defined as oI for all nominals o ∈ NT

I . Finally, a combination of Equations (♡),
(♣), and the definition of Rr

Root implies the satisfaction of the ABox A by J .
For the remaining two “shapes” of GCIs, namely A ≡ (⩾n r).⊤ and A ≡ ∃Aq,q′ .⊤ it suffices

to show that d in J belongs to the interpretation of concept on the right hand size of ≡, if
and only if, last(d) belongs to such a concept in I. Take any element d ∈ ∆J . We have that:

• Satisfaction of automata constraints.
Suppose d ∈ (∃Aq,q′ .⊤)J , as witnesses by an Aq,q′-path ρ := ρ1 . . . ρn with ρ1 := d.
Then it can be readily verified, by employing Equations (♡) and (♣), that last[ρ] :=
last(ρ1) . . . last(ρn) is an Aq,q′ -path in I. This yields that last(d) ∈ (∃Aq,q′ .⊤)I . For the
opposite implication, suppose that last(d) ∈ (∃Aq,q′ .⊤)I , as witnessed by an Aq,q′ -path
ρ := ρ1 . . . ρn with ρ1 := last(d). We define the word ϱ := ϱ1 . . . ϱn, which we call the lift
of ρ, inductively as follows. For i=1 we put ϱ1 := d. For all i > 1 we put ϱi+1 := ρi+1 if
ρi+1 is a nominal or if both ρi+1 ρi are roots of I, and ϱi+1 := ϱi·ρi+1 otherwise. Once
more, it can be readily verified that ϱ is an Aq,q′-path in J that starts from d. Hence,
d ∈ (∃Aq,q′ .⊤)J . This also establishes that the NFA Aq,q′ is downward realisable in J .

• Satisfaction of number restrictions.
It suffices to show that for any role name r that is not “special” we have that d in J and
last(d) in I have equal number of r-successors. First, by design of J , note that pairwise-
different nominals from I become unique pairwise-different elements in J . Thus, by the
definitions of Rr

Root and Rr
O we have that d has precisely the same number of nominal

r-successors as last(d) in I. Moreover, d carries an r-self-loop if and only if last(d) does,
as witnessed by the definition of Rr

Self . Finally, observe that all remaining r-successors
of d are present in J due to the definition of Rr . Such r-successors have the form d·e
for some e ∈ ∆I and d·e is a directed path in I. As every sequence in ∆J has a unique
end, every such r-successor d·e yields a unique element last(d·e) equal to e that is an
r-successor of last(d). Conversely, for different r-successors e and e′ of last(d) in I there
are unique r-successors d·e and d·e′ of d in J . Thus, the total number of non-nominal
r-successors of d and last(d) is indeed equal. This concludes the proof.

Hence, the quasi-forest model J is as desired.

The analogue of the above lemma for ZOI can be established in a nearly identical way.

Lemma 7.15 Let K := (A, T ) be a ZOI-KB in Scott’s normal form, I be a proper Ortiz-forest
model of K, and J be the (ind(A), ind(T ))-ZOI-unravelling of I. Then J is an quasi-forest model
of K that downward realises all NFAs from K.
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Proof idea. The proof is nearly identical to the proof of Lemma 7.14. The only difference is
that to argue that Equation (♣) holds, we additionally rely on the sets Rr

I , and Rr
{I,O}.

We remark that unravellings from Definition 7.12 in general do not preserve ZOIQ-KBs that are not
in ZIQ, ZOQ, or ZOI. The main culprit is the presence of “anonymous nominals”, i.e. elements that
are not nominals but can be uniquely identified by means of GCIs in ZOIQ.

Observe that Lemma 7.14 and Lemma 7.15 do not provide information on the degree of the resulting
unravelled model. This is intentional, as degrees of named elements are rarely preserved by the unravelling.

Example 7.16. Let K := ({A(a)}, ∅) be a Z-KB, and consider any Ortiz-forest model I of K with the
domain ∆I := {0i | i ∈ N}. Suppose that I interprets a role name r as rI := {(ε, 0i) | i ∈ N}, i.e. every
element has an r-backlink to the root of I. As a is not a nominal, such backlinks will not be preserved in
any unravelling J of I. This results in the interpretation of a having infinitely many r-successors in J .

On the other hand, consider a ZOIQ-KB K := (A, T ), an Ortiz-forest model I of K, and its ZOIQ-
unravelling J . By analysing Lemma 7.14 and the notion of paths from Definition 7.11 we see that for
any element d with last(d) not being a non-nominal root of I (i.e. the root that is not ind(T )-named),
the degree of d is bounded by the degree of last(d) plus the size of ind(A). Hence, if the branching of I is
bounded exponentially w.r.t. |K|, then so is the degree of every node of J , possibly with the exception
of nodes of J , for which underlying sequence ends on a non-nominal root of I. In order to reduce the
branching of J to some number exponential w.r.t. |K|, we design a suitable notion of pruning.

We start by selecting certain successors of non-nominal roots that are intended to “survive”. Intuitively,
we select these elements that are required to fulfil automata constraints and number restrictions.

Definition 7.17 Let K := (A, T ) be a ZOIQ-KB in Scott’s normal form with N being the counting
bound of K, i.e. maximal among numbers appearing in number restrictions (or 1 if K has no number
restrictions). Let I be an Ortiz-forest model of K.

• For every GCI A ≡ ∃Aq,q′ .⊤ from K and a root d ∈ AI , the optimal (Aq,q′ , d)-path is the
alphabetically-minimal Aq,q′-path starting from d with minimal number of roots of I. Given
such a path ρ, its member e is important if ρ has the form ρ′·e′·e·ρ′′ for some root e′.

• For every GCI A ≡ (⩾n r).⊤ from K and a root d ∈ AI , we call its r-successors important if
they are among N alphabetically-minimal r-successors of d.

The set ImpK(I) of K-important elements from I is composed of (i) all important elements
from optimal (Aq,q′ , d)-paths over all roots d ∈ AI of I and GCIs A ≡ ∃Aq,q′ .⊤ of K, and (ii) all
important r-successors of all roots and GCIs A ≡ (⩾n r).⊤ from K.

It is a relatively straightforward exercise to employ an analogue of the well-known pumping lemma
from automata theory to establish the following lemma.

Lemma 7.18 Let I, K, N, and ImpK(I) be as in Definition 7.17. Then the size of the set ImpK(I)
of K-important elements from I can be bounded by |K|4+|K|2·2|K|.

Proof. In what follows we will separately calculate the number of important elements that are
due to the GCIs involving counting and the GCIs involving automata. For the first kind of
elements, we see that there are at most |K| such GCIs, and for each of at most |K| roots of I
we selected at most N elements. This yields the upper bound |K|2·2|K| (note that N is encoded
in binary). For the remaining important elements, we deal with them as follows. As there are
at most |K| GCIs in K, and at most |K| roots in K, it suffices to show that for a fixed GCI
A ≡ ∃Aq,q′ .⊤ from K, and a fixed root d ∈ AI , we have that the total number of important
elements in the optimal (Aq,q′ , d)-path ρ starting from d is bounded by |K|2. By following the
definition of important elements, it suffices to show that such a ρ contains at most |K| many
occurrences of each of the |K| roots d of I. This follows from the pumping lemma. Indeed,
towards a contradiction suppose that the total number of occurrences of d in ρ is greater than
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the number of states of A. Then, by the pigeonhole principle, there exists a state q′′ and a
decomposition ρ′·d·ρ′′·d·ρ′′′ for which ρ′·d and ρ′·d·ρ′′·d both realise Aq,q′′ . But then the path
ρ′·dρ′′′ has fewer occurrences of roots than ρ′·d·ρ′′·d·ρ′′′ while it also realises the NFA Aq,q′ .
A contradiction with ρ being “optimal”.

We can now finally present the desired definition of pruning, defined below.

Definition 7.19 Let DL ∈ {ZOI, ZOQ} be a logic, K be a DL-KB in Scott’s normal form, I be a
proper Ortiz-forest model of K, and J be the (ind(A), ind(T ))-DL-unravelling of I. By the pruning
J ′ of J we mean the substructure of J induced by all the sequences of ∆J that does not contain a
subword in the set N · (∆I \ ImpK(I)).

The following observation follows immediately from the above definition.

Observation 7.20. For DL, K, I, J , J ′ as in Definition 7.19 we have that J ′ is a (ind(A), ind(T ))-quasi-
forest with last being a homomorphism from J ′ to I (and in particular, for all P2RPQs q we have that
I ̸|= q implies J ̸|= q). Moreover, if the degree of every node in I is bounded by some number N exponential
w.r.t. K then the degree of every node in J is also bounded exponentially w.r.t. |K|.

Proof sketch. We mostly rely on Fact 7.13. The first statement follows from the fact that J ′ is
the restriction of a (ind(A), ind(T ))-quasi-forest J to some prefix-closed set with some suffix-
closed set removed. For the second statement we employ the fact that last : ∆J → ∆I is a
homomorphism, and so is its restriction to the domain of J ′. Finally, for the third statement
we see that (i) if last(d) is not a non-nominal root with its degree bounded by N then the degree
of d is bounded by N+|ind(A)|, and (ii) if last(d) is a non-nominal root then by design the set
of its children is not greater than |ImpK(I)|, which is exponential w.r.t. |K| by Lemma 7.18).
In both cases, the degree of every node node in J ′ is clearly exponential w.r.t. |K|.

Note that the refinement of the above argument yields the dependence only on the TBox, not on the
whole KB. This follows from the downward realisability of NFA, and one can find an upgraded proof in
the Appendix of our IJCAI submission [Bed24a] (available on ArXiV). As the final result of this section
we show that pruning of unravellings preserve modelhoods of KBs.

Lemma 7.21 For DL, K, I, J , J ′ as in Definition 7.19 we have that J ′ |= K, and that J ′ downward
realises all NFAs from K.

Proof sketch. If I |= K then by Lemma 7.14 and Lemma 7.15 we have that J |= K. As K is
in Scott’s normal form, we see that all its GCIs except the ones of the form A ≡ (⩾n r).⊤
and A ≡ ∃Aq,q′ .⊤ can be presented as universal first-order formulae, and thus are preserved
under taking substructures. We establish the satisfaction of remaining GCIs below.

• Suppose that J |= A ≡ (⩾n r).⊤. As J ′ is a substructure of J , for all elements d ∈ ∆J ′

we have d satisfies A in J ′ if and only if it satisfies it in J . Moreover, if d ∈ ∆J ′ does not
satisfy (⩾n r).⊤ in J then it clearly does not satisfy this concept in any substructure
of J . Hence, it suffices to show that if d ∈ ∆J ′ satisfies (⩾n r).⊤ in J then it does
satisfy it in J ′. If last(d) is not a non-nominal root, then the set of its r-successors is not
affected by the pruning, and thus the satisfaction of (⩾n r).⊤ is preserved. If last(d) is a
non-nominal root, then in the construction of ImpK(I) we dubbed at least n r-successors
of last(d) in I important. Let S be the set of such important r-successors of last(d) in I.
We define the injection f from S to the domain of J ′ as follows: (i) f(last(d)) = d (in case
last(d) belongs to S), (ii) f(m) = m if m is a nominal root, and (iii) f(e) = d·e otherwise.
Hence, d in J ′ has at least n r-successors, as desired.

• Suppose that J |= A ≡ ∃Aq,q′ .⊤. Reasoning analogously to the previous case, it suffices
to show that for elements d in J ′ that satisfy ∃Aq,q′ .⊤ in J , still satisfy it in J ′ . We claim
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that it suffices to focus on elements d with last(d) being a root of I. Indeed, suppose
that d is an element with last(d) ̸∈ N, and consider a downward (or nominal downward)
Aq,q′ -path ρ := ρ1 . . . ρn starting from d in J (that exists by the satisfaction of ∃Aq,q′ .⊤).
If ρ does not contain elements ending on a root of I, then ρ is fully contained in J ′,
witnessing the satisfaction of ∃Aq,q′ .⊤. Otherwise, let ρ := ρ′·e·ρ′′, where e is the first
element in ρ satisfying last(ρ) ∈ N. Note that by the same reason as above, ρ′e is fully
contained in J ′. Then, by compositionality of NFAs, there exists a state q′′ of A such
that ρ′·e realise Aq,q′′ and e·ρ′′ realise Aq′′,q′ . Hence, it suffices to establish that e satisfies
∃Aq′′,q′ .⊤, because then any downward or nominal downward Aq′′,q′ -path ϱ starting from
the element e makes ρ′ϱ a downward or nominal downward Aq′,q′ -path.
Let d be then the element with last(d) ∈ N that satisfies ∃Aq,q′ .⊤. Then last(d) is not
only a root of I but it also satisfies ∃Aq,q′ .⊤. Hence, let ρ := ρ1 . . . ρn be the optimal
(Aq,q′ , last(d))-path that witnesses the satisfaction of ∃Aq,q′ .⊤ by last(d). Similarly to
the proof of Lemma 7.14, we employ the lift of ρ, namely the word ϱ := ϱ1 . . . ϱn, defined
inductively as follows. For i=1 we put ϱ1 := d. For all i > 1 we put ϱi+1 := ρi+1 if ρi+1 is a
nominal or if both ρi+1 ρi are roots of I, and ϱi+1 := ϱi·ρi+1 otherwise. Note that ϱi+1 for
ρi being a root of I is guaranteed to exist by the design of ImpK(I) (otherwise ϱi+1 belongs
to the domain of J ′ by the construction of J ). We readily verify that ϱ is a downward
(or nominal downward) Aq,q′ -path starting from d, and thus d satisfies ∃Aq,q′ .⊤.

This completes the proof that J ′ |= K.

We can now sum up all the work of this section to establish the remaining part of Lemma 7.5.

Lemma 7.22 Lemma 7.5 holds for ZOI and ZOQ.

Proof. Let DL ∈ {ZOQ, ZOI} be a description logic, K be a DL-KB, and q be a P2RPQ
such that K ̸|= q (we take q := ⊥ in case we are interested only in the satisfiability problem).
The results of Ortiz [Ort10, Prop. 3.3.8] yield an Ortiz-forest model I of K that violates q
and has the branching bounded exponentially w.r.t. |T |. W.l.o.g. we may assume that I is
proper, i.e. interprets special roles and concepts as empty sets. We apply DL-unravellings
(Definition 7.12) in order to obtain J from I. By Fact 7.13 we know that J ̸|= q and that J is
an (ind(A), ind(T ))-quasi-forest. By Lemma 7.15 and Lemma 7.14 we know that J |= K and
that it downward realises all NFAs from K. We then apply Definition 7.19 to construct the
pruning J ′ of J . By Observation 7.20 we have that J ′ violates q and it is an (ind(A), ind(T ))-
quasi-forest. By Lemma 7.21 we have that J ′ satisfies K and downward realises all NFAs
from K. Hence, J ′ is the desired quasi-forest (counter)model.

7.3 Basic Paths in Quasi-Forests

The main goal of this section is to provide a characterisation of how paths in quasi-forests look like and
how they can be decomposed into interesting pieces.

Definition 7.23 A path ρ in I is nameless if it does not contain any named elements (i.e. no
element of ρ has the form aI for some a ∈ NI). Similarly, ρ is called an a-subtree path if all the
members of ρ are descendants of aI .

It is easy to see that in quasi-forests, nameless paths are precisely subtree paths. Indeed:

Observation 7.24. Let I be an (NA
I , NT

I )-quasi-forest and ρ be a path in I. Then ρ is nameless if and
only if there is a name aI for which ρ is an a-subtree path.
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Proof. Recall that the roots of I are precisely the named elements of I. Thus if ρ is an a-subtree
path then it is clearly nameless. For the other direction assume that ρ := ρ1 . . . ρk is nameless.
By the above observation, ρ1 is not a root of I, and hence there exists a name a ∈ (NA

I ∪ NT
I )

for which ρ1 is a descendant of aI . We will show inductively that for all 1 ≤ i ≤ k the ele-
ment ρi is a descendant of aI . The base case follows by our choice of a. Now suppose that ρi

is a descendant of aI , i.e. there exists a (possibly empty) word ρ̄ and a number n such that ρi

has the form aInρ̄. Let us show that ρi+1 is also a descendant of aI . As ρ is a path in I, there
exists a (possibly inverted) role name r for which (ρi, ρi+1) ∈ rI holds. Thus, by definition of
a quasi-forest we have the following options: (i) ρi = ρi+1 or there is an integer m for which
either (ii) ρi+1 = ρim or (iii) ρi = ρi+1m. In the first two cases ρi+1 is obviously a descendant
of aI . In the last case, note that |ρi+1| ≥ 2 (otherwise ρi+1 would be named) and is a prefix
of ρi. Hence, ρi+1 is a descendant of aI . This concludes the induction, and finishes the proof.

In the following definition we introduce a bunch of different categories of paths present in quasi-forests.

Definition 7.25 Let I be an (NA
I , NT

I )-quasi-forest, a,b ∈ (NA
I ∪ NT

I ), o, ö ∈ NT
I , and ρ be a path

in I. We call ρ:
• (a,b)-direct if ρ = aI ·bI .
• a-inner if ρ = aI ·ρ̄ for some a-subtree path ρ̄.
• a-roundtrip if ρ = aI ·ρ̄·aI for some a-subtree path ρ̄.
• (a,o)-inout if ρ = ρ̄·oI for some a-inner path ρ̄.
• (a,o)-outin if the reverse of ρ is (a,o)-inout.
• (a,o)-inner if ρ = oI ·ρ̄ for some a-subtree path ρ̄.
• (a,o, ö)-bypass if ρ = oI ·ρ̄·̈oI for an a-subtree path ρ̄.

If ρ falls into one of the above seven categories, we call ρ basic. Paths ρ := ρ̄·d for a nameless ρ̄ and
a root d are called outer. Finally, ρ is decomposable whenever there exists a growing sequence of
indices i1 < i2 < . . . < ik with i1=1 and ik=|ρ| such that for all j < k the path ρij . . . ρi(j+1) is basic.

The categories of paths introduced in Definition 7.25 are visualised in Figure 7.1 below.

a b
a a a

o

a

o
o

a

o

a

ö

Figure 7.1: Basic paths in order of their introduction in Definition 7.25.

Our next goal is to establish that every path starting from a named individual is decomposable.
The following observation focuses on paths that contain only a single named individual.

Observation 7.26. Let I be an (NA
I , NT

I )-quasi-forest, a ∈ (NA
I ∪ NT

I ), and ρ := aI ρ̄ be a path in I, where
ρ̄ is nameless. Then ρ is basic. More precisely, ρ is either (i) a-inner or (ii) there exists a name o ∈ NT

I such
that oI = aI and ρ is (b,o)-inner for some b ∈ (NA

I ∪ NT
I ).

Proof. By Observation 7.24 there exists a name b ∈ (NA
I ∪NT

I ) for which ρ̄ is a b-subtree-path.
If aI = bI then ρ is a-inner. Otherwise, by analysing how interpretation of roles is defined in
quasi-forests, there exists a name o ∈ NT

I such that oI = aI . Then ρ is (b,o)-inner.

As the second important observation we focus on paths with two named individuals.
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Observation 7.27. Let I be an (NA
I , NT

I )-quasi-forest, a,b ∈ (NA
I ∪ NT

I ), and ρ := aI ρ̄bI be a path in I,
where ρ̄ is nameless. Then ρ is basic.

Proof. If ρ̄ is empty then ρ is (a,b)-direct. Otherwise, we apply Observation 7.26 to aI ρ̄ and
consider the following two cases:

• aI ρ̄ is a-inner.
If aI = bI then ρ is an a-roundtrip. Otherwise, by analysing how the interpretation of
roles is defined in quasi-forests, there is an o ∈ NT

I such that bI = oI and ρ is (a,o)-inout.
• There is a name o ∈ NT

I such that oI = aI and aI ρ̄ is (c,o)-inner for some c ∈ (NA
I ∪NT

I ).
The following facts again follow by analysing how the interpretation of roles is defined in
quasi-forests. If bI = cI then ρ is (b,o)-outin. If aI = cI then aI ρ̄ is a-inner and we can
proceed as in the previous case. Otherwise aI ̸= cI ̸= bI . By inequality cI ̸= bI we infer
the existence ö ∈ NT

I for which bI = öI holds. Then ρ is simply a (c,o, ö)-bypass.

We can now employ the above two observations to establish our desired characterisation.

Lemma 7.28 If I is a quasi-forest then every path starting from a named element is decomposable.

Proof. Consider a sequence ϱ be the sequence composed indices of all positions in ρ that
are named elements, in order of their occurrence in ρ. Define ϱ+ to be ϱ if the last position
in ϱ is equal to |ρ|, and to be ϱ · |ρ| otherwise. We claim that ϱ+ witnesses the fact that ρ

is decomposable. Indeed, take any index j < |ϱ+| and consider the fragment of ρ composed
of all elements of ρ between the positions (ϱ+)j and (ϱ+)j+1. If ρ(ϱ+)j+1 is named, then such
a fragment of ρ is basic by Observation 7.27. Otherwise, such a fragment of ρ is basic by
Observation 7.26. Thus ρ is indeed decomposable.

Basic paths are expressible in ZOIQ by means of regular expressions with tests. Their construction
involves nominal tests {a}?, “descendant of a” tests ∃(child−)+.{a}?, and role names edge and child.

Lemma 7.29 Let τ be a “category” of paths from Definition 7.25 (including nameless and outer
paths). Then there exists a constant-size regular expression Rτ and an NFA Aτ (where tests involve
only individual names explicitly mentioned in τ) that realise, for all quasi-forests, exactly the paths
of the category τ .

Proof. For each “category” of paths τ from Definition 7.25 we are going to present a suitable
regular expression with test describing such a path.

• (a,b)-direct path
{a}? edge {b}?

• a-inner path
{a}?

(
edge [∃(child−)+.{a}]?

)+

• a-roundtrip
{a}?

(
edge [∃(child−)+.{a}]?

)+ edge {a}?

• (a,o)-inout
{a}?

(
edge [∃(child−)+.{a}]?

)+ edge {o}?

• (a,o)-outin
{o}?

(
edge [∃(child−)+.{a}]?

)+ edge {a}?

• (a,o)-inner
{o}?

(
edge [∃(child−)+.{a}]?

)+
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• (a,o, ö)-bypass
{o}? edge

(
[∃(child−)+.{a}]?edge

)+ {ö}?

• nameless path
(¬Root)? (edge (¬Root)?)∗

• outer path
(¬Root)? (edge (¬Root)?)∗ edge Root?

Correctness of the above regular expressions follows immediately by the semantics of ZOIQ
and Definition 7.25. Given a regular expression Rτ , the desired NFA Aτ is then obtained by
the usual transformation [Sip13, Lemma 1.55] from regular expression into NFAs.

We push the content of Lemma 7.29 even further, establishing Lemma 7.30.

Lemma 7.30 Let τ be a “category” of paths from Definition 7.25 (including nameless and outer
paths), Aτ and Rτ be as in Lemma 7.29. Consider a regular language L given either by an NFA A

or a regular expression R. Then one can compute in polynomial time an NFA (A ▷◁ Aτ ) and a
regular expression (R ▷◁ Rτ), both of sizes polynomial, respectively, in |A| and in |R|, such that:

• all concept tests present in the alphabet of (A ▷◁ Aτ ) and (R ▷◁ Rτ) involve only individual
names that are explicitly mentioned in τ , and

• both (A ▷◁ Aτ ) and (R ▷◁ Rτ) realise, for all quasi-forests, precisely the paths of the category τ

realising L.

Proof sketch. We focus only on the case when L is given as an NFA. Let us first explain why we
can do so.2 Suppose that L is given as a regular expression R, and convert R into an NFA A of
size polynomial w.r.t. |R| with the classical Thompson’s construction [Tho68]. As observed in
the proof of the star height lemma by Gruber and Holzer [GH08, Thm. 6], when converting R

into A, the underlying graph of A is of tree-width at most 2. Our forthcoming construction of
A ▷◁ Aτ does not increase the tree-width of the graph of the resulting automaton, and increases
the alphabet and the total number of states of the resulting NFA only by a linear factor. Hence,
employing a corollary by Gruber [Gru12, Cor. 3.1], this implies that the graph of A ▷◁ Aτ

has the “undirected cycle rank” (known also as tree-depth) bounded by k := 2 log2(|A ▷◁ Aτ |),
which clearly is in O(log2(|R|)). By the results of Gruber and Holzer [GH13, Thm. 9], we
know that A ▷◁ Aτ can be turned back into a regular expression (R ▷◁ Rτ) of size |Σ| · 4k · n,
where Σ is the alphabet of A ▷◁ Aτ and n is the total number of states of A ▷◁ Aτ . Thus,
(R ▷◁ Rτ) is the desired regular expression of size polynomial w.r.t. |R|.

Suppose that an automaton A is given, and let Q be its state-set, and T be its transition
relation. As the construction is similar for each category of paths, henceforth we focus on
(a,o, ö)-bypassses only (as this is the most difficult case to deal with). We recall that our
goal to construct the automaton A ▷◁ A(a,o,ö)-bypass that realises precisely A-paths that are
(a,o, ö)-bypasses, namely match the regular expression

{o}? edge
(
[∃(child−)+.{a}]?edge

)+ {ö}?

introduced in the previous lemma. Our construction of the forthcoming automaton is fully
guided by the shape of the above regular expression. As the first step we construct an automaton
B that realises all A-paths that match the regular expression(

[∃(child−)+.{a}]?edge
)∗

.

To do so, we initially expand the set of states Q of A with fresh states of the form qδ for all δ ∈ T.
Then, we “split” every transition δ in T into two “parts”. Suppose that δ leads from q to q′ after

2I would like to thank Hermann Gruber for the proof [Gru23] of this fact.
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reading the letter a. We thus (i) replace δ in T with the transition that transforms q into qδ

after reading a, and (ii) append the transition (qδ, [∃(child−)+.{a}]?, q′) to T. Call the resulting
NFA B. It is easy to see that the B-paths are precisely the desired A-paths realising the regular
expression

(
[∃(child−)+.{a}]?edge

)∗
. We next aim at realising

(
[∃(child−)+.{a}]?edge

)+
, i.e.

we want to replace Kleene’s star with the Kleene’s plus in the previous construction.
Let us decompose B := (Σ, QB, IB, FB, TB), where all the components of B are as usual. We de-

fine C as a variant of the “product” automaton of B with itself, namely B := (Σ, QB×{1, 2}, IB×
{1}, FB × {2}, TC), and the transition relation is defined as the sum of (a) {((q, 2), a, (q′, 2)) |
(q, a, q′) ∈ TB}, (b) {((q, 1), a, (q′, 1)) | (q, a, q′) ∈ TB, a is a test}, and (c) {((q, 1), a, (q′, 2)) |
(q, a, q′) ∈ TB, a is a role}. The intuition is that in the runs of C we first traverse the first copy
of B, and after reading the “edge” we jump to the second copy and stay there till the end.
Clearly the NFA C realises precisely the A-paths matching the mentioned regular expression.
With nearly the same construction, we can design an automaton D that realise precisely the
A-paths matching the regular expression:

edge
(
[∃(child−)+.{a}]?edge

)+
.

The trick here is that instead of taking two copies of B, we take a copy of A and a copy of C,
and forward all transitions concerning roles from A to C. More formally, after decomposing
C as (Σ, QC, IC, FC, TC), we let B := (Σ, Q ∪ QC, I, FC, TC), where TC is the union of (a) TB, (b)
{(q, a, q′) | (q, a, q′) ∈ T, a is a test}, and (c) {(q, a, (q′, 1)) | (q, a, q′) ∈ T, a is a test}. Once
more, it can be readily checked that the resulting automaton does its job. Now the desired
automaton A ▷◁ A(a,o,ö)-bypass is obtained from D by extending its state set with two states
qs, qe, making qs the initial state, making qe the final state, and appending new transitions of
the form (qs, {o}?, q) and (q′, {ö}?, qe) for all initial states q of D, and all final states q′ of D.
This guarantees that the realised paths starts in o and ends in ö as desired.

7.4 Automata decorations

Prior to moving to quite technical details, we start by discussing the main goals of this section.

7.4.1 Automata decorations: Overview

Recall that the clearing of a quasi-forest I is the substructure of I induced by its roots. In this section
we employ Lemma 7.28 to devise a method of decorating the clearing of I with additional information
about the basic paths realising a given NFA A. This will help us to decide the satisfaction of automata
concepts of the form ∃Aq,q′ .⊤ in quasi-forests in a modular way, i.e. independently for the clearing of a
quasi-forest and all of its subtrees. To make the word “modular” more precise, observe that:

Observation 7.31. Let I be an (NA
I , NT

I )-quasi-forest and let d ∈ (∃A.⊤)I for an NFA A. Then there is
an A-path ρ starting from d such that: (a) d is a root of I, (b) ρ is nameless, or (c) ρ = ρ̄·e·ρ̂, where ρ̄ is
nameless, e is a root of I and either (i) e is a nominal root, or (ii) all elements of ρ̄ are descendants of e.

Hence, any path witnessing an automata concept either (i) starts from a root, (ii) is fully contained
inside subtrees, or (iii) walks inside a subtree and then jumps to a root (so the remaining path is outer).
This observation transfers to paths realising NFA in the following way. For a given NFA A with the state
set Q, the A-reachability-concepts C⇝(A) are defined as the set {ReachA

q,q′ | q, q′ ∈ Q}. Our intention
behind such concepts is that ReachA

q,q′ labels precisely the roots of quasi-forests, satisfying ∃Aq,q′ .⊤.
The forthcoming crucial lemma explains the desired “modularity” condition. It simply says that if the
reachability concepts ReachA

q,q′ are interpreted as intended, then the verification of whether an element d
satisfies the ∃Aq,q′ .⊤ concept reduces to (i) a test whether d is labelled with ReachA

q,q′ if d is a root, or (ii)
testing existence of a certain path which fully contained in the subtree of d, possibly with the exception
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of the last element which can also be the root of d or a nominal. For the statement of the lemma, we rely
on the NFAs Anmls and Aoutr from Lemma 7.30 that detect, respectively, nameless and outer paths.

Lemma 7.32 Let I be an (NA
I , NT

I )-quasi-forest, and A be an NFA with the set of states Q. Suppose
that I interprets all the concepts ReachA

q,q′ from C⇝(A) equally to Root ⊓ ∃Aq,q′ .⊤. Then for all
states q, q′ ∈ Q, the concept ∃Aq,q′ .⊤ is interpreted in I equally to the union of concepts:

• Root ⊓ Reachq,q′ ,
• ¬Root ⊓ ∃

(
Aq,q′ ▷◁ Anmls

)
.⊤, and

• ¬Root ⊓
⊔

q̂∈Q ∃
(
Aq,q̂ ▷◁ Aoutr

)
.
(
Root ⊓ Reachq̂,q′

)
.

Proof. As we interpret ReachA
q,q′ equally to Root⊓∃Aq,q′ .⊤, it suffices to establish the equality:

LHS := (¬Root ⊓ ∃Aq,q′ .⊤)I =

¬Root ⊓

(∃C.⊤) ⊔
⊔
q̂∈Q

∃Cq,q̂.Reachq̂,q′

I

:= RHS,

where automata C are defined in the statement of the lemma. We establish two concept in-
clusions. The inclusion RHS ⊆ LHS is immediate because (by construction) the languages of
C are subsets of the language of the automaton Aq,q′ . For the other direction, suppose that
d ∈ LHS and let ρ be any path from d that realises Aq,q′ . If ρ is nameless then ρ realises Anmls,
and thus d ∈ (∃C.⊤)I . Otherwise, let i be the position of the first named element in ρ. Then
there exists a state q̂ such that the path ρ1 . . . ρi realises Aq,q̂, and ρi . . . ρ|ρ| realises Aq̂,q′ .
Moreover, ρ1 . . . ρi realises Aoutr, and hence by the proper interpretation of the reachability
concepts we have ρi ∈ (ReachA

q̂,q′). Thus d ∈ (∃Cq,q̂.Reachq̂,q′)I , which concludes the proof.

We call the concept union from Lemma 7.32 the NT
I -relativisation of ∃Aq,q′ .⊤, and denote it with

rel(NT
I ,Aq,q′). We say that d ∈ ∆I virtually satisfies ∃Aq,q′ .⊤ whenever d satisfies rel(NT

I ,Aq,q′).
Thus, Lemma 7.32 tells us that the notion of satisfaction and virtual satisfaction coincide whenever the
reachability concepts are interpreted as desired.

7.4.2 Automata decorations: Decorations

In the reminder of the section we introduce several ZOIQ-concepts and roles, dubbed automata decorations,
intended to guarantee the desired interpretation of the reachability concepts. The following concepts from
C(NT

I ,A) “bookkeep” the information about relevant basic paths realising NFA starting from a given root.

Definition 7.33 Given an NFA A with the state-set Q, the set of (NT
I ,A)-concepts C(NT

I ,A) is
composed of the following concept names (for all states q, q′ ∈ Q and individual names o, ö ∈ NT

I ):

DA
q,q′ , IAq,q′ , RTA

q,q′ , IOA,o
q,q′ , OIA,o

q,q′ , IA,o
q,q′ , ByA,o,ö

q,q′ .

A quasi-forest I properly interprets C(NT
I ,A) if CI = {aI | a ∈ NI, cond(C,a)} for concepts C

and conditions cond(C,a) as indicated below.
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conc. C cond(C,a) : “There is a path ρ |= Aq,q′ such that

DA
q,q′ ρ is (a,b)-direct for some bI”.

IAq,q′ ρ is a-inner”.
RTA

q,q′ ρ is an a-rountrip”.
IOA,o

q,q′ ρ is an (a,o)-inout”.
OIA,o

q,q′ ρ is an (a,o)-outin”.
IA,o
q,q′ ρ is (a,o)-inner”.

ByA,o,ö
q,q′ ρ is an (a,o, ö)-bypass”.

Note that the size of C(NT
I ,A) is clearly polynomial w.r.t. |A|·|NT

I |.

While the above definition may seem to be complicated, we strongly encourage the reader to analyse
the figure below in order to gain extra intuitions on how the concepts from C(NT

I ,A) work.

a b
a a a

o

a

o
o

a

o

a

ö

a

DA
q,q′

bdA
q,q′

iAq,q′
þ

a
IAq,q′

rtAq,q′

a

RTA
q,q′

a oioA,o
q,q′

IOA,o
q,q′

a ooiA,o
q,q′

OIA,o
q,q′

o aiA,o
q,q′

þ

IA,o
q,q′

o öbyA,o,ö
q,q′

a

ByA,o,ö
q,q′

Figure 7.2: Basic paths and their corresponding decorations in quasi-forests, in order of their introduction.

Throughout the chapter, we often employ a fresh individual name (the ghost variable), to stress that
the constructed concepts are independent from NA

I (but may still depend on or NT
I ). With C[ /a] we

denote the result of substituting a for all occurrences of in C. Relying on NFAs from Lemma 7.30, we can
construct ZOIQ-concepts that describe the intended behaviour of (NT

I ,A)-concepts. For instance, RTA
q,q′

can be defined as ∃
(
Aq,q′ ▷◁ Aτ

)
.⊤, where Aτ is the NFA from Lemma 7.30 describing -roundtrips.

Lemma 7.34 For all C from C(NT
I ,A), there exists a ZOIQ-concept desc(C) (of size polyno-

mial w.r.t. |A|·|NT
I |) that uses only individual names from NT

I ∪{ } with the property that “for all
(NA

I , NT
I )-quasi-forests I and a ∈ NI we have that cond(C,a) is satisfied in I iff aI is in (desc(C)[ /a])I”.

Proof. Let T ⊆ Q × Nsp
R × Q be the transition relation of A. We define desc(C)-concepts as:

• desc(DA
q,q′) := { } ⊓

⊔
(q,r,q′)∈T ∃r .Root

• desc(IAq,q′) := ∃
(
Aq,q′ ▷◁ Aτ

)
.⊤, where Aτ is the NFA from Lemma 7.30 describing -

inner paths.
• desc(RTA

q,q′) := ∃
(
Aq,q′ ▷◁ Aτ

)
.⊤, where Aτ is the NFA from Lemma 7.30 describing

-roundtrips.
• desc(IOA,o

q,q′) := ∃
(
Aq,q′ ▷◁ Aτ

)
.⊤, where Aτ is the NFA from Lemma 7.30 describing

( ,o)-inouts.
• desc(OIA,o

q,q′) := ∃
(
Aq,q′ ▷◁ Aτ

)
.⊤, where Aτ is the NFA from Lemma 7.30 describing

( ,o)-outins.
• desc(IA,o

q,q′) := ∃
(
Aq,q′ ▷◁ Aτ

)
.⊤, where Aτ is the NFA from Lemma 7.30 describing

( ,o)-inner paths.
• desc(ByA,o,ö

q,q′ ) := ∃edge∗ ({o} ⊓ ∃
(
Aq,q′ ▷◁ Aτ

)
.⊤
)
, where Aτ is the NFA from Lemma 7.30

describing ( ,o, ö)-bypasses.
Their correctness follow immediately by Lemma 7.30 and the semantics of ZOIQ.
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Define comdsc(NT
I ,A) as the conjunction of C↔desc(C) over all concept names C in C(NT

I ,A) (here
A↔B abbreviates (A⊓B)⊔(¬A⊓¬B)). We invoke Lemma 7.34 to rephrase the notion of proper interpre-
tation of C(NT

I ,A) in the language of satisfaction of ZOIQ-concepts by the clearings of forests.

Corollary 7.35
With comdsc(NT

I ,A) defined as ⊔C∈C(NT
I ,A)(C↔desc(C)) we have that an (NA

I , NT
I )-quasi-forest I

properly interprets C(NT
I ,A) if and only if aI ∈ comdsc(NT

I ,A) [ /a]I for all names a ∈ (NA
I ∪NT

I ).

The information provided by the proper interpretation of (NT
I ,A)-concepts do not suffice yet to ensure

the proper interpretation of the reachability concepts by the clearings of quasi-forests. The main reason is
that the concepts from (NT

I ,A) speak only about the basic paths. As some automata constraints cannot
be satisfied by basic paths, e.g. ∃({o}?edge{ö}?edge{ǒ}?).⊤, more work needs to be done. To be able to
compose basic paths into bigger pieces, another “layer of decoration” is needed: this time with fresh roles
representing the endpoints of basic paths from Definition 7.25, as summarised by Figure 7.2. For instance,
whenever there is an (a,o)-inout ρ realising Aq,q′ in a quasi-forest I, the roots aI and oI are going to
be linked by the role ioA,o

q,q′ (and similarly for other categories of basic paths that start and end in roots).
Such roles can be seen as “aggregated paths”. The “aggregated paths” will be unfolded afterwards into
real paths, and the satisfaction of automata constraints by them will be verified by means of the guided
automata (introduced in Definition 7.37). However, there exist cases of basic paths where the last element
is unnamed, more precisely (a,o)-inner and a-inner paths. In their cases we treat aI as the “virtual end” of
ρ (and hence we link aI and oI). To ensure that such an “aggregated path” can no longer be extended, we
decorate the corresponding role with the dead-end symbol þ. When constructing the guided automaton,
the roles carrying þ will lead to states with no outgoing transitions (dead ends).

Definition 7.36 Given an NFA A with the state-set Q, the set of (NT
I ,A)-roles R(NT

I ,A) is
composed of the following role names (for all states q, q′ ∈ Q and individual names o, ö ∈ NT

I ):

dA
q,q′ , iAq,q′

þ

, rtAq,q′ , ioA,o
q,q′ , oiA,o

q,q′ , iA,o
q,q′

þ

, byA,o,ö
q,q′ .

An (NA
I , NT

I )-quasi-forest I properly interprets R(NT
I ,A) if its roles consist of pairs p of roots

of I satisfying the conditions stated below.

Role name r Pair p Condition

dA
q,q′ (aI ,bI) aIbI |= Aq,q′

iAq,q′
þ

(aI ,aI) aI is in (IAq,q′)I

rtAq,q′ (aI ,aI) aI is in (RTA
q,q′)I

ioA,o
q,q′ (aI ,oI) aI is in (IOA,o

q,q′)I

oiA,o
q,q′ (oI ,aI) aI is in (OIA,o

q,q′)I

iA,o
q,q′

þ

(oI ,aI) aI is in (IA,o
q,q′)I

byA,o,ö
q,q′ (oI , öI) (ByA,o,ö

q,q′ )I is non-empty

The size of R(NT
I ,A) is polynomial w.r.t. |A|·|NT

I |.

We stress that we interpreted role names from R(NT
I ,A) based on the concepts from C(NT

I ,A) rather
than on the existence of certain paths realising A. This allows us to verify their proper interpretation,
independently from the verification of the proper interpretation of C(NT

I ,A)-concepts. The intuition
behind the roles from R(NT

I ,A) is that they can be seen as “shortcuts” aggregating fragments of runs of A.
To retrieve proper runs, we invoke the A-guided automaton that operates solely on such “shortcuts”.
The definition comes next, supplemented with Example 7.38.
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Definition 7.37 For a PSA A with the state-set Q, we define the A-guided PSA B. The set of
states Q′ of B consists of all q ∈ Q and their fresh copies qþ. The transitions in B have the form
(q, r , q′) for all q, q′ ∈ Q′, and all r from R(NT

I ,A) labelled with the ordered pair (q, q′). Note that
by design, all states decorated with þ have no outgoing transitions.

The guided automaton B is of size polynomial in |A|·|NT
I |. It traverses only the clearings of quasi-forests.

Example 7.38. Let ρ := aI ·oI ·ρ1·oIρ2 ·̈oI ·ρ3 |= Aq1,q5 be a path in a quasi-forest I (as depicted below), and
let A be an NFA with states indicated by the decorated letters q. Suppose (i) aI ·oI |= Aq1,q2 is (a,o)-direct,
(ii) oI ·ρ1·oI |= Aq2,q3 is an o-roundtrip, (iii) oIρ2 ·̈oI |= Aq3,q4 is an (b,o, ö)-bypass, and (iv) öI ·ρ3 |= Aq4,q5

is (c, ö)-inner. Clearly, aI ∈ (∃Aq1,q5 .⊤)I .

q1 ⇝ q2

q2 ⇝ q3

q3 ⇝ q′

q′⇝ q′′

q′′ ⇝ q4
q4 ⇝ q̂

q̂⇝ q5

a o b ö c

a odA
q1,q2

ortAq2,q3
öbyA,o,ö

q2,q3
ciA,ö

q4,(q5)þ

Consider now the A-guided PSA B, and observe that aI is in (∃Bq1,(q5)þ
.⊤)I , as witnessed by the path

aI ·oI ·oI ·̈oI ·cI and the word dA
q1,q2 ·rtAq2,q3 ·byA,o,ö

q2,q3 ·iA,ö
q4,(q5)þ

(depicted above).

The following Lemma 7.39 reveals the desired property of B. Its proof relies on either (a) shortening a
path ρ |= Aq,q′ to its subsequence composed of all named elements, or (b) replacing any two consecutive
elements in ρ |= Bq,q′ with the corresponding paths guaranteed by the roles from Definition 7.36.

Lemma 7.39 Let A be an NFA with the corresponding A-guided B, and let I be an (NA
I , NT

I )-
quasi-forest that properly interprets C(NT

I ,A) and R(NT
I ,A). For all states q, q′ of A we have the

equality: (Root ⊓ ∃Aq,q′ .⊤)I = (Root ⊓ (∃Bq,q′ .⊤ ⊔ ∃Bq,q′
þ
.⊤))I .

For brevity, let LHS := (Root ⊓ ∃Aq,q′ .⊤)I , and RHS := (Root ⊓ (∃Bq,q′ .⊤ ⊔ ∃Bq,q′
þ
.⊤))I . We establish

the equality of LHS and RHS by proving two concept inclusions.
Proof of LHS ⊆ RHS. Take an element d ∈ LHS, and let ρ := ρ1 . . . ρn be any path witnessing
d ∈ (∃Aq,q′ .⊤)I . Note that d is named, and ρ starts from d. As ρ |= Aq,q′ , there is a word
w := r1 . . . rn−1 and a sequence of states q1, . . . , qn such that q0 = q, qn = q′, and for all i < n

we have: (qi, ri, qi+1) ∈ T, where T is the transition relation of A. Consider a subsequence ϱ

of ρ composed of all roots of I that appear in ρ, in order of their appearance. Given an index
1 ≤ i ≤ |ϱ|, let ιi denote the corresponding index of ϱi in ρ. Now observe that the following
properties hold for all 1 ≤ i ≤ |ϱ|:

• The path ριi . . . ρι(i+1) is basic, and it realises Aqιi
,qι(i+1)

.
• There exists a role name si ∈ R(NT

I ,A) such that si is indexed by the ordered pair
of states (qιi

, qι(i+1)), does not carry þ, and (ριi
, ρι(i+1)) ∈ (si)I . This follows by the

above item and tables in Definitions 7.33–7.36. Employing Observation 7.27, it suffices
to consider the following cases:

– If ριi
. . . ρι(i+1) is (a,b)-direct then si = dA

qιi
,qι(i+1)

.
– If ριi

. . . ρι(i+1) is an a-roundtrip then si = rtAqιi
,qι(i+1)

.
– If ριi

. . . ρι(i+1) is an (a,o)-inout then si = ioA,o
qιi

,qι(i+1)
.

– If ριi
. . . ρι(i+1) is an (a,o)-outin then si = oiA,o

qιi
,qι(i+1)

.
– If ριi

. . . ρι(i+1) is an (a,o, ö)-bypass then si = byA,o,ö
qιi

,qι(i+1)
.

• Thus ριi
ρι(i+1) = ϱiϱi+1 realises Bqιi

,qι(i+1)
.
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Invoking induction, we see establish that ϱ realises Bq1,qι|ϱ|
. Observe that if the last element of ρ

is the root of I, then qι|ϱ| = qn. This implies that ϱ |= Bq,q′ , which entails d ∈ (∃Bq,q′ .⊤)I .
Otherwise, we show that d ∈ (∃Bq,q′

þ
.⊤)I . Note that one of the two options holds:

• There exist names o ∈ NT
I , and a ∈ (NA

I ∪ NT
I ) for which ρι|ϱ| = oI holds and ρn is a

descendant of aI . Then the path ρι|ϱ| . . . ρn is (a,o)-inner and realises Aqι|ϱ| ,q′ . Hence,
(oI ,aI) ∈ (iA,o

qι|ϱ| ,q′
þ

)I , and the path ϱ·aI realises Bq,q′
þ
.

• There exists a name a ∈ (NA
I ∪ NT

I ) for which ρι|ϱ| = aI and ρn is a descendant of aI .
Then the path ρι|ϱ| . . . ρn is a-inner and realises Aqι|ϱ| ,q′ . Hence, (aI ,aI) ∈ (iAqι|ϱ| ,q′

þ

)I ,
and the path ϱ·aI realises Bq,q′

þ
.

Hence, d ∈ (∃Bq,q′
þ
.⊤)I , which finishes the proof.

Proof of RHS ⊆ LHS. Let the fusion ρ ⊙ ϱ of paths ρ := ρ1 . . . ρn and ϱ := ϱ1 . . . ϱm with
ρn = ϱ1 as the path ρ1 . . . ρnϱ2 . . . ϱm (the first element of ϱ is omitted). By Definitions 7.33–
7.36 we know that for all role names r ∈ R(NT

I ,A) carrying the ordered pair of states (q, q′)
we have that:

• If r does not carry þ, then for all (d, e) ∈ rI there exists a path d·ρ·e realising Aq,q′ .
• If r carries þ, then for all (d, e) ∈ rI there exists a path d·ρ·e′ realising Aq,q′ for some

descendant e′ of e.
Given such a role name r and a pair (d, e) ∈ rI , we fix one such corresponding path ρ and
write unfold(d, r , e) to denote it.
Take d ∈ RHS and let ρ := ρ1 . . . ρn be the path witnessing that d is either in (∃Bq,q′ .⊤)I

or (∃Bq,q′
þ
.⊤))I . This provides us a word w := r1 . . . rn−1 and a sequence of states q1, . . . , qn

such that q0 = q, qn = q′ (or q′
þ), and for all i < n we have: (qi, ri, qi+1) ∈ T, where T is the

transition relation of B. Observe that only qn may carry þ by the design of B. This implies
that for any two consecutive elements ρi, ρi+1 we have that unfold(ρi, ri, ρi+1) starts from
ρi and ends at ρi+1. Moreover, unfold(ρi, ri, ρi+1) realises Aqi,qi+1 . Thus, by induction, the
path unfold(ρ1, r1, ρ2)⊙. . .⊙unfold(ρn−1, rn−1, ρn) realises Aq,q′ , and establishes d ∈ RHS.

With the proviso that a quasi-forest I properly interprets both C(NT
I ,A) and R(NT

I ,A), Lemma 7.39
guarantees the desired interpretation of reachability concepts introduced at the beginning of the section.

Definition 7.40 Let I,A,B be as in Lemma 7.39, and Q be the state-set of A. The set of A-
reachability-concepts C⇝(A) is {ReachA

q,q′ | q, q′ ∈ Q}. I properly interprets C⇝(A) if
(ReachA

q,q′)I = (Root ⊓ (∃Bq,q′ .⊤ ⊔ ∃Bq,q′
þ
.⊤))I

for all states q, q′ ∈ Q. We call I virtually (NT
I ,A)-decorated if it properly interprets R(NT

I ,A),
and C⇝(A), and (NT

I ,A)-decorated if it additionally properly interprets C(NT
I ,A).

Revisit Lemma 7.32 for the definition of the NT
I -relativisation rel(NT

I ,Aq,q′) of ∃Aq,q′ .⊤, and recall
that a quasi-forest virtually satisfies ∃Aq,q′ .⊤ if it satisfies its relativisation. Based on Lemma 7.32 we infer:

Lemma 7.41 Let A be an NFA, and let I be an (NT
I ,A)-decorated (NA

I , NT
I )-quasi-forest. For all

elements d in I, we have that if d virtually satisfies ∃Aq,q′ .⊤ then d satisfies ∃Aq,q′ .⊤.

Proof. By Lemma 7.32 it suffices to show that I interprets all the concepts ReachA
q,q′ from

C⇝(A) equally to Root⊓∃Aq,q′ .⊤. But as I is (NT
I ,A)-decorated, this follows by Lemma 7.39.

We conclude by showing an algorithmic result concerning (virtually) (NT
I ,A)-decorated quasi-forests,

which relies on the fact that the evaluation of regular path queries over databases can be done in PTime.
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Lemma 7.42 Let I be a finite interpretation with RootI = ∆I , and A be an NFA. We can then
verify in time polynomial w.r.t. (|A|·|I|) whether I is virtually (NT

I ,A)-decorated.

Proof. Testing whether I properly interprets R(NT
I ,A) can be clearly done in time polyno-

mial w.r.t. (|A|·|I|), simply by analysing the shape of I and the transition relation of A (in
the case of direct paths). To verify that I properly interprets C⇝(A), we consider any concept
ReachA

q,q′ from C⇝(A) and an element d ∈ ∆I . Then we iterate through all the elements
e ∈ ∆I and we verify whether for some e either I |= Bq,q′(a,b) or I |= Bq,q′

þ
(a,b) hold (where

a and b are, respectively, the individual names for d and e). This can be achieved in time
polynomial w.r.t. |I| · |A| (as B is of size polynomial w.r.t. |A|) with the classical methods
of evaluating regular path queries over databases [MW95, Lemma 3.1]. If some of the RPQs
is satisfied, we check if d is labelled with ReachA

q,q′ (and if not, we reject the input). If none of
the RPQs is satisfied but d is labelled with ReachA

q,q′ we also reject the input. After reaching
the end of the loop, we accept the input. This concludes the algorithm.

Lemma 7.42 tells us that if I is the clearing of some (NA
I , NT

I )-quasi-forest J that properly interprets
C(NT

I ,A)-concepts, then we can verify if J is (NT
I ,A)-decorated in PTime.

7.5 Counting decorations

We want to “relativise” number restrictions in the presence of nominals, so that in the suitably decorated
quasi-forest models, the satisfaction of concepts of the form (≥n r).⊤ by the clearing can be decided solely
based on the decoration of the clearing. Observe that for a given a root d of a quasi-forest I and a role
name r , the set of r-successors of d can be divided into three groups: (a) the clearing, (b) the children
of d, and (c) the descendants of roots (but only in case d is a nominal). To relativise counting, we decorate
each element of the clearing with the total number of their r-successors in categories (a) and (b), as well
as the information, for each nominal o, on (c) how many of their descendants are r-successors of o.

Definition 7.43 Fix r ∈ NR, n ∈ N, and a finite NT
I ⊆ NI. The set of (NT

I , ≥n r)-counting-
concepts C#(NT

I , ≥n r) consists of concept names Clrngr
t , Chldr

t , Desr,o
t for o ∈ NT

I and thresholds t
of the form “=m” for 0 ≤ m ≤ n or “≥n+1”. All integers appearing in thresholds are encoded in
binary. An (NA

I , NT
I )-quasi-forest I is (≥n r)-semi-decorated if all roots d have unique thresholds

tdcl, tdch, and tdo for all o ∈ NT
I , for which d satisfies the concept

Clrngr
td

cl
⊓ Chldr

td
ch

⊓ ⊔o∈NT
I

Desr,o
td
o

.

The above concepts are called the (NT
I , ≥n r)-descriptions of d. We stress that their size is

polynomial w.r.t. |NT
I |· log2(n).

Similarly to the previous section, we next introduce the notion of proper satisfaction. Additional intuitions
regarding Definition 7.43 are provided in Example 7.46. We strongly encourage the reader to read it.

Definition 7.44 An (NA
I , NT

I )-quasi-forest I properly interprets C#(NT
I , ≥n r) if I is (≥n r)-

semi-decorated and for all roots aI of I and o ∈ NT
I , the root aI belongs to:

• (Clrngr
t )I if and only if |{d: d ∈ RootI , (aI , d) ∈ rI}| t,

• (Chldr
t )I if and only if |{d: (aI , d) ∈ rI , (aI , d) ∈ childI}| t,

• (Desr,o
t )I if and only if |{d: (oI , d) ∈ rI , (aI , d) ∈ (child+)I}| t.

In this case we also say that I is (≥n r)-decorated.
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Based on the above definitions, we can easily express the intended behaviour of C#(NT
I , ≥n r)-concepts

in ZOIQ, using (=n r).C as an abbreviation of (≥n r).C ⊓ ¬(≥n+1 r).C. As an example: in the most
difficult case we describe (Desr,o

=42)I with { } ⊓ ∃edge∗.
(
{o} ⊓ (=42 r).[∃(child−)+.{ }]

)
.

Lemma 7.45 For every (NT
I , ≥n r)-description C there is a ZOIQ-concept desc(C) (of size poly-

nomial w.r.t. |C|) that uses only individual names from NT
I ∪ { } for a fresh , such that for all

(NT
I , ≥n r)-semi-decorated (NA

I , NT
I )-quasi-forests I: I is (≥n r)-decorated if and only if for every

root aI of I and its (NT
I , ≥n r)-description C we have aI ∈ (desc(C)[ /a])I .

Proof. The proof of the lemma relies on a straightforward translation of an (NT
I , r , n)-description

and Definition 7.44 into number restrictions, as follows:
• Clrngr

t can be expressed with { } ⊓ (t r).Root.
• Chldr

t can be expressed with { } ⊓ (t (r ∩ child)).⊤.
• Desr,o

t can be expressed with { } ⊓ ∃edge∗.
(
{o} ⊓ (t r).[∃(child−)+.{ }]

)
.

The desired concept desc(C) is obtained by taking the conjunction of the above concepts.

Example 7.46. Let us consider an ({a,b}, {o})-quasi-forest I sketched below and a role name r depicted as
a green arrow. As suggested by the drawing, (i) aI has no r-successors among the clearing of I and precisely
one r-successor among its children, (ii) oI has two r-successors among the clearing of I, it has precisely two
r-successor among its children, one r-successor that is a descendant of aI , and three r-successors that are
descendants of bI , and (iii) bI has precisely one r-successor inside the clearing of I and no other r-successors.

a o b
Clrngr

=0
Chldr

=1
Desr,o

=1

Desr,o
=2

Chldr
=2

Clrngr
=2

Clrngr
=1

Chldr
=0

Desr,o
≥2+1

Suppose now that I is ({o}, ≥2 r)-decorated. This implies:
• aI ∈ (Clrngr

=0 ⊓ Chldr
=1 ⊓ Desr,o

=1)I .
• oI ∈ (Clrngr

=2 ⊓ Chldr
=2 ⊓ Desr,o

=2)I .
• bI ∈ (Clrngr

=1 ⊓ Chldr
=0 ⊓ Desr,o

≥2+1)I .

Lemma 7.45 can be seen an analogue of Lemma 7.34, namely it rephrases the notion of proper
satisfaction in the language of ZOIQ-concepts. Call a quasi-forest I virtually (NT

I , ≥n r)-decorated
if I is (NT

I , ≥n r)-semi-decorated, and if it properly interprets concepts of the form Clrngr
t . We have:

Lemma 7.47 For a finite interpretation I we can decide in polynomial time w.r.t. |I| whether I is
virtually (NT

I , ≥n r)-decorated.

Proof. It suffices to verify that every element in RootI is labelled by precisely one concept of
the form (a) Clrngr

t , (b) Chldr
t , and (c) Desr,o

t (for all nominals o ∈ NT
I ). This can clearly be

done in PTime, by analysing the representation of I stored in the memory. To verify that
the concepts of the form Clrngr

t are properly interpreted by I, we iterate over all elements
d ∈ RootI and by iterating over rI we count the total number of r-successors of d that belong
to RootI . Afterwards we compare such a number with a given threshold t. This is again, easily
implementable in polynomial time.

We employ the numbers indicated in all relevant thresholds from (NT
I , ≥n r)-descriptions of the roots

of (≥n r)-decorated quasi-forests to decide their satisfaction of number restriction. We first describe it
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with an example. Suppose that we want to verify if a non-nominal root d from I satisfies (≥3 r) based on
its labels Clrngr

=1 and Chldr
≥3+1. It suffices to check if 1 + (3 + 1) is at least 3. For the nominals roots o,

we additionally take all the concepts Desr,o
t into account, that are spread across the whole clearing.

An element d from a finite I virtually satisfies (≥n r).⊤, whenever d satisfies (≥n r).⊤ in every
(≥n r)-decorated (NA

I , NT
I )-quasi-forest with the clearing equal to I. We show:

Lemma 7.48 For a finite virtually (NT
I , ≥n r)-decorated interpretation I with ∆I = RootI and

d ∈ RootI we can test in time polynomial in |I| whether d virtually satisfies (≥n r).⊤.

Proof. Consider two cases:
• d is not a nominal. Then all r-successors of d belong to the clearing and to the children

of d. By (≥n r)-decoration of I, there are unique thresholds tdcl, tdch, for which d satisfies
Clrngr

td
cl

⊓ Chldr
td

ch
. Let m be the sum of the numbers appearing in tdcl, tdch. Clearly m is

the total number of r-successors of d. We then check if m ≥ n holds. This procedure can
be clearly implemented in PTime.

• d is a nominal, and let d = oI . Then all r-successors of d belong to the clearing and the
subtrees of the clearing. Let d1, . . . , dk be all the elements of RootI , and let tdi

o be the
unique thresholds so that d satisfies Desr,o

t
di
o

. Let m be the sum of all numbers appearing
in tdi

o plus the value in a unique threshold tdcl for which d satisfies Clrngr
td

cl
. Note that m

is the total number of r-successors of d (children of d are also its descendants so we do
not double-count them). We then check if m ≥ n holds. Similarly to the previous case,
such a procedure can be clearly implemented in PTime.

7.6 Elegant Quasi-Forest Models and Their Summaries

In this section we benefit from various decorations introduced in the previous sections to design a succinct
way of representing quasi-forest models of ZOIQ-KBs, dubbed summaries. From now on we will focus
only on KBs in Scott’s normal form and on certain class of models introduced next.

Definition 7.49 Let K := (A, T ) be a ZOIQ-KB in Scott’s normal form and let I be its model.
We call I elegant if

(i) I is a canonical quasi-forest model of K,
(ii) I is (ind(T ), ≥n r)-decorated for all number restrictions (≥n r).⊤ from T ,

(iii) I is (ind(T ),A)-decorated for all automata A from T , and
(iv) I interprets all concept and role names that do not appear in K, the set {Root, edge, child, id},

and in mentioned decorations, as the empty set.

Invoking the normal form lemma from the Preliminaries, Lemma 7.5, as well as the definitions of proper
interpretation, we establish the following property. Queries are only needed for the application section.

Lemma 7.50 For every ZOIQ-TBox T we can compute in PTime a ZOIQ-TBox T ′ in Scott’s
normal form that possibly such that for every ABox A we have:

• (A, T ) is quasi-forest satisfiable if and only if (A, T ′) has an elegant model, and
• for every P2RPQ q using only concepts and roles present in T we have that (A, T ) has a

canonical quasi-forest model violating q if and only if (A, T ′) has an elegant model violating q.

Proof. Note that in quasi-forests the universal role ⊤ is interpreted equally to edge∗. Hence,
w.l.o.g. we can assume that T does not contain ⊤. We next invoke Lemma 2.24 and Lemma 2.25
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to compute (in polynomial time) the desired ZOIQ-TBox T ′ in Scott’s normal form which is
a conservative extension of T .
Take an ABox A, a query q and suppose that there is a quasi-forest model of (A, T ) that

violates q (in case we are interested in satisfiability only, we take q := ⊥). By the semantics of
ZOIQ we can assume w.l.o.g. that I interprets all concept and role names that are not special
and that do not appear in T as empty sets. By the fact that T ′ is a conservative extension of
T ′ we know that there is a quasi-forest model I ′ of (A, T ′) that violates q (I ′ is just I with
the altered interpretation of fresh concept and role names). We then alter the interpretation
of concepts and roles that appear in automata and counting decorations, precisely in the
way stated in Definition 7.33, Definition 7.36, Definition 7.40, and Definition 7.44. Call the
resulting interpretation I ′′. As all the concepts involved in decorations are not present in A, T ,
and q, and that I ′′ and I are identical modulo the interpretation of fresh concepts and roles,
we have that I ′′ is a model of (A, T ) that violates q. Hence, I ′′ is the desired elegant model.

Summaries are simply full descriptions of clearings of elegant models.

Definition 7.51 Let K := (A, T ) be a ZOIQ-KB in Scott’s normal form. A K-summary S is any
⊆-minimal ABox satisfying, for all names a,b ∈ ind(K), all the conditions listed below.

(I) S contains either a ≈ b or ¬(a ≈ b).
(II) For all concept names A appearing in K we have that S contains either A(a) or ¬A(a).

(III) For all NFA A from K, and all concept names A from C(ind(T ),A) ∪ C⇝(A) we have that
S contains either A(a) or ¬A(a).

(IV) For all role names r appearing in K we have that S contains either r(a,b) or ¬r(a,b).
(V) For all NFA A from K, and all role names r from R(ind(T ),A) we have that S contains either

r(a,b) or ¬r(a,b) (note that a and b may be equal!).
(VI) For all number restrictions (≥n r).⊤ from K, all o ∈ ind(T ), there are thresholds tacl, tach, and

tao in {=m, ≥n+1 | 0 ≤ m ≤ n} for which S contains Clrngr
ta

cl
(a), Chldr

ta
ch

(a), and Desr,o
ta
o

(a).
(VII) Root(a) ∈ S and edge(a,b) ∈ S.
If only a ZOIQ-TBox T is given, we define T -ghost-summaries as ({ ≈ }, T )-summaries.

Invoking the previously-established bounds on the number and sizes of concepts and roles occurring
in decorations (i.e. the ones stated at the end of Definitions 7.33, 7.36, and 7.43), we infer:

Lemma 7.52 Let K and T be, respectively, a ZOIQ-KB and a ZOIQ-TBox in Scott’s normal
form. We have that every K-summary is of size polynomial in |K|. Moreover, there are exponentially
(in |T |) many T -ghost-summaries and each of them is of size polynomial w.r.t. |T |.

Proof. The proof goes via the analysis of axioms stated in Definition 7.51. We focus on the
case of K-summaries, as the case of T -ghost-summaries is just a corollary. Observe that:

• Clearly, there are at most |ind(K)|2 ≤ |K|2 axioms of the form (I) in a single summary,
and at most 2|ind(T )| ≤ 2|K| ways to select them.

• If K contains c different concept names, then there are at most c·|ind(K)| ≤ 2·|K|2 axioms
of the form (II) in a single summary, and at most 2c·|ind(K)| ≤ 22|K|2 ways to select them.
If K contains r different role names, then there are at most 4 ·r · |ind(K)| ≤ 4 · |K|2 axioms
of the form (IV) in a single summary, and at most 24r·|ind(K)| ≤ 24|K|2 ways to select them.

• For axioms of the form (III) and (V) we first fix an NFA A, and observe that the sets
C(ind(T ),A), C⇝(A), and R(ind(T ),A) can be respectively bounded by 7·|ind(T )|·|Q|2,
|Q|2, and 7 · |ind(T )| · |Q|2, where Q is the state-set of A. Hence, for a fixed NFA A and a
fixed pair a,b of individual names there are at most 7·|ind(T )|·|Q|2+|Q|2+7·|ind(T )|·|Q|2 ≤
15|K|3 axioms of the form (III) and (V) in a single summary, and at most 215|K|3 ways
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to select them. Thus, the total number of axioms of the form (III) and (V) in a single
summary can be bounded by |K| · 4 · |ind(K)| · 15|K|3 ≤ 60|K|5 (as there are at most |K|
NFAs in K, and at most 4 · |ind(K)| possible arguments to plug in), and they give rise to
at most 260|K|5 possible summaries.

• Finally, we discuss the axioms of the form (VI). Fix a number restriction (≥n r).⊤ and an
individual name a ∈ ind(K). Observe that every of |ind(T )|+2 thresholds can be encoded
on log2(n)-bits (as n is given in binary). Hence, for such a fixed number restriction, a
single summary contains axioms of size bounded by |ind(K)| ·(|ind(T )|+2) · log2(n) ≤ |K|3,
which gives raise to at most 2|K|3 possible selection of summaries. We replace |K|3 with
|K|4 when considering all number restrictions that appear in K.

By the rule of product, we conclude that every K-summary is of size polynomial w.r.t. |K|,
and that there are exponentially many (w.r.t. |K|) K-summaries. The second part of the lemma
follows from the fact that every T -ghost-summary is a K-summary for K of size linear in |T |.

While a K-summary can be easily extracted from the clearing of any elegant model of K, the converse
direction requires several additional assumptions, dubbed clearing-consistency and subtree-consistency.

7.7 Consistent Summaries of Quasi-Forest Models

The notion of clearing-consistency ensures that a given summary S is a good candidate for the clearing
of some elegant model of K, namely (i) S does not violate “local” constraints from K, (ii) S is virtually
decorated for decorations involving number restrictions and automata, and that (iii) every element from S
virtually satisfies all concepts involving automata or number restrictions from K. In the definition below
we write IS to denote the minimal interpretation (if exists) that corresponds to and satisfies the ABox S.3

Definition 7.53 Let K := (A, T ) be a ZOIQ-KB in Scott’s normal form and let S be a K-summary.
Let Tloc be the TBox composed of all GCIs from T except for the ones concerning NFAs and number
restrictions. We say that S is clearing-consistent if it satisfies all the conditions below.

• IS satisfies (A, Tloc).
• For all GCIs A ≡ ∃Aq,q′ .⊤ from T we have that (i) IS is virtually (ind(T ),A)-decorated, and

(ii) for all a ∈ ind(K), A(a) ∈ S iff a virtually satisfies ∃Aq,q′ .⊤ in IS (namely ReachA
q,q′(a) ∈ S).

• For all GCIs A ≡ (≥n r).⊤ from T we have that (i) IS is virtually (ind(T ), ≥n r)-decorated,
and (ii) for all a ∈ ind(K), we have that A(a) ∈ S iff a virtually satisfies (≥n r).⊤ in IS .

Based on the previously-established lemmas on testing virtual satisfaction of concepts (namely
Lemma 7.42 and Lemma 7.48) we can conclude that deciding clearing consistency can be done in PTime.

Lemma 7.54 If K := (A, T ) is a ZOIQ-KB in Scott’s normal form, and S is a K-summary, we can
decide in time polynomial w.r.t. |K| · |S| whether S is clearing consistent.

Proof. Note that the construction of IS can be done in time polynomial w.r.t. |S| (see the
footnote describing its construction). Thus it suffices to analyse Definition 7.53 and see that
each of the “bullets” can be verified in time polynomial w.r.t. |K| · |S|. As Tloc (via an obvious
translation) belongs to the two-variable fragment of first-order logic, for which the model-
checking problem is decidable in PTime [GO99, Prop. 4.2], the first item can be verified in
PTime as desired. For the second bullet, we invoke Lemma 7.42, while for the last bullet we

3Formally, (a) the domain elements of IS are the equivalence classes [a]≈ of names from ind(S) in the equality equivalence
relation ≈, renamed afterwards to be positive integers, (b) we interpret all names a ∈ ind(S) as [a]≈ and all the remaining
individual names as any arbitrary selected element, (c) for all concept names A, we have that [a]≈ belongs to the interpretation
of A if and only if A(a) ∈ S, and (c) for all role names r we have that ([a]≈, [b]≈) belongs to the interpretation of r if and
only if r(a,b) ∈ S. It is an easy exercise to see that whenever S is a summary then the interpretation IS is well-defined.
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rely on Lemma 7.47 and Lemma 7.48. This concludes the proof.

The second required notion is the subtree-consistency. To decide whether a given summary S extends
to a model of K, we need to check, for all elements d of S, the existence of a suitable tree satisfying (a
relativised) K and fulfilling all the premises given by the decorations of d. This is achieved by crafting a
suitable ZOIQ-KB and testing whether it has a quasi-forest model of a suitably bounded branching. To
make such a KB dependent only on the TBox, we are going to use the ghost variable in place of the
intended element d. In case the following definition is too difficult to read, please revisit Corollary 7.35
and the text right after the proof of Lemma 7.32 as well as Definition 7.43 and Lemma 7.45.

Definition 7.55 Let T be a ZOIQ-TBox in Scott’s normal form and let S be a T -ghost-summary.
We say that S is T -subtree-consistent if the ZOIQ-KB KS, := (S, Tloc∪Taut∪Tcnt) is quasi-forest
satisfiable. The TBox Tloc is as in Definition 7.53, while Taut and Tcnt are defined below.

• For all axioms A ≡ ∃Aq,q′ .⊤ from T , the TBox Taut consists of:
{ } ⊑ comdsc(ind(T ),A), A ≡ rel(ind(T ),Aq,q′).

• For all axioms of the form A ≡ (≥n r).⊤ from T , the TBox Tcnt consists of
¬Root ⊓ A ≡ ¬Root ⊓ (≥n r).⊤,

{ } ⊑ desc
(

Chldr
tch

⊓ ⊔o∈ind(T ) Desr,o
to

)
,

for the unique concepts Chldr
tch

, Desr,o
to

satisfied by in IS .

The crucial property concerning the notion of T -subtree-consistency and the set ST of all T -subtree-
consistent T -ghost-summaries is given next. Its proof relies on the bounds on the concepts from Lemma 7.34,
Lemma 7.32, and Definition 7.43, as well as the exponential time algorithm for deciding quasi-forest-
satisfiability of ZOIQ-KBs from Lemma 7.6.

Lemma 7.56 Let T be a ZOIQ-TBox in Scott’s normal form (constructed from some ZOIQ-TBox
T ′ with an algorithm described in Preliminaries). Then one can decide in time exponential w.r.t. |T |
whether a given T -ghost-summary is T -subtree-consistent. Moreover, the set ST is of size exponential
w.r.t. |T | and can be computed in time exponential w.r.t. |T |.

Proof sketch. We first establish that KS, := (S, Tloc ∪ Taut ∪ Tcnt), defined in Definition 7.55,
is of size polynomial w.r.t. |T |. The fact that the ABox |S| is polynomial w.r.t. |T | follows
from Lemma 7.52 (note that such a lemma also tell us that there are exponentially many
of such summaries). Next, as Tloc is a subset of T , its size is clearly polynomially bounded
w.r.t. |T |. In order to bound the size of Taut, we deal separately with each NFA A of T (note
that there are at most |T | of them). By a combination of Lemma 7.34 and the last line of
Definition 7.33 we see that comdsc and rel are of size polynomial w.r.t. |T |. Finally, to provide
the bound on the size of Tcnt we rely on Lemma 7.45. Hence, KS, is of size polynomial w.r.t.
|T |. We can now replace all the NFAs present in KS, with regular expressions in order to
test its quasi-forest-satisfiability in time exponential w.r.t. |T | by Lemma 7.6 (this is needed
as the original syntax of ZOIQ does not allow for automata in regular path expressions).
While the usual transformation from a given NFA A into a regular expression R may lead to
to R having the size exponential w.r.t. |A|, we claim that this is not the case here. Indeed,
by investigating the definition of KS, we see NFA appearing in KS, either come from the
TBox tT , or have the form Aq,q′ or Aq,q′ ▷◁ B for some NFA A from T and B describing
some “category” of basic paths. Recall that in the construction of A in T , we obtained it
by transformation of some regular expression R present in T ′. Hence, we can simply replace
A with the original regular expression R (which is clearly of polynomial size w.r.t. |T |). In
order to construct a regular expression corresponding to Aq,q′ under a proviso that a regular
expression R (of size polynomial w.r.t. |T |) corresponds to the NFA A, we invoke the proof
described by Hermann Gruber [Gru23] in his TCS StackExchange Post. Finally, to deal with
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the NFA of the form Aq,q′ ▷◁ B we first convert Aq,q′ into a regular expression and then invoke
the second part of Lemma 7.30. Hence, the resulting KB indeed has size polynomial in |T |.
Towards the construction of an algorithm enumerating T -subtree-consistent T -ghost-summaries,

we first construct all T -summaries by enumerating axioms from Definition 7.51 (enumerating
thresholds in case of number restrictions) and then verifying whether the constructed ABoxes
fulfil the definition of a T -summary (which can be easily done in PTime). Now it remains to
construct suitable Tloc, Taut, Tcnt. The construction of Tloc is simply by dropping irrelevant
axioms from T . To construct Taut, for every NFA A that appears in T we rely on Lemma 7.34
and the definitions of comdsc and rel. Finally, to construct Tcnt we proceed with every number
restriction from T and apply Lemma 7.45. This yields the polynomial-time construction of an
arbitrary KS, , which quasi-forest satisfiability can be checked in time exponential w.r.t. |T |.
This concludes the proof.

We now lift the definition of subtree-consistency from ghost summaries to arbitrary K-summaries by
producing a ghost summary per each individual name a mentioned in K. The idea is simple: we first
restrict S to nominals and the selected name a, and then replace a with the ghost variable (we must
be a bit more careful if a is itself a nominal). This produces a ghost summary, for which the notion of
subtree-consistency is already well-defined. The main benefit of testing subtree-consistency of such a
summary is that this guarantees the existence of a quasi-forest containing a subtree rooted at that we
can afterwards “plug in” to a in S in order to produce a full model of K from S. This is formalised next.

Definition 7.57 Let T and ST be as in Lemma 7.56. For a ZOIQ-KB K := (A, T ) and a K-
summary S we say that S is consistent if S is clearing-consistent and for every name a ∈ ind(K)
the (T , S,a)-ghost-summary Sa (as defined below) belongs to ST .

We define Sa as the sum of the following three ABoxes: (i) S restricted to ind(T ), (ii) S restricted
to ind(T )∪{a} with all occurrences of a replaced with , and (iii) {a ≈ , ≈ a} whenever a ∈ ind(T ).

As we already said when introducing relevant notions of consistency, a model of a ZOIQ-KB K :=
(A, T ) can be obtained by “combining” a clearing-consistent summary S with relevant subtrees provided
by the subtree-consistency of (T , S,a)-ghost-summaries for all a ∈ ind(K). We obtain:

Lemma 7.58 A ZOIQ-KB in Scott’s normal form is quasi-forest satisfiable if and only if there
exists a consistent K-summary.

Proof. We split the proof into two sublemmas: Lemma 7.59 and Lemma 7.60.

Lemma 7.59 If a ZOIQ-KB K := (A, T ) in Scott’s normal form is quasi-forest satisfiable then
there exists a consistent K-summary.

Proof. Suppose that K is quasi-forest satisfiable, and take an elegant quasi-forest model I of K
guaranteed by Lemma 7.50. In what follows we define a K-summary S based on the clearing
of I, and then establish the consistency of S. We let S to be composed of the following axioms:

(I) a ≈ b for all a,b ∈ ind(K) with aI = bI , and ¬(a ≈ b) for all a,b ∈ ind(K) with aI ̸= bI .
(II) A(a) (resp. ¬A(a)) for all NFA A from K, all concept names A appearing in

K ∪ C(ind(T ),A) ∪ C⇝(A) ∪ {Root},

and all individual names a ∈ ind(K) satisfying aI ∈ AI (resp. aI ̸∈ AI).
(III) r(a,b) (resp. ¬r(a,b)) for all NFA A from K, all role names r appearing in

K ∪ R(NT
I ,A) ∪ {edge},

and all individual names a,b ∈ ind(K) satisfying (aI ,bI) ∈ rI (resp. (aI ,bI) ̸∈ rI).
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(IV) A(a) for
A ∈ {Clrngr

ta
cl

, Chldr
ta

ch
, Desr,o

ta
o

| o ∈ ind(T )},

ranging over the number restrictions (≥n r).⊤ from K and unique thresholds tacl, tach, tao
for which aI ∈ AI .

Following the items of Definition 7.51 we see that S is indeed a K-summary. It remains to
establish the clearing-consistency and subtree-consistency of K. We start from the former one.

• It is immediate to see that IS |= (A, Tloc) due to the fact that I |= (A, Tloc).
• Take any GCI A ≡ ∃Aq,q′ .⊤ from T . As I is A-decorated, we see that IS is vir-

tually (ind(T ),A)-decorated. By proper interpretation of Reach-concepts we can in-
voke Lemma 7.32 to conclude the sequence of equivalences: A(a) ∈ S iff aI ∈ AI iff
aI ∈ (∃Aq,q′ .⊤)I iff aI ∈ (ReachA

q,q′)I iff ReachA
q,q′(a) ∈ S, as desired.

• Take any GCIs A ≡ (≥n r).⊤ from T . As the interpretation I is elegant (and thus
(ind(T ), ≥n r)-decorated), we clearly have that IS is virtually (ind(T ), ≥n r)-decorated.
Applying Lemma 7.45 and the fact that I |= K we conclude that the sequence of equiva-
lences: aI ∈ ((≥n r).⊤)I iff aI ∈ AI iff A(a) ∈ S iff aIS virtually satisfies (≥n r).⊤.

We next establish the subtree-consistency of S. To do so, take any a ∈ ind(K), and consider
the T -summary Sa as defined in Definition 7.57. We need to show that the ZOIQ-KB KSa, :=
(Sa, Tloc ∪ Taut ∪ Tcnt), as defined in Definition 7.55, has a quasi-forest model. We claim that
the subinterpretation J constructed from I by restricting its domain to the roots named
with some name from ({a} ∪ ind(T )) and their descendants (and interpreting J := aJ ) is a
model of KSa, . As J is a submodel of I, we know that J |= (Sa, Tloc). For the satisfaction of
Taut we invoke Corollary 7.35 and Lemma 7.32 and the fact that J is a submodel of I. For
the satisfaction of Tcnt we again rely on the fact that J is a submodel of I (so the non-root
elements do not violate number restrictions) and on Lemma 7.45.
This concludes the proof of the consistency of S.

We now establish the other (more difficult) direction of Lemma 7.58. The proof is given below.

Lemma 7.60 For every ZOIQ-KB K := (A, T ) in Scott’s normal form we have that the existence
of a consistent K-summary implies the quasi-forest satisfiability of K.

Proof. Let S be a consistent K-summary, and let IS be the corresponding interpretation. The
interpretation IS is going to serve as the clearing of the intended model of K. For individual
names a ∈ ind(K) labelling pairwise-different elements of IS (i.e. from different equivalence
class of ≈) we let Ia to be a quasi-forest model of the ZOIQ-KB KSa, := (Sa, Tloc ∪Taut ∪Tcnt),
where Sa is the (T , S,a)-ghost-summary as in Definition 7.57 and KSa, is as in Definition 7.55.
Note that Ia exists by the consistency of S, and w.l.o.g. we can assume that Ia interprets all
concept and role names that do not appear in S as empty sets. We stress that by the design
of Sa we have that both IS and Ia are identical when restricted to nominals. Hence, in what
follows, we are going to “merge” IS and all the Ia to obtain the desired quasi-forest model of K.
By the merge of an interpretation I with Ia we mean the interpretation J such that:

• ∆J = ∆I ∪ {aI ·w | I ·w ∈ ∆Ia}.
• Individual names are interpreted as in I.
• For concept name A ∈ NC we put AJ := AI ∪ {aJ ·w | Ia·w ∈ AIa}.
• For role names r ∈ NR we interpret r as

rI ∪ {(aJ ·w,aJ ·v) | ( Ia·w, Ia·v) ∈ rIa} ∪ {(aJ ·w,oJ ) | ( Ja·w,oIa) ∈ rIa,o ∈ ind(T )}.

Intuitively, we “plug in” the subtree of in Ia into the place of the individual a in I, making
sure that all the freshly added elements are appropriately connected to the nominals. Moreover,
note that J and I are identical when restricted to the named elements.
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Let J be the merge of IS with all the Ia (iterated in any fixed order). We claim that J is
a quasi-forest model of K. While the fact that J is a quasi-forest follows by the fact that all
the components of the merge are also quasi-forests, the modelhood of J remains to be shown.
As IS satisfies A (by the clearing consistency), and all the applications of the merge operation
yield interpretations with identical clearing, we conclude that J |= A.
Now consider any GCI from Tloc (i.e. the ones that do not involve automata nor number

restrictions). By the design of the notion of merging we see for any element d from J there
exists an element d′ in I or one of the interpretations Ia such that d and d′ satisfy precisely
the same atomic concepts. Indeed, if d is a root of J we take d′ := d from I. Otherwise, there
is an individual name a for which d = aJ w and we put d′ := Iaw from Ia. By the fact that
I and all the Ia satisfy Tloc, we conclude the satisfaction of the GCIs from Tloc having one
of the forms: A ≡ {o}, A ≡ B, A ≡ ¬B, and A ≡ B ⊓ B′. A similar characterisation can be
provided for the roles in J . This, together with the fact that I and all the Ia satisfy Tloc, we
infer the satisfaction of the GCIs from Tloc having one of the forms: A ≡ ∃r .Self or s = s′.
We next address the satisfaction of GCIs from T of the form A ≡ ∃Aq,q′ .⊤. Note that IS is

virtually A-decorated (by design of S) and the elements from the clearing virtually satisfies
A ≡ ∃Aq,q′ .⊤. Moreover, we have that the interpretation of in every interpretation aIa

satisfies comdsc(ind(T ),A), which is due to the construction of KSa, . It is not hard to see
that this implies aJ ∈ comdsc(ind(T ),A) [ /a]J . Hence, J is properly A-decorated and by
Lemma 7.32 it suffices to verify whether J is a model of A ≡ rel(ind(T ),Aq,q′). We verify the
equality AJ = (rel(ind(T ),Aq,q′))J separately for the clearing and the other elements. When
considering the elements of the clearing, the desired equality follows from the fact that S
is clearing-consistent, as indicated by the second item of Definition 7.53. For the remaining
elements, we invoke the fact that all the Ia are models of A ≡ rel(ind(T ),Aq,q′) and the
merging process preserves all the relevant paths between , its descendants and nominals.
More formally, any path from Ia witnessing the satisfaction of some automata constraint in Ia

is also the desired witnessing path in J (modulo renaming all occurrences of with a in the
description of its elements).
Finally, we establish satisfaction of all the GCIs having the form A ≡ (≥n r).⊤. First, by the

design of S, we know that IS (and hence also J ) is virtually (≥n r)-decorated and it virtually
satisfies (≥n r).⊤. Second, by the definition of the merge, we see that our construction of J
preserves the total number of r-successors for all non-root elements. Hence, by the fact that all
Ia satisfy the GCI ¬Root⊓A ≡ ¬Root⊓ (≥n r).⊤, we conclude that every element outside the
clearing of J satisfies A if and only if it satisfies (≥n r).⊤. Finally, we proceed with the elements
of the clearing of I. As we know that J is virtually (≥n r)-decorated and it virtually satisfies
(≥n r).⊤, we see that to establish the satisfaction of the GCI Root ⊓ A ≡ Root ⊓ (≥n r).⊤
it suffices to show that J is (≥n r)-decorated. To do so, we invoke Lemma 7.45. The proper
interpretation of the concepts having the form Clrngr

t for all the roots of IS (and hence,
by induction, also J ) is by the clearing consistency of S (more precisely by Item (ii) of
Definition 7.53 and the notion of virtual satisfaction). For the remaining concepts, we take any
individual name a ∈ ind(K) and observe that in Ia satisfies desc

(
Chldr

ta
ch

⊓ ⊔o∈ind(T ) Desr,o
ta
o

)
for all the relevant concepts A with A(a) present in S. As our construction of J preserves
r-successors of non-root elements of each Ia while merging (in particular, all r-connections to
nominals), it is easy to see that the satisfaction of the above concept implies that aJ satisfies
(desc(C)[ /a])J . Thus J is indeed (≥n r)-decorated.

We can now conclude that J is indeed a quasi-forest model of K, as desired.

7.8 Deciding Existence of Quasi-Forest Models

Based on Lemma 7.58 as well as the other lemmas presented in the previous section, we can finally design
an algorithm for deciding whether an input ZOIQ-KB is quasi-forest satisfiable.
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Procedure 5: Deciding Quasi-Forest Satisfiability in ZOIQ
Input: A ZOIQ-KB K := (A, T ).
Output: True if and only if K is quasi-forest satisfiable.

1 Turn T into Scott’s normal form. // In PTime w.r.t. |T | due to Lemma 7.50.

2 Compute the set ST . // Implementable in ExpTime w.r.t. |T |. Consult Lemma 7.56.

3 Guess a K-summary S. // NP in |K| by Lemma 7.52.

4 Return False if S is clearing-consistent. // Implementable in PTime w.r.t. |K|·|S| by Lemma 7.54.

5 Foreach a ∈ ind(K) do compute the (T , S,a)-ghost-summary Sa and return False if Sa ̸∈ ST .
// Implementable in PTime w.r.t. |K| · (|K|+|ST |).

6 Return True.

We next establish correctness and calculate the running time of our algorithm. In the proof we rely
on all the lemmas and definitions presented in Section 7.6.

Lemma 7.61 Procedure 5 returns True if and only if the input ZOIQ-KB K has an elegant model.
Moreover, there exist polynomial function p and an exponential function e for which Procedure 5
can be implemented with a nondeterministic Turing machine of running time bounded, for every
input K := (A, T ), by e(|T |) + p(|K|) + p(|K|) · e(|T |).

Proof. Correctness of our algorithm follows from Lemma 7.50 and Lemma 7.58. For its imple-
mentation, we stress that:

• The first step of the algorithm can be done in time polynomial w.r.t. |T | by Lemma 7.50.
• The second step of the algorithm can be done in time exponential w.r.t. |T | by lemma 7.56.
• The third step can be implemented in non-deterministic polynomial time, due to Lemma 7.52.
• The fourth step can be implemented in time polynomial w.r.t. |K|·|S| by Lemma 7.54,

and thus in time polynomial w.r.t. |K|.
• In the second-to-last step, for each name a ∈ ind(K) we construct the (T , S,a)-ghost-

summary Sa. This can clearly be done in time polynomial w.r.t. |T | + |S|, and thus
polynomial w.r.t. |K|. We then iterate through the set ST (which is exponential w.r.t. |T |
by Lemma 7.56) and check whether Sa belongs to it or not. This costs us the time expo-
nential w.r.t. |T |. Hence, the whole step can be executed in time exponential w.r.t. |K|.

Hence, there exists a polynomial function p and an exponential function e such that the run-
ning time of the above algorithm can be bounded by e(|T |) + p(|K|) + p(|K|) · e(|T |) for every
input K := (A, T ). This concludes the proof.

We stress that by replacing the 3rd step of Procedure 5 by a loop that iterates through all possi-
ble K-summaries, would yield a deterministic exponential time algorithm for quasi-forest satisfiability
of ZOIQ. In our case however, it is more convenient to keep the algorithm as it is. Suppose now
that a TBox T is fixed and only an ABox A is given as the input. Then the first two steps of Proce-
dure 5 are independent from the input. The same holds for the verification of whether a given ghost
summary belongs to the pre-computed set ST from line 5. We present the desired algorithm below.

Procedure 6: Deciding Quasi-Forest Satisfiability in ZOIQ w.r.t. data complexity
Input: An ABox A.
Parameters: ZOIQ-TBox T already in Scott’s normal form and a pre-computed set ST .
Output: True if and only if K := (A, T ) is quasi-forest satisfiable.

1 Guess a K-summary S. // NP in |K| by Lemma 7.52.

2 Return False if S is clearing-consistent. // Implementable in PTime w.r.t. |K|·|S| by Lemma 7.54.

3 Foreach a ∈ ind(K) do compute the (T , S,a)-ghost-summary Sa and return False if Sa ̸∈ ST .
// Implementable in PTime w.r.t. |K| · (|K|+|ST |), and thus in PTime w.r.t. |K| if ST is fixed.

4 Return True.

We employ Lemma 7.61, and based on Procedure 6 we establish the forthcoming Theorem 7.62.
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Theorem 7.62
For every ZOIQ-TBox T , there is an NP procedure (parametrised by T ) that takes an ABox A as
the input and decides whether the ZOIQ-KB K := (A, T ) has a quasi-forest model.

Proof. For the TBox T we turn it into Scott’s normal form with Lemma 7.50, and then com-
pute ST with Lemma 7.56. We now treat both T and ST as parameters and construct a Turing
machine realising Procedure 6. Correctness of Procedure 6 now follows from correctness of
Procedure 5. As for the running time, we use the fact that T is fixed from the beginning, and
thus the value e(|T |) is treated as constant. Hence, the function e(|T |)+p(|K|)+p(|K|) · e(|T |)
bounding the running time of our algorithm, becomes polynomial in terms of |A|, as desired.

Recall that the maximal decidable fragments of ZOIQ have the elegant model property (namely that
every satisfiable knowledge base has an elegant model) as explained by Lemma 7.5 and Lemma 7.50. Thus
by employing the above algorithm we can conclude:

Theorem 7.63
The satisfiability problem for ZIQ, ZOQ, and ZOI is NP-complete w.r.t. the data complexity.

It is know that the decidable expressive logics from the SR family, the logical core of OWL2, can be
equivalently rewritten into the Z family [CEO09, Prop. 5.1]. More precisely, for any ABox A and any
TBox T in SRIQ, SROQ or SROI one can compute a TBox T ′, respectively, in ZIQ, ZOQ or ZOI
such that (A, T ) is satisfiable if and only if (A, T ′) is. Hence, Theorem 7.63 reproves known results about
the SR family, previously obtained by Kazakov [Kaz08, Lemma 10, Table 1] by a translation from SROIQ
to the two-variable fragment of first-order logic extended with counting quantifiers [Pra09, Thm. 1].

Corollary 7.64
The satisfiability problem for SRIQ, SROQ, and SROI is NP-complete w.r.t. the data complexity.

Recall that regular path queries are queries of the form R(x, y), where R is a regular expression (with
tests). One of the key features of the Z family is that they have a built-in support for regular path
expressions. Thus, by including the GCIs ⊤ ⊑ ¬∃R.⊤ to an input TBox T , one can ensure that all the
models of T ∪ {⊤ ⊑ ¬∃R.⊤} do not satisfy the query R(x, y). Hence, as a corollary we obtain:

Corollary 7.65
The entailment problem of regular path queries over tamed ZOIQ-KBs is coNP-complete w.r.t. the
data complexity. In particular, this applies to ZIQ, ZOQ, ZOI, and to the corresponding fragments
of OWL2, namely SRIQ, SROQ, and SROI.
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Motivation and Our Contribution

In this section we focus on the rooted query entailment problem, i.e. a restriction of the classical query
entailment problem where the input query is assumed to be connected and contains at least one answer vari-
able. Such a natural restriction of the query entailment problem often reduces its complexity. The canonical
example may be the well-known DL ALCI. It enjoys 2ExpTime-complete [Lut08a, Thm. 2] conjunctive
query entailment problem, while its complexity in rooted case drops to coNExpTime [Lut08a, Thm. 1].
Despite the clear complexity-theoretic motivation towards studying the complexity of restricted classes of
queries, there is a more serious application of this line of work. Quite recently, Jung et al. [JLPW22, p. 3]
established a tight correspondence between the entailment of (unions of) rooted conjunctive queries and
the so-called weak separability problem, one of the fundamental problems in concept (machine) learning.

In this chapter we first modify the algorithm presented in Section 7.8 to infer a coNExpTime upper
bound for the entailment of unions of rooted conjunctive queries in ZIQ (consult Lemma 8.1 to understand
why our results do not generalise to logics with nominals). We conclude with a novel coNExpTime lower
bound for ALC extended with the Self operator. We stress that by the correspondence between rooted
entailment and weak separability, our results yield novel lower and upper bounds for the later problem.

Overview of the Chapter and Prerequisites

We start with an extra preliminaries (Section 8.1). We then establish coNExpTime upper bound for
the rooted query entailment in ZIQ (Section 8.2). We conclude with the matching coNExpTime lower
bound for ALC extended with the Self operator, where the proof overview is given in Section 8.3.1.

133
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We assume that the reader is familiar with the content of Chapter 7, especially its last section concerning
our algorithm for deciding quasi-forest satisfiability of ZOIQ. For the lower bound section, it may be
useful to read Chapter 6 first, although such an extra background is not required.

8.1 Additional Preliminaries for Rooted Query Entailment

We recall the standard definitions regarding rooted queries and the entailment problem for rooted query.
We also discuss a suitable version of the tiling problem employed in our forthcoming hardness proof.

8.1.1 Rooted Entailment of Queries

We call a conjunctive query (CQ) connected if its query structure (defined as in Section 2.4) is connected.
A CQ is rooted if it is connected and contains at least one individual name.1 The definition of “being
rooted” is lifted to unions of CQs by requiring that each of its disjuncts is a rooted. In this chapter we
are interested in the following problem:

Entailment of rooted (unions of) conjunctive queries over DL-KBs
Parameters: Description logic DL

Input: A DL-knowledge base K, and a rooted (union of) conjunctive queries q
Question: Does K entail q?

We stress that the rooted entailment problem is a special case of the classical query entailment problem
(with a proviso that the individual names are allowed in the query in addition to variables). Hence, the
extensions of ALC with ExpTime-complete UCQ entailment problem (see e.g. Corollary 5.7) also enjoy
ExpTime-complete entailment problem for (unions of) rooted conjunctive queries. We would also like to
point out that whenever a description logic DL allows for nominals, then the additional assumptions of
rootedness and connectivity do not influence the complexity of the underlying decision problem.2 Indeed:

Lemma 8.1 Let DL extend ALCO. Then there exists a LogSpace reduction between the rooted
entailment problem of CQs over DL-KBs and the CQ entailment problem over DL-KBs.

Proof. Based on the discussion above, it suffices to reduce the query entailment problem to
the rooted entailment. Let K be an DL-knowledge-base, q be a conjunctive query, a, A and r
be, respectively, a fresh individual, concept and role name, that do not appear in K and q. It is
not difficult to see that K |= q if and only if K ∪ {⊤ ⊑ ∃r .{a}} entails the rooted conjunctive
query q ∧

∧
x∈Var(q) r(x,a). This concludes the proof.

8.1.2 Torus Tiling Problem

In our reduction we employ a variant of a tiling problem [Wan61]. An auxiliary definition comes first.

Definition 8.2 A torus tiling system is a triple D := (T, H, V), where T is a set of tiles, and
H ⊆ T×T and V ⊆ T×T are, respectively, horizontal and vertical matching relations. We say that D
covers Z2n × Z2n for a positive n ∈ N if there exists a mapping ξ : Z2n × Z2n → T such that for all
pairs (x, y) ∈ Z2n × Z2n the following conditions are satisfied (⊕2n denotes addition modulo 2n):
(THor) (ξ(x, y), ξ(x ⊕2n 1, y)) ∈ H, and
(TVer) (ξ(x, y), ξ(x, y ⊕2n 1)) ∈ V.
The tiles t, t′ are H-compatible whenever (t, t′) ∈ H, and V-compatible whenever (t, t′) ∈ V.

1In contrast to all the other chapters of this thesis, here we explicitly consider queries with answer variables.
2We would like to thank Jean Jung for this observation.
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The torus tiling problem [Lut02, Def. 4.13] is properly defined below. Its NExpTime-completeness
can be shown in a standard manner, and was first established in the PhD thesis of Lutz [Lut02, Cor. 4.15].

(Exponential) Torus Tiling Problem
Input: Positive integer n (encoded in unary), a torus tiling system D := (T, H, V), and an

initial condition c̄ := (c̄0, . . . , c̄n−1) ∈ Tn.
Question: Does (D, c̄) have a solution, i.e. is there a function ξ that covers Z2n × Z2n such

that for all i < n we have ξ(i, 0) = c̄i?

For brevity, whenever a map ξ satisfies ξ(i, 0) = c̄i for all i < n, we say that ξ is compatible with c̄.

Example 8.3. Let D be the torus tiling system defined as follows. Let T be composed of all four-bordered
tiles made of colours: , , , , e.g. T contains . We let H (resp. V) be composed of all pairs of tiles
(t, t′) ∈ T2 for which the right border of t has the same colour as the left border of t′, e.g. ( , ( ) ∈ H.
Finally, we define V as the set of all pairs of tiles (t, t′) ∈ T2 for which the upper border of t has the same
colour as the lower border of t′, e.g. (( , ) ∈ V. Then D covers Z2 × Z2 as witnessed by the mapping
ξ := {(0, 0) 7→ , (1, 0) 7→ , (0, 1) 7→ , (1, 1) 7→ }. Moreover, assuming c̄ := ( ), we have that ξ is a
solution to (D, c̄). Such a solution ξ is visualised below.

0 1

0

1

8.2 Entailment of Rooted Queries: Upper Bound

As an application of our techniques from the previous chapter, we show how Procedure 5 can be adapted
to derive coNExpTime-completeness of the entailment problem of unions of rooted conjunctive queries
over ZIQ-KBs. We thus generalise the results on SHIQ by Lutz [Lut08b, Thm. 2] (as transitivity of
roles can be simulated with the Kleene’s star in ZIQ). We focus on the dual problem: “Given a (union
of) rooted CQs q and ZIQ-KB K := (A, T ), is there a model of K that violates q?” and show its
NExpTime-completeness. As we work with ZIQ, by Lemma 7.50 we can assume that the input KB K
is in Scott’s normal form, and the intended model I violating q is elegant (in particular, is N-bounded for
an N exponential in |T |). The crucial observation is that whenever q matches I, all the elements from the
image of a match are at the depth at most |q| (as q has at least one individual name and is connected).
Hence, it suffices to construct an “initial segment” of I of depth at most |q| and degree at most N, and
check if (i) q does not match it, and (ii) it can be extended to the full model of K. This is formalised next.

Definition 8.4 Let R, C, D ∈ N. An (R, C, D)-forest F is a prefix-closed set of non-empty words from
ZR·(ZC)+ of length at most D. The number R indicates the total number of roots of F , C denotes
the maximal number of children per each element, and D indicates the maximal depth.

Treating F as a set of individual names, we define an (F , K)-initial segment of a ZOIQ-KB
K as any summary S of K ∪ {a ̸≈ b | a,b ∈ F ,a ̸= b} such that:

• For every a ∈ ind(K) there is b ∈ F ∩ N with a ≈ b in S, and for every b ∈ F ∩ N there is
a ∈ ind(K) with a ≈ b in S.

• ((=0 child).⊤) (a) for all a ∈ F that are not leaves of F .
• ¬r(a,b) for all role names r appearing in K and all a ≠ b from F such that a is not a child of

b in F (or vice-versa).

The above conditions are needed to represent a forest F inside the clearing of the intended models of S.
The first item of Definition 8.4 guarantees the proper behaviour of roots. The second item guarantees
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that the children of elements in the initial segment are precisely the ones that are explicitly mentioned
there. Finally, the last item ensures that the “tree-likeness” of the initial segment is not violated.

Lemma 8.5 Let K := (A, T ) be a ZIQ-KB in Scott’s normal form and let q :=
∨

i qi be a union of
rooted CQs. We have that K ̸|= q if and only if there is an (F , K)-initial segment S such that (i) F is
an (R, C, D)-forest for an R bounded by |ind(K)|, C exponential in |T |, and D bounded by |q|, (ii)
(S, T ) is quasi-forest satisfiable, and (iii) IS ̸|= q.

Proof sketch. Note that by Lemma 7.58 the condition (ii) from the statement of the lemma is
equivalent to saying that “S is a consistent summary of K ∪ {a ̸≈ b | a,b ∈ F ,a ̸= b}”.
Suppose that K ̸|= q. Then, by Lemma 7.50, there exists an elegant model I |= K with I ̸|= q.

Take J be the restriction of I to all words of length at most |q|. Observe that: (i) J is a
quasi-forest, (ii) the total number of roots in J is bounded by |ind(K)|, (iii) the degree of every
element is bounded by some N exponential w.r.t. |T | (due to the fact that I is elegant), (iv) J
is of size exponential w.r.t. |T |, (v) J ̸|= q. Note that the domain of J , after a trivial renaming,
can be seen as a (R, C, D)-forest F for parameters as indicated by the above conditions (ii),
(iii), and D bounded by |q|. Hence, we can alter the interpretation of individual names in J
so that the individual names from F are interpreted as the corresponding domain elements
of J . What remains to be done is to define a suitable summary S. We construct S of J
in exactly the same way as we did in Lemma 7.59 when constructing a consistent summary
out of a quasi-forest model, and hence we prefer not to repeat the construction here. The
only difference is that we include in S the axioms of the form ((=0 child).⊤) (a) for all the
individual names a ∈ F that are not leaves of F . By design, S is an (F , K)-initial segment
and IS ̸|= q. It remains to show that S is consistent, but this is fairly straightforward. We
modify I in the following way: (i) we interpret individual names from F in a way we did for J ,
(ii) we remove from childI all pairs of the form (aI ,bI) for a,b ∈ F , (iii) we include in RootI

the interpretations of all names from F . Note that the constructed structure is no longer a
quasi-forest, but this can be easily fixed. To do so, we rename all the members of RootI to
make them natural numbers. In addition to that we also rename all the elements of the form
w·d·v. for d being equal to the interpretation of some leaf of F , to d·v. After such a renaming,
the interpretation I becomes a quasi-forest again. Based on the modified interpretation I, we
can show that S is clearing-consistent and subtree-consistent in precisely the same way as we
did in the proof of Lemma 7.59. Thus S is a consistent summary, which finishes the proof.
For the reverse direction, we apply Lemma 7.58 to infer the existence of a quasi-forest model

I of K ∪ {a ̸≈ b | a,b ∈ F ,a ≠ b} such that (i) I restricted to RootI is an (R, C, D)-forest
(after a suitable renaming), (ii) I restricted to RootI does not satisfy q (this follows from the
fact that all quasi-forest models of (S, T ) have identical clearing, modulo the symbols that do
not appear in K and F), and (iii) only the roots of I that are leaves in F may have positive
number of children. We next modify I in order to obtain a new interpretation J as follows:

• Remove from RootI all elements that do not interpret individuals being the roots of F .
• Append to childI all pairs of the form (d, e) ∈ ∆I , where there are a,b ∈ F with d = aI

and e = bI such that a is a parent of b in F .
• Interpret all individual names outside ind(K) equally to some fixed name from ind(K).
• We rename J to make its domain a forest. For instance, we first rename all the elements

d of ∆J to positive integers. Then, we rename each d with the unique child∗-path ρ (i.e.
a word in RootJ ·(∆J )∗) leading from the unique ancestor of d labelled with Root to d.

It can be readily verified that J |= K. By construction, it is also its quasi-forest model. Finally,
we show that J ̸|= q. Indeed, by the fact that q is rooted, any match of q will contain only
the elements from J that are words of length at most |q|, yielding a match in I.

Note that the forest F described above is exponential w.r.t. |K|, and thus the initial segment S can be
“guessed” in NExpTime. This allow us to provide the following adaptation of Procedure 5.
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Procedure 7: Deciding Rooted Query Entailment in ZIQ
Input: A ZIQ-KB K := (A, T ) and a union q :=

∨n
i=1 qi of rooted conjunctive queries.

Output: True if and only if K ̸|= q.
1 Turn T into Scott’s normal form. // In PTime w.r.t. |T | due to Lemma 7.50.

2 Guess (F , K)-initial segment S of K as in Lemma 8.5. // Of size exponential w.r.t. |K| by

Lemma 7.52 and the design of F, and the guessing is implementable in NExp.

3 Foreach qi ∈ q return False if IS |= qi. // Implementable in |S||q|, and thus in Exp w.r.t. |q|·|K|.
4 Use Procedure 5 to verify that (S, T ) is quasi-forest satisfiable and return True if this is the case.

// Implementable in time e(|T |) + p(|S| + |T |) + p(|S| + |T |) · e(|T |) for some exponential function e and

a polynomial function p, and thus in exponential time w.r.t. |K| · |q|.

It can be readily verified that Procedure 7 can be implemented with a nondeterministic exponential
time Turing machine, and that it answers True if and only if K does not entail the input query. This is
formally established by the following lemma.

Lemma 8.6 Procedure 7 returns True if and only if the input ZOIQ-KB K does not entail the input
query q. Moreover, Procedure 7 can can be implemented with a nondeterministic Turing machine of
running time bounded by some function bounded exponentially w.r.t. |q| and |K|.

Proof. Correctness of Procedure 7 follows by the fact that the steps 2–4 described above verify
precisely the conditions (i)—(iii) from Lemma 8.5, shown to be equivalent to K ̸|= q. For the
running time of the algorithm, it suffices to bound the running time of each of the steps by
some exponential function w.r.t. |K| · |q|. Indeed:

• The first step of the algorithm can be done in time polynomial w.r.t. |T | by Lemma 7.50.
• The second step requires a bit of work. As the desired parameters R, C and D are

bounded, respectively, by |ind(K)|, some exponential function in |T |, and |q|, we see that
their values can be guessed in time polynomial w.r.t. |K|·|q|. This implies that the desired
(R, C, D)-forest F has size exponential w.r.t. |K| · |q|, and also that it can be guessed in
time exponential w.r.t. |K| · |q|, e.g. by first guessing the roots and then proceeding in
a top-down manner. The construction of the initial segment can be then done in time
polynomial w.r.t. |K|+|F| (and thus in time exponential w.r.t. |K| · |q|) by Lemma 7.52
(adding the extra axioms required by Definition 8.4 can be handled easily). Thus, the
second step of Procedure 7 can be implemented in non-deterministic exponential time.

• The verification whether the interpretation IS satisfies the query qi can be done easily.
It suffices to iterate through all the possible variable assignments η : Var(qi) → F (there
are at most |S||qi| of them), and for each of them evaluate the query based on the content
of S (e.g. to verify whether r(x, y) holds under the assignment x 7→ a, y 7→ y we check
if r(a,b) belongs to S). Note that as |S| is exponential w.r.t. |q| · |K|, the value |S||qi| is
exponential w.r.t. |q| · |K| as well.

• For the remaining step of Procedure 7, we invoke Lemma 7.61. It tells us that Procedure 5
can be implemented with a nondeterministic Turing machine in such a way that for the
input K′ := (A′, T ′) it runs in time bounded by e(|T ′|)+p(|K′|)+p(|K′|) ·e(|T ′|) for some
functions e and p, that are, respectively, exponential and polynomial. Thus, by assigning
K′ := (S, T ) and T ′ := T from the input, we can bound the running time of the 4-th step
by e(|T |) + p(|S| + |T |) + p(|S| + |T |) · e(|T |). This is clearly exponential w.r.t. |K| · |q|
due to the fact that the size of S is only exponential in terms of |q| · |K|.

By aggregating all the running times given above, we conclude the proof.

Based on Lemma 8.6 we can now conclude the main result of this section.

Theorem 8.7
The entailment problem for unions of rooted CQs over ZIQ-KBs is coNExpTime-complete.
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The coNExpTime-hardness of rooted entailment holds already for ALCI [Lut08a, Thm. 1]. Interest-
ingly enough, in the next section we establish a novel lower bound for ALCSelf.

8.3 Entailment of Rooted Queries: A Novel Lower Bound

The goal of this section is to present a novel coNExpTime lower bound for the entailment of rooted
conjunctive queries in ALCSelf. We start by providing a short overview.

8.3.1 Overview of the Lower Bound Proof

Our lower bound proof is inspired by two hardness proofs: the coNExpTime-hardness proof of the
entailment of rooted queries in ALCI by Lutz [Lut08a, Sec. 3], and the 2ExpTime-hardness proof of the
query entailment problem for ALC with the Self operator by Bednarczyk and Rudolph [BR22]. Despite
the obvious similarities between our approaches, we believe that our proof is highly non-trivial.

We reduce from the NExpTime-complete torus3 tiling problem introduced in Section 8.1.2. More
precisely, given an instance of the torus tiling problem (D, c̄) we construct a rooted conjunctive query q
and an ALCSelf-KB K (both of size polynomial w.r.t. |D|+|c̄|) such that K ̸|= q if and only if (D, c̄) has
a solution. The rough idea is that the models of K encode exponential tori (possibly incorrectly) labelled
with tiles, while every match of the query q detects mismatches in tiling. After completing all the missing
details, this yields coNExpTime-hardness of the entailment problem of rooted CQ for ALCSelf.
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Figure 8.1: A visualisation of an example treepod for n = 1 that represents the solution ξ from Example 8.3.
For brevity, we wrote instead of C (and similarly for other tiles).

Step I: Representing tori and tilings. Suppose that all the ingredients of the input, namely an
integer n, a torus tiling system D := (T, H, V), and an initial condition c̄ := (c̄0, . . . , c̄n−1) ∈ Tn, are given.
Similarly to the plethora of other reductions from the tiling problem for modal and description logics we
represent the exponentially large torus Z2n ×Z2n using a binary tree of height 2n. Such trees can be easily
expressed with an ALC-concept of polynomial size w.r.t. n that employs the (edge) role name e. Note that
every leaf of such a tree naturally represents a position (x, y) ∈ 2n × 2n. Such an “address” (x, y) is also
represented by means of concepts Adb1

1 , . . . , Adbn
n and Adbn+1

n+1 , . . . , Adb2n
2n , where b1 . . . bn and bn+1 . . . b2n

are binary representations of the positions x and y on n bits. In addition to that, we label every leaf
with precisely one concept of the form Ct for t ∈ T indicating the selection of tiles. This provides the

3The use of tori rather than rectangles is handy, as in tori every element has the horizontal and the vertical neighbour.
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correspondence between the decorated binary trees and the tile assignments ξ : (2n × 2n) → T. The main
challenge is to guarantee that the assigned tiles do not violate the matching relations.

Step II: Localisation of successors and treepods. We shift a bit the difficulty of the problem by
reducing the problem of detecting the mismatches in tiling to the certain equality test. The first ingredient
is to “localise” horizontal and vertical successors of all the elements. Given the trees described in the
previous step, we equip every one of its leaves with three extra children labelled, respectively, with concepts
L, M, R. Such extra children, similarly to their parents, also carry the tile concepts. The intended role of
the extra children of an element representing some position (x, y), is that they are intended to represent,
respectively, the positions (x, y), (x ⊕2n 1, y), (x, y ⊕2n 1). Call the resulting structures treepods.

In treepods, the verification of horizontal and vertical matching relations becomes easy as the consis-
tency check can be implemented locally. For instance, whenever the tiles t, t′ are not H-compatible, our
ontology would contain the GCI Ct ⊑ ¬∃e.(M ⊓ Ct′). This approach works, however, only under a näıve
assumption that all the nodes representing the same position of a torus carry precisely the same tile. This
“tile equality test” will be achieved with the query. Before defining the query, yet another gadget is needed.

Step III: Tentacles. To prepare the query implementing the aforementioned (in)equality check, we de-
sign an alternative way of encoding positions and tiles in treepods. This is achieved by tentacles, namely the
paths endowed with various self-loops replacing the leaves of treepods. Consult the following example.

Example 8.8. Let n = 1 and suppose that D contains only the tiles , , , and . Then the tentacle
that is going to be attached to the node 100 from the treepod depicted in Figure 8.1 is presented below.
In its construction we employ fresh role names ad0

1, ad1
1, ad0

2, ad1
2, r , r , r , r . The symbol ⋆ in the

picture below serves as the wildcard for all the mentioned role names. Note that the leaves (and only them)
of tentacles are decorated with e-self-loops.
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Figure 8.2: The tentacle attached to the node 100 of the treepod from Figure 8.1.

Recall that every leaf d of a treepod (of height 2n) is labelled with the selection of concepts Adb1
1 , . . . , Adbn

n

and Adbn+1
n+1 , . . . , Adb2n

2n representing its address from Zn
2 × Z2n is binary. In the construction of tentacles,

we enrich d with the outgoing path composed of fresh roles adb1
1 , . . . ,adbn

n , adbn+1
n+1 , . . . , adb2n

2n . Such a path
leads to a node that has an rt-successor for every tile t ∈ T. Precisely one of such rt-successors is labelled
with the concept 1, indicating the tile labelling the node d. The remaining rt-successors are labelled
with 0. All the elements of a tentacle are endowed with various rt- and adj

i -self-loops. Additionally, the
leaves of tentacles carry e-self-loops. By replacing every leaf of a treepod with the corresponding tentacle,
we obtain jellyfishes. From a bird’s eye view, jellyfishes look as depicted by Figure 8.3.

Summarising, jellyfishes provide an alternative way of encoding address of nodes and their tiles by
means of attached outgoing paths labelled by various roles. For instance, the node 100 from the treepod
depicted in Figure 8.1 is labelled with Ad1

1, Ad0
2 and C , while in the corresponding jellyfish is it equipped

with the outgoing ad1
1ad0

2r -path leading to an element labelled with 1. We exploit such paths in the query.
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... ...

...
...

...

... ... ...

Figure 8.3: A high-level visualisation of a jellyfish.

Step IV: The query. Rather than presenting the desired query finding mismatches in tilings in full
details, we provide some of its important subqueries and illustrate them with examples. In what follows, we
will always consider the jellyfish obtained by replacing the treepod from Figure 8.1 with the corresponding
tentacles (for instance the node 100 is replaced with the tentacle from Figure 8.2). For brevity, we once
more employ the path syntax of conjunctive queries (consult Section 2.4 if needed). Recall that by a
path-shaped conjunctive query we understand an expression of the form

(A0?; r1; A1?; r2; A2?; . . . ; An−1?; rn; An?)(x0, xn)

with all ri ∈ NR and Ai ∈ NC ∪ {⊤}, serving as a shorthand for
n∧

i=0
Ai(xi) ∧

n∧
i=1

ri(xi−1, xi).

Whenever Ai happens to be ⊤, it will be removed from the expression; this does not create ambiguities.
We write rn as the abbreviation or r ; . . . ; r , where r is repeated n times. As only the starting and the final
variables of path queries matters, we write q(x, y) to denote the query obtained by renaming the variable
with the lowest index to x and the variable with the highest index to y. The alternative syntax for path-
shaped CQs is just syntactic sugar and our queries should not be mistaken e.g. for regular path queries.

Example 8.9. Consider the jellyfish Y described above, and the following query q↓:(
Lvl0?e; Lvl1?e; Lvl2?e; Lvl3?[ad0

1; ad1
1]Lvl4?[ad0

2; ad1
2]; Lvl5?[r ; r ; r ; r ]Lvl6?

)(
x, y
)
.

We strongly encourage the reader to play with the query to understand how it matches jellyfishes. We can
readily verify that (i) for any match η for q↓ and Y we have that η(x) is the root of Y and η(y) is a leaf of
Y, and (ii) for every leaf d of Y there is a match η for q↓ and Y that maps y to d and x to the root of Y.

It is especially important to observe how our query “traverses” Y. Having a match η for q↓ and Y, imagine
that while reading the consecutive parts of the query, the element η(x) moves towards the element η(y).
When scanning any of the subexpressions of q↓ indicated with square brackets, note that for each role r our
element will either stay in place (by employing an r-self-loop) or it moves forward by following an r-edge.

We employ the self-loops that occur in jellyfishes as a handy way of introducing the disjunction of
paths to our queries. This intuition becomes even more prominent with the following example, where we
present the query relating two leaves such that our query either (i) loops at the leaf, then moves to the root,
and then goes down to the another leaf, or (ii) moves to the root, goes to the another leaf and then loops.

Example 8.10. Consider the jellyfish Y from the previous example, and the following query q1
eq(x, x ′):

0(x) ∧ Lvl6(x) ∧
(
e; e; e; ad0

1; [ad0
2; ad1

2]; [r ; r ; r ; r ]
)(

y, x
)
∧

∧
(
e; e; e; ad0

1; [ad0
2; ad1

2]; [r ; r ; r ; r ]
)(

y, z
)

∧ Lvl6(z)∧

Lvl6(z) ∧
(
e; e; e; ad1

1; [ad0
2; ad1

2]; [r ; r ; r ; r ]
)(

y′, z
)
∧
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∧
(
e; e; e; ad1

1; [ad0
2; ad1

2]; [r ; r ; r ; r ]
)(

y′, x ′) ∧ Lvl6(x ′) ∧ 1(x ′).

We stress that the role name ad1
1 does not appear in the first two lines of q1

eq, and that the role name ad0
1

does not appear in the last two lines of q1
eq. Consider a match η for q1

eq and Y. Clearly, η(x) ̸= η(x ′).
Two observations first. First, by the presence of concepts Lvl6 we know that η(x), η(x ′), and η(z) are

leaves of Y. Second, as η(y) and η(y′) have outgoing e-path of length three, by the design of treepods and
jellyfishes, only two options are possible: each of η(y) and η(y′) is either a leaf or the root of Y. We would
like to show that either both η(x) and η(x ′) are labelled with Ad0

1, or both of them are labelled with Ad1
1.

We strongly encourage the reader to analyse the reasoning sketched below. Consider the following cases:
• η(y) is the root of Y.

Then by the fact that η(x) is a leaf of Y and the first line of the query q1
eq, we infer that the root-to-leaf

path linking η(y) and η(x) employs the role ad0
1. Thus, η(x) is labelled with Ad0

1. Similarly, we obtain
that η(z) is a leaf of Y labelled with Ad0

1 (note that it is possible that η(z) is equal to η(x)). By the
fact that η(z) is labelled with Ad0

1, there is no path leading from the root of Y to η(z) that matches the
third line of the query q1

eq. Hence, the whole such path “collapses into a self-loop”, yielding η(y′) = η(z).
Reasoning similarly, we infer that η(y′) = η(x ′) holds. Thus, η(x ′) is labelled with Ad0

1 (as η(z) is).
• η(y) is a leaf of Y.

Observe that then this implies the equality η(y) = η(x) = η(z). We next consider the node η(y′). We
see that η(y′) cannot be a leaf of Y. Indeed, with a similar reasoning this would imply the equality
η(y′) = η(x ′) = η(z), leading to a contradiction with the fact that η(x) ̸= η(x ′). Hence, η(y′) the root
of Y. By the same reasoning as in the previous case (and by relying on the last two lines of the query
q1

eq), we infer that η(z) is labelled with Ad1
1. This in turn yields that η(x ′) is labelled with Ad1

1. By
the equality η(x) = η(z), we conclude that η(x) is also labelled with Ad1

1.

As we observed in Example 8.10, the presented query maps the variables x and x ′ to different leaves of
a jellyfish that have their first bit of the address equal. Reasoning similarly, we produce analogous queries
also for the other bits of addresses and for the assignment of tiles. By joining all these queries together we
obtain the desired query detecting (in)equality of the tiling assignment. This concludes our reduction.

8.3.2 Treepods

(D, c̄)-treepods are tree-based structures (with the role e indicating the edge relation) of depth 2|c̄|+1
that are mostly binary trees with an exception for the second-to-last level where each element have three
children. The depth of an element, namely its distance from the root, is indicated by the satisfaction
of Lvli-concepts. In treepods, every node at depth i ≤ 2|c̄| is decorated with concepts Adb1

1 , . . . , Adbi
i for

some word b1 . . . bi ∈ {0, 1}i that naturally encodes (in binary) the address of a node, i.e. its number
according to the prefix of a treepod (note that less significant bits carry the higher number). Treating the
numbers represented by first |c̄| Adbi

i -concepts and the number represented by the last |c̄| Adbi
i -concepts

separately, every node at depth 2|c̄| encodes some position (x, y) in Z2|c̄| × Z2|c̄| . Any node at depth
2|c̄| encoding (x, y) is additionally equipped with three different e-successors, labelled respectively with
L, M, R, and they are constrained to encode in binary, respectively, the positions (x, y), (x ⊕2n 1, y), and
(x, y ⊕2n 1). This way, every node at depth 2|c̄| has “local” access to its vertical and horizontal successor.
Finally, each leaf of a (D, c̄)-treepod is decorated with precisely one “tile concept” Ct for t ∈ T in a way
that respect matching relations of the tiling system D. Consult Figure 8.1 and Definition 8.11.

Definition 8.11 Let D := (T, H, V) be a torus tiling system, and c̄ := (c̄0, . . . , c̄n−1) ∈ Tn be an initial
condition. A (D, c̄)-treepod T := (∆T , ·T ) is an interpretation fulfilling all the requirements below.

• ∆T = {0, 1}≤2n ∪ {0, 1}=2n · {0, 1, 2}.
• eT = {(w, w0), (w, w1) | |w| < 2n} ∪ {(w, w0), (w, w1), (w, w2) | |w| = 2n}.
• LvlTi = {w ∈ ∆T | |w| = i}.
• LT = {0, 1}=2n · {0}, MT = {0, 1}=2n · {1}, RT = {0, 1}=2n · {2}.
• (Adb

i )T ∩ {0, 1}≤2n = {w ∈ ∆T | |w| ≥ i and its i-th letter is b}.
• For all w := w1 . . . w2n ∈ {0, 1}=2n, encoding a position (x, y) ∈ Z2n × Z2n , we have that:
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– w0 encodes the position (x, y), i.e. w0 ∈
⋂2n

i=1(Adwi
i )T ,

– w1 encodes the position (x ⊕2n 1, y), i.e. w1 ∈
⋂n

i=1(Adui
i )T ∩

⋂2n
i=n+1(Adwi

i )T ,
– w2 encodes the position (x, y ⊕2n 1), i.e. w2 ∈

⋂n
i=1(Adwi

i )T ∩
⋂2n

i=n+1(Adui
i )T ,

where u := u1 . . . u2n ∈ {0, 1}=2n encodes the position (x ⊕2n 1, y ⊕2n 1) ∈ Z2n × Z2n .
• The concepts CT

t for t ∈ T are pairwise disjoint and
⋃

{CT
t | t ∈ T} = LvlT2n+1 ∪ LvlT2n.

• For all w ∈ LvlT2n and all t0, t1, t2 ∈ T such that wi ∈ CT
ti

we have (t0, t1) ∈ H and (t0, t2) ∈ V.
For brevity we say that w carries a tile t whenever w ∈ CT

t .
• For any 0 ≤ i < n we have that all the leaves encoding the position (i, 0) belong to CT

c̄i
.

A (D, c̄)-treepod T is proper if there is no position (x, y) ∈ Z2|c̄| ×Z2|c̄| and no two leaves w, w′ ∈ ∆T

encoding (x, y) such that w and w′ carry different tiles from T.

With every proper (D, c̄)-treepod T we associate a map ξ : Z2|c̄| ×Z2|c̄| → T defined as ξ(x, y) := t(x,y),
where t(x,y) is the unique4 tile carried by any leaf of T encoding the position (x, y). In this case we say that
T represents ξ. The following Fact 8.12 is a direct consequence of our design choices and Definition 8.11.

Fact 8.12. Fix D := (T, H, V) and c̄ ∈ Tn as in Definition 8.11. Then (a) for any proper (D, c̄)-treepod T , the
function ξ : Z2n ×Z2n → T represented by T is a solution to (D, c̄), and (b) for any function ξ : Z2n ×Z2n → T
compatible with c̄ that covers Z2n × Z2n there exists a proper (D, c̄)-treepod representing ξ.

In the rest of this section we show how to define (D, c̄)-treepods in ALC with concepts of size polynomial
w.r.t (|D| + |c̄|). The properness conditions will be enforced afterwards with a help of a query. We stress
that, as usual in this type of reductions, we cannot formalise (D, c̄)-treepods up to isomorphism, but the
axiomatisation provided is sufficient for our purposes in a sense made formally precise in Lemma 8.13.

1. Concepts Treepodi
(D,c̄) axiomatise subtrees of (D, c̄)-treepods starting at depth 0 ≤ i ≤ 2|c̄|+1.

(Treepod[i]) Treepodi
(D,c̄) := Succi

(D,c̄) ⊓ CorrLvli(D,c̄) ⊓ CorrDiri
(D,c̄) ⊓ CorrAdi

(D,c̄) ⊓ CorrTi
(D,c̄),

where the concepts Succ(D,c̄), CorrLvl(D,c̄), CorrDir(D,c̄), CorrAd(D,c̄), CorrT(D,c̄) will be defined soon.
2. Any element from a (D, c̄)-treepod located at depth 0 ≤ i < 2|c̄| has two e-successors: a left one

(with the (i+1)-th bit of its address off) and a right one (with the (i+1)-th bit of its address on).
Moreover, elements at depth 2|c̄| have three e-successors, labelled respectively with L, M, and R.

(Succ[2|c̄|+1]) Succ2|c̄|+1
(D,c̄) := ⊤

(Succ[2|c̄|]) Succ2|c̄|
(D,c̄) := ⊔D∈{L,M,R} (∃e.D) ⊓ ∀e.

(
Treepod2|c̄|+1

(D,c̄)

)
(Succ[i]) Succi

(D,c̄) := ∃e.Ad0
i+1 ⊓ ∃e.Ad1

i+1 ⊓ ∀e.Treepodi+1
(D,c̄)

3. Any element at depth i is labelled with the concept Lvli (and with no Lvlj for all other j).
(Lvl[i]) CorrLvli(D,c̄) := Lvli ⊓ ⊔1≤j≤4|c̄|+2,j ̸=i ¬Lvlj

4. Only the leaves of (D, c̄)-treepods are labelled with (precisely one of) “direction concepts” L, M, R.

(Num[2|c̄|+1]) CorrDir2|c̄|+1
(D,c̄) := [L ⊓ ¬M ⊓ ¬R] ⊔ [¬L ⊓ M ⊓ ¬R] ⊔ [¬L ⊓ ¬M ⊓ R]

(Num[i]) CorrDiri
(D,c̄) := ¬L ⊓ ¬M ⊓ ¬R

5. The elements of (D, c̄)-treepods at depth 0 ≤ i ≤ 2|c̄| are appropriately labelled with “address
concepts” encoding the position w.r.t the prefix ordering of the treepod. When considering elements
at depth 2|c̄| encoding the positions (x, y), we additionally take care of their e-successors to make
them encode the positions (x, y), (x ⊕2n 1, y), and (x, y ⊕2n 1). This is achieved by axiomatising the
usual properties of addition under binary encodings of numbers [BHLS17, p. 127].

(Adr[2|c̄|+1]) CorrAd2|c̄|+1
(D,c̄) := ⊔2|c̄|

i=1
⊔1

b=0

(
Adb

i ⊓ ¬Ad1−b
i

)
(Adr[2|c̄|]) CorrAd2|c̄|

(D,c̄) := ⊔2|c̄|
i=1
⊔1

b=0

(
Adb

i ⊓ ¬Ad1−b
i

)
⊓ ⊔D∈{L,M,R} ⊔2|c̄|

j=1
[(

∀e.[D → (Ad0
i ⊓ ¬Ad1

i )] ⊔ ∀e.[D → (¬Ad0
i ⊓ Ad1

i )]
)]

4This is well-defined by disjointness of concepts CT
t for t ∈ T, and properness of T .
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⊓ ⊔2|c̄|
i=1 ⊔1b=0 Adb

i → ∀e.
(

L → [Adb
i ⊓ ¬Ad1−b

i ]
)

⊓ ↓⊕H
(D,c̄) ⊓ ⊔2|c̄|

i=|c̄|+1 ⊔1b=0 Adb
i → ∀e.

(
M → [Adb

i ⊓ ¬Ad1−b
i ]

)
⊓ ↓⊕V

(D,c̄) ⊓ ⊔|c̄|
i=1 ⊔1b=0 Adb

i → ∀e.
(

R → [Adb
i ⊓ ¬Ad1−b

i ]
)

,
where the concepts ↓⊕H

(D,c̄) and ↓⊕V
(D,c̄) implement binary addition modulo 2|c̄| [BHLS17, p. 127]:

↓⊕H
(D,c̄):=

[ |c̄|⊔

i=1
Ad1

i ⊓ ∀e.(M → Ad0
i )
]
⊔

⊔
|c̄|⊔

i=1

(
Ad0

i ⊓ ∀e.(M → Ad1
i ) ⊓

i−1⊔

j=1
(Ad0

j ↔ ∀e.(M → Ad0
j )) ⊓

|c̄|⊔

j=i+1
(Ad1

j ⊓ ∀e.(M → Ad0
j ))
)

↓⊕V
(D,c̄):=

[ 2|c̄|⊔

i=|c̄|+1

Ad1
i ⊓ ∀e.(R → Ad0

i )
]
⊔

⊔
2|c̄|⊔

i=|c̄|+1

(
Ad0

i ⊓ ∀e.(R→Ad1
i ) ⊓

i−1⊔

j=|c̄|+1

(Ad0
j ↔ ∀e.(R→Ad0

j )) ⊓
2|c̄|⊔

j=i+1
(Ad1

j ⊓ ∀e.(M → Ad0
j ))
)

(Adr[i]) CorrAdi
(D,c̄) := ⊔ij=1

⊔1
b=0

(
[Adb

j ⊓ ¬Ad1−b
j ] ⊓ ∀e.[Adb

j ⊓ ¬Ad1−b
j ]

)
⊓ ⊔2|c̄|

j=i+1[¬Ad0
j ⊓¬Ad1

j ].

6. The last family of concepts ensures that the “tile concepts” are appropriately assigned to the leaves
of treepods, fulfilling the last three items of Definition 8.11. Below we assume that D is decomposed
as (T, H, V) and that bx

1 . . . bx
|c̄| is the binary representation of the number x on |c̄| bits.

(Tiles[i]) CorrTi
(D,c̄) := ⊔t∈T ¬Ct

(Tiles[2|c̄|+1]) CorrT2|c̄|+1
(D,c̄) :=

⊔
t∈T

(
Ct ⊓ ⊔t′∈T\{t} ¬Ct′

)
⊓ ⊔|c̄|−1

x=0

( ⊔|c̄|
i=1[Adbx

i
i ⊓ Ad0

|c̄|+i]
)

→ Cc̄x

(Tiles[2|c̄|]) CorrT2|c̄|
(D,c̄) :=

⊔
t∈T

(
Ct ⊓ (∀e.(L → Ct)) ⊓ ⊔t′∈T\{t} ¬Ct′

)
⊓

⊓ ⊔(t,t′)∈T2\H ¬(∃e.[L ⊓ Ct] ⊓ ∃e.[M ⊓ Ct′ ]) ⊓ ⊔(t,t′)∈T2\V ¬(∃e.[L ⊓ Ct] ⊓ ∃e.[R ⊓ Ct′ ])
The following lemma distils the essential properties of our construction. Its proof is immediate.

Lemma 8.13 Let D be a torus tiling system, and c̄ be an initial condition. Then for all 0 ≤ i ≤ 2|c̄|+1:
(I) The concept Treepodi

(D,c̄) is of size polynomial w.r.t (|c̄|+|D|).

(II) For all (D, c̄)-treepods T and all d ∈ LvlTi , we have d ∈ (Treepodi
(D,c̄))T .

(III) If i ≤ 2|c̄|, then for all pointed models (I, d) of Treepodi
(D,c̄) with d ∈ (Adb1

1 )T ∩. . .∩(Adbi
i )T for

some binary word w := b1 . . . bi in {0, 1}i there exists a (D, c̄)-treepod T and a homomorphism
h, from T ↾{wu|u∈{0,1,2}∗} (i.e. the subtree of T rooted at w) into I, satisfying h(w) = d.

Proof sketch. The proof is by careful inspection of the semantics of the logic ALC, our axioma-
tisation given above, the definition of (D, c̄)-treepods (Definition 8.11), basic properties of
binary addition, and routine induction, where the inductive assumption is as stated above.

8.3.3 Tentacles and Jellyfishes

For D and c̄ as in the previous section, we introduce (D, c̄)-tentacles, whose sole purpose is to provide
an alternative, query-friendly way of incorporating addresses and tiles for the leaves of (D, c̄)-treepods.
We explain them with an example. Suppose d is a leaf of a (D, c̄)-treepod, decorated with the “address
concepts” Adb1

1 , . . . , Adb2n
2n (encoding the address of d) as well as the tile concept Ct (encoding the tile

carried by d). We make our encoding redundant by enriching d with an outgoing (adb1
1 . . . adb2n

2n )-path
(where adbi

i are role names) leading to some element dt, representing the selected tile t in an usual way.
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Figure 8.4: A visualisation of three tentacles attached to the node representing the position (2, 3) in
treepods of height 4 (and assuming that all the tiles are among , , , and ).

Such an element dt has pairwise-different rt′ -successors for roles rt′ for tiles t′ ∈ T, where the rt-successor
of dt is labelled with 1, and all the other successors of dt are labelled with 0.

For reasons that become clear only after introducing the query, all elements5 from tentacles are
decorated with all kinds of self-loops. Consult the above example to gain more intuitions.

Definition 8.14 Let D := (T, H, V) be a torus tiling system, c̄ := (c̄0, . . . , c̄n−1) ∈ Tn be an initial
condition, w := b1 . . . b2n be a binary word encoding some position (x, y) ∈ Z2n × Z2n and t ∈ T be
a tile. A (D, c̄, w, t)-tentacle T := (∆T , ·T ) is an interpretation fulfilling all the requirements below.

• ∆T = {i | 2n+1 ≤ i ≤ 4n+1} ∪ ({4n+2} × T),
• (Lvl4n+2)T = {4n+2} × T and (Lvli)T = {i} for all 2n+1 ≤ i ≤ 4n+1,
• (Adbi

i )T = ∆T and (Ad1−bi
i )T = ∅ for all 1 ≤ i ≤ 2n,

• (Ct)T = {i, (4n+2, t) | 2n+1 ≤ i ≤ 4n+1} and (Ct′)T = {(4n+2, t′)} for all t′ ∈ T\{t}
• 1T = {(4n+2, t)} and 0T = ({4n+2} × T) \ 1T ,
• eT = {(d, d) | d ∈ ({4n+2} × T)},
• (adbi

i )T = {(2n+i, 2n+i+1)} ∪ {(d, d) | d ∈ ∆T } for all 1 ≤ i ≤ 2n,
• (ad1−bi

i )T = {(d, d) | d ∈ ∆T } for all t′ ∈ T and all 1 ≤ i ≤ 2n,
• (rt)T = {(4n+1, (4n+2, t))} ∪ {(d, d) | d ∈ ∆T } for all t ∈ T.

A (D, c̄)-tentacle is an (D, c̄, w, t)-tentacle for some w and t.

We next provide an axiomatisation of (D, c̄)-tentacles, in total analogy to what we did in the previous
section. We made our axiomatisation sufficiently formal by means of the forthcoming Lemma 8.15. For
brevity, let R := {rt, adb

i | t ∈ T, 1 ≤ i ≤ 2|c̄|, 0 ≤ b ≤ 1} be the set of all roles used in our axiomatisation.
1. Concepts Tenti

(D,c̄), for 0 ≤ i ≤ 2|c̄|+1, axiomatise substructures of (D, c̄)-tentacles restricted to
elements having their first coordinate smaller or equal to 2|c̄|+i+1.

(Tent[i]) Tenti
(D,c̄) := UniqueAdri

(D,c̄) ⊓ Nexti
(D,c̄) ⊓ CorrLvlsLoopsi

(D,c̄) ⊓ CorrTili(D,c̄).

2. The first element of a tentacle has a unique address. Addresses are propagated through successors.

(UniqueAdr[i]) UniqueAdri
(D,c̄) := ⊔2|c̄|

j=1
⊔1

b=0

(
[Adb

j ⊓ ¬Ad1−b
j ] ⊓ ⊔r∈R ∀r .[Adb

j ⊓ ¬Ad1−b
j ]

)
.

3. Successors of elements are properly enforced.

(Next[2|c̄|+1]) Next2|c̄|+1
(D,c̄) := ⊤,

(Next[2|c̄|]) Next2|c̄|
(D,c̄) :=

⊔
t∈T ∃rt.[Ct ⊓ Lvl4|c̄|+2 ⊓ Tent4|c̄|+2

(D,c̄) ],

5For the design of the query we only require self-loops on elements from the last level. Loops on the other elements are
needed however to keep the resulting concept size polynomial.



8.3. Entailment of Rooted Queries: A Novel Lower Bound 145

(Next[i]) Nexti
(D,c̄) := ⊔1b=0[Adb

i → (∀ad1−b
i .¬Lvl2|c̄|+1+(i+1) ⊓ ∃adb

i .Lvl2|c̄|+1+(i+1))] ⊓
⊓ ∀ad0

i .∀ad1
i .(Lvl2|c̄|+1+(i+1) → Tenti+1

(D,c̄)).6

4. Levels and self-loops are properly enforced.

(CorrLvlsLoops[i]) CorrLvlsLoopsi
(D,c̄) :=

⊔
2|c̄|+1≤j≤|c̄|+2

(
Lvlj ⊓ ⊔k ̸=j ¬Lvlk

)
⊓ ⊔r∈R ∃r .Self ⊓

⊓ Lvl4|c̄|+2 → ∃e.Self.

5. There is a unique tile carried by the first element of a tentacle, and such a tile is propageted further
to the very last element and is indicated by the 1 concept.

(CorrTil[2|c̄|+1]) CorrTil2|c̄|+1
(D,c̄) := ⊤,

(CorrTil[2|c̄|]) CorrTil2|c̄|
(D,c̄) := ⊔t∈T

(
Ct → ∀rt.[Lvl4|c̄|+2 → 1] ⊓ ⊔t′∈T\{t} ∀rt′ .[Lvl4|c̄|+2 → 0]

)
,

(CorrTil[i]) CorrTili(D,c̄) :=
⊔

t∈T

(
Ct ⊓ ⊔t′∈T\{t} ¬Ct′ ⊓ ⊔r∈R ∀r .Ct

)
.

The following lemma distils the essential properties of our construction. Its proof is immediate.

Lemma 8.15 Let D be a torus tiling system, and c̄ be an initial condition. Then for all 0 ≤ i ≤ 2|c̄|+1:
(I) The concept Tenti

(D,c̄) is of size polynomial w.r.t (|c̄|+|D|).

(II) For all (D, c̄)-tentacles T and all d ∈ LvlT2|c̄|+1+i, we have d ∈ (Tenti
(D,c̄))T .

(III) If i ≤ 2|c̄|, then for all pointed models (I, d) of Tenti
(D,c̄) with d ∈ (Adb1

1 )T ∩ . . . ∩(Adb2|c̄|
2|c̄| )T ∩(Ct)T

for some binary word w := b1 . . . b2|c̄| in {0, 1}2|c̄| and a tile t ∈ T, there exists a (D, c̄, w, t)-
tentacle T and a homomorphism h, from T ↾{j | 2|c̄|+1+i≤j≤4|c̄|+1}∪({4|c̄|+2}×T) (i.e. the substruc-
ture of T ”starting” from 2|c̄|+1+i) into I, satisfying h(2|c̄|+1+i) = d.

Proof sketch. The proof is by careful inspection of the semantics of the logic ALCSelf, our
axiomatisation given above, the definition of (D, c̄)-tentacle (Definition 8.14), and routine
induction, in which the inductive assumption is as stated above.

As the final step of our model construction we introduce (D, c̄)-jellyfishes (see Figure 8.3 for a visuali-
sation). These are interpretations obtained by replacing the leaves in (D, c̄)-treepods by the corresponding
(D, c̄, w, t)-tentacles. Formally:

Definition 8.16 Let D := (T, H, V) be a torus tiling system and c̄ := (c̄0, . . . , c̄n−1) ∈ Tn be an
initial condition. A (D, c̄)-jellyfish is an interpretation Y := (∆Y , ·Y) satisfying:

• ∆Y = ∆ ∪
⋃

w∈{0,1}=2n·{0,1,2} ∆w, where

– ∆ := {0, 1}≤2n ∪ {0, 1}=2n · {0, 1, 2},
– ∆w := {w, (w, i), (w, (4n+2, t)) | t ∈ T, 2n+2 ≤ i ≤ 4n+1},

• Y restricted to ∆ is a (D, c̄)-treepod,
• For every w ∈ {0, 1}=2n · {0, 1, 2} we have that Y restricted to ∆ is a (D, c̄)-tentacle (modulo

renaming domain elements via w 7→ 2n+1, (w, i) 7→ i and (w, (4n+2, t)) 7→ (4n+2, t)).
We say that Y is proper if the corresponding treepod (Y restricted to ∆ is proper).

It is straightforward to show that any treepod can be extended to a jellyfish.

Fact 8.17. Let (D, c̄) be as in Definition 8.16, and I be a (D, c̄)-treepod T . Then there exists a (D, c̄)-
jellyfish Y that contains T as an induced substructure. Moreover, Y is proper if and only if T is proper.

6It is more natural employ the concept ∀ad0
i .(Lvl2|c̄|+1+(i+1) → Tenti+1

(D,c̄)) ⊓ ∀ad1
i .(Lvl2|c̄|+1+(i+1) → Tenti+1

(D,c̄)) in
place of our concept definition. This would however result in an exponential blowup, which we want to avoid.
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Proof. It suffices replace every leaf from T that represents the address w and that carries a
tile t with an (D, c̄, w, t)-tentacle.

Take Yelly(D,c̄) := Treepod0
(D,c̄) ⊓ ∀e2|c̄|+1.Tent0

(D,c̄), where ∀e1.C := ∀e.C and ∀ei+1.C := ∀ei.(∀e.C)
for all positive integers i and concepts C. The following is a consequence of Lemma 8.13 and Lemma 8.15.

Lemma 8.18 Let D be a torus tiling system, and c̄ be an initial condition. Then:
(I) The concept Yelly(D,c̄) is of size polynomial w.r.t (|c̄|+|D|).

(II) For all (D, c̄)-jellyfishes Y we have ε ∈ (Yelly(D,c̄))Y .
(III) For all pointed models (I, d) of Yelly(D,c̄), there exists a (D, c̄)-jellyfish Y and a homomorphism

h from Y into I satisfying h(ε) = d.

Proof. It suffices to apply Lemma 8.13 and Lemma 8.15 for the case of i = 0.

Having the notion of jellyfishes ready, we employ Fact 8.17 (relating treepods and jellyfishes) in order
to reformulate Fact 8.12 (relating proper treepods and solutions to the tiling problem) in the language of
proper jellyfishes. The following fact is vital for the design of the forthcoming query.

Fact 8.19. Let D := (T, H, V) and c̄ ∈ Tn be an instance of the torus tiling problem. A proper (D, c̄)-
jellyfish Y exists if and only if (D, c̄) has a solution. Moreover, a jellyfish Y is not proper if and only if there
exists elements d, e ∈ ∆Y satisfying all the criteria below.

• The elements d and e are leaves of Y (namely they belong to LvlY4n+2) satisfying d ∈ 0Y and e ∈ 1Y .
• The elements d and e represent the same positions of a torus, namely for all 1 ≤ i ≤ 2n the equivalence

d ∈ (Ad0
i )Y if and only if e ∈ (Ad0

i )Y holds. Note that we can alternatively say that for all 1 ≤ i ≤ 2n,
d has an ancestor d′ that has a child d′′ satisfying (d′, d′′) ∈ (ad0

i )J if and only if there exists an
ancestor e′ of e that has a child e′′ satisfying (e′, e′′) ∈ (ad0

i )J .
• For all tiles t ∈ T the equivalence d ∈ (Ct)Y if and only if e ∈ (Ct)Y holds. Alternatively, for all tiles

t ∈ T we can say that (d′, d) ∈ (rt)J if and only if (e′, e) ∈ (rt)J , where d′ and e′ are parents of d and e.

Proof. The existence of a proper (D, c̄)-jellyfish is equivalent to the existence of a proper
treepod (b y Fact 8.17), which is in turn equivalent to the existence of a solution to (D, c̄)
(by Fact 8.12). If a (D, c̄)-jellyfish Y is not proper, then by definition (see Definition 8.16),
its underlying treepod T is not proper. Then, by Definition 8.11, there exists a position
(x, y) ∈ Z2n × Z2n , tiles t, t′ ∈ T (where n := |c̄| and T is a set of tiles from D), and leaves
w, w′ of T encoding (x, y) such that w ∈ CT

t , w′ ∈ CT
t′ . Let b1, . . . , b2n be the binary en-

coding of (x, y) on 2n bits. Then we have w and w′ both belong to
⋂2n

i=1(Adbi
i )T . By the

construction of jellyfishes, we see that w and w′ have an outgoing adb1
1 . . . adb2n

1 paths, leading,
respectively, to the elements d′ and e′. Note that all the elements on this path are labelled
concepts Adb1

1 , . . . , Adb2n
1 . In the case of w (resp. w′) such elements are additionally labelled

with Ct (resp. Ct′). Let d (resp. e) be the rt′ -successor of d′ (resp. e′). By the previous obser-
vation, we infer d ∈ 0Y and e ∈ 1Y . Hence, d and e are fulfil of the requirements of Fact 8.19.

8.3.4 Towards queries detecting mismatches: the top-down query

Henceforth we introduce an auxiliary query called the top-down query, which intended role is to traverse the
jellyfishes in a top-down manner, and to simulate disjunction of paths in a rather intricate sense. We provide
a characterisation of matches of the top-down query over jellyfishes as well as discuss its modifications.

A bit of extra notation. First of all, recall that for convenience and brevity we employ a path syntax
for path queries. Second, given a path query q, we write q(x, y) to denote the query obtained by replacing
the variable with the lowest index by x, and the variable with the highest index with y. Whenever we
write the conjunction q ∧ q′ of two path queries, we assume that they have disjoint sets of variables. This
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holds unless indicated otherwise with the bracket notation, e.g. in the case of q(x, y) ∧ q(y, z) we assume
that q and q′ share a common variable y. Third, for a set of role names R ⊆ NR and a path query q, we
write qJRK for the query obtained by removing (or alternatively, replacing with ⊤?) all roles present in R.
For convenience, brackets are removed if R is a singleton set. For instance, by (A?; r1; B?; r2; C?; r3)Jr1K we
mean the query A?; B?; r2; C?; r3, and by (A?; r1; B?; r2; C?; r3)J{r1, r3}K we mean the query A?; B?; r2; C?.

As the most important ingredient of the forthcoming query, we introduce the top down query.

Definition 8.20 Let D := (T, H, V) be a torus tiling system and c̄ := (c̄0, . . . , c̄n−1) ∈ Tn be an
initial condition. For convenience, we enumerate T as t1, . . . , t|T|. We define the top-down query q↓
for (D, c̄) as the following path conjunctive query:

q↓ := e2n+1; ad0
1; ad1

1; . . . ; ad0
2n; ad1

2n; rt1 ; rt2 ; . . . ; rt|T| ; Lvl4n+2?

In the forthcoming constructions we consider prefixes and suffixes of q↓. For brevity, let s0 := e2n+1,
si := ad0

i ; ad1
i for all 1 ≤ i ≤ 2n, and s2n+1 := rt1 ; rt2 ; . . . ; rt|T| . Thus the query q↓ can be rewritten

as s0; s1; . . . ; s2n+1; Lvl2n+1?. For all 0 ≤ i ≤ 2n+1 we define:

qi+
↓ := s0; . . . ; si qi−

↓ := si; si+1; . . . ; s2n+1; Lvl4n+2?

Note that the queries q0−
↓ , q(2n+1)+

↓ Lvl4n+2?, and q↓ are equal.

Note that the size of q↓ is clearly polynomial w.r.t. |D|+|c̄|. The intention behind the query q↓ is
that it either traverses the jellyfishes in a top-down manner, or it loops at one of its leaves. Consult also
Example 8.9 for a more concrete example. Such intuitions meet their formalisation in the following (quite
technical) lemmas, established via a routine induction.

Lemma 8.21 Let D, c̄, n, and q↓ be as in Definition 8.20, and let Y be a (D, c̄)-jellyfish. For all
indices 0 ≤ i ≤ 2n+1, the set M+

i := {(η(x), η(y)) | Y |=η qi+
↓ (x, y)} is equal to

{(d, d) | d ∈ LvlY4n+2} ∪ {(ε, e) | e ∈
⋃i

k=0 LvlY2n+k+1}.

Proof. The proof is by induction, where the inductive assumption is given in the statement of
the lemma. We start from the base case of i = 0. Observe that (♡) : “the only elements of Y
that have an outgoing e2n+1-path are the leaves of Y and the root of Y”. Indeed, this follows
from the definition of jellyfishes based on the following facts: (i) the leaves of Y are equipped
with an e-self-loop, (ii) no elements in LvlYj for 2n+1 ≤ j ≤ 4n+1 have e-successors, (iii) (by
induction) the longest outgoing e∗-path from the elements d from LvlYj for 0 ≤ j ≤ 2n has
length 2n+1−j and the elements e2n+1−j reachable from d belong to LvlY2n+1. We prove that:

• M+
0 ⊆ {(d, d) | d ∈ LvlY4n+2} ∪ {(ε, e) | e ∈ LvlY2n+1}.

By (♡) we have that η(x) is either the root of Y or a leaf of Y. In the first case, η(y)
belongs to Lvl2n+1 by item (iii) of (♡). Otherwise, as all the outgoing roles from leaves
are self-loops, we conclude that η(x) = η(y).

• M+
0 ⊇ {(d, d) | d ∈ LvlY4n+2} ∪ {(ε, e) | e ∈ LvlY2n+1}.

Take (d, e) from the RHS of the above expression, and it suffices to construct a match η

for qi+
↓ (x, y) that maps x to d and y to e. If d = e then the function η that maps all the

variables from qi+
↓ to d is the desired match. Otherwise, the function η that maps each

variable xi to the i-th element prefix of e is the desired match.
Suppose that i > 0. We consider the query qi+

↓ (x, y) and present it as q(i−1)+
↓ (x, u) ∧ si(u, y).

We establish the following two inclusions:
• M+

i ⊆ {(d, d) | d ∈ LvlY4n+2} ∪ {(ε, e) | e ∈ LvlY2n+i+1}.
Based on the inductive assumption on M+

i−1 we have two possible options: either η(x) is
a leaf of Y or η(x) = ε. In the first case, by the inductive assumption, we get η(u) = η(x).



148 Chapter 8. Applications in Rooted Query Entailment

Observe that the only r-successor of η(u), for all role names r that appear in si, is η(u) itself.
Thus η(u) = η(y), implying η(u) = η(y). Otherwise, η(u) belongs to

⋃i−1
k=0 LvlY2n+k+1.

Depending on whether η(u) belongs to LvlY2n+i or not we have two cases. If η(u) ̸∈ LvlY2n+i

then the only r-successor of η(u) for role names r present in si is η(u) itself. Thus all the
variables from si(u, y) are mapped to η(u), yielding η(y) ∈

⋃i−1
k=0 LvlY2n+i+1 as desired.

Otherwise, η(u) ̸∈ LvlY2n+i. If η(y) = η(u) then we are done, so suppose that the opposite.
Then we can present the query si(u, y) as α(u, v)∧r(v, z)∧β(z, y) for some path subqueries
α and β of si and a role name r present in si, such that the match η maps all the variables
from α to η(u) (it could be that α is empty) and η(v) ̸= η(z). By analysing the definition
of jellyfishes we see that η(z) is a child of η(v) (and η(u)). More formally, η(z) ∈ LvlY2n+i+1.
Moreover, all role names from β appear only as self-loops on elements from LvlY2n+i+1.
This implies that all the variables from β are mapped via η to the same element, in
particular η(z) = η(y). Thus, η(y) belongs to LvlY2n+i+1 (and hence to the “big sum”).

• M+
i ⊇ {(d, d) | d ∈ LvlY4n+2} ∪ {(ε, e) | e ∈ LvlY2n+i+1}.

Similarly to the base case, we take (d, e) from the RHS of the above expression and
construct a match η for qi+

↓ (x, y) that maps x to d and y to e. If d = e then the function η

that maps all the variables from qi+
↓ to d is the desired match. Otherwise, we consider

two cases depending on whether e belongs to Lvl2n+i+1 or not. If it does not, we invoke
the inductive assumption to derive match η for Y and q(i−1)+

↓ (x, u) that maps x to the
root of Y and u to e. By extending η to map all the variables from si(u, y) to e we get
the desired match. If e belongs to Lvl2n+i+1, let c be its parent. Similarly to the previous
case, we invoke the inductive assumption to derive match η for Y and q(i−1)+

↓ (x, u) that
maps x to the root of Y and u to c. We can present si(u, y) as α(u, v) ∧ r(v, z) ∧ β(z, y),
where r is the unique role name from si for which e is the r-successor of c. Next, we
extend η in a way that it maps all the variables from α to c and all the variables from β

to e. By the presence of self-loops on c and e, the constructed map is the desired match.
This concludes the induction, and hence completes the proof.

We next discuss the “suffix” subquery of the top-down query.

Lemma 8.22 Let D, c̄, n, and q↓ be as in Definition 8.20, and let Y be a (D, c̄)-jellyfish. For all
indices 0 ≤ i ≤ 2n+1 we have that:

M−
0 := {(η(x), η(y)) | Y |=η q0−

↓ (x, y)} equals {(d, d), (ε, d) | d ∈ LvlY4n+2},

M−
i := {(η(x), η(y)) | Y |=η qi−

↓ (x, y)} equals
{

(d, d·w) ∈
(⋃4n+2

j=2n+i Lvlj
)

× Lvl4n+2

}
.

Proof sketch. For the equality concerning the set M−
0 we simply use the fact that the queries

q0−
↓ and q(2n+1)+

↓ Lvl4n+2? are equal. Then the desired equality follows from Lemma 8.21. The
remaining part of the proof goes via a routine induction, where the inductive assumption is
stated above. We essentially repeat the second part of the proof of Lemma 8.21.

We conclude the section by discussing a modification of the top-down queries, in which one of the sub-
queries si is reduced to a single role name. We define such queries below, and then prove their correctness.

Definition 8.23 Let D, T, c̄, n, and q↓ be as in Definition 8.20. Let i be between 1 and 2n, j be 0 or 1,
t ∈ T be a tile, and Rt := {rt′ | t′ ∈ T, t ̸= t′}. By the adj

i -refined top-down query we mean the
query qadj

i
:= q↓Jad1−j

i K, and by the rt-refined top-down query we mean the query qrt := q↓JRtK.

The main property of the refined top-down queries is established below.
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Lemma 8.24 For all the parameters as in Definition 8.23, and a (D, c̄)-jellyfish Y we have that:

Madj
i

:= {(η(x), η(y)) | Y |=η qadj
i
(x, y)} is equal to {(d, d), (ε, e) | d, e ∈ LvlY4n+2, e ∈ (Adj

i )Y},

Mrt := {(η(x), η(y)) | Y |=η qrt(x, y)} is equal to {(d, d), (ε, e) | d, e ∈ LvlY4n+2, e ∈ (Ct)Y}.

Proof. As the two proofs of equality of the above sets are analogous, we focus only on the case
of the query qadj

i
. We present qadj

i
(x, y) as the query q(i−1)+

↓ (x, u) ∧ adj
i (u, v) ∧ q(i+1)−

↓ (v, y).
Similarly to the previous proof, we establish two inclusions.

• Madj
i

⊆ {(d, d), (ε, e) | d, e ∈ LvlY4n+2, e ∈ (Adj
i )Y}.

Consider a match η for Y and qadj
i
. By the property (♡) from the proof of Lemma 8.21

there are only two possible options: either η(x) is a leaf of Y or η(x) is the root of Y.
In the first case, namely if η(x) is a leaf of Y, we again employ the fact that the only
r-successor of η(x), for role names appearing in the query, is η(x) itself. This implies
that η(x) = η(y) as desired. Otherwise, we rely on the previously established lemmas.
With Lemma 8.21 we infer that η(u) ∈

⋃i−1
k=0 LvlY2n+k+1. With Lemma 8.22 we infer that

η(v) ∈
⋃4n+2

j=2n+i+1 LvlYj and that η(y) is a descendant of η(v). Thus, the only possibility
for η to be a match is when η(u) ∈ LvlY2n+i, and η(v) ∈ LvlY2n+i+1. Due to the presence
of the atom adj

i (u, v) in the query, and the fact that η(u) is a parent of η(v) in Y, we
conclude that η(v) ∈ (Adj

i )Y . By the design of Y, we thus have that all the descendants
of η(v) belong to (Adj

i )Y . In particular, this implies that η(y) ∈ (Adj
i )Y , as desired.

• Madj
i

⊇ {(d, d), (ε, e) | d, e ∈ LvlY4n+2, e ∈ (Adj
i )Y}.

Similarly to the previous proofs of this section, we take (d, e) from the RHS of the above
expression and construct a match η for qadj

i
(x, y) that maps x to d and y to e. If d = e

then the function η that maps all the variables from the query qadj
i
(x, y) to d is the desired

match. Otherwise, we employ the results from Lemma 8.21. Take c2 to be the ancestor
of e satisfying Lvl2n+i+1, and let c1 be its parent. By the fact that e ∈ (Adj

i )Y , we know
that (c1, c2) ∈ (adj

i )Y . By Lemma 8.21 we infer a match η1 for Y and q(i−1)+
↓ (x, u) such

that η1(x) = ε and η1(u) = c1. Similarly, there exists a match η2 for Y and q(i+1)−
↓ (v, y)

such that η2(v) = c2 and η2(y) = e. Hence, by combining η1 and η2 we obtain the desired
match for Y and q(i−1)+

↓ (x, u) ∧ adj
i (u, v) ∧ q(i+1)−

↓ (v, y).

8.3.5 The conjunctive query detecting mismatches

We conclude the chapter by designing a conjunctive query with distinguished variables x, y whose matches
over jellyfishes Y identify the elements d and e witnessing the non-properness of Y (as explained by
Fact 8.19). As the first step, by employing the top-down query, we easily design the leaf-root-leaf query
qlrl(x, y, z) := q↓(y, x)∧Lvl0(y)∧q↓(y, z) with three distinguished variables x, y, z that matches all possible
leaf-root-leaf triples.

Corollary 8.25
Let D, c̄, n, and q↓ be as in Definition 8.20, and let Y be a (D, c̄)-jellyfish. Then, for the leaf-root-leaf
query qlrl(x, y, z) := q↓(y, x) ∧ Lvl0(y) ∧ q↓(y, z), we have the equality:

M := {(η(x), η(y), η(z)) | Y |=η qlrl(x, y, z)} is equal to {(d, ε, e) | d, e ∈ LvlY4n+2}.

Proof. If η is a match for qlrl(x, y, z) and Y, then clearly η(y) = ε due to the presence of the atom
Lvl0(y) in the query. Now it suffices to apply twice the definition of M−

0 from Lemma 8.21.
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Observe that in any match η of the qlrl(x, y, z) ∧ 0(x) ∧ 1(z) over jellyfishes Y, the elements η(x) and
η(z) satisfy the first condition of Fact 8.19. Hence, it remains to design queries expressing the second and
the third condition of Fact 8.19 and then append them to our query.

Definition 8.26 Let D, c̄, n, and q↓ be as in Definition 8.20. For all 1 ≤ i ≤ 2n we define the i-th
bit equal query qi

eq(x, z) := qad0
i
(y, x) ∧ qad0

i
(y, u) ∧ qad1

i
(y′, u) ∧ qad1

i
(y′, z).

We already provided intuitions regarding the 1-th bit query for the case of n = 1 in Example 8.10. Here
the idea is exactly the same; the only difference is the total of number roles involved in q↓. The idea is that
qi

eq(x, z) relates leaves of jellyfishes Y that agree on the i-th bit of their address, namely in any match η

we either have that both η(x) and η(z) satisfy the concept Ad0
i , or both of them satisfy the concept Ad1

i .

Lemma 8.27 Let D, c̄, and qi
eq be as in Definition 8.26, and Y be a (D, c̄)-jellyfish. Then the set

Mi
eq := {(η(x), η(z)) | Y |=η qi

eq(x, z)} is equal to
⋃1

j=0((Adj
i )Y ∩ LvlY4n+2) × ((Adj

i )Y ∩ LvlY4n+2).

Proof. We first establish that
⋃1

j=0((Adj
i )Y ∩ LvlY4n+2) × ((Adj

i )Y ∩ LvlY4n+2) is a subset of
Mi

eq. Take any (d, e) from LHS, and assume w.l.o.g. that d and e belong to (Ad0
i )Y ∩ LvlY4n+2.

We are now going to construct the intended match η. By Lemma 8.24 there is a match η1 for
qad0

i
(y, x) that maps y to the root of Y and x to d. Moreover, there exists a η2 for qad0

i
(y, u)

that maps y to the root of Y and u to e. We let η map all the variables from qad0
i
(y, u) to

their image via η1, all the variables from qad1
i
(y′, u) to their image via η2, all the remaining

variables to e (note that a function that maps all the variables to the same leaf of Y is a match
for Y and qad1

i
by Lemma 8.24). Thus η is as desired.

To establish the reverse inclusion, consider a match η for qi
eq and Y. Similarly to what was

described in Example 8.10 we see that η(x), η(z), and η(u) are leaves of Y, while η(y) and
η(y′) are either the root of Y or a leaf of Y (as they have outgoing e-paths of length 2n−1).
Consider the following cases:
• η(y) is the root of Y.

Then, by Lemma 8.24 we have that both η(x) and η(u) satisfy Ad0
i . Thus, η(y′) cannot be

the root of Y as it would imply, by Lemma 8.24 again, that η(u) satisfies Ad1
i . Hence, η(y′)

is a leaf of Y, which once more by Lemma 8.24 implies that η(y) = η(u) and η(y′) = η(z).
This implies the equality η(z) = η(u), and thus η(z) satisfies the concept Ad0

i as well.
• η(y′) is the root of Y.

The proof is then symmetric to the previous case (modulo swapping the numbers 0 and 1
in concepts). We arrive at the conclusion that η(x) and η(z) both satisfy the concept Ad1

i .
• Both η(y) and η(y′) are leaves of Y.

Then by Lemma 8.24 we have that all the distinguished variables are mapped to the
same leaf of Y.

Thus, in all such cases we established that (η(x), η(z)) belongs to either to the set ((Ad0
i )Y ∩

LvlY4n+2) × ((Ad0
i )Y ∩ LvlY4n+2) or to ((Ad1

i )Y ∩ LvlY4n+2) × ((Ad1
i )Y ∩ LvlY4n+2) as desired.

The above query ensures the satisfaction of the second condition from Fact 8.19. Note that its size is
clearly polynomial w.r.t. the given parameters. For the remaining condition (namely the satisfaction of
precisely the same tiles), we employ a nearly identical query. The main difference is that the disjunction
that is hidden in the query is no longer binary but |T|-ary, where T is the underlying set of tiles.

Definition 8.28 Let D, c̄, T, n, and q↓ be as in Definition 8.20, and let us enumerate T as t1, t2, . . . , t|T|.
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We define the tile equality query qtil
eq(x, z) as

|T|∧
i=1

(
qrti

(yi, ui−1) ∧ qrti
(yi, ui)

)
,

after replacing the variables u0 and un, respectively, with x and z.

Note that the size of qtil
eq is polynomial w.r.t. join sizes of D, c̄, and T. We formalise the behaviour of the

tile equality query with the following statement. Its proof is nearly the same as the proof of Lemma 8.27.

Corollary 8.29
Let D, c̄, and qtil

eq be as in Definition 8.28, and Y be a (D, c̄)-jellyfish. Then the set
Mtil

eq := {(η(x), η(z)) | Y |=η qtil
eq(x, z)} is equal to

⋃|T|
i=1((Cti

)Y ∩ LvlY4n+2) × ((Cti
)Y ∩ LvlY4n+2).

This establishes the last item of Fact 8.19. We can now conclude our reduction.

Lemma 8.30 Consider D, c̄ be the input for the torus tiling problem. Let qlrl(x, y, z), qi
eq, and qtil

eq
be queries defined in Corollary 8.25, Definition 8.26, and Definition 8.28. We have that Y is proper if
and only if it does not satisfy the query qmain := qlrl(x, y, z) ∧ 0(x) ∧ 1(z) ∧

∧|c̄|
i=1 qi

eq(x, z) ∧ qtil
eq(x, z).

Proof. Let Y be a (D, c̄)-jellyfish and suppose that it is not proper. By Fact 8.19 there exists
leaves d, e of Y that satisfy all three conditions from Fact 8.19. It now suffices to construct a
match η for qmain and Y that maps x to d and z to e. As d and e are both leaves of Y, the
mapping x 7→ d, z 7→ e can be extended to a match for Y and qlrl(x, y, z) by Corollary 8.25.
For all 1 ≤ i ≤ 2n, as d satisfies Ad0

i if and only if e satisfies Ad0
i , the mapping x 7→ d, z 7→ e

can be extended to a match for Y and all of qi
eq(x, z). Finally, as d and e are labelled with

the same tile predicate, we can extend the mapping x 7→ d, z 7→ e a match for Y and all of
qtil

eq(x, z). As we assume that all the subqueries have only the variables x and z in common,
the union of the aforementioned query matches becomes a query match for Y and qmain.
For the other direction, take any match η for Y and qmain. We claim that the elements d = η(x)

and e = η(z) satisfy the conditions from Fact 8.19. Indeed, the first condition is guaranteed
by the Corollary 8.25 and the fact qlrl(x, y, z) evaluates to true under η. The second condition,
for all 1 ≤ i ≤ 2n is guaranteed by the fact that qi

eq(x, z) evaluates to true under η and by
Lemma 8.27. Finally, the third conditions holds, as guaranteed by Corollary 8.29 and the fact
that the query qtil

eq(x, z) evaluates to true under η. This concludes the proof.

The query qmain defined above is connected and is clearly of polynomial size w.r.t. |D|+|c̄|. Hence, we
can prove the final theorem of the chapter.

Theorem 8.31
The entailment problem for rooted conjunctive queries for ALCSelf is coNExpTime-hard. This holds
already over ALCSelf-KBs with a single individual name and with no TBox (but with non-atomic
concepts allowed in the ABox).

Proof. It suffices to show that the non-entailment problem is NExpTime-hard. To do so,
we reduce from the torus tiling problem (see Section 8.1.2). Let (D, c̄) be an instance of the
torus tiling problem, and let K := {Yelly(D,c̄)(aux)} be an ALCSelf-KB, where aux is a fresh
individual name aux. We consider a rooted (and connected) conjunctive query q obtained by
replacing the variable y in the query qmain defined in Lemma 8.30 with aux. Note that both K
and q are both of size polynomial w.r.t. the input.
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We claim that K ̸|= q if and only if (D, c̄) has a solution. For one direction, suppose that (D, c̄)
has a solution. Then by Fact 8.19 there exists a proper (D, c̄)-jellyfish Y. W.l.o.g. we may
assume that Y interprets aux as its root. Hence, by Lemma 8.18 we have that Y |= K. As Y
is proper, by Lemma 8.30 we conclude that Y ̸|= q. Hence, K ̸|= q, as desired. For the other
direction, suppose that K ̸|= q. By Part (III) of Lemma 8.18 there exists a (D, c̄)-jellyfish Y
and a homomorphism h from Y into I satisfying h(ε) = auxI . As query matches are preserved
under (inverse) homomorphisms, we conclude that Y ̸|= q. This implies, by Lemma 8.30, that Y
is proper. Hence, by Fact 8.19, we conclude that (D, c̄) has a solution.

Note that by the correspondence between weak separability problem [JLPW22, p. 3] and the entailment
of (unions of) rooted conjunctive queries, our result applies to such a machine-learning-inspired problem.
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Motivation and Our Contribution

As we discussed in the previous sections, the query entailment problem is one of the most fundamental
problems considered in logic-based knowledge representation. Consequently, the positive two-way regular
path queries were advertised [CGLV00] as a common ground between the query languages from the
classical, relational database theory such as the (unions of) conjunctive queries, and the more modern
query languages for graph databases, including regular path queries. Thus, establishing the exact complexity
of the query entailment problem for expressive description logics seems to be a very natural task.

In this section we consider tamed ZOIQ, a common umbrella for ZIQ, ZOQ, and ZOI. Recall that
tamed ZOIQ has the quasi-forest countermodel property, and hence it allows for the employment of
tree-automata-based toolkit. Such an approach was taken in the original work by Calvanese et al. [CEO09].
Their approach is not ideal. First of all, the automata construction is very heavy and requires careful
treatment. Second, it is exponentially less optimal in the case when the numbers in number restrictions
are encoded in binary. Finally, automata-based approaches are difficult to implement, and hence not
realistic to use in practice. Hence, an alternative approach is needed. Leveraging said model-theoretic
property of the considered DLs, we provide a novel reduction from the query entailment problem K |= q
to the problem of checking unsatisfiability of some other knowledge base K¬q, written in ZOIQ. This
advocates the use of the satisfiability problem as the main reasoning problem to study. To design Kq,
we design a certain “proof-like calculus” for deriving query matches in quasi-forest models. Our calculus
results in the KB Kq of size exponential w.r.t. |K| (even assuming the binary encoding of numbers in
number restrictions), which even becomes polynomial when treating the query q as fixed beforehand. Its
application allows us to exponentially reduce the P2RPQ entailment problem over tamed ZOIQ to the
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satisfiability problem, exponentially improving previous results [CEO09, Thm. 4.3] concerning ZIQ and
ZOQ (which relied on the unary encoding of counters in number restrictions). The obtained results allow
to correspondingly improve a number of previous results on query containment and can be transferred to
DLs from the SR family.

Overview of the Chapter and Prerequisites

We start with a short extra preliminaries in Section 9.1. We then define our proof-based calculus in
Section 9.2, starting from a general overview. In Section 9.3 we provide the desired reduction from the
query entailment problem to the satisfiability problem. This is then followed by very technical proofs of
soundness and completeness of our calculus. We conclude with Section 9.4 not only wrapping-up all the
relevant results and applications but also discussing several interesting open problems.

We assume that the reader is familiar with the notion of quasi-forest models from Section 7.1, the syntax
and semantics of ZOIQ from Section 2.10, as well as the section concerning automata (in particular inverse
automata, see Section 2.6), decision problems (Section 2.5), and queries (Section 2.8) from Preliminaries.

9.1 Extra Preliminaries: Simple Positive Two-Way RPQs

In what follows we consider the class of positive two-way regular path queries (P2RPQs), as defined in
Section 2.8. We call a P2RPQ q simple if all its axioms are of the form A(x, y) for some variables x, y,
and an NFA A over NR. The following lemma can be shown via a routine renaming.

Lemma 9.1 For any tamed ZOIQ-KB K and a P2RPQ q we can compute in polynomial time w.r.t.
|K|+|q| a tamed ZOIQ-KB K′ and a simple P2RPQ q′ such that K |= q if and only if K′ |= q.

Proof sketch. To find the desired query we employ the following rewriting procedure.
(i) We replace any answer variable a ∈ NI that occur in q with a fresh variable xa, append

the atom Aa(x0) to the query, and the GCI Aa ≡ {a} to the knowledge base.
(ii) We replace each atom of the form C(x) with an atom rC(x, x) for a fresh role name rC and

we append the following axioms to the knowledge-base: C ≡ ∃rC.Self and ⊤ ⊑ (⩽1 rC).⊤.
Note that the extra axioms ensure that in every model of the extended knowledge-base,
the elements satisfying C are precisely the elements equipped with an rC-self-loop.

(iii) For every atom R(x, y) from the query, we (a) replace any simple role s that is not a
role name and appears in q with a fresh role name r and append an axiom s = r to the
knowledge base, and (b) replace any test C? with a fresh role name rC, and similarly to
the previous case, we append the following axioms to the knowledge base: C ≡ ∃rC.Self
and ⊤ ⊑ (⩽1 rC).⊤. Note that now the rewritten regular expression is built from role
names using ∪, ◦, and ∗. Hence, with the classical methods we can translate the resulting
regular expression into the corresponding NFA.

It is immediate that see the resulting knowledge base and the query are as desired.

9.2 Annotating (Partial) Query Matches

In the following, suppose that a tamed ZOIQ-KB K is given, and consider a P2RPQ q for which we want
to decide whether K |= q holds or not. Note that q, by turning q into DNF, it can be rewritten into an
equivalent disjunction

∨
1≤i≤n qi, where the number of disjuncts n can be exponential w.r.t. |q| but each of

the queries qi is only of polynomial size w.r.t. |q|. By Lemma 9.1 we may assume that each of the queries
qi is simple. Let [q] denote the set {q1, . . . , qn}. Then we know that testing whether K ̸|= q amounts to
determining whether K has a model I which is simultaneous a countermodel (i.e. I ̸|= qi) for all the
queries qi from [q]. By tameness of K, we can assume that the desired countermodel I is a quasi-forest.



9.2. Annotating (Partial) Query Matches 157

9.2.1 Proof Overview

We now give an intuitive description of our technique to detect (or refute) matches of q. Given a quasi-
forest model I of K, we iteratively, deterministically annotate all its domain elements d with fresh concept
names QM that indicate which “parts” M of some query qi from [q] match into I and how d participates
in these partial matches. To this end, we employ descriptions M of query parts which contain information
about (i) the query variables matched, (ii) (the existence of) paths realising certain state transitions in
the query’s automata, and (iii) optionally, the “position” of the current d in the query match by use of a
marker • acting like an additional, distinguished query variable. In the annotation process, the QMs will be
assigned to domain elements d based on their local environment and known annotations QM′ for “smaller”
partial queries to the same element d or its direct (role) neighbourhood. As an exception, non-localised
query matches M not containing • will be “broadcast”, i.e. uniformly attached to all domain elements.
This way, in the annotation process, QMs for larger and larger partial queries are assigned, until finally
(after reaching the unique fixpoint) also the full matches for any qi are recognised by annotations Qqi

. This
process will accurately detect partial and full query matches (with the proviso that I is a quasi-forest).
The annotation process is realised by virtue of a (tamed) ZOIQ-KB Kq, the size of which is exponential
in q, but only polynomial w.r.t. |K|.

Over the next few pages, we will stepwise introduce the KB Kq, interleaved with some necessary
definitions, starting from the relevant notion of a partial query. In the following we may equate a conjunctive
two-way regular path query qi with the set of its atoms.

Definition 9.2 Let C2RPQ qi be of the form
∧n

i=1 A(xi, yi). A partial query for qi and a subset
X ⊆ {x1, y1, . . . , xm, ym} of variables from qi is a set of M consisting of:

• all atoms A(x, y) from qi for which {x, y} ⊆ X,
• for every atom A(x, y) from qi with x ∈ X but y ̸∈ X, one of the atoms A−

q,q′(y, •) or A−
q,q′(y,o)

where q is a final state of A and o ∈ ind(K),
• if X is empty, exactly one atom of the form Aq,q′(•,o) or A−

q,q′(•,o) (called nominal-anchored
path) or Aq,q′(•, •) or A−

q,q′(•, •) (called round trip) for some A from qi and o ∈ ind(K).
A partial query is called monodic, whenever X is a singleton set. A partial query is called local if
it contains • and it is called global otherwise.

9.2.2 Annotating quasi-forest models

In the forthcoming paragraphs we provide the definitions of suitable axioms of the to-be-constructed Kq.

Nominal-Anchored Paths First, we want to detect role paths that start in the to-be-annotated
individual, end in named individual oI , and realise state transitions in one of the query’s automata. Let o
be any individual name in K, let A± be either A or A− for any automaton A occurring in q with states
q, q′, q′′. We let Kq contain the axiom

QA
±
q,q(•,o)(o) (9.1)

and whenever A± has a transition (q, r , q′) we also have the axiom:

∃r .QA
±
q′,q′′ (•,o) ⊑ QA

±
q,q′′ (•,o) (9.2)

Round Trips Next, we are concerned with paths which start and end in the to-be-annotated individual.
Assuming an automaton A with states q, q′, q′′, q′′′ and transition set T as well as an individual name o,
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we add the axioms:

⊤ ⊑ QA
−
q,q(•,•) (9.3)

QAq,q′ (•,•) ⊓ QAq′,q′′ (•,•) ⊑ QAq,q′′ (•,•) (9.4)
QAq,q′ (•,o) ⊓ QA

−
q′′,q′ (•,o) ⊑ QAq,q′′ (•,•) (9.5)

for (q, r , q′) ∈ T: ∃r .Self ⊑ QAq,q′ (•,•) (9.6)
for {(q, r , q′), (q′′, s, q′′′)} ⊆ T: ∃(r ∩ s−).QAq′,q′′ (•,•) ⊑ QAq,q′′′ (•,•) (9.7)

Initialising monodic partial queries Next we determine domain elements to which separate query
variables could possibly be mapped in a match.

Definition 9.3 We call a monodic partial query M original, if q = q′ for every Aq,q′(x, •) ∈ M
and every A−

q,q′(x, •) ∈ M. For M an original monodic partial query for q and {x}, the set PrecM of
precondition concepts consists of:

• QAq,q′ (•,o) for each atom Aq,q′(x,o) in M,

• QA
−
q,q′ (•,o) for each atom A−

q,q′(x,o) in M,

•
⊔

q initial
q′ final

QAq,q′ (•,•) for each atom A(x, x) in M.

Now we can initialise all original monodic partial queries M by adding the following axioms to Kq:
l

PrecM ⊑ QM (9.8)

Updating partial queries Partial queries can be updated by roundtrips: Let M be a partial query
containing some A±

q,q′(x, •). Then we realise the update by adding the following axioms to Kq:

QM ⊓ QA
±
q′,q′′ (•,•) ⊑ QM\{A±

q,q′ (x,•)}∪{A±
q,q′′ (x,•)} (9.9)

Furthermore, a partial query can “progress” when making a “step” in the model, moving from the
considered d to some role neighbour. In such a step, all the “unready” paths (corresponding to atoms
with •) must be updated in a synchronous manner. Given a partial query M for qi and nonempty X as well
as a set {r1, . . . , rk} of (possibly inverted) role names, assume M′ can be obtained from M by replacing
each atom of the form A±

q,q′(x, •) by an atom A±
q,q′′(x, •) such that A± has a transition (q′, r , q′′) for any

r ∈ {r1, . . . , rk}. Then add the following axiom to the KB Kq:

∃(r−
1 ∩ r−

2 ∩ . . . ∩ r−
m).QM ⊑ QM′ (9.10)

Joining partial queries When two partial queries corresponding to the same query qi “meet” in a
domain element d, they can – under certain circumstances – be “glued together” into a “bigger” partial
query of qi.

Definition 9.4 Let M1 be a partial query for qi and X1 and let M2 be a partial query for qi and X2.
We call M1 and M2 joinable if

• X1 ̸= ∅, X2 ̸= ∅, X1 ∩ X2 = ∅, and
• for each A(x, y) ∈ qi \ (M1∪M2) with {x, y} ⊆ X1∪X2, there are states q, q′, q′′ of A with q ini-

tial and q′′ final, such that either {Aq,q′(x, •),A−
q′′,q′(y, •)} ∈ M1∪M2 or {Aq,q′(x,o),A−

q′′,q′(y,o)}
∈ M1 ∪ M2 for some o ∈ NI.

For joinable M1 and M2, their join, denoted M1▷◁M2, is the partial query obtained from M1 ∪ M2 by
replacing any pair of atoms Aq,q′(x, ∗) and A−

q′′,q′(y, ∗) by A(x, y), where ∗ is either an individual
name o or •.
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We implement the join operation for every pair M1, M2 of joinable partial queries for a qi ∈ [q] by
extending Kq with:

QM1 ⊓ QM2 ⊑ QM1▷◁M2 (9.11)

Broadcasting global partial queries Whenever a partial query M does not have any occurrences of
•, which would tie it to a specific element, it will be “broadcast” to all domain elements:

∃⊤.QM ⊑ QM (9.12)

This concludes the definition of Kq. Revisiting our initial intuition of Kq’s purpose of deterministically
annotating a model I of K, the following lemma formalises this by singling out one unique annotated
model I∗ for every I. We will call the models I∗ from Lemma 9.5 Q-minimal.

Lemma 9.5 Let K be a ZOIQ-KB and q a simple P2RPQ. For every model I of K there exists
a unique model I∗ of K ∪ Kq which extends I and satisfies QI∗

M ⊆ QJ
M for every QM in Kq and for

every model J of K ∪ Kq that extends I.

Proof sketch. Observe that all axioms of Kq can be easily expressed in monadic Datalog.
Hence, for every model I of K, any concept membership d ∈ QI∗

M holding in the corresponding
Q-minimal model I∗ can be derived from concept and role memberships in I through a finite
sequence of “applications” of axioms from Kq.

9.3 Reduction to Satisfiability

Now we establish technical results relating the presence of QM-annotations in models and the actual
semantic satisfaction of the corresponding partial query M. Note that any partial query M can be seen as
a (set representation of a) C2RPQ, assuming that • is just an ordinary variable.

Definition 9.6 Given an interpretation I, a domain element d ∈ ∆I , and a partial query M, we say
that M is satisfied or holds in d, written I, d |= M, if there is a match η for M in I with η(•) = d.
M is satisfied or holds tightly in d, written I, d |=|= M, if η is such that every A±

q1,q2
(x, •) ∈ M is

realized by a path η(x)⇝ d not containing oI for any individual name o.

Note that |= and |=|= coincide whenever M is global or does not contain variables. Note also that, as a
consequence of this definition, if M is global, then QM holds (tightly) everywhere or nowhere throughout
the domain. With this notion in place, the next two lemmas can be seen as soundness and completeness
results regarding the deduction calculus for (partial) query matches embodied by Kq.

Lemma 9.7 Let I be a Q-minimal model of K ∪ Kq and let d ∈ ∆I . Let M be any partial query
for any C2RPQ qi ∈ [q]. Then d ∈ QI

M implies I, d |= M.

Lemma 9.8 Let I be a quasi-forest model of K ∪ Kq and let d ∈ ∆I . Let M be any partial query
for any C2RPQ qi ∈ [q]. Then I, d |=|= M implies d ∈ QI

M.

The proofs of the two lemmas above will be given in separate sections. Soundness is proven by induction
over the length of the derivation for d ∈ QI

M. Completeness is shown by induction over the spread of the
match for M, i.e. the number of variables (excluding •) plus the sum of the lengths of all paths realising
the query atoms. Thanks to these correspondences, we can essentially rule out models with matches of
any q1, . . . , qn by forcing the extensions of Qq1 , . . . , Qqn to be empty. Therefore, let

K¬q = K ∪ Kq ∪ {Qqi ⊑ ⊥ | qi ∈ [q]}. (9.13)

We establish some syntactic and semantic properties of K¬q.
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Fact 9.9. The size of K¬q is single exponential in the total size of K and q. It is polynomial, if the number
of atoms in q is bounded by a constant.

Proof sketch. Routine calculations.

We next see that our construction preserves “tameness” of the underlying KB.

Fact 9.10. If K is written in tamed ZOIQ, then K¬q is in tamed ZOIQ as well.

Proof. First note that K¬q is in ZOIQ. For tameness, consider a model I of K¬q. As I is
a model of K and the latter is tame, there exists a quasi-forest model J of K and a homo-
morphism h : J → I. Now, we can construct a quasi-forest model J ′ of K¬q by extending J ,
letting d ∈ QJ ′

M if h(d) ∈ QI
M for all concept names QM occurring in K.

Based on Fact 9.9 and Fact 9.10 (and with the proviso that our method is sound and complete) we
infer the main theorem of this section.

Theorem 9.11
Let K be a tamed ZOIQ-KB and let q be a simple P2RPQ over K. Then K |= q if and only if K¬q
is unsatisfiable.

Proof. It suffices to show that K ̸|= q if and only if K¬q satisfiable. For the “only if” direction,
suppose that K ̸|= q. Then there exists an interpretation I with I |= K and I ̸|= q. Consider I∗,
the Q-minimal model of K ∪Kq extending I. If some QI∗

qi
were nonempty, then there would be

a query match of q into I by Lemma 9.7, contradicting our assumption. Therefore, I∗ satisfies
the GCI Qqi ⊑ ⊥ for all queries qi ∈ [q]. Thus I∗ |= K¬q.
For the reverse implication, let K¬q be satisfiable. As K¬q is in tamed ZOIQ, we know that

there is a quasi-forest model I of K¬q. The satisfaction of the GCIs Qqi
⊑ ⊥ by I implies the

emptiness of QI
qi

for every query qi ∈ [q]. We claim that I ̸|= q. Towards a contradiction sup-
pose that I |= qi for some qi ∈ [q]. Then, Lemma 9.8 this implies that d ∈ QI

qi
for all domain

elements d ∈ ∆I . A contradiction. Hence, I is the desired countermodel for K and q.

Theorem 9.11 yields the desired reduction from the query entailment problem for tamed ZOIQ, and,
in particular, in its decidable fragments with ExpTime-complete satisfiability problem. Based on this
theorem, we can now prove our central result:

Theorem 9.12
The entailment problem for the class of positive two-way regular path queries over tamed ZOIQ-KBs
is 2ExpTime-complete, even if the numbers appearing in number restrictions are encoded in binary.
Moreover, for any P2RPQ q there is an exponential time algorithm (parametrised by q) that takes a
tamed ZOIQ-KB K as the input and checks whether K |= q holds.

Proof. By our discussion at the beginning of Section 9.2 we can assume that q is a disjunction
(of exponential size w.r.t. the input query) of simple C2RPQ (of polynomial size w.r.t. the input
query). By Theorem 9.11, entailment of a simple P2RPQ q from a tamed ZOIQ-KB K can
be reduced to checking unsatisfiability of K¬q, which can be computed in output-polynomial
time and the size of which is exponential (polynomial, if the number of atoms in q is bounded).
By Lemma 7.6, (un)satisfiability of K¬q can be checked in exponential size w.r.t. the size
of K¬q. Thus we obtain the desired 2ExpTime and ExpTime upper bounds. The match-
ing lower bounds are well-known even for much weaker logics, e.g. ALCSelf from Chapter 6.
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We next prove soundness and completeness of our method. The proofs are quite tedious and (unfortu-
nately) not as polished as the rest of the thesis, so we recommend the reader to skip them for first reading.
Their revised version will be available at some point in the journal versions of the corresponding papers.
For brevity, in the forthcoming proof we will often write d⇝ρ d′ whenever there exists a path ρ from d
and ρ′. We say that a path ρ realises a transition q →ρ q′ whenever ρ |= Aq,q′ , as defined before.

9.3.1 Proof of Lemma 9.7

We prove the Lemma by induction over the length of the derivation sequence for d ∈ QM, which uses
rules from Kq. By induction hypothesis, Lemma 9.7 holds for all previously derived concept memberships.
In order to complete the proof, we will make a case distinction and in each case we will provide a match
η witnessing I, d |= M.
Let us start with the case when M = {A±

q1,q2
(•,o)}.

• The concept membership d ∈ QI
A

±
q,q(•,o) has been derived via Rule 9.1. Thus d = oI and A±

q,q(•,o)
is trivially realised by an empty path from d to d. Hence, we can set η = {• 7→ d}.

• The concept membership d ∈ QI
A

±
q,q′′ (•,o) has been derived via Rule 9.2. Then we know that d

has an r-successor d′ satisfying d′ ∈ QI
A

±
q′,q′′ (•,o). By induction hypothesis there exists a variable

assignment η′ witnessing that A±
q′,q′′(•,o) holds in d′, i.e. there is a path ρ from d′ to oI realising a

transition q′ →ρ q′′. This path can be extended to some path ρ′ by prepending the path d ⇝r d′.
Since there is a transition (q, r , q′) in A±, the path ρ′ from d to oI indeed realises a transition q →ρ′

q′′ in A. So we set η = {• 7→ d}.
The next cases we consider are round-trips.

• The concept membership d ∈ QI
A

−
q,q(•,•) has been derived via Rule 9.3. Then A−

q,q(•, •) is trivially
realised by an empty path from d to d. Thus we can set η = {• 7→ d}.

• The concept membership d ∈ QI
Aq,q′′ (•,•) has been derived via Rule 9.4. Then d ∈ QI

Aq,q′ (•,•) as
well as d ∈ QI

Aq′,q′′ (•,•). By the induction hypothesis, there exist paths ρ and ρ′ both from d to d,
which realise transitions q →ρ q′ and q′ →ρ′

q′′. Thus a transition q →ρρ′
q′′ is also realised by the

path ρ·ρ′ from d to d and we can define a match η = {• 7→ d}.
• The concept membership d ∈ QI

Aq,q′′ (•,•) has been derived via Rule 9.5. Then d ∈ QI
Aq,q′ (•,o) as

well as d ∈ QI
A

−
q′′,q′ (•,o). By the induction hypothesis there is a path ρ′ from d to oI realising a

transition q →ρ′
q′ from A and there is a path ρ′′ from d to oI realising a transition q′′ →ρ′′

q′

from A−. Let (ρ′′)− be the inverse path of ρ′′, i.e. the path is reversed and all roles are replaced by
their inverses. Thus the path ρ consisting of d⇝ρ′

oI ⇝(ρ′′)− d realises a transition q →ρ q′′ in A.
So we set η = {• 7→ d}.

• The concept membership d ∈ QI
Aq,q′ (•,•) has been derived via Rule 9.6. Since d ∈ (∃r .Self)I , we

know that there is a path d⇝r d, that by assumption realises the transition q →r q′ in A. Thus
we set η = {• 7→ d}.

• The concept membership d ∈ QI
Aq,q′′′ (•,•) has been derived via Rule 9.7. Thus there exists an

element d′ ∈ ∆I , reached from d via r and s−. Such an element satisfies d′ ∈ QI
Aq′,q′′ (•,•), thus

by the induction hypothesis there is a variable assignment η′, witnessing that Aq′,q′′(•, •) holds
at d′. Thus, there is a path ρ′, leading from d′ to d′, realising a transition q′ →ρ′

q′′ in A. Since
automaton A has transitions (q, r , q′) and (q′′, s, q′′′), the path ρ defined as d⇝r d′ ⇝ρ′ d′ ⇝r d
realises a transition q →ρ q′′′ in A. Hence we take η = {• 7→ d}.

Now we will focus on partial queries M with variables.
• Assume that the concept membership d ∈ QI

M has been derived via Rule 9.8 for some original
monodic partial query M for a variable x. Then we also know that d ∈ (

d
PrecM)I , so for each

QM ′ from the preconditions satisfied in d the variable assignment η′ = {• 7→ d} is a match. Now
we show that η = {• 7→ d, x 7→ d} witnesses that M holds at d. Indeed, considering any atom
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from M, we will show that it is realised by η. If this atom is of the form Aq,q′(x,o), note that,
due to the fact that d satisfies the precondition, d also belongs to QI

Aq,q′ (•,o). Then, by induction
hypothesis, there is a role path ρ from η′(•) = d = η(x) to oI realising a transition q →ρ q′ in A

and hence witnessing Aq,q′(x,o). The argument transfers easily to the case when an atom is of the
form A−

q,q′(x,o). Finally, let us consider an atom A(x, x) from M. But then d ∈ QI
Aq,q′ (•,•) (for an

initial state q and a final state q′ of A), therefore, by induction hypothesis, a path ρ accepted by
A from η′(•) = d = η(x) to itself exists, witnessing A(x, x). Thus a match η for M holds at d.

• The concept membership d ∈ QI
M has been derived via Rule 9.9. Then M contains some A±

q,q′(x, •).
From the induction hypothesis follows that there exists a variable assignment η witnessing that M
holds at d. We claim that η also witnesses that M′ = M \ {A±

q,q′(x, •)} ∪ {A±
q,q′′(x, •)} holds in d.

All but one atom of M′ are contained in M and hence must be realized by induction hypothesis, so
it remains to prove that the only new automaton atom A±

q,q′′(x, •) is satisfied. By the induction
hypothesis there is a path ρ′ from η(x) to η(•) = d realising a transition q →ρ′

q′ in A± (due to
the assumption that M contains {A±

q,q′(x, •)}). Also, since d ∈ QI
A

±
q′,q′′ (•,•) there is a round-trip ρ′′,

from d to d, realising a transition q′ →ρ′′
q′′ in A±. Hence the path ρ = ρ′ρ′′ leads from η(x)

to η(•) = d and realises a transition q →ρ q′′ in A±, showing our claim.
• The concept membership d ∈ QI

M′ has been derived via Rule 9.10. Then d has a predecessor d′ ∈ QI
M,

reaching d via any of r1, r2, . . . , rm. Let η′ be a variable assignment, given by the induction hypothesis,
witnessing that M holds at d′. We obtain a variable assignment η from η′ by setting η(•) = d. Now
it remains to show that all the automata atoms are satisfied. Let A±

q,q′′(x, •) be an arbitrary atom
from M′ and let A±

q,q′(x, •) be the corresponding atom from M. By the induction hypothesis there
exists a path ρ from η′(x) to η′(•) = d′ realising a transition q →ρ q′ in A±. But there is also
a role r leading from d′ to d, such that there is a transition (q′, r , q′′) in A±. Thus an obtained
path ρ′ = ρr , such that η′(x)⇝ρ d′ ⇝ri d, witnesses a transition q →ρ′

q′′ in A±. Hence all atoms
from M′ correspond to appropriate paths under η′.

• The concept membership d ∈ QI
M has been derived via Rule 9.11 for a join M of two joinable partial

queries M1 and M2. Both of d ∈ QI
M1

and d ∈ QI
M2

were derived earlier, thus by the induction
hypothesis there are two matches η1 and η2 witnessing, respectively, that M1 and M2 hold at d. We
let η = η1 ∪ η2, which is unambiguous since η1 and η2 coincide on • and do not share any other
variables. We will argue that η witnesses that M holds at d. First of all, observe that if M1 ∪ M2
contains some atom of the form A(x, x) or A±

q,q′(x,o) for any variable X, this atom must already
have been present in M1 or M2, hence have been realized by η1 or η2 by induction hypothesis,
therefore it is also realized by η. To complete the proof we need to ensure that also atoms of the
form A(x, y) are realised. If A(x, y) occurs in M1 or M2, then its realisation is guaranteed by the
induction hypothesis (the same argument as before). If not, then it was created from two atoms
Aq,q′(x, ∗) and A−

q′′,q′(y, ∗). We distinguish two possibilities. (i) Assume ∗ = o ∈ NI. In this case
we know by induction hypothesis that each of Aq,q′(x,o) and A−

q′′,q′(y,o) is realized by η1 or η2

and hence by η. That is, there is a path ρ′ from η(x) to oI realising a transition q →ρ′
q′ from A

and there is a path ρ′′ from η(y) to oI realising a transition q′′ →ρ′′
q′ from A−. Let (ρ′′)− be the

inverse path of ρ′′, i.e. the path is reversed and all roles are replaced by their inverses. Thus the
path ρ consisting of η(x)⇝ρ′

oI ⇝(ρ′′)−
η(y) realises a transition q →ρ q′′ in A. As q is initial and

q′′ is final in A, A(x, y) is realized by η. (ii) The case ∗ = • is analogous to the previous with oI

replaced by d.
Thus η is indeed a match witnessing that M = M1▷◁M2 holds at d.

• The concept membership has been derived via Rule 9.11. Then some ⊤-predecessor d′ of d (i.e. an
arbitrary d′ from dI) belongs to QI

M. Let us take a variable assignment η, given by the induction
hypothesis witnessing global, i.e. bullet-free, query M holding in d′. Since the query does not
refer to bullet and all automata atoms from M are satisfied via a variable assignment η, then an
assignment η \ {• 7→ d′} ∪ {• 7→ d} witnesses that M also holds at d.

This concludes the inspection of all cases and hence the proof of Lemma 9.7
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9.3.2 Proof of Lemma 9.8

We will prove this result by induction over the spread of the match for M, i.e. the number of variables
(excluding •) plus the sum of the lengths of all paths realizing the query atoms. We assume that there is
a match η witnessing that a partial query M holds tightly at d and we want to show d ∈ QI

M.
We start with the cases where M does not contain variables (other than •).

1. M = {A±
q1,q2

(•,o)}. Then the spread of M is simply the length of the path from d to oI .
a) The spread is zero. Then d = oI and q1 = q2 (as our automata do not have epsilon transitions),

thus the membership of d in QI
M is guaranteed by Rule 9.1.

b) The spread is positive. Since there is a match of M at d, there is a non-empty path ρ from d
to oI , realising a transition q1 →ρ q2 in A±. Thus, there must be a role r and an r-successor
d′ of d, such that ρ corresponds to the path d⇝r d′ ⇝ρ′

o. Hence there exists a state q′ and a
transition of the form (q1, r , q′) in A± as well as a match of a partial query M′ = {A±

q′,q2
(•,o)}

in d′, guaranteed by the existence of the path ρ′. Since the spread of the match for M′ is smaller
than the spread for M, we can use the induction hypothesis and infer that d′ ∈ QI

M′ . Finally,
by applying Rule 9.2 we can conclude that d ∈ QI

M.
2. M = {Aq1,q2(•, •)}, i.e, the partial query M represents a round-trip. We represent

a) The spread is zero. This is only possible when q1 = q2. Thus the concept membership d ∈ QI
M

follows trivially from Rule 9.3.
b) The spread is one. Then a path ρ from d to d realising a match must be a self-loop wrt. some

role r such that A has a transition (q1, r , q2). Thus the concept membership d ∈ QI
M follows

immediately from Rule 9.6.
c) The spread is greater than one. Let ρ be the corresponding path from d to d realising a match.

We consider three cases separately:
i. d occurs as an intermediate element on the path, i.e. ρ corresponds to d ⇝ρ′ d ⇝ρ′′ d.

Then there exists a state q′ in A such that A realises state transitions q1 →ρ′
q′ and

q′ →ρ′′
q2. Consequently, the partial queries {Aq1,q′(•, •)} and {Aq′,q2(•, •)} hold at d.

Since both have smaller spread than M, we can invoke the induction hypothesis and
conclude d ∈ QI

{Aq1,q′ (•,•)} as well as d ∈ QI
{Aq′,q2 (•,•)}. Then d ∈ QI

M follows via Rule 9.4.

ii. Some oI occurs as an intermediate element on the path, i.e. ρ corresponds to d⇝ρ′
oI ⇝ρ′′

d. Then there exists a state q′ in A such that A realises state transitions q1 →ρ′
q′ and

q′ →ρ′′
q2. Consequently, the partial queries {Aq1,q′(•,o)} and {A−

q2,q′(•,o)} hold at d.
Since both have smaller spread than M, we can invoke the induction hypothesis and
conclude d ∈ QI

{Aq1,q′ (•,o)} as well as d ∈ QI
{A−

q2,q′ (•,o)}. Then d ∈ QI
M follows via Rule 9.5.

iii. None of the above cases applies. Since the length of the path ρ is at least two, we can divide it
into the following pieces (where the path ρ′ could be possibly empty): d⇝r d′′ ⇝ρ′ d′ ⇝r d.
Assume that automaton A, starting in q1 enters the state q′ after reading r and then
progresses to q′′ after reading ρ′, i.e. A realises the transitions q1 →r q′, q′ →ρ′

q′′, and
q′′ →r q2. Note that there are no named individuals on the path ρ, hence (since I is a
quasi-forest model by assumption) all the domain elements on the path are inside the same
tree-part of the model. As ρ traverses the tree without crossing d in between, it follows
that d′′ = d′. Consequently, {Aq′,q′′(•, •)} holds in d′, therefore, by induction hypothesis,
d′ ∈ QI

{Aq′,q′′ (•,•)}. On the other hand, (d, d′) ∈ (r ∩ r−)I , hence Rule 9.7 yields d ∈ QI
M.

Now we consider a partial query M over variables V with V non-empty. Recall that η is a match witnessing
that M holds tightly in d. For each query atom At from M we fix a path ρAt in I that realises At under η,
by providing a state transition from the initial qi

At to the final qf
At . In case ρAt contains named individuals,

we fix one such oI
At and denote the state of A associated with oI

At by qm
At . We consider two main cases:

1. V can be divided into two disjoint non-empty subsets V1 and V2, such that
• all variables X occurring in some atom A±

q,q′(x, •) ∈ M must occur jointly in V1, and



164 Chapter 9. Entailment of Positive Two-Way RPQs in Tamed ZOIQ: Combined Complexity

• for every atom At = A(x, y) with X and y from different Vi, the corresponding path ρAt
contains some named individuals.

In this case, we are going to divide M into two smaller partial queries M1 and M2, both holding
tightly in d with smaller spread, such that M = M1 ▷◁ M2. Then by induction hypothesis we can
infer that both d ∈ QI

M1
and d ∈ QI

M2
and, by applying Rule 9.11, conclude that d ∈ QM. It remains

to find M1 and M2. To this end, let Mi contain
• all atoms from M containing variables only from Vi (including possibly •),
• for every At = A(x, y) ∈ M with x ∈ Vi and y ̸∈ Vi the atom Aqi

At ,q
m
At

(x,oAt), and
• for every At = A(x, y) ∈ M with y ∈ Vi and x ̸∈ Vi the atom A−

qf
At ,q

m
At

(y,oAt).

It can now be readily checked that M = M1 ▷◁ M2 and, by assumption, M1 and M2 hold tightly in
d with a smaller spread than M. This concludes this case.

2. Such a division of variables is not possible. Then η maps all the variables (and, if M is local, also •)
into the same tree-shaped part of the quasi-forest model I. To complete the proof, we will make a
case distinction depending on whether a query M is global or local.

a) M is global, i.e. •-free. We are going to show that d′ ∈ QI
M for some specific d′, from which,

due to “globality”, d ∈ QI
M for (any) d follows via Rule 9.12. To this end, pick one x ∈ V and

chose d′ = η(x). To show d′ ∈ QI
M, we will distinguish two cases:

i. |V | = 1. Then M is a monodic query match and (due to the absence of •) it is also original.
We will proceed to show that d′ ∈ (

d
PrecM)I , then d′ ∈ QI

M follows via Rule 9.8. For atoms
of the form A±

q,q′(x,o) from M, the fact that M holds at d′ entails that {A±
q,q′(•,o)} holds

at d′ as well (with a smaller spread). Thus by induction hypothesis we infer d′ ∈ QI
{A±

q,q′ (•,o)}.
For atoms A(x, x) from M, realisation of A(x, x) means that there exists an initial state q,
a final state q′ such that a Aq,q′(x, x) is also realized. Thus {Aq,q′(•, •)} has a match
at η(x) = d′. By the induction hypothesis we infer d′ ∈ QI

{Aq,q′ (•,•)}.
ii. |V | > 1. In this case we will provide M1 and M2, both holding tightly in d′ with a smaller

spread than M, such that M = M1 ▷◁ M2, so the claim follows from the induction hypothesis
via Rule 9.11. We let M1 contain
• all atoms from M containing no variables but X,
• for every y ̸= x and At = A(x, y) ∈ M with a nominal on ρAt , the atom Aqi

At ,q
m
At

(x,oAt),
• for every y ̸= x and At = A(y, x) ∈ M with a nominal on ρAt , the atom A−

qf
At ,q

m
At

(x,oAt),
• for every y ̸= x and At = A(x, y) ∈ M with no nominal on ρAt , the atom Aqi

At ,q
i
At

(x, •),
• for every y ̸= x and At = A(y, x) ∈ M with no nominal on ρAt , the atom A−

qf
At ,q

f
At

(x, •).
Moreover, we let M2 contain
• all atoms from M not containing the variable X,
• for every y ̸= x and At = A(x, y) ∈ M with a nominal on ρAt , the atom A−

qf
At ,q

m
At

(y,oAt),
• for every y ̸= x and At = A(y, x) ∈ M with a nominal on ρAt , the atom Aqi

At ,q
m
At

(y,oAt),
• for every y ̸= x and At = A(x, y) ∈ M with no nominal on ρAt , the atom A−

qf
At ,q

i
At

(y, •),
• for every y ̸= x and At = A(y, x) ∈ M with no nominal on ρAt , the atom Aqi

At ,q
f
At

(y, •).
It can now be readily checked that M = M1 ▷◁ M2 and, by assumption, M1 and M2 hold
tightly in d′ with a smaller spread than M. This concludes this case.

b) M is local, i.e. it contains •. Then we need to consider the following cases:
i. There exists an atom At = A±

q1,q2
(x, •) ∈ M such that the corresponding path ρAt crosses

d at least twice, i.e. ρAt has the shape η(x) ⇝ρ′ d ⇝ρ′′ d with ρ′′ non-empty. Let q′ be
the state of A±

q1,q2
associated with the intermediate occurrence of d (i.e. after reading ρ′).

Then the partial round-trip query {A±
q′,q2

(•, •)} holds in d and therefore, by induction
hypothesis d ∈ QI

{A±
q′,q2

(•,•)}. On the other hand, thanks to ρ′ we know that A±
q1,q′(x, •)}
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is realized under η and therefore also M′ = M \ {A±
q1,q2

(x, •)} ∪ A±
q1,q′(x, •)} holds at d.

Obviously, M′ has smaller spread than M so by induction hypothesis d ∈ QIM′ . But from
d ∈ QIM′ and d ∈ QI

{A±
q′,q2

(•,•)} follows d ∈ QI
M via Rule 9.9.

ii. No atom of the form At = A±
q1,q2

(x, •) ∈ M is realised by a path with a premature
occurrence of d.
A. there exists an x ∈ V with d = η(x). We distinguish two cases:

(α) |V | = 1. Then M must be an original monodic partial query (since all atoms
A±

q1,q2
(x, •) must be realised by empty paths by assumption, from which follows

q1 = q2). We will proceed to show that d ∈ (
d

PrecM )I , then d ∈ QI
M follows via

Rule 9.8. For atoms of the form A±
q,q′(x,o) from M, the fact that M holds at d entails

that {A±
q,q′(•,o)} holds at d as well (with a smaller spread). Thus by induction hy-

pothesis we infer d ∈ QI
{A±

q,q′ (•,o)}. For atoms A(x, x) from M, realisation of A(x, x)
means that there exists an initial state q, a final state q′ such that a Aq,q′(x, x) is also
realized. Thus {Aq,q′(•, •)} has a match at η(x) = d. By the induction hypothesis
we infer d ∈ QI

{Aq,q′ (•,•)}.
(β) |V | > 1. In this case we will provide M1 and M2, both holding tightly in d with

a smaller spread than M, such that M = M1 ▷◁ M2, so the claim follows from the
induction hypothesis via Rule 9.11. We let M1 contain
– all atoms from M containing no variables but X,
– for every y ̸= x and At = A(x, y) ∈ M with a nominal on ρAt , the atom Aqi

At ,q
m
At

(x,oAt),
– for every y ̸= x and At = A(y, x) ∈ M with a nominal on ρAt , the atom A−

qf
At ,q

m
At

(x,oAt),
– for every y ̸= x and At = A(x, y) ∈ M with no nominal on ρAt , the atom Aqi

At ,q
i
At

(x, •)
– for every y ̸= x and At = A(y, x) ∈ M with no nominal on ρAt , the atom A−

qf
At ,q

f
At

(x, •).
Moreover, we let M2 contain
– all atoms from M not containing the variable X,
– for every y ̸= x and At = A(x, y) ∈ M with a nominal on ρAt , the atom A−

qf
At ,q

m
At

(y,oAt),
– for every y ̸= x and At = A(y, x) ∈ M with a nominal on ρAt , the atom Aqi

At ,q
m
At

(y,oAt),
– for every y ̸= x and At = A(x, y) ∈ M with no nominal on ρAt , the atom A−

qf
At ,q

i
At

(y, •),
– for every y ̸= x and At = A(y, x) ∈ M with no nominal on ρAt , the atom Aqi

At ,q
f
At

(y, •).
It can now be readily checked that M = M1 ▷◁ M2 and, by assumption, M1 and M2
hold tightly in d with its spread smaller than M. This concludes this case.

B. there are no x ∈ V with d = η(x). Recall that d = η(•) as well as all η(x) with x ∈ V

occur in the same tree part of the quasi-forest model I. Consider the minimal subtree Υ
containing all these domain elements, oriented such that d is the root. Consider cases:

(α) d has exactly one child d′. Note that for any atom At = A±
q,q′(x, •) ∈ M, the

corresponding path ρAt is free of named individuals by assumption and has no
premature occurrence of d. Thus, any such paths reaching η(•) from some η(x)
must have the same domain element d′ as the penultimate node. This means that
whenever we have an atom of the form At = A±

q,q′(x, •) the path ρAt realising it
can be written as η(x) ⇝ρ′ d′ ⇝rAt d for some role rAt where A± realises state
transitions q →ρ′

q′′ and q′′ →rAt q′ . Let M′ be the set of atoms obtained from M by
replacing each atom of the form A±

q,q′(x, •) with A±
q,q′′(x, •). Thus M′ holds tightly

at d′. Since its spread is smaller that the spread for M, we invoke the induction
hypothesis and infer d′ ∈ QI

M′ . By using Rule 9.10 we conclude d ∈ QI
M.

(β) d has more than one child. Then pick one child d′ and let V1 contain all variables
from V which are mapped to d′ or one of its descendants. Let V2 = V \ V1. Note
that by construction, for any atom At = A(x, y) ∈ M with x ∈ Vi and y ̸∈ Vi,
the corresponding path ρAt must either contain some named individual oI

At (with
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qi
At ,qm

At , and qf
At as defined above) or, otherwise it must contain d. In the latter case,

let qi
At ,qm

At , and qf
At be defined as for the named-individual-crossing paths, just with

qm
At being the state associated with d.

We will now provide M1 and M2, both holding tightly in d with its spread smaller
than M, such that M = M1 ▷◁ M2, so the claim follows from the induction hypothesis
via Rule 9.11. For i ∈ {1, 2}, we let Mi contain
– all atoms from M containing only variables from Vi,
– for every x ∈ Vi and y ̸∈ Vi with At = A(x, y) ∈ M and a named individual on

ρAt , the atom Aqi
At ,q

m
At

(x,oAt),
– for every x ∈ Vi and y ̸∈ Vi with At = A(y, x) ∈ M and a named individual on

ρAt , the atom A−
qf

At ,q
m
At

(x,oAt),
– for every x ∈ Vi and y ̸∈ Vi with At = A(x, y) ∈ M and no named individual on

ρAt , the atom Aqi
At ,q

m
At

(x, •), and
– for every x ∈ Vi and y ̸∈ Vi with At = A(y, x) ∈ M and no named individual on

ρAt , the atom A−
qf

At ,q
m
At

(x, •).
It can now be readily checked that M = M1 ▷◁ M2 and, by assumption, M1 and M2
hold tightly in d with smaller spread than M. This concludes this case.

This finishes all cases, and therefore the proof of Lemma 9.8.

9.4 Conclusions and Extra Results

In this chapter we have established tight complexity bounds for expressive querying in very expressive
DLs under the assumption of succinct (i.e. binary) encoding of number restrictions. Arguing along the
lines of the original work of Calvanese et al. [CEO09], we can leverage our findings to strengthen their
results on query containment as well as the SR family of DLs as follows:

Theorem 9.13
One can decide in time doubly-exponential w.r.t. the input KB K and queries q, q′ whether q′ is
contained by q modulo K (i.e. whether every model of K satisfying q′ also satisfies q) whenever:

(i) K is written in ZOI or ZOQ, and the queries q, q′ are P2RPQs.
(ii) K is written in ZIQ, the query q is a P2RPQ, and q′ is a CQ.

The complexity drops to a single exponential time if the number of atoms occurring in q is bounded
by a constant.

Proof. It follows by a reduction from the containment problem to the satisfiability problem,
stated right above Theorem 4.3 in the original work on ZOIQ by Calvanese et. al [CEO09].

As already discussed in Section 7.8, the decidable expressive logics from the SR family, the logical
core of OWL2, can be equivalently rewritten into the Z family [CEO09, Prop. 5.1]. As the rewriting yields
an exponential blow-up, we conclude the following theorem:

Theorem 9.14
For KBs K written in SRIQ, SROQ or SROI, and P2RPQs q we can decide whether K |= q in
triply-exponential time w.r.t. |K|+|q|.

Finally, our results apply to the query entailment problem for the two-variable guarded fragment
extended with counting quantifiers, via a relatively easy translation [BR19, Sec. 6] into the DL ZIQ.

There are plenty of open questions left for future work. One research direction is to lift our theorems,
stated in terms of combined complexity, to the case of data complexity. We are confident that we have a
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solution to do so, and plan to write and publish the result after a successful defence of this dissertation.
Another, very ambitious task is to try to establish the decidability of the entailment problem in case of the
finite model reasoning. Some serious progress was made by Gutowski et al. [GGIM22] who proved the finite
entailment of conjunctive regular path queries for ALC is 2ExpTime-complete. Lifting their results even
to the case of plain Z seems to be very difficult. Finally, one can move to the more expressive classes of
query languages. While the extension of our query formalism by nesting [BCOv14] seems straightforward
without impacting complexities, our technique seems not readily extendable to capture more elaborate
query languages like Monadically Defined Queries [RK13] or Regular Queries [RRV17].
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Motivation and Our Contribution

As mentioned at the end of the previous chapter (as well as in the Preliminaries), dealing with the query
entailment problem under the finite model semantics is a challenging task. The main obstacle is the fact
that most of the existing techniques are automata-based and inherently rely on the presence of infinite
forest-like models of knowledge-bases. Thus, reasoning about finite models requires a completely different
set of techniques. Unfortunately, we currently lack the toolkit for attacking these kinds of problems. We
hence lower our expectations a bit, and aim for a more modest goal. In contrast to the previous chapter,
we will be interested in the entailment of positive existential queries (i.e. we drop Kleene’s star from the
syntax of P2RPQs). Such queries are simply positive boolean combinations of conjunctive queries, still
very relevant in DLs as they are a premier query language for reasoning with classical, relational databases.
Under this setting, we would like to obtain tight results on the finite entailment problem for the most
expressive members of the Z family, namely ZIQ, ZOQ, and ZOI. As we already solved the case ZIQ
in the previous chapters (consult Section 5.4 if needed), it suffices to work with ZOQ and ZOI. It turns
out that (except for our result from the previous chapters) nearly nothing is known about finite model
reasoning in the Z family of DLs. The notable exception is the relatively recent work of Calvanese et
al. [COv16, Thm. 6], in which the authors established the finite model property of ZOI, i.e. that every
satisfiable ZOI-KB also has a finite model. Thus the finite and unrestricted satisfiability problems for
ZOI coincide. Regarding the finite query entailment problem, to the best of our knowledge, nothing was
known even about plain Z.

Our contribution. In this chapter we show that both ZOQ and ZOI are finitely controllable, i.e. for
any ZOQ-KB or ZOI-KB K and any PEQ q it holds that K entails q if and only if K finitely entails q.
Alternatively, we can say that the existence of a countermodel for K and q coincides with the existence
of a finite countermodel for K and q. This allows one to reuse the existing algorithms for the previous
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section and infer that the finite PEQ entailment problem for ZOI and ZOQ are 2ExpTime-complete.
Similarly to the previous section, our results also transfer to the expressive members of the SR family
of DLs (assuming that non-simple roles do not appear in queries) as well as to the query containment
problem. Our proof is based on an intricate finite model construction which starts from an (infinite)
quasi-forest model, distinguishes in this model some finite pattern fragments, and carefully forms a new
finite model out of some finite number of copies of those fragments. The construction itself resembles the
construction already used in Section 5.2 (in fact, the construction from Section 5.2 is an adaptation of
the forthcoming construction).

Overview of the Chapter and Prerequisites

We assume that the reader is familiar with the notion of quasi-forest models from Section 7.1, the syntax
and semantics of ZOIQ from Section 2.10, as well as the section concerning automata (Section 2.6),
decision problems (Section 2.5), and “local” queries (Section 2.4) from the Preliminaries.

As we establish a single result here, the whole chapter is composed of a single section. In Section 10.1.1
we introduce certain simplifications of KBs, queries and models. We also define the relevant notions
of types. In Section 10.1.2 we introduce the vital notion of components. We employ components in
Section 10.1.3 to construct a finite structure J out of the infinite countermodel I for a KB K and a query
q. In Section 10.1.4 we show that J |= K. In Section 10.1.5. Concerning the content of this chapter, there
are no immediate open problems to solve.

10.1 Finite Controllability of ZOQ and ZOI

The whole chapter is devoted to a single proof of the following theorem.

Theorem 10.1
The logics ZOQ and ZOI are finitely controllable (for the class of positive existential queries).

As an immediate corollary, by the known complexity results concerning the satisfiability and query
entailment for the members of the Z family of DLs (see Lemma 7.6 and Theorem 9.12) we have:

Corollary 10.2
The finite KB satisfiability problems for ZOQ and ZOI are ExpTime-complete, while their finite
PEQ entailment problems are 2ExpTime-complete (even when the numbers in number restrictions
are encoded in binary).

In DB theory, one of the most prominent reasoning problems is query containment, which received also
some attention from the DL community [COv11, BLW12]. Arguing along the lines of [CEO09] we can lift
our findings to finite query containment problem. Missing definitions are in [CEO09]. Up to our knowledge
it is the first result on finite containment of regular queries in the local ones, in the DL setting.

10.1.1 Warming Up

We next proceed with the proof of Theorem 10.1. Until the end of this chapter we fix a satisfiable KB
K := (A, T ) written either in ZOQ or ZOI KB, a positive existential query q and an interpretation I
being a countermodel for K and q, i.e. I |= K but I ̸|= q.

Simplifications In what follows we introduce a few simplifications concerning K, q, and I.
(I) First, we assume that K has the empty ABox. This is w.l.o.g. as all statements from the ABox can

be internalised in TBox in the presence of nominals. Moreover, we assume that the TBox contains
all the concept and role names that appear in the query q (they can be inserted to T in some dummy
way, if necessary). Finally, by Lemma 2.26 we assume that T is in Scott’s normal form.
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(II) We assume that for every GCI A ≡ ∃A.⊤ from K and every state q of A, the KB K contains the
GCI Aq ≡ ∃Aq.⊤, where Aq is a fresh concept name, and Aq is the NFA obtained by changing the
initial state of A to q.

(III) By rewriting q into DNF we can assume w.l.o.g. that q is a UCQ q :=
∨

i qi. We let K be the
maximal number of variables across the queries qi.

(IV) Finally, we enforce some additional conditions on I. As the first step, we can assume by Lemma 7.5
that I is a quasi-forest model that is N-bounded by some positive integer N. Moreover, we assume
that I downward realise all the automata present in K. We always assume that if the sequence d · n

belongs to ∆I for some n ∈ N then for all positive integers n′ < n we have d · n′ ∈ ∆I . This can
be achieved with a simple renaming, and allow us to refer to d·n as the n-th child of d. Moreover,
w.l.o.g. we assume that I interprets all the concept and role names that do not appear in K as ∅.

When reasoning about trees and forest we employ the following terminology. A descendant of d ∈ ∆I

from I is any node of the form dw ∈ ∆I for w ∈ N+. The substructure SubtreeI(d), called the subtree
of d, is the substructure I induced by d and its descendants. Sometimes we also look at descendants at a
certain distance from d. Hence, we denote with Subtree≤n

I (d) the substructure of I induced by d and all
of its descendants of the form dw for some w ∈ N+ of length at most n.

We will find a finite countermodel J for K and q by distinguishing certain substructures of I and
carefully linking together some number of their copies. The construction and its correctness proof will
be nearly the same for ZOQ and ZOI; we will pinpoint the minor differences when necessary. In our
construction a vital role is played by various notions of types. We introduce them next.

Types Recall that given an interpretation I and a subset ∆0 ⊆ ∆I we denote by I↾∆0 the restriction
of I to ∆0, that is the structure with the domain ∆0, mapping each concept name A to ∆0 ∩ AI , each
role name p to pI ∩ ∆0 × ∆0, and mapping each individual name o to oI if oI ∈ ∆0, leaving oI undefined
otherwise. For d ∈ ∆I we define its atomic type, denoted atpI(d), as the isomorphism type (as usually
defined in model theory) of I↾({d}∪NomI), where NomI = {oI | o ∈ NI}. Note that structures have equal
isomorphism type if and only if they are isomorphic. For quasi-forest models we also want to know how
the structure consisting of the elements being at most K steps below d looks like (recall that K is the
maximal number of variables in the qi). Formally, the downward type of d, written: dtpI(d), is the
isomorphism type of I↾(Subtree≤K

I (d)∪NomI), where We will call the downward types of the nominals the
nominal (downward) types. We denote the sets of downward and nominal types appearing in I resp.
with DTPI and NTPI . The said sets are finite due to finite branching of I and the fact I interprets only
finitely many concept and role names as non-empty sets.

10.1.2 Preparing building blocks

Our next step is to define components that will serve as basic building blocks in the construction of J .
For each downward type π ∈ DTPI we fix a domain element dπ ∈ ∆I having such a downward type. We
are going to select a finite subset of SubtreeI(dπ), which will be sibling- and parent-closed (up to dπ), i.e.
for each element from such a subset either all of its children belong to it or none of them (resp., if an
element d is not equal dπ then its parent belongs to the subset). Such a subset will be the domain of a
building block called a called the π-pre-component PreCmpI(π). We create them as follows.

Definition 10.3 Let π ∈ DTPI be a downward type. A π-pre-component PreCmpI(π) is the
smallest set of domain elements of I that is sibling- and parent-closed such that:

• It contains the domain of Subtree≤K
I (dπ).

• For every GCI A ≡ ∃A.⊤ from K for which dπ ∈ AI there exists a downward path ρ :=
d1, d2, . . . , dk realising A and starting from dπ with the minimal possible number of nominal
elements on it. We consider two cases:

– If ρ is nominal-free and dk is a member of PreCmpI(π).
– Otherwise, for the smallest j for which dj is a nominal, PreCmpI(π) contains dj−1.
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The component for the downward type π is the interpretation Cπ := I↾PreCmpI(π). Note that
components are interpretations based on finite trees, and hence we employ the usual terminology from
graph theory. In particular, we will speak about their leaves. However, dπ will be called the origin of Cπ,
rather than its root, to avoid confusion with the roots of the interpretation I.

10.1.3 Assembling a finite model J

The interpretation J will be composed of a finite number of copies of the components Cπ, carefully
connected to preserve satisfaction of K and non-satisfaction of q. We will use sub- and super-scripts to
distinguish such copies. As expected, a unique copy of Cπ for every nominal type π from NTPI will be
used—this guarantees the uniqueness of nominals. We remark that the scheme of joining components is
somehow similar to the one used recently by Danielski and Kieroński [DK19] to build small finite models
for finitely-satisfiable formulae in the extension of the Unary Negation Fragment.

Let L be the maximal number of leaves across all the components, and let M be the maximal number
of children of a node in I (note that L and M are finite by design and the finite branching of I).

The domain The domain of J is

∆J :=
⋃

π∈NTPI

∆π ∪
⋃

∆π′,b
π,ℓ,m,

where the second union ranges over π ∈ DTPI \NTPI , π′ ∈ DTPI , 1≤ℓ≤L, 1≤m≤M and b ∈ {0, 1}. The
presence of various indices may look cryptic but we will clarify it soon, when describing the “linking process”.

Concepts and roles inside a single copy The above sums are disjoint and the elements of the
decorated ∆∗,∗

π,∗,∗ are just disjoint copies of the corresponding ∆π. For every π, π′, ℓ, m, b as above, we
make Dπ′,b

π,ℓ,m := J ↾∆π′,b
π,ℓ,m

isomorphic to Cπ; similarly for every π ∈ NTPI we make Dπ := J ↾∆π
isomor-

phic to Cπ. We naturally define the pattern function f : ∆J → ∆I that maps an element from ∆J to
its corresponding element in ∆I . Note that f(oJ ) = oI for all o ∈ NI.

Roles between copies It remains to define the roles between various components of J .
• Connections involving nominal elements.

Roles between d ∈ ∆J and oJ ∈ NomJ are defined according to f. For all role names r ∈ NR we
put (d,oJ ) ∈ rJ if and only if (f(d), f(oJ )) ∈ rI . This way the map f preserves atomic types.

• Linking different components.
For every component, its leaves will be connected to the origins of other components, in order to
provide the leaves their “local witnesses”. Our strategy is as follows. For every type π ∈ DTPI \NTPI

the origin of Dπ′,1−b
π,ℓ,m will serve as the m-th child of the ℓ-th leaf of any of the components D∗,b

π′,∗,∗,
or, in the case of b = 1 and π′ ∈ NTPI , of the component Dπ′ .1 This explains our naming scheme.

. . . m

l

1 2

π′

πm Dπ′,1−b
πm,ℓ,m

D∗,b
π′,∗,∗ or Dπ′

Formally, let d′ be the ℓ-th leaf of some component D∗,b
π′,∗,∗ or Dπ′ (in the latter case set b := 1), let

d1, . . . , dk be the children of f(d′) in I with downward types (in I) π1, . . . , πk. For all m = 1, . . . , k

we link d′ with the origin of Dπ′,1−b
πm,ℓ,m in the same way (i.e. by the same atomic roles) as f(d′) is

joined with dm in I. Repeat this step for all leaves and all components.
• For any pair of elements which we have not explicitly connected in the above steps, we leave it

unconnected (we do not join them by any role).
This finishes the definition of J . As the next step we establish correctness of our construction.

1The index b is not crucial here, but using it allows us to avoid e.g. the need to link leaves of a component with its origin.
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10.1.4 Preservation of knowledge base satisfiability

For the correctness of our construction, we establish that our construction is modelhood preserving.

Lemma 10.4 The interpretation J constructed in Section 10.1.3 is a model of K.

The rest of this section is dedicated to the proof of the above lemma. As K is in Scott’s normal form,
it suffices to consider the following cases.

1. Preservation of GCIs of the form A ≡ {o}, A ≡ B, A ≡ ¬B, A ≡ B ⊔ B′, A ≡ ∃s.Self.
This follows from the fact that the satisfaction of such GCIs depends on the atomic type of a domain
element. In our construction we have that the atomic types of any d ∈ ∆J and f(d) are equal, and
thus such GCIs are fulfilled by J .

2. A ≡ (⩾n s).⊤. Take any element d ∈ ∆J , and note that it suffices to show that d and f(d) have
equal number of s-successors. As such GCIs are only available in ZOQ, the possible s-successors of
d are only its children and (possibly) nominals. Let us consider two cases.

• If d is not a leaf of its component, then the set of its s-successors is limited only to its children
and, possibly, to nominal elements. By design, J restricted to these elements is isomorphic to
I restricted to f(d), its children and the nominal elements of I.

• If d is a leaf then in our construction (1st item of the linking process), note that we link d with
nominals in exactly the same way as f(d) is linked to them in I. Moreover if f(d) has ℓ children
e1, . . . eℓ in I then d is connected to exactly ℓ other domain elements (origins) d1, d2, . . . , dℓ in
a way that (d, di) are in exactly the same atomic roles in J as (f(d), ei) are in I — see the
2nd point of the construction.

3. J |= A ⊑ ∃A.B for all GCIs A ⊑ ∃A.B that appear in K.
We first show by induction on k that for any origin e in J and any GCI having the form C ⊑ ∃A′.D
such that e ∈ CJ the following condition holds:
“if d := f(e) has a downward path witnessing ∃A′.D with at most k occurrences of nominals on it

(not counting the first occurrence of e, in case e is nominal) then e ∈ (∃A′.D)J ”.
Note that d is an origin of a component in I, and (since f retains atomic types) we have d ∈ CI .
If k = 0 then during the construction of the component with the origin d we chose a path starting
from d and witnessing ∃A′.D with no nominal elements on it. Such a path is then included inside
the component of d, and thus its isomorphic copy is contained in the component of e. Thus e ∈ CJ .
Consider now k > 0. Let ρ := ρ′·d′·ρ′′ be the downward path for d and ∃A′.D chosen during the
construction of the component of d with d′ being the first occurrence of a nominal. An isomorphic
copy ζ ′ of ρ′ is contained in the component of e by our construction. Assume that in the run of the
NFA A′ realising ρ we have that A enters a state q when reading (first time) a role-letter leading
to d′. Then, recalling that we appended extra GCIs to K, we have A′

q ≡ ∃A′
q.D, for some concept

name A′
q among the GCIs. Clearly, d′ ∈ (∃A′

q.D)I and thus d′ ∈ (A′
q)I . Since d′ is a nominal then

there is exactly one element e′ in J such that f(e′) = d′. Again, since f retains atomic types we have
e′ ∈ (A′

q)J . By the inductive assumption e′ ∈ (∃A′
q.D)J . Let ζ ′′ be a path starting from e′ and

witnessing the satisfaction of ∃A′
q.D. Note that the role-connections between the last node of ζ ′ and

e′ are identical to the role-connections between the last node of ρ′ and d′ (see item “connections
involving nominal elements”), so we can finally compose a path starting from e and witnessing the
satisfaction of ∃A′.B as ζ ′ζ ′′, so e ∈ (∃A′.D)J . This finishes our inductive proof.
Take now any e in J such that e ∈ AJ . We show that e ∈ (∃A.B)J . If e is an origin then this
follows from the property inductively proved above. If not, let D be the component of e, d := f(e),
and C be the component of d. Note that C and D are isomorphic. Since f retains atomic types we
have that d ∈ AJ . Take any downward path ρ starting from d and witnessing the satisfaction of
∃A.B. If this path is fully contained in C then its isomorphic copy, starting from e is contained
in D and then e ∈ (∃A.B)J . Otherwise, let as write ρ = ρ′·d′·ρ′′, where d′ is the first element not
belonging to C (observe that d′ may, but need not to be nominal). Then an isomorphic copy ζ ′ of ρ′,
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starting at e, belongs to D. Assume that A, when accepting a word corresponding to ρ and reading
(for the first time) the role-letter leading to the element d′ enters a state q. By our normal form we
have a GCI Aq ≡ ∃Aq.B. Clearly d′ ∈ (∃Aq.B)I and thus d′ ∈ AI

q . By our scheme of joining the
components the last element of ζ ′ is joined to some origin e′ in J isomorphically to how the last
element of ρ′ is joined to d′ in I. Moreover the downward types of d′ and f(e′) are the same. This
in particular means that the atomic types of d′ and e′ are the same, so e′ ∈ AJ

q . Recalling that e′ is
an origin we have already proved that e′ ∈ (∃Aq.B)J . Let ζ ′′ be a witness path for e′ and ∃Aq.B.
It is readily verified that the path ζ ′ζ ′′ is a path starting from e′ and witnessing the satisfaction of
∃A.B, which implies that e ∈ (∃A.B)J . This finishes the proof.

4. J |= ∃A.B ⊑ A. The proof goes by induction on k where the inductive assumption states:
“for any C, D, ∃A′ such that the TBox T contains C ≡ ∃A′.D and for any d ∈ (∃A′.D)J for which

there is a path ζ witnessing the satisfaction of ∃A′.D on which the total number of component
changes is at most k we have d ∈ CJ .”

In the case when k = 0 note that the whole path ζ := d1(= d), d2, . . . , dn witnessing the satisfaction
of ∃A′.D in J is contained in a single component. Hence, the path f(ζ) = f(d1), f(d2), . . . , f(dn) is
a witness path for f(d) and ∃A′.D. Thus f(d) ∈ CI . As f preserves atomic types, we get d ∈ CJ .
Otherwise take any k > 0 and assume that the hypothesis holds for all smaller k. Let ζ := d1(=
d), d2, . . . , dn once again be the desired path witnessing that ∃A′.D holds, and let e be the first
domain element on ζ being in a different component than d. Assume that A′ in the run witnessing
that ζ |= A′ ends in the state q after reading a role leading to e. As our TBox is in normal form
it also contains Cq ≡ ∃A′

q.D. Let ζ ′ be the suffix of ζ starting at e. Clearly ζ ′ starts from e and
witnesses the satisfaction of ∃A′

q.D with one component change less than ζ. So, by the inductive
assumption, we have that e ∈ (Cq)J . Thus we also have that f(e) ∈ (Cq)I (since f preserves atomic
types). So there is a path ρ′ in I such that it is a witness path for f(e) and ∃A′

q.D. Note that, by the
construction of components, the path f(d), f(d2), . . . f(dj) = f(e) is isomorphic to the j-element prefix
of ζ. Indeed, there are two cases: (1) e is not a nominal element and then we know that dj−1 and e
are linked by exactly the same atomic roles as f(dj−1) and f(e): it follows from the 2nd item of the
linking process; or (2) e is a nominal and then we see that the role-connections between dj−1 and e
are identical to the ones between f(dj−1) and f(e) by the 1st item of the linking process. This implies
that there is a run of A′ from its initial state that starts from f(d) and ends on f(dj) = f(e) in state
q. By concatenating the mentioned path and ζ ′ we obtain a witness path for f(d) and ∃A′.D. Hence,
f(d) ∈ CI , which (by the preservation of atomic types by f) allows us to conclude that d ∈ CJ .

This concludes the proof that the constructed interpretation J is indeed a model of K.

10.1.5 Preservation of query (non) entailment

We next establish that J does not satisfy q.

Lemma 10.5 The interpretation J constructed in Section 10.1.3 does not satisfy the query q.

The rest of this section is dedicated to the proof of the above lemma. Towards a contradiction, assume
J |= q. Thus, there is a CQ qi such that J |= qi and let η be a match witnessing it.

Query graphs Let ∆qj be the image of η. We will define a homomorphism from J ↾∆qj
to I, which

will provide us with a match of qj in I, contradicting our initial assumption that I ̸|= q. For convenience
we treat separately the role-connections among non-nominal elements of ∆qj

and the role-connections
involving at least one nominal element. Let us denote with ∆∗

qj
the set ∆qj

\ NomJ and let G∗
qj

be the
Gaifman graph of J ↾∆∗

qj
(i.e. the graph, whose nodes are the domain elements, and an undirected

edge between a pair of nodes is present if the nodes are connected by some atomic role). Note that the
edges of G∗

qj
correspond to parent-child role-connections inside components of J or the role-connections

between leaves of components and (non-nominal) origins of some other components. Let G1, . . . , Gm be
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the connected components of G∗
qj

. To avoid notational clatter we will denote a graph and the set of its
nodes with the same letter.

Active, Lower, and Upper Components We next construct a homomorphism hk from J ↾Gk
into

∆I , for k = 1, . . . , m. Setting additionally h0 : NomJ ∩ ∆qj
→ NomI in the natural way: h0(oJ ) := oI ,

we will get the desired homomorphism h :=
⋃m

k=0 hk from ∆qj
into ∆I . Consider a single Gk. Call the

components of J containing nodes of Gk active (for Gk). If there is only one active component then
as hk we take the restriction of f to Gk. Otherwise call an active component upper (resp. lower) if at
least one of its leaves (resp. its origin) belongs to Gk. Observe that for an active component it cannot
be the case that both its origin and a leaf belong to Gk (since the path leading from the origin to a leaf
has at least K+1 nodes and Gk is connected and has at most K nodes), and that each active component
is either upper or lower (since different components may be joined only by edges between leaves and
origins). The origins of the lower components are not nominal elements. By our strategy of joining the
components it must be the case that either all the upper components are of the form D∗,b

π,∗,∗ for some fixed
π ∈ DTPI \ NTPI and b ∈ {0, 1}, meaning that they are all isomorphic to Cπ or there is only one upper
component Dπ for some π ∈ NTPI , which is then isomorphic to Cπ. For every d′ of Gk belonging to an
upper component we set hk(d′) := f(d′). Note that the images of all such d′ are members of the single
component Cπ in I. It remains to define hk for the elements of the lower components.

Defining the desired homomorphisms Consider any lower component Dπ,b
π′,i,j and its origin e′ (of

type π′). Let d′ be the i-th leaf of an upper component. In our process d′ has been connected (via some
role) to e′ and role connections are identical to the role-connections between the i-th leaf of Cπ and
its j-th child e in I. Denoting e∗ the origin of Cπ′ , by the definition of downward types we have that
I↾Subtree≤K

I (e) is isomorphic to the upper part Subtree≤K
I (e∗) of Cπ′ . Let g : Subtree≤K

I (e∗) → Subtree≤K
I (e)

be the appropriate isomorphism. For all d from Dπ,b
π′,i,j we set hk(d) := g(f(d)). Let h :=

⋃m
k=0 hk.

d′

e′

π π π

π′ π′′

lower

upper ≈ ≈

≈g′
≈g′′Cπ′

π′

e∗ π′ π′′ π′′

π

h(e′) = e
h(d′)

f

f
f

Cπ

Cπ′′

J
I

Figure 10.1: Constructing the homomorphism hk. For the upper components hk coincides with f, for the
lower ones it coincides with g · f, for the appropriate g.

Correctness We explain that h is indeed a homomorphism. Concept preservation follows from the fact
that f and the gs used in the definition of the hk preserve atomic types and that the nominal elements of
J have the same atomic types as the corresponding nominal elements of I. Assume now that (d′, e′) ∈ rJ

for some d′, e′ ∈ ∆qj and we will show (h(d′), h(e′)) ∈ rI . We consider the following three cases:
1. d′, e′ ∈ ∆∗

qj
and they belong to the same component. Then (h(d′), h(e′)) ∈ rI holds, since f acts as

a partial isomorphism when restricted to a single component and g is a partial isomorphism in I.
2. d′, e′ ∈ ∆∗

qj
and they belong to different components. Then d′ is a leaf of a component and e′ is an

origin of another component, or vice versa; (w.l.o.g. we focus on former case). Looking at Figure 10.1
we can see that h(e′)(= f(g(e′)) for the appropriate g) is a child of h(d′)(= f(d′)). By the construction
of J the connection between d′ and e′ in J is isomorphic to the connection between h(d′) and h(e′)
in I (from which the claim follows).
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3. At least one of d′, e′ ∈ ∆qj
\ ∆∗

qj
(⊆ NomJ ).

Follows from the fact that when defining J we always join every element d′ with the nominal
elements in J in the same way as f(d′) is joined with the corresponding nominals in I, and that
f(d′) and g(f(d′)) are joined with nominals in I in the same way (equal downward types!).

This concludes the proof that J ̸|= q, and also the proof of:

Corollary 10.6
The interpretation J is a finite countermodel for K and q.

10.2 Applications and Open Problems

In this section we presented a novel model-theoretic construction that allowed us to establish that the
DLs ZOQ and ZOI are finitely-controllable for the class of positive existential queries. We believe that
this kind of a construction may have many further applications. One application is the notion of scattered
unravellings, presented in Section 5.2. We also recently used a similar construction (together with Benno
Fünfstück) to establish that a certain restriction of the guarded fragment is expressively complete in the
sense of Van Benthem characterisation theorems. What is more, the technique seems to be applicable
also to the case of µ-calculus with graded modalities and nominals.

Similarly to the previous section, by arguing along the lines of the original work of Calvanese et
al. [CEO09], we can leverage our findings to strengthen their results on query containment as well as the
SR family of DLs as follows (compare with Theorem 9.13)

Corollary 10.7
One can decide in time doubly-exponential w.r.t. the input KB K whether a P2RPQ q′ is finitely
contained by a CQ q modulo K (i.e. whether every finite model of K satisfying q′ also satisfies q) for
KBs K written in either ZIQ or ZOQ.

Once more, similarly to the previous section, we can lift [CEO09, Prop. 5.1] the results on the Z family
of DLs to the SR family. Compare to Theorem 9.14.

Corollary 10.8
For KBs K written in SROQ or SROI, and PEQs q that employs only simple roles, we can decide
whether K |= q holds in the finite in triply-exponential time w.r.t. |K|+|q|.
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Motivation

We recall that the logic ALCreg, the core of the Z family of DLs, was already studied in 1979 by the formal-
verification community [FL79], under the name of Propositional Dynamic Logic (PDL). Relationship
between (extensions of) PDL and ALCreg were investigated by De Giacomo and Lenzerini [DL94]. Note
that the spectrum of recognizable word languages is relatively wide. Hence the question of whether regular
constraints in path expressions of ALCreg can be lifted to more expressive classes of languages received a
lot of attention from researchers. We call such extensions of PDL non-regular. After the first undecidability
proof of satisfiability of ALCreg by context-free languages [HPS81b, Cor. 2.2], several decidable cases were
identified. For instance, Koren and Pnueli [KP83, Sec. Decidability] proved that ALCreg extended with
the simplest non-regular language r#s# := {rnsn | n ∈ N} for fixed roles r , s is decidable; while combining
it with s#r# leads to undecidability [HPS81a, Thm. 3.2]. This surprises at first glance, but as it was
shown later [LLS07, Thm. 18], PDL extended with a broad class of input-driven context-free languages,
called visibly pushdown languages [AM09, Sec. 5], remains decidable. This generalises all previously known
decidability results, and partially explains the reason behind known failures (e.g. the languages r#s#

and s#r# cannot be both visibly-pushdown under the same partition of the alphabet). Three years ago,
the decidability boundary was pushed even further [BL21, Ex. 1], by allowing for mixing modalities in
visibly-pushdown expressions (for instance, allowing the user to specify that “for all positive integers n ∈ N,
all t-successors of rn-reachable elements can sn-reach an element fulfilling φ”). Despite the presence of a
plethora of various results concerning non-regular extensions of PDL [KP83, HP84, HS96, HR93, BL21],
to the best of our knowledge the extensions of non-regular PDL with popular features supported by W3C
ontology languages are yet to be investigated. Such extensions include, among others, nominals (constants),
inverse roles (inverse programs), functionality or counting (deterministic programs or graded modalities),
and the Self operator (self-loops). The honourable exception is the unpublished undecidability result for
ALCreg extended with the language {rns(r−)n | n ∈ N}, where r− denotes the converse of r , from Göller’s
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thesis [Göl08] (answering an open problem of Demri [Dem07, Probléme ouvert 29]). The lack of results
on entailment of non-regular queries over ontologies is also intriguing, taking into account positive results
for conjunctive visibly-pushdown queries in the setting of relational-databases [LL15, Thm. 2].

Our Contribution and Overview of the Chapter

In this chapter of the thesis we contribute to the further understanding of the aforementioned questions by
proving various undecidability results. Section 11.2 establishes undecidability of the concept satisfiability
of ALCvpl extended with the seemingly innocent Self operator. Section 11.3 establishes undecidability of
the concept satisfiability of ALCvpl extended with nominals. More specifically, the undecidability arises
already if the only non-regular language present in concepts is r#s#. Finally, Section 11.4 establishes
undecidability of the query entailment problem over ALC-TBoxes, in which our queries can employ atoms
involving the language r#s#. We conclude with a list of open problem (Section 11.5).

11.1 Extra Preliminaries

This section is dedicated for providing missing definitions concerning visibly pushdown languages. We also
discuss related undecidability results that follow from the literature.

Visibly-pushdown languages. The class VPL of visibly-pushdown languages [AM09, Sec. 5]
(VPLs) is a well-behaved family of context-free languages, in which the usage of the stack in the underlying
automaton model is input-driven. For the exposition of VPLs we follow Löding et al. [LLS07, Sec. 2.2].

Definition 11.1 A pushdown alphabet Σ is an alphabet equipped with a partition (Σc, Σi, Σr). The
elements of Σc, Σi, and Σr are called, respectively, call letters, internal letters, and return letters.
A visibly-pushdown automaton (VPA) A over a pushdown alphabet Σ is a tuple (Q, I, F, Γ, T),
where Q is a finite set of states, I is a finite subset of initial states, F is a finite subset of final
states, Γ is a finite stack alphabet that contains a bottom-of-stack symbol ◁, and T is a transition
relation of type T ⊆ (Q × Σc × Q × (Γ \◁)) ∪ (Q × Σr × Γ × Q)) ∪ (Q × Σi × Q) .

The next definition concerns configurations and runs of visibly automata.

Definition 11.2 A configuration of a VPA A is a pair (q, σ) ∈ Q × (Γ \ ◁)∗◁ of a state q and
a stack content σ. For a letter a and a configuration (q, σ) we say that (q′, σ′) is an a-successor of
(q, σ), and denote this fact with (q, σ) →a (q′, σ′), if some of the following cases hold:

• a ∈ Σc, σ′ = γσ and there is a transition (q, a, q′, γ) ∈ T.
• a ∈ Σi, σ′ = σ and there is a transition (q, a, q′) ∈ T.
• a ∈ Σr, either (i) σ = γσ′ and there is a transition (q, a, γ, q′) ∈ T, or (ii) σ = σ′ = ◁

and (q, a,◁, q′) ∈ T.
Given a word w := a1 . . . an, a run of A on w is a sequence (q0,◁) →a1 (q1, σ1) →a2 . . . →an (qn, σn)
where q0 ∈ I. We call w accepted by A if there is a run of A on w in which the last configuration
contains a final state.

The language L(A) of A is composed of all words accepted by A. A language L (i.e. a set of words)
over Σ is visibly-pushdown if there is a VPA A over Σ for which L(A) = L.

Example 11.3. Suppose that r is a call letter and s is a return letter. Then the languages r#s# := {rnsn |
n ∈ N} and r#s># := {rnsn+m+1 | n, m ∈ N} are visibly-pushdown. Under such a choice of r and s, the
language s#r# is not visibly-pushdown. Moreover, every regular language is visibly-pushdown.

The logic ALCvpl. Throughout this chapter of the thesis, Σall is presented as a pushdown alphabet

Σvpl := ((NR)c, (NR)i ∪ {C? | C ∈ NC}, (NR)r) ,
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where the sets (NR)c, (NR)i, (NR)r form a partition of NR. Hence, we define ALCvpl as the restriction
of ALCall to visibly-pushdown languages over finite subsets of Σvpl, in which languages in existential and
universal restrictions are represented by means of nondeterministic VPA. The logic ALCvpl generalises
many other logics with non-regular path expressions, and has a 2ExpTime-complete [LLS07, Thm. 18–
19] concept satisfiability problem. As a special case of ALCvpl, we also consider a, rather minimalistic,
extension of ALCreg with the language r#s# for one fixed call letter r ∈ (NR)c and one fixed return letter
s ∈ (NR)r. We denote it here by ALCr#s#

reg . The concept satisfiability problem for ALCr#s#
reg was shown

to be decidable [KP83, Sec. Decidability] already 40 years ago by Koren and Pnueli, but its extensions
with popular features like nominals or functionality are still unexplored.

Tree models. Löding et al. established that ALCvpl possesses a tree-model property. An interpretation I
is tree-like if its domain is a prefix-closed subset of N∗, and for all r ∈ NR and d, e ∈ ∆I the condition
”if (d, e) ∈ rI , then e = dn for some n ∈ N” holds. An interpretation is single-role if any two domain
elements are connected by at most one role. The following lemma follows immediately from the proof of
Proposition 8 by Löding et al. [LLS07].

Corollary 11.4 (Consequence of the proof of Prop. 8 of [LLS07])
Every satisfiable ALCvpl-TBox T has a single-role tree-like model.a Moreover, for any query q pre-
served under homomorphisms we have that T ̸|= q if and only if there exists a single-role tree-like
model I |= T such that I ̸|= q.

aThe original work considers concepts only. However, all their results transfer immediately to the case of TBoxes,
as TBoxes can be internalised in concepts in the presence of regular expressions [BCM+03, p. 186]. The queries are not
mentioned either: the so-called tree model property is established with a suitable notion of unravelling, which produces
interpretations that can be then homomorphically mapped to the original interpretations (entailing the preservation
of the non-satisfaction of query).

Undecidability results for extensions of ALCvpl that follow from the literature. Other popular
(not yet mentioned) features supported by W3C ontology languages are inverse roles and role hierarchies,
defined as in Preliminaries. For bibliographical purposes, we would like to use the extra space given here
to briefly discuss how these features result in the undecidability of the respective extensions of ALCvpl. It
was shown by Stefan Göller in his PhD thesis [Göl08, Prop. 2.32] that ALCreg extended with the single
visibly-pushdown language {rns(r−)n | n ∈ N} is undecidable.

Corollary 11.5
The concept satisfiability problem for ALCvpl with inverses is undecidable, even if the only allowed
non-regular language is {rns(r−)n | n ∈ N} for fixed r , s ∈ NR.

We next discuss the extension of ALCvpl with role hierarchies. Fix r and r ′ to be call letters, and s
and s′ to be return letters. Suppose that an interpretation I satisfies all of the statements s ⊆ r ′, r ′ ⊆ s,
s′ ⊆ r , and r ⊆ s′. Clearly, for all elements d ∈ ∆I and concepts C we have that d ∈ (∃s#r#.C)I if and
only if d ∈ (∃r ′#s′#.C)I . Thus ALCvpl with role-hierarchies can express concepts of ALCreg extended with
both non-regular languages r#s# and s#r#. By undecidability of the concept satisfiability [KP83, Sec.
Decidability] of the latter we conclude:

Corollary 11.6
The concept satisfiability problem for ALCvpl with role-hierarchies is undecidable, even if the only
allowed non-regular languages are r#s# and r ′#s′# for fixed call letters r , r ′ and return letters s, s′.
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11.2 Negative results I: The Seemingly innocent Self operator

We start our series of negative results, by showing (in our opinion) a rather surprising undecidability result.
Henceforth we employ the Self operator, a modelling feature supported by two profiles of the OWL 2
Web Ontology Language [HKS06, KRH08]. Recall that the Self operator allows us to specify the situation
when an element is related to itself by a binary relationship, i.e. we interpret the concept ∃r .Self in an
interpretation I as the set of all those elements d for which (d, d) belongs to rI . We provide a reduction
from the undecidable problem of non-emptiness of the intersection of deterministic one-counter automata
(DOCA) [Val73, p. 75]. Such an automaton model is similar to pushdown automata, but its stack alphabet
is single-letter only. The Self operator will be especially useful to introduce “disjunction” to paths.

Let Σ be an alphabet and w := (a1, b1) . . . (an, bn) be a word over Σ × {c, r, i}. We call the word
π1(w) := a1 . . . an from Σ∗ the projection of w. An important property of DOCAs is that they can be made
visibly pushdown in the following sense.

Lemma 11.7 For any deterministic one-counter automaton A over the alphabet Σ, we can construct
a visibly-pushdown automaton Ã over a pushdown alphabet Σ̃ := (Σ × {c}, (Σ × {i}) ∪ {x}, Σ × {r})
with a fresh internal letter x such that all words in L(Ã) are of the form ã1xã2x . . . xãn for ã1, . . . , ãn ∈
Σ × {c, i, r}, and

L(A) = {π1(w̃) | w̃ := ã1 . . . ãn, ã1x . . . xãn ∈ L(Ã)}.

Proof sketch. Alur and Madhusudan proved [AM09, Thm. 5.2] that for any context-free lan-
guage L over Σ there exists a VPL L̂, over the pushdown alphabet (Σ×{c}, (Σ×{i}), Σ×{r}),
for which L = {π1(w) | w ∈ L̂} holds.1 Suppose now that a one-counter automaton A

is given. By means of the previous construction, we obtain a visibly-pushdown automa-
ton Â := (Q, I, F, Γ, T) for which L(A) = {π1(w) | w ∈ L(Â)} holds. What remains to
be done is to “insert” the internal letter x after every position of a word accepted by Â. As
reading internal letters by visibly-pushdown automata do not affect the content of their stacks,
we may proceed as in standard constructions from the theory of regular languages [Sip13, Ex.
1.31]. As the first step, we expand the set of states Q with fresh states of the form qδ for all
δ ∈ T. As the second step, we “split” every transition δ in T into two “parts”. Suppose that δ

leads from q to q′ after reading the letter a. We thus (i) replace δ in T with the transition that
transforms q into qδ after reading a (and has the same effect on the stack as δ has), and (ii)
append the transition (qδ, x, q′) to T. Call the resulting automaton Ã. It can now be readily
verified that L(Ã) = {â1xâ2x . . . xân | ŵ := â1 . . . ân, ŵ ∈ L(Â)} holds, and thus, by the
relationship between A and Â, the automaton Ã is as desired.

Let us fix a finite alphabet Σ ⊆ NR. We also fix two deterministic one-counter automata A1 and A2
over Σ, and let C1 and C2 be deterministic one-counter automata recognizing the complement of the
languages of A1 and A2 (they exist as DOCA are closed under complement [Val73, p. 76]). Finally,
we apply Lemma 11.7 to construct their visibly-pushdown counterparts Ã1, Ã2, C̃1, C̃2 over the same
pushdown alphabet Σ̃. We stress that the letter x, playing the role of a “separator”, is identical for all of the
aforementioned visibly-pushdown automata. Moreover, note that the non-emptiness of L(Ã1) ∩ L(Ã2)
is not equivalent to the non-emptiness of L(A1) ∩ L(A1), as the projection of a letter a ∈ Σ̃ may be
used by A1 and A2 in different contexts (e.g. both as a call or as a return).

We are going to encode words accepted by one-counter automata by means of word-like interpretations.

Definition 11.8 A pointed interpretation (I, d) is Σ-friendly if for every element e ∈ ∆I that is
x∗-reachable from d in I there exists a unique letter a ∈ Σ so that e carries all ã-self-loops for all
ã ∈ Σ̃ with π1(ã) = a, and no self-loops for all other letters in Σ̃ (also including x).

1The main proof idea here is to take an input DOCA, and decorate the letters on its transitions with c, i, and r, depending
on the counter action of the transition.
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Observe that Σ-friendly interpretations can be axiomatised with an ALCSelf-concept CΣ
fr:

CΣ
fr := ∀x∗.

⊔
a∈Σ

⊔

b ̸=a,b∈Σ,π1(ã)=a,π1(b̃)=b

(
[∃ã.Self] ⊓ ¬[∃b̃.Self] ⊓ ¬[∃x.Self]

)
.

Moreover, every x∗-path ρ in a Σ-friendly (I, d) represents a word in Σ∗ in the following sense: the i-th
letter of such a word is a if and only if the i-th element of the path carries an (a, c)-self-loop. This is
well-defined, by the fact that every x∗-reachable element in Σ-friendly (I, d) carries a (a, c)-self-loop for a
unique letter a ∈ Σ. Consult Figure 11.1 for a visualization.

dI

(a, c), (a, r)

(a, i)

(b, c), (b, r)

(b, i)

(b, c), (b, r)

(b, i)

(a, c), (a, r)

(a, i)

(c, c), (c, r)

(c, i)

x x x x

Figure 11.1: An example Σ-friendly (I, d) encoding the word abbac.

As a special class of Σ-friendly interpretations we consider Σ-metawords.

Definition 11.9 We say that a pointed interpretation (I, d) is a Σ-metaword if it is a Σ-friendly
interpretation of the domain Zn for some positive n ∈ N, the role name x is interpreted as the set
{(i, i+1) | 0 ≤ i ≤ n−2}, and all other role names are either interpreted as ∅ or are subsets of the
diagonal {(i, i) | i ∈ Zn} (or, put differently, they appear only as self-loops).

The example Σ-friendly (I, d) from Figure 11.1 is actually a Σ-metaword. Note that for every word
w ∈ Σ+ there is a Σ-metaword representing w. A crucial observation regarding Σ-metawords is as follows.

Observation 11.10. Let ℓ ∈ {1, 2}, Σ-metaword (I, d), and w̃ be in the language of Ãℓ. Then the element
d can {w̃}-reach an element e via a path ρ if and only if for all odd indices i we have ρi = ρi+1 and for all
even indices i we have ρi + 1 = ρi+1.

As the next step of the construction, we are going to decorate Σ-friendly interpretations with extra
information on whether or not words represented by paths are accepted by A1. This is achieved by means
of the following concept

CA1 := CΣ
fr ⊓ ∀L(Ã1).AccA1 ⊓ ∀L(C̃1).¬AccA1 ,

for a fresh concept name AccA1 . We define the concept CA2 analogously. We have that:

Lemma 11.11 Fix ℓ ∈ {1, 2}. If CAℓ
is satisfied by a pointed interpretation (I, d), then (I, d) is Σ-

friendly and for every element e ∈ ∆I that is x∗-reachable from d via a path ρ we have e ∈ (AccAℓ
)I

if and only if the Σ-word represented by ρ belongs to L(Aℓ). Moreover, after reinterpreting the
concept name AccAℓ

, every Σ-metaword becomes a model of CAℓ
.

Proof. The proof relies on Observation 11.10. Suppose that (I, d) is a pointed interpretation
and d ∈ (CAℓ

)I . We know that (I, d) is Σ-friendly by the satisfaction of CΣ
fr. For the remainder

of the proof, consider any element e ∈ ∆I that is x∗-reachable from d, say, via a path ρ :=
ρ1 . . . ρn. Let w be the word represented by ρ. This implies, that for every index i, the element
ρi in I is equipped with a family of self-loops involving (a decorated) letter wi. We consider
two cases:

• Assume that e ∈ (AccAℓ
)I . We will show that w ∈ L(Aℓ). Ad absurdum, suppose

that w ̸∈ L(Aℓ). Then, by definition of Cℓ, we have that w belongs to L(Cℓ). By the
construction of C̃ℓ there exists a sequence ⋆1, . . . , ⋆n ∈ {c, i, r}, for which the word
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u := (w1, ⋆1)x . . . x(wn, ⋆n) is accepted by C̃ℓ. But then the path ρ′ := ρ1ρ1ρ2ρ2 . . . ρnρn

witnesses {u}-reachability (and thus L(C̃ℓ)-reachability) of e from d. By the satisfaction
of ∀L(C̃ℓ).¬AccAℓ

by (I, d) we infer e ∈ (¬AccAℓ
)I = ∆I \ (AccAℓ

)I . A contradiction.
• Assume that w ∈ L(Aℓ). We proceed analogously to the previous case. By the con-

struction of Ãℓ there exists a sequence ⋆1, . . . , ⋆n ∈ {c, i, r}, for which the word u :=
(w1, ⋆1)x . . . x(wn, ⋆n) is accepted by Ãℓ. Once again, the path ρ′ := ρ1ρ1ρ2ρ2 . . . ρnρn wit-
nesses {u}-reachability (and thus L(Ãℓ)-reachability) of e from d. Due to the satisfaction
of ∀L(Ãℓ).AccAℓ

by (I, d) we infer e ∈ (AccAℓ
)I , as desired.

For the last statement of the proof, take a Σ-metaword I that represents a word w ∈ Σ∗. We alter
the interpretation of the concept name AccAℓ

in I so that (AccI
Aℓ

) = {i−1 | w1 . . . wi ∈ L(Aℓ)}.
It follows that ∀L(Ãℓ).AccAℓ

⊓ ∀L(C̃ℓ).¬AccAℓ
is indeed satisfied by (I, 0).

Equipped with Lemma 11.11, we are ready to prove correctness of our reduction.

Lemma 11.12 CA1 ⊓ CA2 ⊓ ∃x∗. (AccA1⊓AccA2) is satisfiable if and only if L(A1) ∩ L(A2) ̸= ∅.

Proof. For one direction, take w ∈ L(A1)∩L(A2). Let (I, d) be a Σ-metaword representing w.
By Lemma 11.11 we decorate I with concepts AccA1 and AccA2 so that (I, d) |= CA1 ⊓ CA2 ,
and the interpretations of concepts AccAℓ

contain precisely the elements k for which the k-letter
prefix of w belongs to L(Aℓ). In particular, this means that (|w|−1) ∈ (AccA1 ⊓ AccA2)I . As
(|w|−1) is x∗-reachable from 0, we conclude the satisfaction of ∃x∗. (AccA1 ⊓ AccA2) by (I, 0).
Hence, the concept from the statement of Lemma 11.12 is indeed satisfiable.
For the other direction, assume that (I, d) is a model of CA1 ⊓ CA2 ⊓ ∃x∗. (AccA1 ⊓ AccA2).

Then there exists an x∗-path ρ from d to some e ∈ (AccA1 ⊓ AccA2)I . Hence, by Lemma 11.11,
for all ℓ ∈ {1, 2} the word represented by ρ belongs to L(Aℓ), and thus L(A1) ∩L(A2).

By the undecidability of the non-emptiness problem for intersection of one-counter languages [Val73,
p. 75], we conclude Theorem 11.13.

Theorem 11.13
The concept satisfiability problem for ALCSelf

vpl is undecidable, even if only visibly-pushdown languages
that are encodings of DOCA languages are allowed in concepts.

There is nothing special about deterministic one-counter automata used in the proof. In fact, any
automaton model would satisfy our needs as long as it would (i) have an undecidable non-emptiness
problem for the intersection of languages, (ii) enjoy the analogue of Lemma 11.7, and (iii) be closed under
complement. We leave it is an open problem to see if there exists a single visibly-pushdown language L

that makes the concept satisfiability of ALCSelf
reg extended with L undecidable. For instance, the decidability

status of ALCr#s#
reg with Self is open.

11.3 Negative results II: Nominals meet r#s#

We next provide an undecidability proof for the concept satisfiability problem for ALCOr#s#
reg . To achieve

this, we employ a slight variant of the classical domino tiling problem [Wan61].

Definition 11.14 A domino tiling system is a triple D := (Col, T, ), where Col is a finite set
of colours, T ⊆ Col4 is a set of 4-sided tiles, and ∈ Col is a distinguished colour called white.
For brevity, we call a tile (cl, cd, cr, cu) ∈ T (i) left-border if cl = , (ii) down-border if cd = ,
(iii) right-border if cr = , and (iv) up-border if cu = . We also say that tiles t := (cl, cd, cr, cu)
and t′ := (c′

l, c′
d, c′

r, c′
u) from T are (i) H-compatible if cr = c′

l, and (ii) V-compatible if cu = c′
d.

We say that D covers Zn × Zm (where n and m are positive integers) if there exists a mapping
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ξ : Zn × Zm → T such that for all pairs (x, y) ∈ Zn × Zm with ξ(x, y) := (cl, cd, cr, cu) the following
conditions are satisfied:
(TBorders) x = 0 iff cl = ; x = n−1 iff cr = ; y = 0 iff cd = ; y = m−1 iff cu = ;
(THori) If (x+1, y) ∈ Zn × Zm then ξ(x, y) and ξ(x+1, y) are H-compatible.
(TVerti) If (x, y+1) ∈ Zn × Zm then ξ(x, y) and ξ(x, y+1) are V-compatible.

Intuitively, ξ : Zn × Zm can be seen as a white-bordered rectangle of size n × m coloured by unit
4-sided tiles (with coordinates corresponding to the left, down, right, and upper colour) from T, where
sides of tiles of consecutive squares have matching colours. Consider the following example:

Example 11.15. Suppose that Col = { , , , } and T = Col4. Then the map ξ := {(0, 0) 7→ , (1, 0) 7→
, (2, 0) 7→ , (3, 0) 7→ , (0, 1) 7→ , (1, 1) 7→ , (2, 1) 7→ , (3, 1) 7→ , (0, 2) 7→ , (1, 2) 7→ , (2, 2) 7→
, (3, 2) 7→ } covers Z4 × Z3, and can be visualised as follows.

0 1 2 3

0

1

2

r r r
r

r r r
r

r r r

ldI rdI

ruIluI

W.l.o.g. we assume that T does not contain tiles having more than 2 white sides. A system D is solvable
if there exist positive integers n, m ∈ N for which D covers Zn × Zm. The problem of deciding whether
an input domino tiling system is solvable is undecidable, which can be shown by a minor modification
of classical undecidability proofs [PH23, Lemma 3.9][Boa97]. For a domino tiling system D := (Col, T, )
we employ fresh concept names from CT

«
:= {Ct | t ∈ T} to encode mappings ξ from some Zn × Zm

to T in interpretations I as certain r+-paths ρ from ldI to ruI passing through rdI and luI (where the
individual names from NT

«
:= {ld,rd,lu,ru} are fresh). Consult the figure in Example 11.15.

Definition 11.16 Consider a domino tiling system D := (Col, T, ). An interpretation I is a
D-snake whenever all seven criteria listed below are fulfilled:
(SPath) There is an r+-path ρ that starts in ldI , then passes through rdI , then passes through

luI and finishes in ruI . More formally, there are indices 1 < i < j < |ρ| such that ρ1 = ldI ,
ρi = rdI , ρj = luI and ρ|ρ| = ruI .

(SNoLoop) No NT
«

-named element can r+-reach itself.
(SUniqTil) For every element d that is r∗-reachable from ldI there exists precisely one tile t ∈ T

such that d ∈ CI
t (we say that d is labelled by a tile t or that d carries t).

(SSpecTil) The NT
«

-named elements are unique elements r∗-reachable from ldI that are labelled
by tiles with two white sides. Moreover, we have that (a) ldI carries a tile that is left-border
and down-border, (b) rdI carries a tile that is right-border and down-border, (c) luI carries a
tile that is left-border and up-border, (d) ruI carries a tile that is right-border and up-border.

(SHori) For all elements d different from ruI that are r∗-reachable from ldI and labelled by some
tile t := (cl, cd, cr, cu), there exists a tile t′ := (c′

l, c′
d, c′

r, c′
u) for which all r-successors e of d

carry the tile t′ and: (i) t, t′ are H-compatible, (ii) if cd = then (cr ̸= iff c′
d = ), and (iii)

if cu = then c′
u = .

(SLen) There exists a unique positive integer N such that all r+-paths between ldI and rdI are of
length N−1. Moreover, rdI is the only element rN−1-reachable from ldI .

(SVerti) For all elements d that are r∗-reachable from ldI and labelled by some t ∈ T that is not
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up-border, we have that (a) there exists a tile t′ ∈ T such that all elements e rN-reachable (for
the N guaranteed by (SLen)) from d carry t′, (b) t and t′ are V-compatible, (c) t is left-border
(resp. right-border) if and only if t′ is.

Note that tiles are not “deterministic” in the following sense: it could happen that two elements carry the
same tile but tiles of their (horizontal or vertical) successors do not coincide.

If I satisfies all but the last two conditions of Definition 11.16, we call it a D-pseudosnake. The key
properties of our encoding are extracted and established in Lemmas 11.17–11.18.

Lemma 11.17 If a domino tiling system D is solvable then there exists a D-snake.

Proof. Suppose that D covers Zn × Zm and let ξ be a mapping witnessing it. Define an
interpretation I as follows:

(i) ∆I := Zn·m,
(ii) ldI := 0, rdI := n−1, luI := (m−1) · n, ruI := m · n − 1, and aI := 0 for all a ∈ NI \ NT

«
.

(iii) CI
t := {(x + y · n) ∈ ∆I | ξ(x, y) = t} for all t ∈ T, and CI := ∅ for C ∈ NC \ CT

«
,

(iv) rI := {(i, i+1) | i ∈ Zn·m−1}, and (r ′)I := ∅ for all r ′ ∈ NR \ {r}.
Thus I is an n·m element r+-path, labelled accordingly to ξ. As ξ respects (TBorders), (THori)
and (TVerti), we can readily verify that I is indeed a D-snake. The only case that requires treat-
ment, is to verify the satisfaction of (SHori) for elements of the form d := (n−1)+y ·n for some
y ∈ N. Then, by (TBorders), d carries a right-border tile and its r-successor d′ := 0 + (y+1) · n

carries a left-border tile. Hence, their tiles are H-compatible.

Lemma 11.18 If there exists a D-snake for a domino tiling system D, then D is solvable.

Proof. Suppose that I is a D-snake. Let ρ := ρ1 . . . ρ|ρ| be the path guaranteed by (SPath)
and let N be the integer guaranteed by (SLen). We show by induction that |ρ| is divisible by N.
The inductive assumption states that for all integers k ∈ N with k · N ≤ ∥ρ∥ we have:

(i) ρk·N+1 carries a left-border tile,
(ii) There is no 2 ≤ i < N such that ρk·N+i carries a left-border tile or a right-border tile,

(iii) ρk·N+N carries a right-border tile.
Then by Property (iii) and the fact that ρ|ρ| (equal to ruI by (SPath)) carries a right-border
tile (by Property (d) of (SSpecTil)), we can conclude that |ρ| is indeed divisible by N.
We heavily rely on the fact that every element of ρ is labelled by precisely one tile, which

is due to (SUniqTil). We start with the case of k = 0. Then ρ0·N+1 = ρ1 is equal to ldI , by
(SPath). Moreover, ρ1 is labelled with a left-border tile, by Property (a) of (SSpecTil). What
is more, ρ0·N+N = ρN is equal to rdI (by (SLen)), which carries a right-border tile by Property
(b) of (SSpecTil). This resolves Properties (i) and (iii). To establish Property (ii), assume
towards a contradiction that there is i between 2 and N for which ρi carries a left-border
tile (the proof for a right-border tile is analogous). Take the smallest such i. By (SHori) we
infer that ρ(i−1) carries a right-border tile. In particular, this means that i > 2 because the
tile carried by ρ1 is not right-border. By exhaustive application of (SHori) and the fact that
the tile of ρ1 is down-border, we deduce that the tile of ρ(i−1) is also down-border. Hence, by
Property (b) of (SSpecTil) we have that ρ(i−1) is equal to rdI . But then the path ρ(i−1)ρi . . . ρN
witnesses r+-reachability of rdI from itself, which is forbidden by (SNoLoop). A contradiction.
For the inductive step, assume that Properties (i)–(iii) hold true for some k, and consider the
case of k+1. Note that Property (i) follows from Property (iii) of the inductive assumption
by (SHori). We next show that Property (ii) holds. Assume ad absurdum that there is i for
which ρ(k+1)·N+i carries a left-border (resp. right-border) tile. But then, invoking Item (c) of
(SVerti), we infer that ρk·N+i is also left-border (resp. right-border). This contradicts Property
(ii) of the inductive assumption. Hence Property (ii) holds true. By inductive assumption, we
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know that ρk·N+N carries a right-border tile. Then, we apply Property (c) of (SVerti) to infer
that ρk·N+N+N = ρ(k+1)·N+N is right-border, as desired. This establishes Property (iii), and
concludes the induction.
Let M := |ρ|/N. By the previous claim, we know that M ∈ N. Consider a function ξ : ZN ×

ZM → T that maps all (x, y) to the unique tile carried by ρx+N·y+1. (Note that we number
paths from 1!) This function is well-defined by (SUniqTil) and it satisfies (THori) and (TVerti)
due to the satisfaction of (SHori) and (SVerti). The satisfaction of the first two statements of
(TBorders) by ξ is guaranteed by Properties (i)–(iii) from the induction above. Finally, the last
two statements of (TBorders) are due to straightforward induction that employs (SSpecTil)
and the last statement of (SHori). As we proved that ξ covers ZN × ZM, we conclude that D

is indeed solvable.

While D-snakes do not seem to be directly axiomatizable even in ALCvpl, we at least see how to
express D-pseudosnakes in ALCOr#s#

reg . The next lemma is routine.

Lemma 11.19 For every domino tiling system D := (Col, T, ), there exists an ALCOr#s#
reg -concept

CD , that employs only the role r , individual names from NT
«

and concept names from CT
«

, such
that for all interpretations I we have that I is a D-pseudosnake iff I |= CD .

Proof. We present a rather straightforward axiomatization of the aforementioned properties,
written from the point of view of the interpretation of a nominal ld.

C(SPath) := {ld} ⊓ ∃r+.
(
{rd} ⊓ ∃r+.

(
{lu} ⊓ ∃r+.{ru}

))
.

C(SNoLoop) := ⊔
a∈NT

«

∀r∗.
[
{a} → ∀r+.¬{a}

]
.

C(SUniqTil) := ∀r∗[ ⊔
C∈CT

«

C ⊓ ⊔

C′∈CT
«

,C′ ̸=C

¬C′

].
C(SSpecTil) := ∀r∗[( ⊔

t∈T with two white sides
Ct

)
↔

⊔
a∈NT

«

{a}
]

⊓ Cdown
(SSpecTil) ⊓ Cup

(SSpecTil), where

Cdown
(SSpecTil) :=

{ld} ⊓
⊔

t:=( , ,cr,cu)∈T

Ct

 ⊓ ∃r∗.

{rd} ⊓
⊔

t:=(cl, , ,cu)∈T

Ct

 ,

Cup
(SSpecTil) := ∃r∗.

{lu} ⊓
⊔

t:=( ,cd,cr, )∈T

Ct

 ⊓ ∃r∗.

{ru} ⊓
⊔

t:=(cl,cd, , )∈T

Ct

 .

C(SHori) := ⊔

t∈T
∀r∗.

[
(¬{ru} ⊓ Ct) →

(∃r .⊤) ⊓
⊔

t′∈T satisfying cond. (i)–(iii) of (SHori)

∀r .Ct′

].
We can now define CD as the conjunction of all the concept definitions presented above. It fol-
lows immediately from the semantics of ALCOr#s#

reg that the presented concept definition is
consistent if and only there exists an element starting a pseudosnake.

Note that the property that pseudosnakes are missing in order to be proper snakes, is the ability to
measure. We tackle this issue by introducing a gadget called a “yardstick”.
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Definition 11.20 Let T be a finite non-empty set, let NT
Ì

:= {st,md,mdt,endt | t ∈ T} be composed
of (pairwise different) individual names. A T-yardstick is any interpretation I satisfying all the
conditions below.
(YNom) NT

Ì
-named elements in I are pairwise different and (r + s)∗-reachable from stI .

(YNoLoop) No NT
Ì

-named element can (r + s)+-reach itself.
(YMid) mdI is the unique element with an s-successor that is r∗-reachable from stI .
(YSuccOfMid) The s-successors of mdI are precisely {mdt | t ∈ T}-named elements.
(YReachMidT) For every t ∈ T we have that mdI

t can s∗-reach endI
t but it cannot s∗-reach endI

t′

for all t′ ̸= t.
(YEqDst) The elem. r#s#-reachable from stI are precisely the {endt | t ∈ T}-named ones.
(YNoEqDst) No {endt | t ∈ T}-named element is r#s#-reachable from an element (s + r)+-

reachable from stI .

An example {♡, ♠}-yardstick is depicted below. A “minimal” yardstick contains the grey nodes only.

stI mdI

mdI
♡ endI

♡

mdI
♠ endI

♠

r r
r

r
r
r

r

r

r

r
r

r

r

r s
s s s

s
s
s

s

s

s
s

The forthcoming lemma explains the name “yardstick”. Intuitively it says that in any T-yardstick I,
all s∗-paths from mdI to all endI

t have equal length.

Lemma 11.21 Let I be a T-yardstick. Then there exists a unique positive integer N such that: (i)
for all t ∈ T we have that endI

t is sN-reachable from mdI , and (ii) for all t ∈ T we have that endI
t is

sN−1-reachable from mdI
t . We will call N the length of I.

Proof. Fix t⋆ ∈ T. By (YEqDst) we know that stI r#s#-reaches endI
t⋆

, and let ρ := ρ1 . . . ρ2N+1
be a path witnessing it. We claim that this is the desired length of I. First, note that N > 0
by (YNom). Second, by the semantics of r#s#, for all i ≤ N we have (ρi, ρi+1) ∈ rI and
(ρN+i, ρN+i+1) ∈ sI . Thus ρN+1 is r∗-reachable from stI and has an s-successor. These two
facts imply (by (YMid)) that ρN+1 is equal to mdI . It remains to show that all the paths
leading from mdI to some endt are of length N. Towards a contradiction, assume that there is
t′ ∈ T and an integer M ̸= N such that mdI sM-reaches endI

t′ via a path ρ′ := ρ′
1 . . . ρ′

M. We
stress that ρ′

1 = mdI and ρ′
M = endI

t′ (by design of ρ′), and ρ′
2 = mdI

t′ (by a conjunction of
(YSuccOfMid) and (YReachMidT)). To finish the proof, we resolve the following two cases.

• Suppose that M < N. Then ρN+1−M (rMsM)-reaches (thus also r#s#-reaches) endI
t′ ,

as witnessed by the path ρN+1−M . . . ρNρ′. Moreover ρN+1−M is r+-reachable from stI ,
witnessed by the path ρ1 . . . ρN+1−M (note that its length is positive by the inequality
M < N). This yields a contradiction with (YNoEqDst).

• Suppose that M > N. Consider a path ρ1 . . . ρNρ′
1 . . . ρ′

N. By construction, such a path
witnesses the fact that stI (rNsN)-reaches (and thus also r#s#-reaches) ρ′

N. By (YEqDst)
we infer that ρ′

N is then {endt | t ∈ T}-named. As ρ′
2 = mdI

t′ s+-reaches ρ′
N, we infer that

ρ′
N = endI

t′ (otherwise we would have a contradiction with (YReachMidT)). But then
endI

t′ s+-reaches itself via a path ρ′
N . . . ρM, which is of positive length by the fact that

M > N. This yields a contradiction with (YNoLoop).
This establishes Property (i). Property (ii) is now immediate by (YSuccOfMid).
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The next lemma proves the existence of arbitrary large yardsticks.

Lemma 11.22 For every finite non-empty set T and a positive integer N, there exists a T-yardstick
of length N.

Proof. Consider the following interpretation I with ∆I := ZN ∪ {N} ∪ (ZN−1 × T):
• stI := 0, mdI := N, (mdt)I := (0, t), (endt)I := (N−1, t) for all t ∈ T, and aI := 0 for all

names a ∈ NI \ NT
Ì

.
• rI := {(i, i+1) | i ∈ ZN}, sI := {(N, (0, t)), ((i, t), (i+1, t)) | t ∈ T, i ∈ ZN−1}, and

(r ′)I = ∅ for all role names r ′ ∈ NR \ {r , s}.
An example such I for N = 3 and T = {♡, ♠} is depicted above (in restriction to grey
nodes only). It is routine to verify that I satisfies all the properties in Definition 11.20, as
well as conditions (i) and (ii) from the statement of Lemma 11.21. This concludes the proof.

To make use of yardsticks in our proofs, we need to axiomatise them inside ALCOr#s#
reg .

Lemma 11.23 There exists an ALCOr#s#
reg -concept CT

Ì
, that employs only role names r , s and

individual names from NT
Ì

, such that for all interpretations I we have: I is a T-yardstick if and only
if I is a model of CT

Ì
.

Proof. The following concepts are written from the point of view of the interpretation of st.

C(YNom) := ⊔
a∈NT

Ì

∃(r + s)∗
[
{a} ⊓ ⊔

b∈NT
Ì

\{a}

¬{b}
]
.

C(YNoLoop) := ⊔
a∈NT

Ì

∀(r + s)∗.
[
{a} → ∀(r + s)+.¬{a}

]
.

C(YMid) :=
[
∃r∗. ((∃s.⊤) ⊓ {md})

]
⊓
[
∀r∗. ((∃s.⊤) → {md})

]
.

C(YSuccOfMid) := ∀(r + s)∗.

{md} →
[ ⊔

a∈{mdt|t∈T}

∃s.{a}
]

⊓
[
∀s.

⊔
a∈{mdt|t∈T}

{a}
] .

C(YReachMidT) := ⊔

t∈T
∀(r + s)∗.{mdt} →

[
(∃s∗.{endt}) ⊓ ⊔

t′∈T,t̸=t′

∀s∗.¬{endt′}
]
.

C(YEqDst) :=
(

⊔

t∈T
∃r#s#.{endt}

)
⊓ ∀r#s#.

(⊔
t∈T

{endt}

)
.

C(YNoEqDst) := ∀(r + s)+.∀r#s#.

(

⊔

t∈T
¬{endt}

)
.

We define CT
Ì

as the conjunction of {st} and all the concept definitions presented above. By
semantics of ALCOr#s#

reg we have that CT
Ì

is consistent if and only if (CT
Ì

)I = {stI}.

We next put pseudosnakes and yardsticks together, obtaining metricobras. The intuition behind their
construction is fairly simple: (i) we take a disjoint union of a pseudosnake and a yardstick, (ii) we then
connect (via the role s) every element carrying a tile t with the interpretation of the corresponding nominal
mdt, and finally (iii) we synchronise the length of the underlying yardstick, say N, with the length of the
path between the interpretations of ld and rd. After such “merging”, retrieving (SVerti) is easy: rather
than testing if every N-reachable element from some d carries a suitable tile t (for an a priori unknown N)
we can check instead whether d can r#s#-reach the interpretation of endt.

A formal definition and a picture come next.
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Figure 11.2: A fragment of an example D-metricobra representing ξ from Example 11.15. The upper
part corresponds to a D-snake, and the lower part corresponds to a T-yardstick. The distances between
named elements are important.

Definition 11.24 Let D := (Col, T, ) be a domino tiling system and cbra be an individual name.
An interpretation I is a D-metricobra if all the conditions below are satisfied:
(MInit) I is a D-pseudosnake and a T-yardstick, and cbraI has precisely two successors: one

r-successor, namely ldI , and one s-successor, namely stI .
(MTile) For every tile t ∈ T and every element d ∈ ∆I that is r∗-reachable from ldI we have that

d carries a tile t ∈ T if and only if d has a unique s-successor and such a successor is equal to
mdI

t .
(MSync) Let t ∈ T be the tile labelling rdI . Then (a) cbraI r#s#-reaches endI

t and cannot r#s#-
reach any of endI

t′ for t′ ̸= t, (b) cbraI cannot r#s#-reach an element that can s+-reach endI
t ,

(c) no element r∗-reachable from ldI can r#s#-reach endI
t .

(MVerti) For all elements d that are r∗-reachable from ldI and are labelled by some t ∈ T that is
not up-border, we have that there exists a tile t′ ∈ T such that (a) t and t′ are V-compatible,
(b) t is left-border (resp. right-border) iff t′ is, and (c) d can r#s#-reach endt′ but cannot reach
r#s#-reach endt′′ for all t′′ ̸= t′.

We first show that D-metricobras are axiomatizable in ALCOr#s#
reg .

Lemma 11.25 There exists an ALCOr#s#
reg -concept CD such that for all interpretations I we have

that I is a D-metricobra if and only if (CD )I = {cbraI}.

Proof. We present a rather straightforward axiomatization of the aforementioned properties,
written from the point of view of the interpretation of cbra. Note that as the interpretation
of cbra has a unique r-successor, we can simplify concepts of the form ∀r .[{ld} → (∀r∗.C)] to
∀r+.C, which we frequently do below.

C(MInit) := ∃r .CD ⊓ ∃s.CT
Ì ⊓ ∀r .({ld} ⊓ ¬{st}) ⊓ ∀s.(¬{ld} ⊓ {st}).

C(MTile) := ⊔

t∈T
∀r+. (Ct ↔ [∃s.{mdt} ⊓ ∀s.{mdt}]) .

C(MVerti) := ∀r+.

not up-border⊔

t∈T

Ct →
sat. (a),(b) of (MVerti)⊔

t′∈T

[
(∃r#s#.{endt′}) ⊓ ⊔

t′′ ̸=t′,t′′∈T
∀r#s#.¬{endt′′}

] .

Ct
(MSync) := (∃r#s#.{endt})⊓ ⊔

t′ ̸=t
(∀r#s#.¬{endt′})⊓(∀r#s#.∀s+.¬{endt})⊓∀r+.∀r#s#.¬{endt}.
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We define CD := {cbra}⊓C(MInit) ⊓C(MTile) ⊓C(MVerti) ⊓ ⊔t∈T[(∃r+.({rd} ⊓ Ct)) → Ct
(MSync)].

Its correctness follows from the semantics of ALCOr#s#
reg and Lemmas 11.19 and 11.23.

As the second step, we show that for every D-snake we can construct a D-metricobra.

Lemma 11.26 If I is a D-snake then there exists a D-metricobra J .

Proof. Let I be a D-snake, N be the integer guaranteed by (SLen), and I ′ be any T-yardstick
of length N (existence guaranteed by Lemma 11.22). We construct an interpretation J as a
disjoint union of I, I ′ and an additional domain element that we interpret as cbraJ . We let
J interpret all names from NT

Ì
as in I ′, all names from NT

«
as in I, and all other (unused in

our concept definitions) names as cbraJ . Interpretation of concept names is inherited from I
and J . Finally we interpret role names as in I and I ′ with minor corrections. More precisely:
(i) we alter the interpretation of rJ to include an extra pair (cbraJ ,ldJ ), and (ii) we alter the
interpretation of sJ to include the pair (cbraJ ,stJ ) and

⋃
t∈T CJ

t ×{mdJ
t }. Consult Figure 11.2

to see an example construction of J from I and I ′. The satisfaction of properties (MInit)
and (MTile) follow from the construction of J , while the other two properties are due to,
respectively, (SLen) and (SVerti). Thus J is the desired metricobra.

Finally, we show that every D-metricobra is actually a D-snake.

Lemma 11.27 If I is a D-metricobra then it is also a D-snake.

Proof. As I is a pseudosnake by definition, it suffices to show that it satisfies the missing
conditions of Definition 11.16. Our first goal is to establish I |= (SLen). Note that by (SSpecTil)
we have that rdI is the only element r∗-reachable from ldI that carries a down- and right-
border tile, say t. Furthermore by (MTile) and (YReachMidT) we infer that rdI is the only
element r∗-reachable from ldI that can s∗-reach endI

t . Take N to be the length of the yardstick.
By Lemma 11.21 we know that mdI

t sN−1-reaches endI
t , hence rdI sN-reaches endI

t (and there
is no other integer M ̸= N for which such reachability conditions hold). From (MSync) we
know that cbraI r#s#-reaches endI

t , thus by previous observations we deduce that cbraI rNsN-
reaches endI

t (whence ldI rN−1-reaches rdI). This establishes the existence of a path of length
N mentioned in (SLen), and we next need to show that all such paths have equal length.
Consider the following cases:

• There exists M < N such that ldI rM−1-reaches rdI . Then cbraI rMsM-reaches some
element that can s+-reach endI

t . This yields a contradiction with condition (b) of (MSync).
• There exists M > N such that ldI rM−1-reaches rdI . Then there is an element r∗-reachable

from ldI that can rNsN-reach endI
t . This contradictions condition (c) of (MSync).

Hence N is indeed unique. The fact that rdI is the only element rN−1-reachable from ldI follows
from the uniqueness of the tile assigned to rdI , see (SSpecTil) and Property (a) of (MSync).
It remains now to show that I |= (SVerti). To do so, it suffices to observe that the following
property holds. As all the s∗-paths from an element carrying a tile t to endt are of length N
(by the previous discussion and Lemma 11.21), we can see that r#s#-reachability of endt is
equivalent to rN-reachability of some element carrying t. Then the satisfaction of (SVerti)
follows immediately by (MVerti). Hence, I is indeed a D-snake.

By collecting all previous lemmas we establish the correspondence between solvability of tiling systems
and satisfiability of CD .

Lemma 11.28 A domino tiling system D is solvable if and only if CD has a model.
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Proof. If D is solvable, then by Lemma 11.17 there exists a D-snake, which by Lemma 11.26
implies the existence of a D-metricobra, which is a model of CD (see Lemma 11.25). For the
other direction, if CD has a model, then such a model is a D-metricobra (by Lemma 11.25),
as well as a D-snake (by Lemma 11.27). As the existence of a D-snake guarantees that D is
solvable by Lemma 11.18, this finishes the proof.

By the undecidability of the tiling problem, we conclude the main theorem of this Section.

Theorem 11.29
The concept satisfiability problem for ALCOvpl is undecidable, even if the languages allowable in
concepts are restricted to {r , s, r+, s+, r∗, s∗, (r + s)∗, (r + s)+, r#s#}.

The logic ALCOreg is a notational variant of Propositional Dynamic Logic with nominals [KS14]. Thus
the above theorem provides results also in the realm of formal verification.

11.4 Negative Results III:
Entailment of Queries Involving Non-Regular atoms

We conclude the negative part of this chapter by showing that positive results regarding entailment of
conjunctive queries with visibly-pushdown atoms (VPL-CQs) in the database setting [LL15, Thm. 2] do
not generalise even to ALC-ontologies. We reduce from the White-bordered Octant Tiling Problem, to be
defined next. Roughly speaking, the ontology used in our reduction will define a “grid” covered with tiles,
while the query counterpart will serve as a tool to detect mismatches in its lower triangle (a.k.a. octant).
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Figure 11.3: Visualization of a fragment of a T-octant interpretation.

We refer to the set O := {(n, m) | n, m ∈ N, 0 ≤ m ≤ n} as the octant. Let D := (Col, T, ) be a
domino tiling system (defined as in Section 11.3). For our reduction it is convenient to impose several
restrictions on T, namely that the all-white tile belongs to T, and that all other tiles from T containing
white colour are both left- and up-border but neither down- nor right-border.

Definition 11.30 We say that D covers the octant O := {(n, m) | n, m ∈ N, 0 ≤ m ≤ n} if there
exists a mapping ξ : O → T such that for all pairs (n, m) ∈ O the following conditions are satisfied:
(OInit) ξ(0, 0) = and ξ(1, 0) ̸= .
(OVerti) If (n, m+1) ∈ O then ξ(n, m) and ξ(n, m+1) are V-compatible.
(OHori) The tiles ξ(n, m) and ξ(n+1, m) are H-compatible.

In the White-bordered Octant Tiling Problem we ask if an input domino tiling system D (with additional
conditions on tiles mentioned above) covers the octant O. Observe that:
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Observation 11.31. Let D be a tiling system and let ξ : O → T be covering the octant. Then for all
i ∈ N we have that ξ(i, i) = , and ξ(i+1, i) is left- and up-bordered. Moreover, no position (i, j) satisfying
0 < j < i−1 carries a white-border tile.

Proof. The first statement follows by routine induction. From (OInit) we have ξ(0, 0) = .
Suppose now that ξ(i, i) = . Then, by (OHori) and our choice of tiles, we have that ξ(i+1, i)
is left- and up-border. Thus, as is the only tile in T that is down-border, we conclude that
(i+1, i+1) carries . For the second statement, suppose that there is a pair (i, j) for which
j < i−1 and ξ(i, j) contains a white-border tile, and take lexicographically smallest such (i, j).
By design of D, the tile ξ(i, j) is left- and up-border. From (OInit) we infer i > 1. By (OHori),
the tile ξ(i−1, j) is also right-border, contradicting the minimality of (i, j).

We first show undecidability of the White-bordered Octant Tiling Problem, which follows by a straight-
forward reduction2 from the Octant Tiling Problem [BDG+10, Sec. 3.1].

Lemma 11.32 The white-bordered Octant Tiling Problem is undecidable.

Proof. We say that a domino tiling system D almost covers the octant if there is a mapping
ξ : O → T such that all pairs (n, m) ∈ O fulfil (OVerti) and (OHori). It was stated by Bresolin
et al. [BDG+10, Sec. 3.1] (and follows from the classical work of van Emde Boas [Boa97]) that
deciding whether D, that does not contain white-bordered tiles, almost covers the octant is
undecidable. To prove undecidability of the White-bordered Octant Tiling Problem we provide
a reduction from the tiling problem of Bresolin et al. Thus, let D := (Col, T, ) be a domino
tiling system that does not have white-bordered tiles, and consider D′ := (Col, T′, ) to be the
tiling system obtained by putting T′ := { , (cl, cd, cr, cu), ( , cd, cr, ) | (cl, cd, cr, cu) ∈ T}.
We claim that D′ covers the octant if and only if D almost covers the octant. Indeed:

• The “if” direction is relatively straightforward. Let ξ be a map witnessing that D almost
covers the octant. We alter the tiles assigned by ξ to the diagonal to make them left-
and up-border, then we shift ξ right, and fill the remaining places with . Formally,
let ξ′ be defined as: (i) ξ′(i, i) := for all i ∈ N, (ii) ξ′(i, i−1) := ( , cd, cr, ), where
ξ(i, i) = (cl, cd, cr, cu), for all positive i ∈ N, and (iii) ξ′(i, j) = ξ′(i, j−1) for all remaining
i, j ∈ N. It can be readily verified that ξ′ satisfies the required conditions.

• For the “only if” direction, let ξ′ be a map witnessing that D′ covers the octant. It suffices
to take ξ : (i, j) 7→ ξ′(i+2, j). By Observation 11.31) none of the tiles assigned by ξ is
white-bordered. As ξ′ covers the octant, we infer that ξ (almost) covers the octant.

Our undecidability proof relies on concepts from CT
«

and the non-regular language r#s#. We fix and
enumerate a set of tiles T as t1, . . . , tN for N := |T|.

As the first building block, we introduce octant interpretations.

Definition 11.33 An interpretation I is called T-octant if there exists a function ξ : O → T fulling
(OInit) and (OVerti) (but not necessarily (OHori)) that satisfies the following conditions: (i) ∆I = O,
(ii) rI = {((n, 0), (n+1, 0)) | n ∈ N}, (iii) sI = {((n, m), (n, m+1)) | n, m ∈ N, m < n}, and (iv)
CI

t = {(n, m) | ξ(n, m) = t} for all tiles t ∈ T. In this case I represents ξ.

Due to the fact that ξ : O → T is a function, every domain element of a T-octant carries precisely
one tile. Moreover, for every such ξ we can easily find a T-octant representing ξ (just employ the above
definition). For more intuitions consult Figure 11.3.

To avoid disjunction in the forthcoming query, we need to extend octant interpretations with yet
another way of representing tiles, which will be based on distances. Suppose that an element (n, m)

2The author was asked explicitely by one of his supervisors to provide the proof of this fact.
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from an octant interpretation I carries a tile ti, and that the tile assigned to its horizontal predecessor
(n−1, m), if exists, is equal to tj . We equip (n, m) with an outgoing s+-path ρ of length N, composed
of fresh elements (we employ fresh concept names In and In to make a distinction between elements in
octant and the ones present in “extra paths”). The i-th element of ρ will be the unique element of ρ

that belongs to the interpretation of a concept Cur. Similarly, the j-th element of ρ will be the unique
element of ρ that belongs to the interpretation of a concept Prev. Thus, the distance from (n, m) to an
element labelled by the concept Cur (resp. Prev) uniquely determines the tile of a current node (resp. its
horizontal predecessor). As a mere technicality, needed for query design, we enrich the element (0, 0) with
an incoming r+-path of length N. A formalization comes next.

Definition 11.34 Let I be an interpretation with a domain O×ZN+1 ∪ {(−i−1, 0, 0) | i ∈ ZN}, and
let IO be the restriction of I to the set O × {0}. We call I a T-hyperoctant if:

• IO is isomorphic (via a projection (n, m, 0) 7→ (n, m)) to a T-octant interpretation,
• InI = O × {0}, InI = ∆I \ InI , PrevI = ∆I \ PrevI ,
• rI = rIO ∪ {((−i−1, 0, 0), (−i, 0, 0)) | i ∈ ZN},
• sI = sIO ∪ {((n, m, k), (n, m, k+1)) | (n, m) ∈ O, k ∈ ZN},
• CI

tk
= CIO

tk
and CurI = {(n, m, k) | (n, m, 0) ∈ CI

tk
, tk ∈ T}, and

• for every (n, m) ∈ O there is precisely one positive k for which (n, m, k) ∈ PrevI holds, and
for such a number k we have that tk and the tile carried by (n, m, 0) are H-compatible.

Note that, in addition to what is present in the definition of T-hyperoctant, we employed fresh
concept names, namely In, Prev, Cur, In, and Prev. The purpose of “overlined” concepts is to help
with a design of a query, as the use of negation is not allowed there. We call I proper if for all
(n, m, k) ∈ CurI we have (n+1, m, k) ∈ PrevI . Note that properness is not definable in ALC, but
we will enforce it with a query. The map ξ : O → T represented by a hyperoctant I is the map
represented by its T-octant substructure IO.
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Figure 11.4: A fragment of a proper {t1, t2, t3}-hyperoctant for t1 = , t2 = , and t3 = . Elements in
InI are depicted as circles. Elements in PrevI are marked grey, elements in CurI are marked black, and
the lime elements belong to PrevI ∩ CurI .

We next relate proper T-hyperoctants and domino tiling systems.

Lemma 11.35 Let D := (Col, T, ) be a domino tilling system. For every proper T-hyperoctant I,
the map ξ : O → T represented by I witnesses that D covers the octant. If D covers the octant, as
witnessed by a map ξ : O → T, then there exists a proper T-hyperoctant I representing ξ.
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Proof. Take a proper T-hyperoctant I, and the map ξ represented by I. By definition of
a T-octant, we have that ξ satisfies (OInit) and (OVerti). To establish (OHori) take any
(n, m) ∈ O, and suppose that ξ(n, m) = ti and ξ(n+1, m) = tj hold for some integers i, j ∈ N.
By definition of a hyperoctant and properness of I, we have that (n+1, m, 0) carries the tile tj ,
and (n+1, m, i) ∈ PrevI . Thus, by the 6th item of Definition 11.34 we infer that tiles ti and tj

are H-compatible. The proof of the other statement is routine: take IO to be a T-octant
representing ξ. W.l.o.g. assume that IO interprets all role names and concept names that are
not mentioned in its definitions as empty sets. We next rename the domain of IO to O × {0}
and append fresh elements to make the domain equal to O × ZN+1 ∪ {(−i−1, 0, 0) | i ∈ ZN}.
Then, we enlarge the interpretations of r , s, In, and Cur in a minimal way according to the
first five items of Definition 11.34. Finally, we interpret Prev as the set composed of all triples
(n+1, m, k) for all (n, m) ∈ O carrying a tile tk, and all triples (n, n, ℓ) for x ∈ N and ℓ denoting
the index of in T. Call the resulting interpretation I. Clearly, I is T-hyperoctant due to
the fact that ξ is a map and respects conditions (OInit), (OVerti), and (OHori).

We employ a VPL-CQ qD
▲ (u1, u2, v1, v2, w1, w2, x1, x2, y1, y2, z1, z2) as a tool for detecting whether a

given T-hyperoctant I is proper. Observe that I is not proper if and only if there is a position (n, m) ∈ O

and a number 1 ≤ k ≤ N, for which we have (n, m, k) ∈ CurI and (n+1, m, k) ̸∈ PrevI . This is precisely
the condition that is going to be expressed with qD

▲ , informally presented at Figure 11.5. The intuition
behind qD

▲ is as follows.
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Figure 11.5: Visualisation of the query qD
▲ (u1, u2, v1, v2, w1, w2, x1, x2, y1, y2, z1, z2).

We first ensure that z1, z2 are mapped to some elements representing the coordinates (n, m) and
(n′, m′) of the octant for some integers satisfying n′ = n+1 and m = m′. The fact that they belong to the
octant is handled by means of the In concept. The equality n′ = n+1 is achieved by introducing variables
y1, y2, stating their r-connectedness, and the s∗-reachability of z1 and z2 from, respectively, y1 and y2.
Thus y1, y2 are placed “at the bottom” of the variables z1 and z2. Next, the equi-hight of z1, z2 is ensured
with extra r-connected variables x1, x2 located to the left of y1, and non-regular atoms r#s#(x1, z1) and
r#s#(x2, z2), enforcing equality of the distance between xi and yi, and the distance between yi and zi,
for all i ∈ {1, 2}. Once we know that the variables z1, z2 are mapped by a query as desired, we need
to express that they violate properness of I. Recall that we want to establish (n, m, k) ∈ CurI and
(n+1, m, k) ̸∈ PrevI for some k. Such elements will be represented, respectively, by variables v1 and v2.
To express the mentioned constraint, we introduce fresh r-connected variables u1, u2 that are located to
the left of x1, x2, and whose distance to u1, u2 will be precisely the k that we are looking for. We stress
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that we do not “hardcode” the value of k in the query. As the variable u1 is free to map whenever it
wants, this mimics a disjunction over possible values of k. We ensure the variables v1, v2 are mapped to
elements outside the octant by expressing that they are r∗-reachable from the s-successors w1, w2 of z1, z2,
that are labelled with In. Note that just expressing that v1, v2 belong to In does not suffice, as the path
leading from some of zi to vi could contain elements in In (which we implicitly forbid). With non-regular
atoms r#s#(u1, v1) and r#s#(u2, v2) we make sure that the distance between z1 and v1 (respectively z2
and v2) is indeed k.

Despite the high technicality of our construction, we hope that after reading the above intuition and
glancing at Figure 11.5, the following definition of the query qD

▲ should be now understandable:

qD
▲ := r(u1, u2) ∧ r∗(u2, x1) ∧ r(x1, x2) ∧ r∗(x2, y1) ∧ r(y1, y2) ∧ Cur(v1) ∧ Prev(v2)∧

2∧
i=1

[
s∗(yi, zi) ∧ In(zi) ∧ s(zi, wi) ∧ In(wi) ∧ s∗(wi, vi) ∧ r#s#(xi, zi) ∧ r#s#(ui, vi)

]
.

By routine case analysis with a bit of calculations, we can show that:

Lemma 11.36 Let D := (Col, T, ) be a domino tilling system and let I be a T-hyperoctant. Then
we have that I is proper if and only if I ̸|= qD

▲ .

Proof. We start from the “only if” direction. Suppose that I is proper, but there is a match η

witnessing I |= qD
▲ . We provide a few tedious calculations. As the atoms r(x1, x2), r(y1, y2),

and r(u1, u2) belong to qD
▲ , there are a, b, n ∈ Z such that η(u1) = (a, 0, 0), η(u2) = (a+1, 0, 0),

η(x1) = (b, 0, 0), η(x2) = (b+1, 0, 0), η(y1) = (n, 0, 0), and η(y2) = (n+1, 0, 0). By the pres-
ence of atoms r∗(u2, x1) and r∗(x2, y1) in the query, we infer that a < b < n. From atoms
s∗(yi, zi), In(zi) present in qD

▲ , we can deduce that η(z1) = (n, m, 0), η(z2) = (n+1, m′, 0) hold
for some m, m′ ∈ N. Next, by the satisfaction of the atoms r#s#(x1, z1) and r#s#(x2, z2) the
equations m = n − b and m′ = (n+1) − (b+1) follow. Thus m′ = m. As the next step, we
deal with the variables w1 and w2. From the atoms s(zi, wi) and In(wi) we can deduce that
η(w1) = (n, m, 1), η(w2) = (n+1, m, 1). Together with atoms s∗(w1, v1) and s∗(w1, v1), this
implies that η(v1) = (n, m, k), and η(z2) = (n+1, m, k′) hold for some positive k, k′ ∈ N. By
the satisfaction of the atoms r#s#(u1, v1) and r#s#(u2, v2) the equations m+k = n−a and
m+k′ = (n+1)−(a+1) follow. Hence, k = k′ holds and by collecting all the previous equations
we conclude that η(v1) = (n, m, k) and η(v1) = (n+1, m, k). Finally, the atoms Cur(v1) and
Prev(v2) of qD

▲ imply that (n, m, k) ∈ CurI but (n+1, m, k) ̸∈ PrevI . This contradicts the
properness of I.
We show the “if” direction by contraposition. Suppose that I is not proper, and that the

properness of I is violated by (n, m, k) ∈ CurI and (n+1, m, k) ∈ PrevI . Then the map
v1 7→ (n, m, k), v2 7→ (n+1, m, k), w1 7→ (n, m, 1), w2 7→ (n+1, m, 1), z1 7→ (n, m, 0), z2 7→
(n+1, m, 0), y1 7→ (n, 0, 0), y2 7→ (n+1, 0, 0), x1 7→ (n−m, 0, 0), x2 7→ (n−m+1, 0, 0), u1 7→
(n−m−k, 0, 0), u2 7→ (n−m−k+1, 0, 0) is a match for qD

▲ . This finishes the proof.
As a side remark, note that if the value of n−m is sufficiently small, the value of n−m−k can

be negative (but not smaller than −N). This explains at last why we appended an incoming
r∗-path of length N to the element (0, 0, 0) in the construction of hyperoctants.

As the final step of our construction, we define an ALC-TBox T D
▲ whose intended tree-like models

will contain T-hyperoctants. Most of the axioms written below are formalizations of straightforward
properties satisfied by T-hyperoctants and grids. As we are aiming to design an ALC-TBox, all the
properties expressed in T D

▲ are interpreted “globally”. Hence, to express existence of a starting point of a
T-hyperoctant we employ a fresh role name aux and say that every element has an aux-successor (with the
intended meaning that such a successors “starts” a T-hyperoctant). For brevity, we say that an element
is inner (resp. outer) if it belongs (resp. does not belong) to the interpretation of In. For a language L we
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also say that an element e in I is L-outer-reachable from d if there exists a L-path from d to e composed
solely of outer elements (with a possible exception of d).
(GStart) Every element has an aux-successor. Every such successor has an outgoing rN-path composed

of outer elements that leads to an inner element carrying a tile that has an inner r-successor
carrying a tile different from .

(GCompl) Concept name In (resp. Prev) is interpreted as the complement of the interpretation of
concept name In (resp. Prev).

(GTil) Every inner element is labelled with precisely one concept name from CT
«

, and there are no outer
elements labelled with such concept names.

(GSuc) If an element has an inner r-successor then such a successor also has an inner r-successor. Every
inner element has an inner s-successor.3

(GPath) Every inner element has an outgoing sN-path composed solely of outer elements.
(GCur) For every inner element carrying the tile tk we have that: (i) all sk-outer-reachable elements are

labelled with Cur, (ii) there is no sℓ-outer-reachable element, for ℓ ≤ N and ℓ ̸= k, that is labelled
with Cur.

(GPrev) For every inner element there exists a number k ≤ N such that: (i) all sk-outer-reachable
elements are labelled with Prev, (ii) there is no sℓ-outer-reachable element, for ℓ ≤ N and ℓ ̸= k,
that is labelled with Prev.

(GVerti) Every pair of tiles carried by s-successors is V-compatible.
(GHori) For all tiles t ∈ T and all elements carrying t that can sℓ-outer-reach an element labelled with

Prev for some ℓ, we have that tℓ and t are H-compatible.
The definition of T D

▲ is provided in the proof of the following lemma.

Lemma 11.37 There exists an ALC-TBox T D
▲ expressing the above properties.

Proof. Given ALC-concepts C, D and a role name r ∈ NR we employ macros (∀r .C)n.D and
(∃r .C)n.D defined inductively for n ≥ 1 as follows:

(∀r .C)1.D := ∀r .(C → D), (∀r .C)n+1.D := ∀r .(C → [(∀r .C)n.D]),

(∃r .C)1.D := ∃r .(C ⊓ D), (∃r .C)n+1.D := ∃r .(C ⊓ [(∃r .C)n.D]).

Our T D
▲ is composed of all the GCIs listed below, describing properties (GStart), (GCompl),

(GTil), (GSuc), (GPath), (GCur), (GPrev), (GVerti), and (GHori) in precisely this order.

⊤ ⊑ (∃aux.⊤) ⊓ ∀aux.
(
(∃r .In)N.[∃r .

(
In ⊓ C ⊓ ∃r .(In ⊓ ¬C )

)
]
)

,

⊤ ⊑ (In ↔ ¬In) ⊓ (Prev ↔ ¬Prev),

⊤ ⊑ [(
⊔
t∈T

Ct) → In] ⊓ [In → (
⊔
t∈T

(Ct ⊓ ⊔

t′∈T\{t}

¬Ct′)],

⊤ ⊑ (∀r .[In → (∃r .In)]) ⊓ (In → ∃s.In),
⊤ ⊑ In → (∃s.In)N.⊤,

⊤ ⊑ ⊔

1≤k≤N

Ctk
→
[
[(∀s.In)k.Cur] ⊓ ⊔

1≤ℓ≤N, ℓ ̸=k

[(∀s.In)ℓ.¬Cur]
] ,

⊤ ⊑
⊔

1≤k≤N

[(∀s.In)k.Prev] ⊓ ⊔

1≤ℓ≤N, ℓ ̸=k

[(∀s.In)ℓ.¬Prev]

 ,

3This ensures for each i ∈ N the existence of i s-successors for the i-th element in the bottom of the octant.
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⊤ ⊑
⊔
t∈T

Ct → [ ⊔

t′∈T,(t,t′) are not V-compatible

¬∃s.Ct′ ]

 ,

⊤ ⊑
⊔
t∈T

Ct → [ ⊔

tℓ∈T,(tℓ,t) are not H-compatible

¬(∃s.In)ℓ.Prev]

 .

It should be clear that the above GCIs formalise the required properties.

We first see that T-hyperoctant can be extended to (counter)models of T D
▲ and qD

▲ .

Lemma 11.38 Every proper T-hyperoctant can be extended to a model of T D
▲ that violates qD

▲ .

Proof. Let I be a proper T-hyperoctant. Consider an interpretation J with the domain
∆J := ∆I ∪ ((N × N) \ O) × ZN+1 defined as follows:

• J restricted to ∆I is isomorphic to I,
• sJ := sI ∪{((n, m, k), (n, m, k+1)), ((n, m, 0), (n, m+1, 0)) | (n, m) ∈ (N×N)\O, k ∈ ZN},
• rJ := rI ,
• auxJ := ∆J × {(−N, 0, 0)}, and
• For each name A ∈ NC, each tuple (n, m, k) with (n, m) ̸∈ O belongs AJ iff (0, 0, k) ∈ AI .

Intuitively, we enlarged I to a grid and filled fresh places with copies of the diagonal of I (this
is needed to fulfil the second conjunct of the axiomatisation of (GSuc)). By construction of J
(and the fact that I is a T-hyperoctant) it follows J is a model of T D

▲ . Call J proper if for all
(n, m, k) ∈ CurJ we have (n+1, m, k) ∈ PrevJ . Note that as I is proper, the above condition
holds for all triples (n, m, k) with (n, m) ∈ O. For other tuples, we simply use the fact that
the interpretation of concepts for (n, m, k) with (n, m) ̸∈ O is inherited from the elements of
the form (0, 0, k). Thus J is indeed proper. Now, without any further changes, the proof of
the “only if” direction of Lemma 11.36 establishes J ̸|= qD

▲ .

As a handy lemma used in the forthcoming proof, we need to establish that:

Lemma 11.39 Every single-role tree-like model of T D
▲ contains a substructure that is isomorphic to

a T-hyperoctant.

Proof. The proof idea is simple but tedious. We take single-role tree-like model I of T D
▲ , and

select elements that will later constitute a hyperoctant branch-by-branch. Let d(−N,0,0) be
any element of I which is an aux-successor of some element of I (it exists as ∆I ̸= ∅ and I satis-
fies (GStart)). Thus there exists an r∗-path of elements d(−N,0,0), d(−N+1,0,0), . . . , d(0,0,0), d(1,0,0)
witnessing the satisfaction of (GStart), where only d(0,0,0), d(1,0,0) belong to InJ (by (GStart)
and (GCompl)), d(0,0,0) carries a tile and d(1,0,0) carries a tile that differs from . After
employing a routine induction, we see that the first conjunct of (GSuc) yields the existence of
an infinite r∗-path d(1,0,0), d(2,0,0), . . . of inner elements. By the second conjunct of (GSuc) we
know that every d(i,0,0) has an outgoing si-path d(i,1,0), . . . , d(i,i,0) composed of inner elements.
Finally, by (GPath), every element d(i,j,0) has an outgoing sN-path d(i,j,1), . . ., d(i,j,N) com-
posed of outer elements. Note that by tree-likeness of I we have that all of selected elements
d(i,j,k) are pairwise-different, and any pair of elements is connected by at most one role. Let
J be the restriction of I to the set of selected element, with the domain renamed with a map
d(i,j,k) 7→ (i, j, k). It follows from (GTil) and (GCompl) that J restricted to InJ is a T-octant.
Other properties of T-hyperoctants can be readily verified with (GCur), (GPrev), (GVerti),
(GHori). Thus J is a T-hyperoctant, as desired.

The next lemma summarises our reduction.
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Lemma 11.40 D covers the octant if and only if T D
▲ ̸|= qD

▲ .

Proof. Suppose that D covers the octant. Then, by Lemma 11.35, there exists a proper T-
hyperoctant I. Hence, from Lemma 11.38 we conclude existence of a model J of T D

▲ such that
J ̸|= qD

▲ . Thus T D
▲ ̸|= qD

▲ . For the other direction, suppose that there exists an interpretation I
such that I |= T D

▲ but I ̸|= qD
▲ . By Corollary 11.4 we can assume that I is single-role tree-

like. From Lemma 11.39 we know that I contains a substructure J that is a T-hyperoctant.
As I ̸|= qD

▲ , we know that J ̸|= qD
▲ . Thus J is a proper T-hyperoctant. Hence, by Lemma 11.35

we conclude that D covers the octant.

As the octant tiling problem is undecidable, we conclude the main theorem of this section.

Theorem 11.41
The entailment problem of {r , s, r∗, s∗, r#s#}-conjunctive-queries over ALC-TBoxes is undecidable.

Interestingly enough4, our proof technique can be adjusted (with little effort) to derive related results
for query languages involving inverses. Before moving to the undecidability result, let us define the class of
Visibly-Pushdown Path Queries [LL15, p. 330] (VPQs) as the class of single-atom VPL-CQs (i.e. VPL-CQs
without conjunction). We stress that the entailment problem of such queries is decidable. The main idea is
that the non-satisfaction of a VPQ of the form L(x, y) can be expressed with an ALCvpl-GCI ⊤ ⊑ ¬∃L.⊤.
Indeed:

Corollary 11.42
The entailment problem of VPQs over ALCvpl-TBoxes is 2ExpTime-complete (assuming that the
VPLs from the query and the TBox are over the same alphabet).

Proof. The lower bound is inherited from the concept satisfiability problem for ALCvpl [LLS07,
Thm. 19]. Let T be an ALCvpl-TBox and q be a VPQ of the form L(x, y). The crucial obser-
vation is that by the semantics of queries we have that T ̸|= q if and only if T ′ := T ∪ {⊤ ⊑
¬∃L.⊤} has a model. Hence, by a well-known internalisation of TBoxes as concepts in the
presence of regular expressions [BCM+03, p. 186], we can compute (in time polynomial w.r.t.
|T |) an ALCvpl-concept C that is satisfiable if and only if T ′ is. Now it suffices to check the
satisfiability of C. This in turn can be done in doubly-exponential time by the result of Löding
et al. [LLS07, Thm. 18], finishing the proof.

We next extend the class of VPQs with an inverse operator, obtaining the class of Two-Way Visibly
Pushdown Path Queries (2VPQs). More precisely, such queries are VPQs that allow for letters of the
form r− for all role names r ∈ NR in the underlying visibly-pushdown alphabet. When evaluating
2VPQs over interpretations I, the role (r−)I is interpreted as the set-theoretic inverse of the role rI .
In what follows we sketch the proof of the fact that the entailment of 2VPQs over ALC-TBoxes is
undecidable. The key ingredients of our reduction are the previously-defined ALC-TBox T D

▲ and a fresh
2VPQ qD

2VPQ := L↓→↑(x, y), where

L↓→↑ :=
{

Cur? In?
(
s− In?

)k s (In? s)m (In? r In?) (s In?)ms
(
In? s

)k In? Prev? | k, m ∈ N
}

.

It is an easy exercise to construct a pushdown automaton for the language L↓→↑. Such an automaton
becomes visibly-pushdown under the requirement that s and s− are, respectively, return and call symbols,
and r is an internal symbol. The forthcoming Lemma 11.43 relates the queries qD

▲ and qD
2VPQ. As it can

be established analogously to the other lemmas of this section, we only sketch the proof and leave some
minor details to the reader.

4I would like to thank Anni-Yasmin Turhan for asking this question.
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Lemma 11.43 Let D := (Col, T, ) be a domino tilling system and let I be a T-hyperoctant.
We have that I |= qD

▲ if and only if I |= qD
2VPQ. Moreover, by applying the construction from

Lemma 11.38, every proper T-hyperoctant can be extended to a model of T D
▲ that violates qD

2VPQ.

Proof sketch. We first sketch the proof of the equivalence I |= qD
▲ if and only if I |= qD

2VPQ.
First, take any match η witnessing I |= qD

▲ . Then it can be readily verified that the mapping
x 7→ η(v1), y 7→ η(v2) is a match for I and qD

2VPQ. For the opposite direction, let d, e ∈ ∆I be
domain elements for which the mapping x 7→ d, y 7→ e is a match for I and qD

2VPQ. Hence, e is
[In?

(
s− In?

)k s (In? s)m (In? r In?) (s In?)ms
(
In? s

)k In?]-reachable from d for some integers
m, k ∈ N. By analysing the shape of T-hyperoctants and the above expression, we infer the
existence of an integer n ∈ N for which d = (n, m, k), and e = (n+1, m, k). Indeed, the equality
of the second and third coordinates is ensured by the presence of m and k in the above path
expression; the fact that the first coordinate of e is the successor value of the first coordinate of
d is guaranteed by the subexpression (In? r In?) in qD

2VPQ. Now the match for qD
▲ and I can be

defined as: v1 7→ (n, m, k), v2 7→ (n+1, m, k), w1 7→ (n, m, 1), w2 7→ (n+1, m, 1), z1 7→ (n, m, 0),
z2 7→ (n+1, m, 0), y1 7→ (n, 0, 0), y2 7→ (n+1, 0, 0), x1 7→ (n−m, 0, 0), x2 7→ (n−m+1, 0, 0),
u1 7→ (n−m−k, 0, 0), u2 7→ (n−m−k+1, 0, 0).

For the remaining part of the proof, take any proper T-hyperoctant I. We apply the construc-
tion from the proof of Lemma 11.38, and obtain a model J of T D

▲ that violates qD
▲ . It suffices

to show that J ̸|= qD
2VPQ. Towards a contradiction, suppose the opposite, and take any match

η for J and qD
2VPQ. Then, by the construction of J and the shape of qD

2VPQ, we conclude that
the image of η belongs to the T-hyperoctant part I of J . By equivalence between the queries
qD

2VPQ and qD
▲ sketched above, we conclude I |= qD

▲ . A contradiction.

The second auxiliary lemma has a proof analogous to the proof Lemma 11.40.

Lemma 11.44 Let D := (Col, T, ) be a domino tilling system and let I be a T-hyperoctant. We
have that T D

▲ ̸|= qD
2VPQ if and only if D covers the octant.

Proof. If D covers the octant, by Lemma 11.35 there exists a proper T-hyperoctant I. Ap-
plying the second part of Lemma 11.43, we extend I to a model of T D

▲ violating J ̸|= qD
2VPQ.

Thus T D
▲ ̸|= qD

2VPQ. For the reverse direction, take any model I of T D
▲ such that I ̸|= qD

2VPQ.
By Corollary 11.4 we can assume that I is single-role tree-like. From Lemma 11.39 we know
that I contains a substructure J that is a T-hyperoctant. As I ̸|= qD

2VPQ, we know that
J ̸|= qD

2VPQ, and thus, by Lemma 11.43, we know that J ̸|= qD
▲ . Hence, by Lemma 11.36,

J is a proper T-hyperoctant. Invoking Lemma 11.35 we conclude that D covers the octant.

Linking Lemma 11.44 with the undecidability of the tiling problem (Lemma 11.32), we get:

Theorem 11.45
The entailment problem of 2VPQs over ALC-TBoxes is undecidable.

Once again, let us point out that by the semantics of the query and the logics observe that T D
▲ ̸|= qD

2VPQ
holds if and only if T D

▲ ∪ {⊤ ⊑ ¬∃L↓→↑.⊤} (which is written in ALCvplI, namely the extension of ALCvpl
with the inverse operator) is satisfiable. Such a reduction yields undecidability of the concept satisfiability
problem for ALCvplI, and thus reproves the previously-established result of Göller [Göl08, Prop. 2.32]
(Corollary 11.5 in Preliminaries).

We conclude the section by revisiting known results concerning query entailment in (extensions of)
ALC, and lifting them to the case of ALCvpl. This contrasts with Theorem 11.41.
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Corollary 11.46
The query entailment problem for the class of Positive Conjunctive Regular Path Queries over
ALCvpl-TBoxes is 2ExpTime-complete.

Proof sketch. Note that all the results given above transfer immediately to the case of TBoxes,
as they can be internalised in concepts in the presence of regular expressions [BCM+03, p. 186].
Hence, it suffices to focus on ALCvpl-concepts only. Let C be an input ALCvpl-concept and q be a
REG-PEQ. Löding et al. introduced [LLS07, p. 55] a model of visibly pushdown tree automata
that has the following properties (unfortunately all of them are only implicit in the paper): (a)
generalises nondeterministic tree automata, (b) is closed under intersection (and an automaton
recognizing the intersection of languages can be computed in polynomial time), and (c) its
non-emptiness can be tested in exponential time [LLS07, Thm. 4]. They also provided [LLS07,
Sec. 4.2] an automaton AC that accepts precisely (suitably) single-role tree-like models of C,
and the size of AC is exponential w.r.t. the size of the concept C [LLS07, Lemma 17]. On
the other hand, Gutiérrez-Basulto et al. provide [GIJM23, Lemma 8] a non-deterministic tree
automaton A¬q, of size exponential w.r.t. the sizes of C and q, that accepts all single-role
tree-like structures that do not contain any matches of q.5 It follows then that the intersection
of the languages of AC and A¬q is non-empty if and only if C ̸|= q. As visibly pushdown tree
automata are closed under intersection [LLS07, p. 55], and their non-emptiness can be solved
in exponential time [LLS07, Thm. 4], we infer that the non-emptiness of AC ∩ A¬q can be
tested in doubly-exponential time w.r.t. the sizes of C and q. The matching lower bound is
inherited from the concept satisfiability.

11.5 Open Problems

We investigated the decidability status of extensions of ALCvpl (also known as Propositional Dynamic
Logic with Visibly Pushdown Programs) with popular features supported by W3C ontology languages.
While undecidability of ALCvpl with inverses or role-hierarchies follows from existing work, we provided
undecidability proofs of ALCvpl extended with the Self operator (Section 11.2), with nominals (Section 11.3),
or non-regular queries (Section 11.4). The following questions remain open.

• Our undecidability proof for ALCSelf
vpl relied on the availability of multiple visibly-pushdown lan-

guages that are encodings on deterministic one-counter languages. Can our undecidability proof be
sharpened? For instance, is the concept satisfiability of ALCr#s#

reg with Self already undecidable?
• Positive results for ALCvpl [LLS07, Thm. 18] concern the concept satisfiability problem, rather

than the knowledge-base satisfiability problem. Is the later decidable for ALCvpl? Classical tech-
niques [DL94, p. 210] for incorporating ABoxes inside concepts do not work, as the class of visibly-
pushdown languages is not compositional (is of “infinite memory”). Note that this problem already
occurs for ALCr#s#

reg .
• Is an extension of ALCvpl (or even ALCr#s#

reg ) with functionality decidable? De Giacomo and Lenz-
erini [DL94, p. 211] proposed a satisfiability-preserving translation from ALCreg with functionality
to plain ALCreg. Unfortunately, this reduction does not seem to be applicable to ALCvpl. The reason
is again that visibly-pushdown languages are not compositional. Also, functionality violates a crucial
condition of “unique diamond-path property” from the decidability proof of ALCvpl [LLS07, Def. 11].

• Existing positive results on non-regular extensions of ALCreg, especially these of Löding et al. [LLS07,
Thm. 18], rely on the use of (potentially infinite) tree-like models. Is the finite satisfiability problem
for ALCvpl decidable? Already the case of ALCr#s#

reg is open.

5In the paper of Gutiérrez-Basulto et al., the query automaton is presented in a more general setting of tree decomposition
as it was designed to also work for the case of knowledge-bases (not just TBoxes). In our paper we deal with concepts only,
so such an automaton works on trees as usual.





Conclusions

In this thesis we provided a series of novel, mathematically intriguing and relatively technical results
concerning fundamental database-inspired problems in the realm of logic-based knowledge representation.
As we do not want to repeat all the results, we recall the most important of them below.

• In Part I we devised a new meta-algorithm based on Lutz’s spoiler technique that yields tight
complexity results for the entailment of unions of conjunctive queries over ontologies that are forest-
friendly (their models locally resemble forests). As a by-product, this allowed us to establish (in a
uniform way) ExpTime-completeness of finite and unrestricted entailment of UCQs over ZQ−, i.e.
the logic ZQ without the Self operator. For ALC extended with the Self operator, we established a
novel 2ExpTime-hardness result concerning the query entailment (Chapter 6).

• In Part II we proposed a new algorithm for deciding quasi-forest satisfiability of ZOIQ-KBs.
We employed the algorithm to establish NP-completeness (w.r.t. the data complexity) of the
satisfiability problem for the maximal decidable sublogics ZOQ, ZIQ, and ZOI of ZOIQ, closing
a problem open for more than a decade. As the second application of our algorithm, we established
coNExpTime-completeness (w.r.t. the combined complexity) of the entailment problem of rooted
queries over ZIQ, supplemented with a novel matching lower bound for ALC with the Self operator.

• In Part III we designed a uniform, efficient reduction from the entailment of positive regular path
queries over (tamed) ZOIQ-KBs to their satisfiability problem. Our approach is not only signifi-
cantly simpler than the existing automata-based approaches, but exponentially improves previously
established upper bounds on querying (for fragments of ZOIQ involving counting). We transferred
parts of our results to the realm of the finite model theory, by establishing that the logics ZOQ and
ZOI are finitely-controllable for the class of positive existential queries.

• Finally, Part IV investigates the decidability border of non-regular extensions of the Z family of
DLs, providing several undecidability results.

Our results are in harmony with the desired conditions of efficiency, robustness, and logic-independence
described by Section 1.2 and rely on well-established notions from graph and model theory. While we
left quite a lot of problems still open (as discussed at the end of relevant sections), we are confident that
we made a significant progress towards understanding the complexity of various DLs as well as that our
techniques can be applied in future research.

For future research directions, we are currently working on transferring our results on the data
complexity of ZIQ, ZOQ, and ZOI from Part II to the case of the data complexity of the entailment
problem of positive regular path queries, investigated in Chapter 9. We plan to publish the results after the
successful defence of this thesis. We also hope to make some progress on establishing at least decidability
of the finite satisfiability of ZIQ. We already have a couple of ideas to try on.
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[BK22] Bartosz Bednarczyk and Emanuel Kieroński. Finite Entailment of Local Queries in the Z
Family of Description Logics. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 5487–5494. AAAI Press,
2022.
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[FGG+23] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault,
Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoc.
A Researcher’s Digest of GQL (Invited Talk). In Floris Geerts and Brecht Vandevoort,
editors, 26th International Conference on Database Theory, ICDT 2023, March 28-31, 2023,
Ioannina, Greece, volume 255 of LIPIcs, pages 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023.



210 Bibliography

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular Pro-
grams. Journal of Computer and System Sciences, 18(2):194–211, 1979.

[FLOR23] Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. De-
cidability of Querying First-Order Theories via Countermodels of Finite Width. CoRR,
abs/2304.06348, 2023.

[FLS98] Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query Containment for Conjunctive Queries
with Regular Expressions. In Alberto O. Mendelzon and Jan Paredaens, editors, Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 1-3, 1998, Seattle, Washington, USA, pages 139–148. ACM Press, 1998.

[GBFF91] Manfred Gehrke, Gerrit Burkert, Peter Forster, and Enrico Franconi. Natural Language Pro-
cessing and Description Logics. In Proceedings of the Terminological Logic Users Workshop,
pages 162–164. Department of Computer Science Technische Universität Berlin, 1991.

[GGBIG+19] Tomasz Gogacz, Vı́ctor Gutiérrez-Basulto, Yazmı́n Ibáñez-Garćıa, Jean Christoph Jung,
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Answering Regular Path Queries Mediated by Unrestricted SQ Ontologies. Artificial Intel-
ligence, 314:103808, 2023.

[Gin68] Abraham Ginzburg. Algebraic Theory of Automata. Academic Press, 1968.

[GLHS08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive Query Answering
for the Description Logic SHIQ. Journal of Artificial Intelligence Research, 31:157–204,
2008.

[GO99] Erich Grädel and Martin Otto. On Logics with Two Variables. Theoretical Computer
Science, 224(1-2):73–113, 1999.

[GO07] Valentin Goranko and Martin Otto. Model Theory of Modal Logic. In Patrick Blackburn,
Johan van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of
Studies in logic and practical reasoning, pages 249–329. North-Holland, 2007.
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[Grä99] Erich Grädel. On The Restraining Power of Guards. Journal Symbolic Logic, 64(4):1719–
1742, 1999.

[Gru12] Hermann Gruber. Digraph Complexity Measures and Applications in Formal Language
Theory. Discrete Mathematics and Theoretical Computer Science, 14(2):189–204, 2012.

[Gru23] Hermann Gruber. An Answer To: The Complexity of Conversion From a Regular Expression
to a Nondeterminsitic Automata and Back After Changing Initial and Final States. https:
//cstheory.stackexchange.com/q/53677, 2023. [Online; accessed 16-April-2024].
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[RK13] Sebastian Rudolph and Markus Krötzsch. Flag & Check: Data Access with Monadically
Defined Queries. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013,
New York, NY, USA - June 22 - 27, 2013, pages 151–162. ACM, 2013.
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