Complexity Theory

Exercise 2: Undecidability and Rice's Theorem

28 October 2025

Exercise 2.1. Using an oracle that decides the halting problem, construct a decider for the language $\{ \langle \mathcal{M}, w \rangle \mid \mathcal{M} \text{ is a TM that accepts } w \}$.

Exercise 2.2. A *useless state* in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Show that this language is undecidable.

Exercise 2.3. Show the following: "If a language **L** is Turing-recognisable and $\overline{\mathbf{L}}$ is many-one reducible to **L**, then **L** is decidable."

Exercise 2.4. For this task assume an alphabet Σ with $|\Sigma| > 1$. Let

 $\mathbf{L} = \{ \langle \mathcal{M} \rangle \mid \mathcal{M} \text{ a TM that accepts } w^r \text{ whenever it accepts } w \text{ (for all } w \in \Sigma^*) \},$

where w^r is the word w reversed. Show that **L** is undecidable.

Exercise 2.5. Consider the following languages L and L':

$$\mathbf{L} = \{ \langle \mathcal{M}, w \rangle \mid \mathcal{M} \text{ is a TM that accepts } w \}$$

$$\mathbf{L}' = \{ \langle \mathcal{M} \rangle \mid \mathcal{M} \text{ is a TM that does not accept any word } \}$$

Show that there cannot exist a many-one reduction from L to L'.

Exercise 2.6. Show that every Turing-recognisable language can be mapping-reduced to the following language.

$$\{\langle \mathcal{M}, w \rangle \mid \mathcal{M} \text{ is a TM that accepts the word } w\}$$

Exercise 2.7. Use the approach presented in lecture 4 to create a quine in your favourite programming language (or just use Python). What is the equivalent of "TM concatenation" here? Also note that the function q is often more complicated than one might think, due to character escaping.