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1 Introduction

The formalism of existential rules has come to prominence as an e�ective ap-
proach for both specifying and querying knowledge. Within this context, a knowl-
edge base takes the form K = (D,R), where D is a �nite collection of atomic facts
(called a database) and R is a �nite set of existential rules (called a rule set),
which are �rst-order formulae of the form ∀xy(ϕ(x,y)→ ∃zψ(y, z)). Although
existential rules are written in a relatively simple language, they are expressive
enough to generalize many important languages used in knowledge representa-
tion, such as datalog [?] and description logics [?]. Moreover, existential rules
have meaningful applications within the domain of ontology-based query an-
swering [2], data exchange and integration [9], and have proven bene�cial in the
study of general decidability criteria [10].

The query entailment problem consists of taking a knowledge base K, a query
q, and determining if K |= q. As this problem is known to be undecidable for
arbitrary rule sets [7], much work has gone into identifying existential rule frag-
ments for which decidability can be reclaimed. Typically, such classes of rule
sets are identi�ed in one of two ways: either, decidable query entailment is es-
tablished on syntactic grounds, i.e. a rule set satis�es a set of syntactic properties
(such classes are called concrete classes), or on abstract grounds, i.e. a rule set
satis�es an abstract property which may not be obvious (such classes are called
abstract classes). Examples of concrete classes include functional/inclusion de-
pendencies [11], datalog [?], and guarded rules [6]. Examples of abstract classes

? Work supported by the European Research Council (ERC) Consolidator Grant
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include �nite expansion sets [4], �nite uni�cation sets [3], and bounded-treewidth
sets (bts) [6].

Yet, there is a third means of establishing the decidability of query entail-
ment: only limited work has gone into identifying classes of rule sets with de-
cidable query entailment based on their proof-theoretic characteristics, that is,
based on the derivations such rules produce. To the best of the authors' knowl-
edge, only the class of greedy bounded treewidth sets (gbts) has been identi�ed
in such a manner (see [14]). A rule set quali�es as gbts when every derivation it
produces is greedy, i.e. the frontier of every rule application in the derivation only
contains constants from the knowledge base or nulls occurring in the head of a
single, previous rule application. The utility of this property is that it lets one
straightforwardly construct a model with �nite treewidth for the knowledge base
under consideration, thus establishing the decidability of query entailment [6].

In this paper, we investigate the gbts class as well as three new classes of
rule sets where decidability is determined proof-theoretically. First, we de�ne
a weakened version of gbts, dubbed wgbts, where the rule set need only pro-
duce at least one greedy derivation relative to any given database. Second, we
investigate two new classes of rule sets, dubbed cycle-free derivation graph sets
(cdgs) and weakly cycle-free derivation graph sets (wcdgs), which are de�ned
relative to the notion of a derivation graph. Derivation graphs were introduced
by Baget et al. [5] and are directed acyclic graphs encoding how certain facts
are derived throughout the course of a derivation. The utility of such objects is
that through the application of reduction operations a derivation graph may be
reduced to a tree, which serves as a tree decomposition of a model of the con-
sidered knowledge base. Such objects were used to establish the subsumption of
(weakly) frontier guarded rule sets under bounded-treewidth sets [5].

Our contributions are as follows: (1) We investigate how proof-theoretic struc-
tures gives rise to decidable query entailment and propose three new classes of
rule sets. (2) We show that gbts = cdgs and wgbts = wcdgs classes, estab-
lishing a correspondence between greedy derivations and reducible derivation
graphs. (3) We show that wgbts properly subsumes gbts via a novel proof trans-
formation argument. Therefore, by the former point, we also �nd that wcdgs
properly subsumes cdgs. (4) We show that the purported proof-theoretical char-
acterization of bts fails to subsume fes, and thus, fails to coincide with bts.

This paper is organized accordingly: In Section 2, we de�ne preliminary no-
tions, and in Section 3, we discuss issues surrounding a proof-theoretic charac-
terization of bts. Subsequently, we study gbts and wgbts in Section 4, and
show that the latter class properly subsumes the former via an intricate proof
transformation argument. In Section 5, we de�ne cdgs and wcdgs as well as
show that gbts = cdgs and wgbts = wcdgs. Last, in Section 6, we conclude
and discuss future work.
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2 Preliminaries

Syntax and formulae. We let Ter be a set of terms, which is the the union of
three countably in�nite, pairwise disjoint sets, namely, the set of constants Con,
the set of variables Var, and the set of nulls Nul. We use a, b, c, . . . (occasionally
annotated) to denote constants, and x, y, z, . . . (occasionally annotated) to
denote both variables and nulls. A signature Σ is a set of predicates p, q, r, . . .
(which may be annotated) such that for each p ∈ Σ, ar(p) ∈ N is the arity of
p. For simplicity, we assume a �xed signature Σ throughout the course of the
paper.

An atom over Σ is de�ned to be a formula of the form p(t1, . . . , tn), where
p ∈ Σ, ar(p) = n, and ti ∈ Ter for each i ∈ {1, . . . , n}. A ground atom over Σ is
de�ned to be an atom p(a1, . . . , an) such that ai ∈ Con for each i ∈ {1, . . . , n}.
We will often use t to denote a tuple (t1, . . . , tn) of terms and p(t) to denote a
(ground) atom p(t1, . . . , tn). An instance over Σ is de�ned to be a (potentially
in�nite) set I of atoms over constants and nulls, and a database D is de�ned to
be a �nite set of ground atoms. We let X , Y, . . . (occasionally annotated) denote
(potentially in�nite) sets of atoms with Ter(X ), Con(X ), Var(X ), and Nul(X )
denoting the set of terms, constants, variables, and nulls occurring in the atoms
of X , respectively.

Substitutions and homomorphisms. A substitution is de�ned to be a partial
function over the set of terms Ter. A homomorphism h from a set X of atoms
to a set Y of atoms, is a substitution such that (i) p(h(t1), . . . , h(tn)) ∈ Y, if
p(t1, . . . , tn) ∈ X , and (ii) h(a) = a for each a ∈ Con. If h is a homomorphism
from X to Y, we say that h homomorphically maps X to Y. A set X of atoms
and a set Y of atoms are homomorphically equivalent, written X ≡ Y, i� a
homomorphism exists from X to Y, and vice versa. A homomorphism h is an
isomorphism i� h is bijective and h−1 is a homomorphism.

Existential rules.Whereas databases encode assertional knowledge, ontologies
are built in the current setting by means of existential rules, which we will fre-
quently refer to as rules more simply. An existential rule is a �rst-order sentence
of the form:

ρ = ∀xy(ϕ(x,y)→ ∃zψ(y, z))

where x, y, and z are pairwise disjoint collections of variables, ϕ(x,y) is a
conjunction of atoms over constants and the variables x,y, and ψ(y, z) is a
conjunction of atoms over constants and the variables y, z. We de�ne body(ρ) =
ϕ(x,y) to be the body of ρ, and head(ρ) = ψ(y, z) to be the head of ρ. For
convenience, we will often interpret a conjunction p1(t1)∧ · · · ∧ pn(tn) of atoms
(such as the body or head of a rule) as a set {p1(t1), · · · , pn(tn)} of atoms; if h
is a homomorphism, then h(p1(t1) ∧ · · · ∧ pn(tn)) := {p1(h(t1)), · · · , pn(h(tn))}
with h applied componentwise to each tuple ti of terms. The frontier of ρ, written
fr(ρ), is the set of variables y that the body and head of ρ have in common, that
is, fr(ρ) = Var(body(ρ)) ∩ Var(head(ρ)). We de�ne a frontier atom in a rule ρ
to be an atom containing at least one frontier variable. We use ρ and annotated
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versions thereof to denote rules, as well as R and annotated versions thereof to
denote �nite sets of rules (called rule sets).

Models. We note that sets of atoms (which include instances and databases)
may be seen as �rst-order interpretations, and so, we may use |= to represent
the satisfaction of formulae on such structures. A set of atoms X satis�es a set
of atoms Y (or, equivalently, X is a model of Y), written X |= Y, i� there exists
a homomorphic mapping from Y to X . A set of atoms X satis�es a rule ρ (or,
equivalently, X is a model of ρ), written X |= ρ, i� for any homomorphism
h, if h is a homomorphism from body(ρ) to X , then it can be extended to a
homomorphism h from head(ρ) to X . A set of atoms X satis�es a rule set R
(or, equivalently, X is a model of R), written X |= R, i� X |= ρ for every rule
ρ ∈ R. If a set of atoms X homomorphically maps into every model of a set of
atoms, a rule, or a rule set, then we refer to X as a universal model of the set of
atoms, rule, or rule set [8].

Knowledge bases and querying. A knowledge base (KB) K is de�ned to be
a pair (D,R), where D is a database and R is a rule set. An instance I is a
model of K = (D,R) i� D ⊆ I and I |= R. We consider querying knowledge
bases with conjunctive queries (CQs), that is, with formulae of the form q(y) =
∃xϕ(x,y), where ϕ(x,y) is a non-empty conjunction of atoms over the variables
x,y and constants. We refer to the variables y in q(y) as free and de�ne a
Boolean conjunctive query (BCQ) to be a CQ without free variables, i.e. a BCQ
is a CQ of the form q = ∃xϕ(x). A knowledge base K = (D,R) entails a CQ
q(y) = ∃xϕ(x,y), written K |= q(y), i� ϕ(x,y) homomorphically maps into
every model I of K; we note that this is equivalent to ϕ(x,y) homomorphically
mapping into a universal model of D and R.

As we are interested in extracting implicit knowledge from the explicit knowl-
edge presented in a knowledge base K = (D,R), we are interested in deciding
the BCQ entailment problem:4

(BCQ Entailment) Given a KB K and a BCQ q, is it the case that K |= q?

While it is well-known that the BCQ entailment problem is undecidable in gen-
eral [7], restricting oneself to certain classes of rule sets (e.g. datalog or �nite
uni�cation sets [5]) may recover decidability of the above problem. We refer to
classes of rule sets for which BCQ entailment is decidable as query-decidable
classes.

Derivations. One means by which we can extract implicit knowledge from a
given KB is through the use of derivations, that is, sequences of instances ob-
tained by sequentially applying rules to given data. We say that a rule ρ =
∀xy(ϕ(x,y) → ∃zψ(y, z)) is triggered in an instance I via a homomorphism
h, written succinctly as τ(ρ, I, h), i� h homomorphically maps ϕ(x,y) to I.
In this case, we de�ne Ch(I, ρ, h) = I ∪ h(ψ(y, z)), where h is an extension

4 We recall that entailment of non-Boolean CQs or even query answering can all be
reduced to BCQ entailment.
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of h mapping every variable z in z to fresh a null. Consequently, we de�ne
an R-derivation to be a sequence I0, (ρ1, h1, I1), . . . , (ρn, hn, In) such that (i)
ρi ∈ R for each i ∈ {1, . . . , n}, (ii) τ(ρi, Ii−1, hi) holds for i ∈ {1, . . . , n}, and
(iii) Ii = Ch(Ii−1, ρ, hi) for i ∈ {1, . . . , n}. We will use δ and annotations
thereof to denote R-derivations, and we de�ne the length of an R-derivation
δ = I0, (ρ1, h1, I1), . . . , (ρn, hn, In), denoted |δ|, to be n. Furthermore, for in-
stances I and I ′, we write I δ−→R I ′ to mean that there exists an R-derivation
δ of I ′ from I. Also, if I ′′ can be derived from I ′ by means of a rule ρ ∈ R
and homomorphism h, we abuse notation and write I δ−→R I ′, (ρ, h, I ′′) to in-
dicate that I δ−→R I ′ and I ′ δ′−→R I ′′ with δ′ = I ′, (ρ, h, I ′′). Derivations play
a fundamental role in this paper as we aim to identify (and analyze the rela-
tionships between) query-decidable classes of rule sets based on how such rule
sets derive information, i.e. we are interested in classes of rule sets that may be
proof-theoretically characterized.

Chase. A tool that will prove useful in the current work is the chase, which
in our setting is a procedure that (in essence) simultaneously constructs all
K-derivations in a breadth-�rst manner. Although many variants of the chase
exist [5, 9, 12], we utilize the chase procedure (also called the k-Saturation) from
Baget et al. [5]. We use the chase in the current work as a purely technical tool
for obtaining universal models of knowledge bases, proving useful in separating
certain query-decidable classes of rule sets.

We de�ne the one-step application of all triggered rules of a rule set R in I
accordingly:

Ch1(I,R) =
⋃

ρ∈R,τ(ρ,I,h)

Ch(I, ρ, h).

We let Ch0(I,R) = I, as well as let Chi+1(I,R) = Ch1(Chi(I,R),R), and
de�ne the chase to be

Ch∞(I,R) =
⋃
i∈N

Chi(I,R).

For any KB K = (D,R), the chase Ch∞(D,R) always serves as a universal
model of K, that is, D ⊆ Ch∞(D,R), Ch∞(D,R) |= R, and Ch∞(D,R) ho-
momorphically maps into every model of D and R.

Rule dependence. Let ρ and ρ′ be rules. We say that ρ′ depends on ρ i� there
exists an instance I such that (i) ρ′ is not triggered in I via any homomor-
phism, (ii) ρ is triggered in I via a homomorphism h, and (iii) ρ′ is triggered
in Ch(I, ρ, h′) via a homomorphism h′. We de�ne the graph of rule dependen-
cies [1] of a set R of rules to be G(R) = (V,E) such that (i) V = R and (ii)
(ρ, ρ′) ∈ E i� ρ′ depends on ρ.

Treewidth. A tree decomposition of an instance I is de�ned to be a tree T =
(V,E) such that V ⊆ 2Ter(I) (where each element of V is called a bag) and
E ⊆ V × V , satisfying the following three conditions: (i)

⋃
X∈V X = Ter(I), (ii)

for each p(t1, . . . , tn) ∈ I, there is an X ∈ V such that {t1, . . . , tn} ⊆ X, and (iii)



6 F. Author et al.

for each t ∈ Ter(I), the subgraph of T induced by the bags X ∈ V with t ∈ X
is connected. (NB. Condition (iii) is referred to as the connectedness condition.)
We de�ne the width of a tree decomposition T = (V,E) of an instance I as
follows:

w(T ) := max{|X| : X ∈ V } − 1

i.e. the width is equal to the cardinality of the largest node in T minus 1. We
let w(T ) =∞ i� for all n ∈ N, n ≤ max{|X| : X ∈ V }. We de�ne the treewidth
of an instance I, written tw(I), as follows:

tw(I) := min{w(T ) : T is a tree decomposition of I}

i.e. the treewidth of an instance is equal to the minimal width among all its tree
decompositions, which is set to ∞ when no tree decomposition of I has a �nite
width.

3 Finite-Expansion and Bounded-Treewidth

In this section, we accomplish two goals: �rst, we discuss two query-decidable
classes of existential rules that are of particular importance in this paper, namely,
proof-theoretic bounded treewidth sets (pbts) and �nite treewidth sets (fts). The
former class admits a syntactic de�nition, containing those rule sets for which the
treewidth of every step of the chase is uniformly bounded by a natural number,
whereas the latter admits a semantic de�nition, containing those rule sets which
possess a universal model of �nite treewidth, relative to any given database (both
classes are formally de�ned in De�nition 1 below).5

Since classes of rule sets introduced in subsequent sections will be de�ned
in a syntactic or proof-theoretic manner (meaning, they only contain rule sets
that produce speci�c types of derivations), it will prove straightforward to relate
such de�nitions with the syntactic de�nition of pbts, ultimately showing that
such classes are subsumed by pbts. Since pbts is subsumed by fts � which is
known to admit decidable query entailment � pbts will serve as a technical tool
and bridge connecting the classes of rule sets we consider later on to fts, thus
demonstrating that such classes admit decidable query entailment.

The second goal we achieve in this section concerns the relationship between
pbts, fts, and the class of �nite expansion sets (fes), which admits a semantic
de�nition as well (see De�nition 1 below), containing those rule sets which pos-
sess a �nite universal model. It is trivial to con�rm that fes is subsumed by fts
as any �nite universal model is a universal model of �nite treewidth, yet, despite
claims to the contrary, we will prove that fes is not subsumed by pbts.

Let us now formally de�ne fes, pbts, and fts. Afterward, we give a proposi-
tion stating the subsumption of fts over the former two classes of rule sets.

5 We note that both pbts and fts have been referred to as bounded treewidth sets in
the literature (cf. [5]). However, as these two classes are distinct from one another,
we apply unique names to distinguish them.
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De�nition 1 (fes, pbts, fts). Let R be a rule set. R is de�ned to be a �nite
expansion set (fes) i� for every database D, (D,R) has a �nite universal model.
R is de�ned to be a proof-theoretic bounded treewidth set (pbts) i� for every
database D, there exists an n ∈ N such that for every k ∈ N, tw(Chk(D,R)) ≤ n.
R is de�ned to be a �nite treewidth set (fts) i� for every database D, there exists
an n ∈ N and a universal model I∗ of (D,R) such that tw(I∗) ≤ n.

Proposition 1. Let R be a rule set.

1. If R is fes, then R is fts;
2. if R is pbts, then R is fts.

We now provide a rule set, denoted R1, that falls within the fes class, but
outside of the pbts class, that is, we establish the following theorem:

Theorem 1. R1 is fes, but is not pbts, and thus, pbts does not subsume fes.

The above theorem is a consequence of two lemmata, each of which we argue
in turn below: �rst, we argue that the rule set R1 is not pbts (Lemma 1), and
second, we argue that it is fes (Lemma 2). We will dedicate the remainder of
the section to justifying these two lemmata by means of an example, and defer
the formal proofs to the appendix.

We de�ne R1 to be the rule set {ρ1, ρ2, ρ3} where

ρ1 = r(x, y)→ ∃z.r(y, z)
ρ2 = r(x, y) ∧ r(y, z)→ r(x, z)
ρ3 = r(x, y)→ r(x, x)

To provide intuition as to why R1 is not pbts, let us consider the instances
obtained via the chase on the database D∗ = {r(a, b)}. The database D∗,
Ch1(D∗,R1), and Ch2(D∗,R1) can be viewed graphically as shown in Figure 1.

a b z1 z2

z3 z4

Fig. 1. An example of applying the chase twice to the database D∗ = {r(a, b)} with
solid, dashed, and dotted lines depicting the predicate r. The constants a and b con-
nected by the solid line depict the original database D∗, the dashed lines show how
D∗ is extended after one step of the chase with the null z1 being introduced, and the
dotted lines show how D∗ is extended after a second step of the chase with the nulls
z2, z3, and z4 being introduced.

Observe that ρ1 extends the terminal vertex of a binary edge with a binary
edge to a fresh null, ρ2 introduces transitive edges, and ρ3 introduces loops at
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the source vertex of a binary edge. Therefore, one can see via the example in
Figure 1 that as k increases, Chk(D∗,R1) will contain ever longer lines that are
transitively (and re�exively) closed. Due to the connectedness condition imposed
on tree decompositions, all terms in such a line must occur within the same bag,
meaning that since such a line grows (i.e. includes increasingly many terms)
in Chk(D∗,R1) as k increases, the width of any tree decomposition must also
increase, and hence, tw(Chk(D∗,R1)) will increase as k increases. Therefore, we
have found a database (viz. D∗) for which tw(Chk(D∗,R1)) is not uniformly
bounded for each k ∈ N, showing that R1 is not pbts. Thus, we have:

Lemma 1. R1 is not pbts.

Although R1 is not pbts and tw(Ch∞(D∗,R1)) = ∞, it is still possible
to �nd a �nite universal model for the knowledge base (D∗,R1). Toward this
end, let us consider the closely related rule set R′1 = {ρ′1, ρ′2} such that (i) the
rule ρ′1 = r(x, y) ∧ r(y, z) → r(x, z) and (ii) the rule ρ′2 = r(x, y) → r(x, x) ∧
r(y, y). Observe that if we close D∗ under applications of R′1, then we obtain the
instance I = {r(a, a), r(a, b), r(b, b)}, which can be mapped into Ch2(D∗,R1) ⊆
Ch∞(D∗,R1) (depicted in Figure 1) via the identity homomorphism h.

It is obvious that I is �nite, but even more, I serves as a universal model for
the KB (D∗,R1). Modelhood is straightforward to establish by considering the
satisfaction of each rule from R1 on I. Universality is a consequence of the fact
that I homomorphically maps into Ch∞(D∗,R1), which is a universal model
of (D∗,R1) (meaning Ch∞(D∗,R1) homomorphically maps into any model of
(D∗,R1)), and thus, I homomorphically maps into any model of (D∗,R1).

As it so happens, closing any database D under R′1 yields a �nite universal
model for (D,R1) in general, implying that R1 is fes. To provide some intuition
regarding this point, �rst let I∗ be an instance obtained by closing an arbitrary
database D underR′1. We will �rst explain why I∗ is �nite, then explain why it is
a model ofR1, and last, explain why I∗ is a universal model ofR1. First, sinceR′1
never introduces new terms, it is easy to see that the resulting instance I∗ will be
�nite (as witnessed in the above example). Second, I∗ will be a model of (D,R1)
for the following reasons: as with R1, the rule set R′1 introduces transitive edges
as well as loops at initial vertices of binary edges, meaning that any instance
that satis�es R′1 will satisfy ρ2, ρ3 ∈ R1. Additionally, whereas R1 extends the
terminal vertex of a binary edge with a fresh binary edge to a fresh null (via the
ρ1 rule), R′1 introduces loops at the terminal vertex of a binary edge (via the
ρ′2 rule). The introduction of such loops (e.g. in I∗) ensures the satisfaction of
head(ρ1), and therefore, of ρ1. Thus, I∗ |= R1. Last, similar to the example with
I above, one can show that I∗ can be mapped into Ch∞(D,R1) by means of the
identity homomorphism (mapping all constants in D to themselves), establishing
the universality of I∗. We therefore have the following:

Lemma 2. R1 is fes.
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4 Greediness

We now discuss a property of derivations referred to as greediness. In essence,
a derivation is greedy when the frontier of any applied rule consists solely of
constants from a given KB and/or nulls introduced by a single previous rule
application. Such derivations were de�ned by Thomazo et al. [14] and were used
to identify the (query-decidable) class of greedy bounded treewidth sets (gbts),
that is, the class of rule sets that produce only greedy derivations (de�ned below)
when applied to a database.

In this section, we also identify a new query-decidable class of rule sets,
referred to as weakly greedy bounded treewidth sets (wgbts). The wgbts class
serves as a weakened version of gbts, and contains rule sets that admit at least
one greedy derivation of any derivable instance. It is straightforward to con�rm
that wgbts generalizes gbts since if a rule set is gbts, then every derivation
of a derivable instance is greedy, implying that every derivable instance has
some greedy derivation. Yet, what is non-trivial to show is that wgbts properly
subsumes gbts. We prove this fact by means of a proof-theoretic argument and
counter-example. First, we show under what conditions we can permute rule
applications in a given derivation (see Lemma 3 below), and second, we provide
a rule set which has non-greedy derivations (meaning, the rule set is not gbts),
but where every derivation can be transformed into a greedy derivation by means
of rule permutations and replacements.

Let us formally de�ne greedy derivations, followed by examples to demon-
strate the concept of (non-)greediness, and after, we will de�ne gbts and wgbts
on the basis thereof.

De�nition 2 (Greedy Derivation [14]). We de�ne an R-derivation

δ = I0, (ρ1, h1, I1), . . . , (ρn, hn, In)

to be greedy i� for each i such that 0 < i ≤ n, there exists a j < i such that
hi(fr(ρi)) ⊆ Nul(hj(head(ρj))) ∪ Con(I0,R) ∪Nul(I0).

To give examples of non-greedy and greedy derivations, let us de�ne the
database D† := {p(a), q(b)} and the rule set R2 := {ρ1, ρ2, ρ3, ρ4}, with

ρ1 = p(x)→ ∃yz.q(x, y, z)
ρ2 = r(x)→ ∃yz.s(x, y, z)
ρ3 = p(x) ∧ r(y)→ ∃zwuv.q(x, z, w) ∧ s(y, u, v)
ρ4 = q(x, y, z) ∧ s(w, u, v)→ ∃o.t(x, y, w, u, o)

An example of a non-greedy derivation is the following:

δ1 = D†, (ρ1, h1, I1), (ρ1, h2, I2), (ρ2, h3, I3), (ρ4, h4, I4),

where h1(x) = h2(x) = a, h3(x) = b, h4(x) = a, h4(y) = y0, h4(z) = z0,
h4(w) = b, h4(u) = y2, and h4(v) = z2, and all instances participating in δ1 are
as follows:
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D† = {p(a), r(b)} I3 = I2 ∪ {s(b, y2, z2)}
I1 = D† ∪ {q(a, y0, z0)} I4 = I3 ∪ {t(a, y0, b, y2, o)}
I2 = I1 ∪ {q(a, y1, z1)}

The above derivation is not greedy because

h4(fr(ρ4))={a, y0, b, y2} = {y0} ∪ {y2} ∪ {a, b} ∪ ∅
⊆Nul(h1(head(ρ1))) ∪Nul(h3(head(ρ2)))

∪ Con(D†,R2) ∪Nul(D†)

That is to say, the frontier of the last rule application (i.e. the application of
ρ4) contains nulls introduced by two previous rule applications (as opposed to
containing nulls from just a single previous rule application), namely, the �rst
application of ρ1 and the application of ρ2. In contrast, the following is an
example of a greedy derivation

δ2 = D†, (ρ3, h′1, I ′1), (ρ1, h′2, I ′2), (ρ4, h′3, I ′3),

where h′1(x) = a, h′1(y) = b, h′2(x) = a, h′3(x) = a, h′3(y) = y0, h
′
3(z) = z0,

h′3(w) = b, h′3(u) = y2, h
′
3(v) = z2, and all instances participating in δ2 are as

follows:

D† = {p(a), r(b)}
I ′1 = D† ∪ {q(a, y0, z0), s(b, y2, z2)}
I ′2 = I ′1 ∪ {q(a, y1, z1)}
I ′3 = I ′2 ∪ {t(a, y0, b, y2, o)}

One can con�rm the greediness of δ2 by observing that the frontier of every rule
application contains nothing but constants and/or nulls introduced by a single
previous rule application.

De�nition 3 ((Weakly) Greedy Bounded-Treewidth Set). Let R be a
rule set. R is a greedy bounded-treewidth set (gbts) i� for any database D, if
D δ−→R I, then δ is greedy. R is a weakly greedy bounded-treewidth set (wgbts)
i� for any database D, if D δ−→R I, then there exists some greedy R-derivation
δ′ such that D δ′−→R I.

Remark 1. Observe that gbts and wgbts are characterized on the basis of
derivations from a given database, that is, derivations of the form I0, (ρ1, h1, I1), . . . , (ρn, hn, In)
where I0 = D is a database. In such a case, a derivation of the above form is
greedy i� for each i with 0 < i ≤ n, there exists a j < i such that hi(fr(ρi)) ⊆
Nul(hj(head(ρj))) ∪ Con(D,R). The reason being, when I0 = D is a database,
then Con(I0,R)∪Nul(I0) = Con(D,R)∪Nul(D) = Con(D,R) since Nul(D) = ∅
as databases only contain constants (and not nulls) by de�nition.

As noted above, it is straightforward to show that wgbts subsumes gbts.
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Proposition 2. Every gbts ruleset is wgbts.

Still, establishing that wgbts strictly subsumes gbts, i.e. there are rule sets
within wgbts that are outside gbts, requires more e�ort. As it so happens,
the rule set R2 (de�ned above) serves as such a rule set, admitting non-greedy
R2-derivations, but where it can be shown that every instance derivable using
the rule set admits a greedy R2-derivation. As a case in point, observe that the
R2-derivations δ1 and δ2 both derive the same instance I4 = I ′3, however, δ1 is
a non-greedy R2-derivation of the instance and δ2 is a greedy R2-derivation of
the instance. Clearly, the existence of the non-greedy R2-derivation δ1 witnesses
that R2 is not gbts. To establish that R2 nevertheless falls within the wgbts
class, we show that every non-greedy R2-derivation can be transformed into a
greedy R2-derivation by means of two operations: (i) rule permutations and (ii)
rule replacements.

Regarding rule permutations, we consider under what conditions we may
swap consecutive applications of rules in a derivation to yield a new derivation
of the same instance. For example, in the R2-derivation δ1 above, we may swap
the consecutive applications of ρ1 and ρ2 to obtain the following derivation:

δ′1 = D†, (ρ1, h1, I1), (ρ2, h3, I1 ∪ (I3 \ I2)),

(ρ1, h2, I3), (ρ4, h4, I4).

I1 ∪ (I3 \ I2) = {p(a), r(b), q(a, y0, z0), s(b, y2, z2)} is derived by applying ρ2
and the application of ρ1 reclaims the instance I3. Therefore, the same instance
I4 remains the conclusion. Although one can con�rm that δ′1 is indeed an R2-
derivation, thus serving as a successful example of a rule permutation (meaning,
the rule permutation yields another R2-derivation), the following question still
remains: for a rule set R, under what conditions will permuting rules within a
given R-derivation always yield another R-derivation?

We pose an answer to this question, formulated as the permutation lemma
below, which states that an application of a rule ρ may be permuted before
an application of a rule ρ′ so long as the former rule does not depend on the
latter.6 Furthermore, it should be noted that such rule permutations preserve
the greediness of derivations. In the context of the above example, ρ2 may be
permuted before ρ1 in δ1 because the former does not depend on the latter.

Lemma 3 (Permutation Lemma). Let R be a rule set with I0 an instance.
Suppose we have a (greedy) R-derivation of the following form:

I0, . . . , (ρi, hi, Ii), (ρi+1, hi+1, Ii+1), . . . , (ρn, hn, In)

If ρi+1 does not depend on ρi, then the following is a (greedy) R-derivation as
well:

I0, . . . , (ρi+1, hi+1, I ′i), (ρi, hi, Ii+1), . . . , (ρn, hn, In)

where I ′i = Ii−1 ∪ (Ii+1 \ Ii).
6 Rule dependence is de�ned in Section 2 and is based on the work of Baget [1].
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As a consequence of the above lemma, rules may always be permuted in a
given R-derivation so that its structure mirrors the graph of rule dependencies
G(R) (de�ned in Section 2). In other words, given a rule set R and an R-
derivation δ, we may permute all applications of rules that serve as sources in
G(R) (which do not depend on any rules in R) to the beginning of δ, followed
by all rule applications that depend only on sources, and so forth, with any
applications of rules serving as sinks in G(R) concluding the derivation. For
example, in the graph of rule dependencies of R2, the rules ρ1, ρ2, and ρ3 serve
as source nodes (since they do not depend on any rules in R2) and the rule ρ4 is
a sink node depending on each of the aforementioned three rules, i.e. G(R2) =
(V,E) with V = {ρ1, ρ2, ρ3, ρ4} and E = {(ρi, ρ4) | 1 ≤ i ≤ 3}. Hence, in any
given R2-derivation δ, any application of ρ1, ρ2, or ρ3 can be permuted backward
(toward the beginning of δ) and any application of ρ4 can be permuted forward
(toward the end of δ).

Beyond the use of rule permutations, we also transform R2-derivations by
making use of rule replacements. In particular, observe that head(ρ3) and body(ρ3)
correspond to conjunctions of head(ρ1) and head(ρ2), and body(ρ1) and body(ρ2),
respectively. Thus, we can replace the �rst application of ρ1 and the succeeding
application of ρ2 in δ′1 above by a single application of ρ3, thus yielding the
following R2-derivation:

δ′′1 = D†, (ρ3, h, I1 ∪ (I3 \ I2)), (ρ1, h2, I3), (ρ4, h4, I4),

where h(x) = a and h(y) = b. Interestingly, if one inspects the above R2-
derivation, they will �nd that it is identical to the greedyR2-derivation δ2 de�ned
earlier in the section, and so, we have shown how to take a non-greedy R2-
derivation (viz. δ1) and transform in into a greedy R2-derivation (viz. δ2) by
means of rule permutations and replacements. In the same fashion, one can prove
in general that any non-greedy R2-derivation can be transformed into a greedy
R2-derivation, thus giving rise to the following theorem, and demonstrating that
R2 is indeed wgbts. For the interested reader, a rigorous proof can be found in
the appendix.

Theorem 2. R2 is wgbts, but not gbts, and thus, wgbts properly subsumes
gbts.

5 Derivation Graphs

We now discuss derivation graphs � a concept introduced by Baget et al. [5] and
used to establish that certain classes of rule sets (e.g. weakly frontier guarded rule
sets [6]) are fts. A derivation graph has the structure of a directed acyclic graph
and encodes how atoms are derived throughout the course of anR-derivation. By
applying so-called reduction operations, a derivation graph may (under certain
conditions) be transformed into a treelike graph that serves as a tree decompo-
sition of an R-derivable instance.
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Below, we de�ne derivation graphs and discuss how such graphs are trans-
formed into tree decompositions by means of reduction operations. To increase
comprehensibility, we provide an example of a derivation graph (shown in Fig-
ure 2) and give an example of applying each reduction operation (shown in
Figure 3). After, we identify two (query-decidable) classes of rule sets on the
basis of derivation graphs, namely, cycle-free derivation graph sets (cdgs) and
weakly cycle-free derivation graph sets (wcdgs). Despite their prima facie dis-
tinctness, the cdgs and wcdgs classes coincide with gbts and wgbts classes,
respectively, thus showing how the latter classes can be characterized in terms
of derivation graphs. Let us now formally de�ne derivation graphs, and after, we
will demonstrate the concept by means of an example.

De�nition 4 (Derivation Graph). Let D be a database, R be a rule set,
C = Con(D,R), and δ be the R-derivation D, (ρ1, h1, I1), . . . , (ρn, hn, In). The
derivation graph of δ is the tuple Gδ := (V,E,At,L), where V := {X0, . . . , Xn}
is a �nite set of nodes, E ⊆ V×V is a set of arcs, and the functions At : V → In
and L : E → 2Ter(In) decorate nodes and arcs, respectively, such that:

1. At(X0) := D and At(Xi) = Ii \ Ii−1 with Ter(Xi) := Ter(At(Xi)) ∪ C;
2. (Xi, Xj) ∈ E i� there is a p(t) ∈ At(Xi) and a frontier atom p(t′) in ρj such

that hj(p(t
′)) = p(t). We then set L(Xi, Xj) =

(
hj
(
Ter(p(t′))∩ fr(ρj)

))
\C.

We refer to the node X0 as the initial node, and we de�ne the set of non-constant
terms associated with a node to be C(X) = Ter(X) \ C.

To provide an example of a derivation graph, we let D‡ = {p(a, b)} and
R3 = {ρ1, ρ2, ρ3, ρ4} where

ρ1 = p(x, y)→ ∃z.q(y, z)
ρ2 = q(x, y)→ ∃z.(r(x, y) ∧ r(y, z))
ρ3 = r(x, y) ∧ q(z, x)→ s(x, y)
ρ4 = r(x, y) ∧ s(z, w)→ t(y, w)

Let us consider the following derivation:

δ = D‡, (ρ1, h1, I1), (ρ2, h2, I2), (ρ3, h3, I3), (ρ4, h4, I4)

where h1(x) = a, h1(y) = b, h2(x) = b, h2(y) = z0, h3(x) = z0, h3(y) = z1,
h3(z) = b, h4(x) = b, h4(y) = h4(z) = z0, h4(w) = z1, and the instances
participating in δ are as follows:

D‡ = {p(a, b)}
I1 = D‡ ∪ {q(b, z0)}
I2 = I1 ∪ {r(b, z0), r(z0, z1)}

I3 = I2 ∪ {s(z0, z1)}
I4 = I3 ∪ {t(z0, z1)}

The derivation graph Gδ = (V,E,At,L) corresponding to δ is shown in Fig-
ure 2 and contains �ves nodes; in particular, V = {X0, X1, X2, X3, X4}. Each
node Xi ∈ V is associated with a set At(Xi) of atoms depicted in the associated
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circle (e.g. At(X2) = {r(a, z0), r(z0, z1)}), and each arc (Xi, Xj) ∈ E is repre-
sented as a directed arrow with L(Xi, Xj) shown as the associated set of terms
(e.g. L(X3, X4) = {z1}). For each node Xi ∈ V, the set Ter(Xi) of terms associ-
ated with the node is equal to Ter(At(Xi))∪{a, b} (e.g. Ter(X3) = {z0, z1, a, b})
since C = Con(D‡,R3) = {a, b}.

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0}

{z0, z1} t(z0, z1) X4

{z0}

{z1}

Fig. 2. The derivation graph Gδ.

As can be witnessed via the above example, derivation graphs satisfy a set of
properties akin to those characterizing tree decompositions [5, Proposition 12].

Lemma 4 (Decomposition Properties). Let D be a database, R be a rule
set, and C = Con(D,R). If D δ−→R I, then Gδ satis�es the following properties:

1.
⋃
Xn∈V Ter(Xn) = Ter(I);

2. For each p(t) ∈ I, there is an Xn ∈ V such that p(t) ∈ At(Xn);

3. For each term x ∈ C(I), the subgraph of Gδ induced by the nodes Xn such
that x ∈ C(Xn) is connected;

4. For each Xn ∈ V the size of Ter(Xn) is bounded by an integer that only
depends on the size of (D,R), viz. max{|Ter(D)|, |Ter(head(ρi))|ρi∈R}+ |C|.

Let us now introduce our set of reduction operations. As remarked above,
in certain circumstances such operations can be used to transform derivation
graphs into tree decompositions of an instance.

We make use of three reduction operations, namely, (i) arc removal, denoted
(ar)[i,j], (ii) term removal, denoted (tr)[i,j,k,t], and (iii) cycle removal, denoted
(cr)[i,j,k,`]. The �rst two reduction operations were already proposed by Baget
et al. [5].7 However, we have introduced cycle removal as a new operation as it
will assist us in characterizing gbts and wgbts in terms of derivation graphs.

7 Baget et al. [5] presented (tr) and (ar) as a single operation referred to as redundant
arc removal.
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De�nition 5 (Reduction Operations). Let D be a database, R be a rule
set, D δ−→R In, and Gδ be the derivation graph of δ. We de�ne the set RO of
reduction operations as:

{(ar)[i,j], (tr)[i,j,k,t], (cr)[i,j,k,`] | i, j, k, `≤n, t∈Ter(In)}

which are speci�ed below, and let (r)Σ(Gδ) denote the output of applying the
operation (r) to the (potentially reduced) derivation graph Σ(Gδ) = (V,E,At,L),
where Σ ∈ RO∗ is a reduction sequence, that is, Σ is a (potentially empty)
sequence of reduction operations.

1. Arc Removal (ar)[i,j]: Whenever (Xi, Xj) ∈ E and L(Xi, Xj) = ∅, then
(ar)[i,j]Σ(Gδ) := (V,E′,At,L′) where E′ := E \ {(Xi, Xj)} and L′ = L � E′.

2. Term Removal (tr)[i,j,k,t]: If (Xi, Xk), (Xj , Xk) ∈ E with Xi 6= Xj and t ∈
L(Xi, Xk) ∩ L(Xj , Xk), then (tr)[i,j,k,t]Σ(Gδ) := (V,E,At,L′) where L′ is
obtained from L by removing t from L(Xj , Xk).

3. Cycle Removal (cr)[i,j,k,`]: If (Xi, Xk), (Xj , Xk) ∈ E and there exists a node
X` ∈ V with ` < k such that

L(Xi, Xk) ∪ L(Xj , Xk) ⊆ Ter(X`)

then, (cr)[i,j,k,`]Σ(Gδ) := (V,E′,At,L′) where

E′ :=
(
E \ {(Xi, Xk), (Xj , Xk)}

)
∪ {(X`, Xk)}

and L′ is obtained from L � E′ by setting L(X`, Xk) to L(Xi, Xk)∪L(Xj , Xk).

Last, we say that a reduction sequence Σ ∈ RO∗ is a complete reduction sequence
relative to a derivation graph Gδ i� Σ(Gδ) is cycle-free.

Remark 2. When there is no danger of confusion, we will take the liberty to
write (tr), (ar), and (cr) without the superscript parameters. For instance, given
a derivation graph Gδ, the (reduced) derivation graph (cr)(tr)(Gδ) is obtained
by applying an instance of (tr) followed by an instance of (cr) to Gδ. When
applying a reduction operation we always explain how it is applied, so the exact
operation is known.

We now describe the functionality of each reduction operation and illustrate
each by means of an example. We will apply each to transform the derivation
graph Gδ (shown in Figure 2) into a tree decomposition of I4 (which was de�ned
above). The (tr) operation deletes a term t within the intersection of the sets
labeling two converging arcs. For example, we may apply (tr) to the derivation
graph Gδ from Figure 2, deleting the term z0 from the label of the arc (X1, X3),
and yielding the reduced derivation graph (tr)(Gδ), which is shown �rst in Fig-
ure 3. We may then apply (ar) to (tr)(Gδ), deleting the arc (X1, X3), which is
labeled with the empty set, to obtain the reduced derivation graph (ar)(tr)(Gδ)
shown middle in Figure 3.
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p(a, b)

X0

q(b, z0)

X1

∅

r(a, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

∅

{z0, z1} t(z0, z1)

X4

{z0}

{z1}

p(a, b)

X0

q(b, z0)

X1

∅

r(a, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0, z1} t(z0, z1)

X4

{z0}

{z1}

p(a, b)

X0

q(b, z0)

X1

∅

r(a, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0, z1} t(z0, z1)

X4

{z0, z1}

Fig. 3. Read from left-to-right: the three reduced derivation graphs are (tr)(Gδ),
(ar)(tr)(Gδ), and (cr)(ar)(tr)(Gδ).

The (cr) operation is more complex and works by considering two converging
arcs (Xi, Xk) and (Xj , Xk) in a (reduced) derivation graph. If there exists a node
X` whose index ` is less than the index k of the child node Xk and L(Xi, Xk)∪
L(Xj , Xk) ⊆ Ter(X`), then the converging arcs (Xi, Xk) and (Xj , Xk) may be
deleted and the arc (X`, Xk) introduced and labeled with L(Xi, Xk)∪L(Xj , Xk).
As an example, the reduced derivation graph (cr)(ar)(tr)(Gδ) (shown third in Fig-
ure 3) is obtained from (ar)(tr)(Gδ) (shown bottom-left in Figure 3) by applying
(cr) in the following manner to the convergent arcs (X2, X4) and (X3, X4): since
for X2 (whose index 2 is less than the index 4 of X4) L(X2, X4) ∪ L(X3, X4) ⊆
Ter(X2), we may delete the arcs (X2, X4) and (X3, X4) and introduce the arc
(X2, X4) labeled with L(X2, X4) ∪ L(X3, X4) = {z0} ∪ {z1} = {z0, z1}. Observe
that the reduced derivation graph (cr)(ar)(tr)(Gδ) is free of cycles, witnessing
that Σ = (cr)(ar)(tr) is a complete reduction sequence relative to Gδ. Moreover,
if we replace each node by the set of its terms and disregard the labels on arcs,
then Σ(Gδ) can be read as a tree decomposition of I4. In fact, one can show that
every reduced derivation graph satis�es the decomposition properties mentioned
in Lemma 4 above.

Lemma 5. Let D be a database and R be a rule set. If D R−→δ I, then for any re-
duction sequence Σ, Σ(Gδ) = (V,E,At,L) satis�es the decomposition properties
1-4 in Lemma 4.

As illustrated above, derivation graphs can be used to derive tree decom-
positions of R-derivable instances. By the fourth decomposition property (see
Lemma 4 above), the width of such a tree decomposition is bounded by a con-
stant that depends only on the given knowledge base. Thus, if a rule set R
always yields derivation graphs that are reducible to cycle-free graphs � mean-
ing that (un)directed cycles do not occur within the graph � then all R-derivable
instances have tree decompositions that are uniformly bounded by a constant.
This establishes that the rule set R falls within the pbts class, and therefore,
fts class, con�rming that query entailment is decidable with R. We de�ne two
classes of rule sets by means of reducible derivation graphs:
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De�nition 6 ((Weakly) Cycle-free Derivation Graph Set). Let R be
a rule set. R is a cycle-free derivation graph set (cdgs) i� for any database
D, if D δ−→R I, then Gδ can be reduced to a cycle-free graph via the reduction
operations. R is a weakly cycle-free derivation graph set (wcdgs) i� for any
database D, if D δ−→R I, then there exists a derivation δ′ such that D δ′−→R I
and Gδ′ can be reduced to a cycle-free graph via the reduction operations.

It is straightforward to con�rm that wcdgs subsumes cdgs, and that both
classes are subsumed by pbts.

Proposition 3. Let R be a rule set.

1. If R is cdgs, then R is wcdgs;
2. If R is wcdgs, then R is pbts.

Furthermore, as mentioned above, gbts and wgbts coincide with cdgs and
wcdgs, respectively. By making use of the (cr) operation, one can show that
the derivation graph of any greedy derivation is reducible to a cycle-free graph,
thus establishing that gbts ⊆ cdgs and wgbts ⊆ wcdgs. To show the converse
(i.e. that cdgs ⊆ gbts and wcdgs ⊆ wgbts) however, requires more work. In
essence, one shows that for every (non-source) node Xi in a cycle-free (reduced)
derivation graph there exists another node Xj such that j < i and the frontier
of the atoms in At(Xi) only consist of constants and/or nulls introduced by
the atoms in At(Xj). This property is preserved under reverse applications of
the reduction operations, and thus, one can show that if a derivation graph is
reducible to a cycle-free graph, then the above property holds for the original
derivation graph, implying that the derivation graph encodes a greedy derivation.
Based on such arguments, one can prove the following:

Theorem 3. Let R be a rule set.

1. R is gbts i� R is cdgs;
2. R is wgbts i� R is wcdgs.

An interesting consequence of the above theorem concerns the redundancy
of (ar) and (tr) in the presence of (cr). In particular, since we know that (i)
if a derivation graph can be reduced to a cycle-free graph, then the derivation
graph encodes a greedy derivation, and (ii) the derivation graph of any greedy
derivation can be reduced to an cycle-free graph by means of applying the (cr)
operation only, it follows that if a derivation graph can be reduced to a cycle-free
graph, then it can be reduced by only applying the (cr) operation. We refer to
this phenomenon as reduction-admissibility, which is de�ned below.

De�nition 7 (Reduction-admissible). We say that a reduction operation (r)
is reduction-admissible i� for any rule set R and R-derivation δ, if Gδ is re-
ducible to a cycle-free graph with (r), then Gδ is reducible to a cycle-free graph
without (r).

Corollary 1. Let R be a rule set.

1. The reduction operations (tr) and (ar) are reduction-admissible;
2. The wcdgs class properly contains the cdgs class;
3. If R is cdgs, gbts, wcdgs, or wgbts, then BCQ entailment is decidable.
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6 Conclusion

tim: TODO
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A Proofs for Section 3

Proposition 1 Let R be a rule set.

1. If R is fes, then R is fts;
2. if R is pbts, then R is fts.

Proof. We argue both claims in turn:

1. If R is fes, then for any database D, (D,R) has �nite universal model I∗
of size n. Hence, the width of each tree decomposition of I∗ is at most n,
showing that (D,R) has a universal model I∗ such that tw(I∗) ≤ n.

2. If R is pbts, then we know that for every database D, there exists an n ∈ N
such that for every k ∈ N, tw(Chk(D,R)) ≤ n. Let D be an arbitrary
database. AsChk(D,R) is �nite for every k ∈ N and monotonically increases
(relative to the subset relation) as k increases, we have that for every �nite
subset of Ch∞(D,R), the treewidth of that subset is bounded by n. Thus,
by the the treewidth compactness theorem [13], tw(Ch∞(D,R)) ≤ n. Since
Ch∞(D,R) is a universal model of (D,R), it follows that (D,R) has a
universal model of �nite treewidth. Last, since D was assumed arbitrary, we
have that R is fts.

Lemma 2 R1 is fes.

Proof. Let D be a database, and let I∗ be the instance obtained by closing D
under the rule set R′1 = {ρ′1, ρ′2} where ρ′1 = r(x, y) ∧ r(y, z) → r(x, z) and
ρ′2 = r(x, y) → r(x, x) ∧ r(y, y). We know that I∗ will be �nite since neither of
the above rules introduce new terms and only add edges to D, of which only
�nitely many can be added. We now argue �rst that I∗ is a model of R1, and
second, that I∗ is a universal model of R1.

To establish modelhood, �rst let us de�ne h to be the identity map, mapping
each constant in D to itself. We will argue that each rule in R1 is satis�ed on I∗.
For the rule ρ1, suppose that r(h(x), h(y)) ∈ I∗. Then, since I∗ is closed under
applications of ρ′2, we know that r(h(y), h(y)) ∈ I∗, thus showing that I∗ |=
∃zr(h(y), z), and con�rming that ρ1 is indeed satis�ed on I∗. The satisfaction
of the rules ρ2 and ρ3 follow immediately from the satisfaction of ρ′1 and ρ′2,
respectively.
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To establish that I∗ is a universal model of (D,R1), we show that I∗ can
be homomorphically mapped into Ch∞(D,R1) via the homomorphism h (de-
�ned above). First, we show that (a) for any p(a1, . . . , an) ∈ I∗ with p 6= r,
p(h(a1), . . . , h(an)) ∈ Ch∞(D,R1), and second, we show that (b) if r(a, b) ∈ I∗,
then r(h(a), h(b)) ∈ Ch∞(D,R1). As each constant of I∗ is mapped to itself by
the de�nition of h, we have that h is a homomorphism from I∗ to Ch∞(D,R1).
It is immediate that (a) holds since if p 6= r, then p(a1, . . . , an) ∈ D, implying
that p(h(a1), . . . , h(an)) ∈ Ch∞(D,R1) since D ⊆ Ch∞(D,R1) and h is the
identity function on the constants of D.

To show (b), �rst recall that I∗ is the instance obtained by closing D under
R′1. It follows that I∗ homomorphically maps into Ch∞(D,R′1). Thus, if we can
show that Ch∞(D,R′1) homomorphically maps into Ch∞(D,R1), then we have
established that I∗ is a universal model of (D,R1). To show this, we argue by
induction on k that if r(t, t′) ∈ Chk(D,R′1), then r(h(t), h(t′)) ∈ Ch∞(D,R1),
which implies the desired result.

Base case. Suppose that k = 0, i.e. r(t, t′) ∈ D, meaning that r(t, t′) is of
the form r(a, b) since databases only contain ground atoms. Then, since D ⊆
Ch∞(D,R1), we have that r(h(a), h(b)) ∈ Ch∞(D,R1) as h(a) = a and h(b) =
b.

Inductive step. For the inductive hypothesis, let us suppose that r(t, t′) ∈
Chk+1(D,R′1), which, since none of the rules in R′1 introduce nulls, means that
r(t, t′) is of the form r(a, b). If r(a, b) ∈ Chk(D,R′1), then by IH, r(h(a), h(b)) ∈
Ch∞(D,R1), and we are done; therefore, we assume that r(a, b) 6∈ Chk(D,R′1).
We have two cases to consider: either (i) r(a, b) was introduced to Chk+1(D,R′1)
by means of ρ′1 via a homomorphism h1 or (ii) by means of ρ′2 via a homomor-
phism h2.

In case (i), we know that r(a, h1(y)), r(h1(y), b) ∈ Chk(D,R′1), implying that

r(h(a), h(h1(y))), r(h(h1(y)), h(b)) ∈ Ch∞(D,R1)

by IH. Let n be the smallest natural number such that

r(h(a), h(h1(y))), r(h(h1(y)), h(b)) ∈ Chn(D,R1).

Observe that

r(h(h1(a)), h(h1(y))) = r(h(a), h(h1(y))) and
r(h(h1(y)), h(h1(b))) = r(h(h1(y)), h(b))

since h1 �xes constants by de�nition. We know that ρ2 will be applied at step
n + 1 of the chase via a homormorphism h3 with h3(x) = a, h3(y) = h(h1(y)),
and h3(z) = b, entailing r(h(a), h(b)) = r(h3(a), h3(b)) ∈ Chn+1(D,R1), with
r(h(a), h(b)) = r(h3(a), h3(b)) because h(a) = a = h3(a) and h(b) = b = h3(b).

For case (ii), since r(a, b) was introduced by means of ρ′2 to Chk+1(D,R′1)
via a homomorphism h2, we may assume that r(a, b) is of the form r(c, c) as ρ′2
introduces loops. Therefore, either there is an atom r(c, h2(y)) ∈ Chk(D,R′1)
or an atom r(h2(x), c) ∈ Chk(D,R′1). By IH, either r(h(h2(c)), h(h2(y))) =
r(h(c), h(h2(y))) ∈ Ch∞(D,R1) or r(h(h2(x)), h(c)) = r(h(h2(x)), h(h1(c))) ∈
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Ch∞(D,R1). Let n be the smallest natural number such that r(h(c), h(h2(y))) ∈
Chn(D,R1) or r(h(h2(x)), h(c)) ∈ Chn(D,R1). In the former case, ρ3 will be ap-
plied at step n+1 via a homomorphism h3 with h3(x) = c and h3(y) = h(h2(y)),
ensuring that r(h(c), h(c)) = r(c, c) = r(h3(c), h3(c)) ∈ Chn+1(D,R1) ⊆ Ch∞(D,R1).
In the latter case, ρ1 will be applied at step n+ 1 via a homomorphism h4 with
h4(x) = h(h2(x)) and h4(y) = c, ensuring that r(h4(c), z) ∈ Chn+1(D,R1)
with z a fresh null. Similar to the former case, at step n + 2 the rule ρ3 will
be applied via a homomorphism h5 with h5(x) = c and h5(y) = z, implying
r(h(c), h(c)) = r(c, c) = r(h5(c), h5(c)) ∈ Chn+2(D,R1) ⊆ Ch∞(D,R1).

B Proofs for Section 4

Proposition 2 Let R be a rule set. If R is gbts, then R is wgbts.

Proof. Let D be a database and R is be a gbts rule set. If D δ−→R I, then δ is
greedy as R is gbts. Hence, there exists a greedy R-derivation (viz. δ) of I from
D, showing that R is wgbts as well.

Lemma 3 (Permutation Lemma) Let R be a rule set with I0 an instance.
Suppose we have a (greedy) R-derivation of the following form:

δ = I0, . . . , (ρi, hi, Ii), (ρi+1, hi+1, Ii+1), . . . , (ρn, hn, In)

If ρi+1 does not depend on ρi, then the following is a (greedy) R-derivation as
well:

δ′ := I0, . . . , (ρi+1, hi+1, I ′i), (ρi, hi, Ii+1), . . . , (ρn, hn, In)

where I ′i = Ii−1 ∪ (Ii+1 \ Ii).

Proof. By assumption, ρi+1 does not depend on ρi, implying hi+1(body(ρi+1)) ⊆
Ii−1. Hence, we may apply ρi+1 with hi+1 directly to Ii−1 yielding the instance
I ′i = Ii−1 ∪ (Ii+1 \ Ii). Since hi(body(ρi)) ⊆ Ii−1 ⊆ I ′i, we may apply ρi di-
rectly after ρi+1 yielding the instance Ii+1. Moreover, if δ is greedy, then (i)
hi+1(fr(ρi+1)) ⊆ Nul(hj(head(ρj))) ∪ Con(I0,R) ∪ Nul(I0) for some j < i + 1,
and (ii) hi(fr(ρi)) ⊆ Nul(hk(head(ρk))) ∪ Con(I0,R) ∪ Nul(I0) for some k < i.
As ρi+1 does not depend on ρi, it must be the case that j 6= i, and so, we have
that δ′ will be greedy as well since (i) and (ii) will hold for j, k < i in δ′.

Theorem 2 R2 is wgbts, but not gbts, and thus, wgbts properly subsumes
gbts.

Proof. We know that wgbts subsumes gbts by Lemma 2, however, to show
that wgbts properly subsumes gbts, we prove that R2 is wgbts, but not gbts.
Therefore, let D be an arbitrary database and I be an instance such that there
exists an R2-derivation δ0 of I from D†. We show by induction on the length of
δ0 that a greedy R2-derivation of I from D can always be found.

Base case. Any R2-derivation of an instance I from D of length n = 0 or
n = 1 is trivially greedy by De�nition 2.
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Inductive step. Suppose our derivation δ0 is of length n+ 1, that is

δ0 = D, (ρ1, h1, I1), . . . , (ρn, hn, In), (ρn+1, hn+1, In+1)

By IH, we have that a greedy R2-derivation δ1 of In exists; hence, let δ2 =
δ1, (ρn+1, hn+1, In+1) and observe that δ2 is a valid R2-derivation as we already
know by the structure of δ0 above that ρn+1 is triggered in In with the homo-
morphism hn+1. If the last rule ρn+1 applied in δ2 is ρ1, ρ2, or ρ3, then since no
such rule depends on any rule in R2, it must be the case hn+1(head(ρn+1)) ⊆ D,
showing that δ2 is greedy. Therefore, let us assume that the last rule ρn+1 ap-
plied is ρ4. Recall that body(ρ4) = {q(x, y, z), s(w, u, v)}, and observe that if ρ4
is applied, then hn+1(q(x, y, z)), hn+1(s(w, u, v)) ∈ In. We make a case distinc-
tion depending on the how hn+1(q(x, y, z)) and hn+1(s(w, u, v)) entered into the
derivation δ1 below:

1. Suppose that hn+1(q(x, y, z)), hn+1(s(w, u, v)) ∈ D. Then, δ2 is greedy since

hn+1(fr(ρn+1)) ⊆ Con(D)
⊆ Nul(hj(head(ρj))) ∪ Con(D,R)

for any j < n+ 1.
2. Suppose that hn+1(q(x, y, z)) ∈ D and hn+1(s(w, u, v)) was introduced by

an application of ρ2 or ρ3 at j < n+1 (i.e. ρj ∈ {ρ2, ρ3}). Then, δ2 is greedy
since

hn+1(fr(ρn+1)) ⊆ Nul(hj(head(ρj))) ∪ Con(D)
⊆ Nul(hj(head(ρj))) ∪ Con(D,R).

3. Suppose that hn+1(q(x, y, z)) was introduced by an application of ρ1 or ρ3
at j < n+1 (i.e. ρj ∈ {ρ1, ρ3}) and hn+1(s(w, u, v)) ∈ D. Then, δ2 is greedy
since

hn+1(fr(ρn+1)) ⊆ Nul(hj(head(ρj))) ∪ Con(D)
⊆ Nul(hj(head(ρj))) ∪ Con(D,R).

4. Suppose that hn+1(q(x, y, z)) and hn+1(s(w, u, v)) were introduced by a sin-
gle application of ρ3 at j < n+ 1 (i.e. ρj = ρ3). Then, δ2 is greedy since

hn+1(fr(ρn+1)) ⊆ Nul(hj(head(ρ3))) ∪ Con(D)
⊆ Nul(hj(head(ρj))) ∪ Con(D,R).

5. Suppose that hn+1(q(x, y, z)) was introduced by an application of ρj ∈
{ρ1, ρ3} and hn+1(s(w, u, v)) was introduced by an application of ρk ∈
{ρ2, ρ3} with j, k < n+1. We assume that if ρ3 introduced both hn+1(q(x, y, z))
and hn+1(s(w, u, v)), then both applications of ρ3 are distinct, and we as-
sume w.l.o.g. that j < k. Since ρk only depends on the database D, we may
repeatedly apply the permutation lemma (Lemma 3) to δ2, permuting the
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application of ρk earlier in the derivation until we reach the application of
ρj , yielding:

δ3 = D, . . . , (ρj , hj , Ij), (ρk, hk, I ′j+1), . . . , (ρn+1, hn+1, In+1)

where I ′j+1 = Ij ∪ (Ik \Ik−1). By the permutation lemma, we know that the
portion of δ′3 up to and including (ρn, hn, In) is greedy. We have four cases
to consider, and in each case, we show how to transform δ3 into a greedy
derivation δ′3 of the same conclusion.

(a) If ρj = ρ1 and ρk = ρ2, then replace (ρj , hj , Ij), (ρk, hk, I ′j+1) in δ3 with
(ρ3, h

′, I ′j+1) where h′(p(x)) = hj(body(ρj)), h
′(r(y)) = hj(body(ρk)),

and h′(head(ρ3)) = hj(q(x, y, z)) ∧ hk(s(x, y, z)). This gives the deriva-
tion:

δ′3 = D, . . . , (ρ3, h′, I ′j+1), . . . , (ρn+1, hn+1, In+1)

One can con�rm that δ′3 is indeed a valid derivation as h′(body(ρ3)) ∈ D,
showing that ρ3 may be applied where it is. Also,

I ′j+1 = Ij−1 ∪ {hj(q(x, y, z)), hk(s(x, y, z))} = Ij−1 ∪ {h′(head(ρ3))},

showing that I ′j+1 is indeed derived by applying ρ3, and for any applica-
tion of a rule ρm with j < m (i.e. for any application of a rule occurring
after the application of ρ3 displayed in δ′3 above) if it previously de-
pended on ρj or ρk, it will now depend on the above application of ρ3,
which introduces the same atoms as ρj and ρk. This also shows that the
portion of δ′3 up to and including (ρn, hn, In) is greedy. Last, it follows
that ρn+1 = ρ4 now depends on the above application of ρ3, showing
that

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪ Con(D,R),

and hence, δ′3 is greedy.
(b) If ρj = ρ1 and ρk = ρ3, then replace (ρj , hj , Ij) in δ3 with (ρ3, h

′, I ′j)
where h′(p(x)) = hj(p(x)), h

′(r(y)) = hk(r(x)), h′(head(ρ3)) = hj(q(x, y, z))∧
hk(s(x, y, z)), and

I ′j = Ij−1 ∪ {hj(q(x, y, z)), hk(s(x, y, z))} = I ′j+1.

Thus, we have the derivation:

δ′3 = D, . . . , (ρ3, h′, I ′j), (ρk, hk, I ′j+1), . . . , (ρn+1, hn+1, In+1)

It is straightforward to con�rm that δ′3 is indeed a valid derivation, and
furthermore, for any rule ρm with j < m < n+ 1, if it depended on ρj ,
it will now depend on the above application of ρ3, showing that for any
such m we have

hm(fr(ρm)) ⊆ Nul(hj(head(ρ1)))∪Con(D,R) ⊆ Nul(h′(head(ρ3)))∪Con(D,R).
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Moreover, ρn+1 = ρ4 can be seen to depend on the application of ρ3
displayed in δ′3 above, that is to say

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪ Con(D,R).

Hence, it follows that δ′3 is greedy.
(c) If ρj = ρ3 and ρk = ρ2, then replace (ρk, hk, Ik) in δ3 with (ρ3, h

′, I ′j+1)

where h′(p(x)) = hj(p(x)), h
′(r(y)) = hk(r(x)), h′(head(ρ3)) = hj(q(x, y, z))∧

hk(s(x, y, z)), and

I ′j+1 = Ij ∪ {hj(q(x, y, z)), hk(s(x, y, z))}.

Thus, we have the derivation:

δ′3 = D, . . . , (ρj , hj , Ij), (ρ3, h′, I ′j+1), . . . , (ρn+1, hn+1, In+1)

It is straightforward to con�rm that δ′3 is indeed a valid derivation, and
furthermore, for any rule ρm with k < m < n+ 1, if it depended on ρk,
it will now depend on the above application of ρ3, showing that for any
such m we have

hm(fr(ρm)) ⊆ Nul(hk(head(ρ2)))∪Con(D,R) ⊆ Nul(h′(head(ρ3)))∪Con(D,R).

Additionally, ρn+1 = ρ4 can be seen to depend on the application of ρ3
displayed in δ′3 above, that is to say

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪ Con(D,R).

Hence, it follows that δ′3 is greedy.
(d) If ρj = ρ3 and ρk = ρ3, then add (ρ3, h

′, I ′j+1) after (ρj , hj , Ij), (ρk, hk, I ′j+1)

in δ3 where h
′(p(x)) = hj(p(x)), h

′(r(y)) = hk(r(y)), and h′(head(ρ3)) =
hj(q(x, y, z)) ∧ hk(s(x, y, z)). Thus, we have the derivation:

δ′3 = D, . . . , (ρj , hj , Ij), (ρk, hk, I ′j+1), (ρ3, h
′, I ′j+1), . . . , (ρn+1, hn+1, In+1)

It is straightforward to con�rm that δ′3 is indeed a valid derivation. Also,
observe

h′(fr(ρ3)) ⊆ Con(D,R) ⊆ Nul(hl(head(ρl))) ∪ Con(D,R).

for any l ≤ k. Moreover, for every rule ρm with k < m < n+ 1, if

hm(fr(ρm)) ⊆ Nul(hm′(head(ρm′))) ∪ Con(D,R).

held in δ3 with m
′ < m, then it will continue to hold in δ′3. Last, ρn+1 =

ρ4 can be seen to depend on the application of ρ3 displayed in δ′3 above,
that is to say

hn+1(fr(ρn+1)) ⊆ Nul(h′(head(ρ3))) ∪ Con(D,R).

Hence, it follows that δ′3 is greedy, and concludes our proof that R2 is a
wgbts, but is not a gbts.
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C Proofs for Section 5

Lemma 6. Let D be a database and R a rule set. If D R−→δ I with Σ(Gδ) =
(V,E,At,L) a derivation graph and Σ a reduction sequence, then Σ(Gδ) has the
following properties:

1. for each non-initial node Xn ∈ V, there exists a ρ ∈ R with ρ = ϕ(x,y) →
∃zψ(y, z) and a homomorphism h such that At(Xn) = h(ψ(y, z));

2. if (Xn, Xm) ∈ E, then n < m.

Proof. Both claims follow from the de�nition of a derivation graph along with
the fact that the reduction operations only a�ect arcs and labels.

De�nition 8 (x-Generative, Source Node). Let D be a database, R be a rule
set, D δ−→R I, and Σ be a reduction sequence applicable to Gδ = (V,E,At,L).
We de�ne a node in Σ(Gδ) = (V′,E′,At′,L′) to be x-generative with x ∈ C(I)
i� for every node Xk ∈ V′, if x ∈ C(Xk), then n ≤ k. We de�ne a node X ∈ V′

to be a source node i� no node Y ∈ V′ exists such that (Y,X) ∈ E′, and we
de�ne X to be non-source node otherwise.

Lemma 7. Let D be a database, R be a rule set, D δ−→R I, and Σ be a reduction
sequence with Σ(Gδ) = (V,E,At,L). For any nodes Xi, Xj ∈ V, if x ∈ C(Xi) ∩
C(Xj), (Xi, Xj) ∈ E, and x 6∈ L(Xi, Xj), then there exists a node Xm ∈ V such
that x ∈ C(Xm), (Xm, Xj) ∈ E, and x ∈ L(Xm, Xj).

Lemma 8. Let D be a database and R be a rule set. If D δ−→R I, then for any
reduction sequence Σ, Σ(Gδ) = (V,E,At,L) satis�es the following two condi-
tions:

1. if x ∈ C(I), then there exists a unique x-generative node X ∈ V;
2. if Xn is the x-generative node in Σ(Gδ), then for every Xk ∈ V such that

x ∈ C(Xk), there is a directed path from Xn to Xk in Σ(Gδ) such that for
every node X` along the path, ` ≤ k and x ∈ C(X`).

Proof. Statement 1 is evident as there must be a �rst rule application in δ
that introduces the null x. Let Σ(Gδ) = (V,E,At,L). We argue statement 2 by
induction on the lexicographic ordering of pairs (|δ|, |Σ|), where |δ| is the length
of the derivation and |Σ| is the length of the reduction sequence. Suppose Xn is
the x-generative node in Σ(Gδ) and let Xk ∈ V such that x ∈ C(Xk). We aim
to show that a directed path exists from Xn to Xk such that for every node X`

along the path, ` ≤ k and x ∈ C(X`).
Base case. If |δ| = 0, meaning δ = D, then the result trivially follows. If

|Σ| = 0, then Σ(Gδ) = Gδ with Gδ = (V,E,At,L). If Xk = Xn, then the
claim trivially holds. However, if Xk 6= Xn, then let us consider the derivation
D δ′−→R Ik−1, (ρ, h, Ik), where the application of ρ produces the node Xk. Since
x ∈ C(Xn) and x ∈ C(Xk), we know there exists a node Xm such that x ∈
C(Xm), (Xm, Xk) ∈ E, and x ∈ L(Xm, Xk). By IH, there is a directed path
from Xn to Xm such that for every X` along the path ` ≤ m and x ∈ C(X`).
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Therefore, since (Xm, Xk) ∈ E, we know that such a directed path from Xn to
Xk of the required shape exists as well.

Inductive step. Let (r) ∈ {(tr), (ar), (cr)} with Σ = (r)Σ′. Let Σ′(Gδ) =
(V′,E′,At′,L′). We consider the cases where (r) is either (ar) or (cr) as the case
when (r) is (tr) is trivial as all paths are preserved after the reduction operation
is applied.

(ar). Suppose that an arc (Xi, Xj) ∈ E′ exists such that L′(Xi, Xj) = ∅,
which is removed by applying (ar) to Σ′(Gδ). By IH, we know that a directed
path from Xn to Xk exists in Σ′(Gδ) such that for every node X` along the
path ` ≤ k and x ∈ C(X`). Let us suppose that (Xi, Xj) occurs along this path,
since otherwise, the result trivially follows. Then, we know that x ∈ C(Xi) and
x ∈ C(Xj). Since L′(Xi, Xj) = ∅, we know x 6∈ L′(Xi, Xj), and therefore, by
Lemma 7, some Xm 6= Xi exists such that Xm ∈ V′, x ∈ C(Xm), (Xm, Xj) ∈ E′,
and x ∈ L′(Xm, Xj). By IH, there exists a directed path from Xn to Xm such
that for every node X` along the path ` ≤ m and x ∈ C(X`). After (ar) is
applied, this path will still be present, and so, a path of the desired shape will
exist from Xn to Xk.

(cr). Suppose that (Xi, Xm), (Xj , Xm) ∈ E′, and there exists a node X` such
that ` < m and L′(Xi, Xm) ∪ L′(Xj , Xm) ⊆ Ter(X`). After applying (cr), we
suppose that (Xi, Xm), (Xj , Xm) are removed from the set of arcs and (X`, Xm)
is added such that L(X`, Xm) = L′(Xi, Xm) ∪ L′(Xj , Xm). By IH, a directed
path from Xn to Xk exists in Σ′(Gδ) such that for every node Xu along the
path u ≤ k and x ∈ C(Xu). We assume w.l.o.g. that (Xi, Xm) occurs along
this path, since the other cases are trivial or similar. If x ∈ L′(Xi, Xm), then
x ∈ C(X`) by assumption, implying that a directed path exists from Xn to X`

of the required form. Hence, after applying (cr), a directed path of the required
form will exist consisting of the path from Xn to X`, the arc (X`, Xm), and the
path from Xm to Xk. However, if x 6∈ L′(Xi, Xm), then as in the (ar) case above,
there exists some Xv 6= Xi such that Xv ∈ V′, x ∈ C(Xv), (Xv, Xm) ∈ E′, and
x ∈ L′(Xv, Xm) (by Lemma 7). By an argument similar to the (ar) case, we �nd
that a directed path of the required form exists from Xn to Xk in Σ(Gδ).

Lemma 5 Let D be a database and R be a rule set. If D δ−→R I, then for any re-
duction sequence Σ, Σ(Gδ) = (V,E,At,L) satis�es the decomposition properties
1-4 in Lemma 4, i.e. the following four conditions:

1.
⋃
Xn∈V Ter(Xn) = Ter(I);

2. For each p(t) ∈ I, there is an Xn ∈ V such that p(t) ∈ At(Xn);
3. For each term x ∈ C(I), the subgraph of Σ(Gδ) induced by the nodes Xn

such that x ∈ C(Xn) is connected;
4. For each Xn ∈ V the size of Ter(Xn) is bounded by an integer that only

depends on the size of (D,R), viz. max{|Ter(D)|, |Ter(head(ρi))|ρi∈R}+ |C|.

Proof. It is straightforward to con�rm properties 1, 2, and 4. Property 3 follows
from Lemma 8.

Proposition 3 Let R be a rule set.
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1. If R is cdgs, then R is wcdgs;
2. If R is wcdgs, then R is pbts.

Proof. We prove each claim in turn:

1. Suppose thatR is cdgs and letD be an arbitrary database. Then, ifD R−→δ I,
it follows that a derivation δ′ = δ exists such that D R−→δ′ I and Gδ′ can be
reduced to a cycle-free graph (since R is cdgs). Hence, R is wcdgs.

2. Suppose that R is wcdgs, D is a database, let C = Con(D,R), and let
n = max{|Ter(D)|, |Ter(head(ρi))|ρi∈R} + |C|, and assume that D δ−→R I.
Our aim is to show that tw(I) ≤ n in order to show that R is pbts. Since R
is wcdgs, we know there exists an R-derivation δ′ and a complete reduction
sequence Σ such that Σ(Gδ′) = (V′,E′,At′,L′) is a cycle-free graph. Let
us de�ne a tree decomposition T = (V,E) of I by making use of Σ(Gδ′),
where X ∈ V i� there exists a node X ′ ∈ V′ such that X = Ter(X ′). We
then de�ne (X,Y ) ∈ E′′ i� there exists an arc (X ′, Y ′) ∈ E′ such that
X = Ter(X ′) and Y = Ter(Y ′). In general, T ′ = (V,E′′) will be a �nite
forest, so if place each tree of T ′ in a line and connect the root of the �rst
tree to the root of the second, the root of the second tree to the root of
the third, etc., then this yields a tree decomposition T = (V,E) (where E
extends E′′ with the edges just mentioned). By Lemma 5, T is indeed a
tree decomposition, and furthermore, w(T ) ≤ n. Thus, tw(I) ≤ w(T ) ≤ n,
establishing the claim.

De�nition 9. Let Σ(Gδ) = (V,E,At,L) be a derivation graph with Σ a reduc-
tion sequence and Xn ∈ V. Moreover, let D be a database, R be a rule set, and
C = Con(D,R). We de�ne the frontier fr(Xn) of a node Xn ∈ V relative to
(D,R) accordingly:

fr(Xn) =

{
∅ if Xn is a source node;

hi(yi) \ C otherwise.

where At(Xn) = hi(ψi(yi, zi)).

Lemma 9. Let D be a database, R be a rule set, C = Con(D,R), and assume
that D R−→δ I. Then, for Σ a reduction sequence, the derivation graph Σ(Gδ) =
(V,E,At,L) satsi�es the following properties:

1. for each Xn0
∈ V with parent nodes Xn1

, . . . , Xnk
∈ V,

fr(Xn0
) =

⋃
i∈{1,...,k}

L(Xni
, Xn0

);

2. for each (Xm, Xn) ∈ E, L(Xm, Xn) ⊆ Ter(Xm);
3. for each Xn0 ∈ V with parent nodes Xn1 , . . . , Xnk

∈ V,⋃
i∈{1,...,k}

L(Xni , Xn0) ⊆
⋃

i∈{1,...,k}

Ter(Xni).
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Proof. Since 3 follows from 2, we only prove 1 and 2. We prove each claim in
turn by induction on the length of the reduction sequence Σ.

1. Base case. Suppose that Σ = ε, so that Σ(Gδ) = ε(Gδ) = Gδ. Observe that
for any Xn ∈ V with (a non-empty set of) parent nodes Xn1 , . . . , Xnk

∈ V,
fr(Xn) = h(y) \ C for ψ(y, z) = head(ρ) for some ρ ∈ R. Moreover, by
de�nition, it follows that

fr(Xn) =
⋃

i∈{1,...,k}

L(Xni
, Xn).

Inductive step. We assume for IH that the property holds for Σ(Gδ) and
show that the property holds for (r)Σ(Gδ) = (V′,E′,At′,L′) with (r) ∈
{(tr), (ar), (cr)}. We make a case distinction based on the last reduction op-
eration (r) applied.

(ar). Let (Xn1
, Xn0

) ∈ E such that L(Xn1
, Xn0

) = ∅. Assume that (ar) was
applied, so that (Xn1

, Xn0
) 6∈ E′. For any node Xm 6= Xn0

in (r)Σ(Gδ) prop-
erty 2 holds by IH, and for the node Xn0

with parent nodes Xm1
, . . . , Xmk

in (ar)Σ(Gδ) we have

fr(Xn0) =
⋃

i∈{1,...,k}

L(Xmi , Xn0) ∪ L(Xn1 , Xn0)

=
⋃

i∈{1,...,k}

L′(Xmi , Xn0) ∪ ∅

=
⋃

i∈{1,...,k}

L′(Xmi , Xn0)

where the �rst equality follows by IH, and the second by the de�nition of L′

along with the fact that L(Xn1
, Xn0

) = ∅.

(tr). Let (Xn1
, Xn0

), (Xn2
, Xn0

) ∈ E with t ∈ L(Xn1
, Xn0

) ∩ L(Xn2
, Xn0

).
Suppose we apply (tr), so that L′(Xn2 , Xn0) = L(Xn2 , Xn0) \ {t}. For any
node Xm 6= Xn0 in (tr)Σ(Gδ) the result holds by IH, and for the node Xn0

with parent nodes Xm1
, . . . , Xmk

we have

fr(Xn0
) =

⋃
i∈{1,...,k}

L(Xmi
, Xn0

) =
⋃

i∈{1,...,k}

L′(Xmi
, Xn0

)

as t ∈ L′(Xn1 , Xn0).

(cr). Let (Xn1 , Xn0), (Xn2 , Xn0) ∈ E with a node Xm ∈ V such that m < n0
and L(Xn1

, Xn0
) ∪ L(Xn2

, Xn0
) ⊆ Ter(Xm). Assume that (cr) was applied,

so that (Xm, Xn0
) ∈ E′ with L′(Xm, Xn0

) = L(Xn1
, Xn0

)∪L(Xn2
, Xn0

). For
any node Xk 6= Xn0

in (cr)Σ(Gδ), property 2 holds by IH, so let us consider
the node Xn0

, which has parents Xm1
, . . . , Xmk

, Xn1
, and Xn2

in Σ(Gδ)
and parents Xm1 , . . . , Xmk

, and Xm in (cr)Σ(Gδ). By IH, we have the �rst



30 F. Author et al.

equality below, and the second follows from the de�nition of L′, giving the
desired result:

fr(Xn0
) =

⋃
i∈{1,...,k}

L(Xmi
, Xn0

) ∪ L(Xn1
, Xn0

) ∪ L(Xn2
, Xn0

)

=
⋃

i∈{1,...,k}

L′(Xmi
, Xn0

) ∪ L′(Xm, Xn0
).

2. Base case. Suppose that Σ = ε, so that Σ(Gδ) = ε(Gδ) = Gδ. The result
immediately follows from the de�nition of an derivation graph.

Inductive step. We assume for IH that the property holds for Σ(Gδ) and
show that the property holds for (r)Σ(Gδ) = (V′,E′,At′,L′) with (r) ∈
{(tr), (ar), (cr)}.

(tr). Let (Xn1 , Xn0), (Xn2 , Xn0) ∈ E with t ∈ L(Xn1 , Xn0) ∩ L(Xn2 , Xn0).
Suppose we apply (tr), so that L′(Xn2

, Xn0
) = L(Xn2

, Xn0
)\{t}. For any arc

(Xm1
, Xm0

) 6= (Xn2
, Xn0

) in (tr)Σ(Gδ), the result holds by IH, so let us focus
on (Xn2

, Xn0
) ∈ E′. Observe that L′(Xn2

, Xn0
) ⊆ L(Xn2

, Xn0
) ⊆ Ter(Xn2

).

(ar). Let (Xn1
, Xn0

) ∈ E such that L(Xn1
, Xn0

) = ∅. Assume that (ar) was
applied, so that (Xn1 , Xn0) 6∈ E′. For any (Xm1 , Xm0) ∈ E′, L′(Xm1 , Xm0) =
L(Xm1 , Xm0) ⊆ Ter(Xm1) by the de�nition of L′ and IH.

(cr). Let (Xn1 , Xn0), (Xn1 , Xn0) ∈ E with a node Xm ∈ V such that m < n0
and L(Xn1

, Xn0
) ∪ L(Xn1

, Xn0
) ⊆ Ter(Xm). Assume that (cr) was applied,

so that (Xm, Xn0
) ∈ E′ with L′(Xm, Xn0

) = L(Xn1
, Xn0

) ∪ L(Xn1
, Xn0

).
For any arc (Xk1 , Xk2) 6= (Xm, Xn0

) in (cr)Σ(Gδ), the result holds by IH,
so let us focus on (Xm, Xn0) ∈ E. We have L′(Xm, Xn0) = L(Xn1 , Xn0) ∪
L(Xn1 , Xn0) ⊆ Ter(Xm) by the de�nition of L′ and the condition required
to apply (cr). This concludes the proof of the case.

De�nition 10 (Sub-reduction Sequence). Let Σ = (r1) · · · (rn) be a reduc-
tion sequence. We de�ne a sub-reduction sequence Σ′ of Σ to be a reduction
sequence of the form (r1) · · · (ri) with 0 ≤ i ≤ n, which is the empty reduction
sequence ε when n = 0. If Σ′ is a sub-reduction sequence of Σ, then we write
Σ′ v Σ, and we note that we take Σ′ to be the same instances of the reduction
operations occurring within the reduction sequence Σ.

Lemma 10. Let D be a database, R be a rule set, and assume that D R−→δ I.
Moreover, assume that Σ(Gδ) = (V,E,At,L) is a cycle-free derivation graph
with Σ a complete reduction sequence. For each Σ′ v Σ, the derivation graph
Σ′(Gδ) = (V′,E′,At′,L′) satis�es the following: For each non-source node Xn ∈
V′, there exists a node Xm ∈ V′ such that m < n and fr(Xn) ⊆ Ter(Xm).

Proof. We �rst show (1) that the claim holds for Σ(Gδ), and then (2) show that
if the claim holds for Σ′(Gδ) with Σ′ = (r)Σ′′ and (r) ∈ {(tr), (ar), (cr)}, then it
holds for Σ′′(Gδ).
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(1) Let Xn ∈ V be a non-source node of Σ(Gδ) with parent nodes Xni
for

i ∈ {1, . . . , k}. By Lemma 9, we know that

fr(Xn) =
⋃

i∈{1,...,k}

L(Xni
, Xn) ⊆

⋃
i∈{1,...,k}

Ter(Xni
).

Since Σ is a complete reduction sequence and Σ(Gδ) is cycle-free, we know that
Σ(Gδ) is a forest, implying that each non-source node has a single parent node.
Hence, Xn has a single parent node Xm, implying that fr(Xn) ⊆ Ter(Xm), thus
con�rming the desired result as m < n by Lemma 6.

(2) Let Σ′(Gδ) = (V′,E′,At′,L′), Σ′′(Gδ) = (V′′,E′′,At′′,L′′), and suppose
that for every non-source node Xn ∈ V′, there exists a node Xm ∈ V′ such that
m < n and fr(Xn) ⊆ Ter(Xm). We show the claim by a case distinction on if
(tr), (ar), or (cr) was applied last in Σ′.

(tr). Observe that if (tr) was applied last in Σ′, then the only di�erence be-
tween Σ′(Gδ) and Σ′′(Gδ) is that for some arc (Xk1 , Xk0) ∈ E′∩E′′, L′′(Xk1 , Xk0) =
L′(Xk1 , Xk0) ∪ {t} , for some term t. Hence, for an arbitrary non-source node
Xn ∈ V′′, Xn ∈ V′ since V′′ = V′, implying that there exists a node Xm ∈ V′ =
V′′ such that m < n and fr(Xn) ⊆ Ter(Xm), completing the proof of the case.

(ar). If (ar) was applied last in Σ′, then the only di�erence between Σ′(Gδ)
and Σ′′(Gδ) is that for some arc (Xk1 , Xk0), E

′′ = E′ ∪ {(Xk1 , Xk0)}, where
L′′(Xk1 , Xk0) = ∅. For any non-source node Xn ∈ V′′ such that Xn is a non-
source node in V′, the result immediately holds. However, it could be the case
that even though Xk0 is a non-source node in V′′, Xk0 is a source node in Σ′(Gδ)
as (Xk1 , Xk0) ∈ E′′. In this case, by Lemma 9 and the fact that Xk1 is the only
parent of Xk0 ∈ V′′, we know that fr(Xk0) ⊆ L′′(Xk1 , Xk0) = ∅, implying that
fr(Xk0) = ∅. As Xk1 is a parent of Xk0 in Σ′′(Gδ), we know that k1 < k0 by
Lemma 6, and trivially fr(Xk0) ⊆ Ter(Xk1), proving the case.

(cr). If (cr) is applied last in Σ′, then the only di�erence between Σ′′(Gδ)
and Σ′(Gδ) is that there exist arcs (Xn1

, Xn0
), (Xn2

, Xn0
) ∈ E′′ and E′ =

(E′′ \ {(Xn1
, Xn0

), (Xn2
, Xn0

)}) ∪ {(Xm, Xn0
)} as there exists a node Xm ∈ V′′

such that m < n0 and L′′(Xn1
, Xn0

) ∪ L′′(Xn2
, Xn0

) = Ter(Xm). Hence, for an
arbitrary non-source node Xk ∈ V′′, Xk ∈ V′ as V′′ = V′, implying the exis-
tence of a node Xk′ such that k′ < k and fr(Xk) ⊆ Ter(Xk′), thus completing
the proof.

Lemma 11. Let R be a rule set. Then,

1. If R is gbts, then R is cdgs;
2. if R is wgbts, then R is wcdgs.

Proof. We argue claim 1 since the proof of claim 2 is similar. Let D be a
database, R be gbts, and assume D δ−→R I. Since R is gbts, we know that
the R-derivation

δ = D, (ρ1, h1, I1), . . . , (ρn, hn, In)
is greedy. Therefore, for each i such that 0 < i < n, there exists a j < i such that
hi(fr(ρi)) ⊆ Nul(hj(head(ρj))) ∪ Con(D,R). Let us now show that R is cdgs
by arguing that Gδ = (V,E,At,L) is reducible to a cycle-free graph.
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Let us suppose that there exist arcs (Xn1
, Xn0

), (Xn2
, Xn0

) ∈ E. By our as-
sumption that δ is greedy, we know that there exists a node Xm ∈ V such that
m < n0 and fr(Xn0) ⊆ Ter(Xm). By Lemma 9, it follows that L(Xn1 , Xn0) ∪
L(Xn2 , Xn0) ⊆ Ter(Xm), meaning we can apply (cr) toGδ. Observe that (cr)(Gδ)
has one less �convergence point� as (Xn1

, Xn0
) and (Xn2

, Xn0
) have been re-

placed by the single arc (Xm, Xn0
). By repeating this process, all such conver-

gence points will be removed, yielding a reduced, cycle-free derivation graph.
Hence, R is cdgs.

Lemma 12. Let R be a rule set. Then,

1. If R is cdgs, then R is gbts;
2. if R is wcdgs, then R is wgbts.

Proof. We prove claim 2 since claim 1 is shown in a similar fashion. Let D be
a database, R be wcdgs, C = Con(D,R), and assume D δ−→R I. Since R is
wcdgs, we know there exists an R-derivation

δ′ = D, (ρ1, h1, I1), . . . , (ρk, hk, Ik)

such that Gδ′ = (V,E,At,L) is reducible to a cycle-free graph. That is to say,
there exists a (complete) reduction sequence Σ such that Σ(Gδ′) is cycle-free. By
Lemma 10, we know that for every Σ′ v Σ, Σ′(Gδ′) = (V′,E′,At′,L′) satis�es
the following property: For each non-source node Xn ∈ V′, there exists a node
Xm ∈ V′ such that m < n and fr(Xn) ⊆ Ter(Xm). In particular, this property
holds for Σ′ = ε, i.e. for Gδ′ . Since hk(fr(ρk)) ⊆ C when Xk ∈ V is a source
node, and due to the fact that for each non-source node Xn ∈ V, fr(Xn) =
hn(fr(ρn)) \ C = hn(fr(ρn)) \ C, we have that

hn(fr(ρn)) ⊆ fr(Xn) ∪ C ⊆ Ter(Xm) = Nul(hm(head(ρm)) ∪ Con(D,R),

for each 0 < n ≤ k and some m < n, where the last equality above follows from
the de�nition of Ter(Xm). Therefore, δ′ is greedy, showing that R is wgbts.

Theorem 3 Let R be a rule set.

1. R is gbts i� R is cdgs;
2. R is wgbts i� R is wcdgs.

Proof. Follows from Lemma 11 and Lemma 12.

Corollary 1 Let R be a rule set.

1. The reduction operations (tr) and (ar) are reduction-admissible;
2. The wcdgs class properly contains the cdgs class;
3. If R is cdgs, gbts, wcdgs, or wgbts, then BCQ entailment is decidable.

Proof. We prove each claim in turn below:
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1. Let δ be an arbitrary R-derivation and assume that Gδ can be reduced to a
cycle-free graph. By the proof of Lemma 12 above, δ is a greedyR-derivation.
Thus, by the proof of Lemma 11, δ is reducible to a cycle-free graph using
only the (cr) operation.

2. By Lemma 2, we know that wgbts properly contains gbts. Therefore, by
Theorem 3 above, wcdgs properly contains cdgs.

3. Follows from the fact that BCQ entailment is decidable for fts and every
class of rule sets mentioned is a subset of fts.


