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Abstract
Abstract Dialectical Frameworks (ADFs) enhance
the capability of Dung’s argumentation frameworks
by modelling relations between arguments in a flex-
ible way, thus constituting a very general formalism
for abstract argumentation. Since argumentation is
an inherently dynamic process, understanding how
change in ADFs can be formalized is important. In
this work we study AGM-style revision operators
for ADFs by providing various representation re-
sults. We focus on the preferred semantics and em-
ploy tools recently developed in work on revision
of Horn formulas as well as logic programs. More-
over, we present an alternative family of operators
based on a variant of the postulates considering pre-
ferred interpretations of the original and admissible
interpretations of the revising ADF.

1 Introduction
Within the research field of argumentation in artificial intel-
ligence [Bench-Capon and Dunne, 2007], abstract argumen-
tation frameworks (AFs) as introduced by Dung [1995] have
turned out to be a suitable modelling tool for various argu-
mentation problems. This is partly due to their conceptional
simplicity, being just a directed graph where nodes represent
abstract arguments and edges represent conflicts between ar-
guments. However, this comes also with limitations in terms
of expressibility, which has led to the introduction of several
enhancements of Dung’s AFs, incorporating support [Cayrol
and Lagasquie-Schiex, 2005], preferences [Modgil, 2009], at-
tacks on attacks [Baroni et al., 2011] and other concepts (see
[Brewka et al., 2014] for an overview). One of the most re-
cent and powerful generalizations of AFs constitute abstract
dialectical frameworks (ADFs) [Brewka and Woltran, 2010;
Brewka et al., 2013], where the relation between arguments
is modelled via acceptance conditions for each argument (in
the form of Boolean functions), capturing various forms of
attack and support. This enhanced modelling capability of
ADFs has been used for preferential reasoning [Brewka et al.,
2013], judgment aggregation [Booth, 2015], and legal reason-
ing [Al-Abdulkarim et al., 2016].
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Argumentation as such is a highly dynamic process. There-
fore the evaluation of formalisms modelling argumentation
problems is subject to constant changes in the model. As
a consequence, there has been a tremendous amount of re-
search on the dynamics of argumentation frameworks and
in particular on the revision of Dung AFs (see e.g. [Falappa
et al., 2011]) in the last years. The prominent AGM ap-
proach for belief change [Alchourrón et al., 1985; Katsuno
and Mendelzon, 1991] was applied to AFs by Coste-Marquis
et al. [2014], characterizing minimal change revision opera-
tors by so-called representation results. Diller et al. [2015]
used recent insights on the expressiveness of AFs [Dunne et
al., 2015] as well as on how to deal with fragments of clas-
sical logic in belief revision [Delgrande and Peppas, 2015]
to characterize AGM revision operators which return a single
AF instead of a set of such.

In this work we study such AGM revision operators for
ADFs. We obtain representation theorems characterizing all
operators satisfying an adapted version of the AGM postu-
lates by rankings on interpretations. The main challenge is
the fact that ADFs are not able to express arbitrary sets of in-
terpretations under these semantics (supported models being
an exception in this matter). Fortunately, the exact expres-
siveness of ADF-semantics has recently been established by
Pührer [2015] and Strass [2015], who gave exact character-
izations for realizability under three-valued and two-valued
semantics, respectively. We will extend and employ these re-
sults which will result in a different characterization for each
semantics. Most semantics evaluate ADFs based on three-
valued interpretations, generalizing labelling-based seman-
tics of AFs [Caminada and Gabbay, 2009]. Therefore, to ob-
tain concrete operators, we employ a distance measure for
three-valued interpretations to define rankings.

We will focus on preferred and admissible semantics –
preferred interpretations are defined as maximal admissible
interpretations. For revision under preferred semantics we
obtain a representation result by adjusting the conditions on
rankings to the limited expressiveness of the semantics and
adding an additional postulate inspired by [Delgrande and
Peppas, 2015] preventing cycles. The approach is similar to
revision of AFs [Diller et al., 2015], but deals with sets of
three-valued interpretations instead of two-valued extensions.
Moreover, will define a three-valued version of Dalal’s well-
known revision operator [Dalal, 1988]. Admissible seman-



tics, on the other hand, yield only a single operator satisfying
the postulates. Since, as we will argue, both approaches have
some weaknesses, we propose a novel hybrid approach which
bases rankings on preferred interpretations but allows admis-
sible interpretations of the revising ADF to be the result of the
revision.

Finally, we informally discuss the representation of op-
erators for the two-valued semantics, namely stable and
supported models. Moreover, we argue that complete and
grounded semantics cannot be captured by the AGM ap-
proach, i.e. there are no operators satisfying the postulates.

2 Background

We assume a fixed finite set of statements A. An interpre-
tation is a mapping v : A→ {t, f ,u} assigning one of the
truth values true (t), false (f ) or unknown (u) to each state-
ment. The set of statements to which v assigns a particular
truth value x ∈ {t, f ,u} is denoted by vx. An interpretation
is two-valued if vu = ∅, i.e. the truth value u is not assigned.
Two-valued interpretations v can be extended to assign truth
values v(ϕ) ∈ {t, f} to propositional formulas ϕ as usual.

The three truth values are partially ordered according to
their information content: we have u <i t and u <i f and
no other pair in <i, meaning that the classical truth values
contain more information than the truth value unknown. As
usual,≤i denotes the partial order associated to the strict par-
tial order<i. The pair ({t, f ,u} ,≤i) forms a complete meet-
semilattice with the information meet operation ui. This
meet can intuitively be interpreted as consensus and assigns
t ui t = t, f ui f = f , and returns u otherwise. The infor-
mation ordering ≤i extends in a straightforward way to inter-
pretations v1, v2 over A in that v1 ≤i v2 iff v1(a) ≤i v2(a)
for all a ∈ A. We then say, for two interpretations v1, v2, that
v2 extends v1 iff v1 ≤i v2. The set V of all interpretations
over A forms a complete meet-semilattice with respect to the
information ordering ≤i. The consensus meet operation ui
of this semilattice is given by (v1 ui v2)(a) = v1(a) ui v2(a)
for all a ∈ A. By V2 we denote the set of two-valued inter-
pretations; they are the ≤i-maximal elements of the meet-
semilattice (V,≤i). We denote by [v]2 the set of all two-
valued interpretations that extend v.

Two interpretations v1 and v2 are compatible if vt1 ∩ vf2 =
vf1 ∩ vt2 = ∅ and incompatible otherwise. A set of interpre-
tations V ⊆ V is compatible if each pair v1, v2 ∈ V is com-
patible and incompatible otherwise; its adm-closure, cl(V ),
contains exactly those v ∈ V such that ∀a ∈ (vt ∪ vf )∀v2 ∈
[v]2∃v′ ∈ V s.t. v′ ≤i v2 ∧ v′(a) = v(a). We will use
cl(v1, v2) as shorthand for cl({v1, v2}).

We define the symmetric distance function 4 between
truth values as follows: t4f = 1, t4u = f4u = 1

2 ,
and x4x = 0 for x ∈ {t, f ,u}. Lifted to interpretations
v1, v2 ∈ V , it is defined as v14v2 =

∑
a∈A v1(a)4v2(a).

Finally note that we will represent interpretations by se-
quences of truth values, assuming a total ordering on the un-
derlying vocabulary. For instance the interpretation {a 7→
u, b 7→ t, c 7→ f} will be abbreviated by utf .

a b c d
¬b ¬a ¬b ∧ d c

Figure 1: ADF F = {〈a,¬b〉, 〈b,¬a〉, 〈c,¬b ∧ d〉, 〈d, c〉}.

2.1 Abstract Dialectical Frameworks
An ADF F is a set of tuples 〈s, ϕs〉 where s ∈ A is a state-
ment andϕs is a propositional formula overA, the acceptance
condition of s. Note that this formalization syntactically dif-
fers from the original one [Brewka and Woltran, 2010], where
an ADF is represented by a triple (A,L,C) where L is a set
of links between statements and C a set of total functions
2A 7→ {t, f}. It is however easy to see that these two notions
are equivalent, as the set of links L is implicitly given by the
atoms occurring in the acceptance conditions and the fact that
the total functions C can be expressed by propositional for-
mulas. We denote the set of all ADFs by FA.

The semantics of ADFs can be defined via an operator ΓF
over three-valued interpretations. Given an ADF F and an
interpretation v, it is defined as

ΓF (v)(a) =
l

w∈[v]2

w(ϕa).

Intuitively, the operator returns, for each statements a, the
consensus truth value of the evaluation of the acceptance for-
mula ϕa with each two-valued interpretation extending v.
The semantics can now be defined as follows:
Definition 1. Given an ADF F , an interpretation v is
• admissible for F iff v ≤i ΓF (v),
• complete for F iff v = ΓF (v),
• preferred for F iff v is admissible for F and each v′ ∈ V

with v <i v′ is not admissible for F ,
• grounded for F iff v is complete for F and each v′ ∈ V

with v′ <i v is not complete for F ,
• a (supported) model of F iff v is two-valued and v =

ΓF (v),
• a stable model of F iff v is a model of F and vt =
wt, where w is the grounded interpretation of F v =
{〈a, ϕa[x/⊥ : v(x) = f ]〉 | a ∈ vt}.

We denote the admissible, complete, preferred, and grounded
interpretations for, and supported and stable models of an
ADF F by ad(F ), co(F ), pr(F ), gr(F ), mo(F ), and st(F ),
respectively. For alternative semantics we refer to [Strass,
2013; Polberg, 2014].

The semantics have been shown to be proper generaliza-
tions of AF-semantics [Brewka and Woltran, 2010; Brewka et
al., 2013], with both supported and stable models generaliz-
ing stable semantics of AFs, differing only in the treatment of
support cycles.
Example 1. Consider the ADF F depicted in Figure 1. The
admissible interpretations of F are as follows: ad(F ) =
{uuuu, tfuu, tff f , tftt, ftuu, ftfu, ftf f ,uuff}. Further



observe that co(F ) = ad(F ) \ {ftuu, ftfu}, pr(F ) =
{tff f , tftt, ftf f}, gr(F ) = {uuuu}, mo(F ) = pr(F ), and
st(F ) = pr(F ) \ {tftt}.

A set of interpretations V is realizable under a semantics σ
if there is an ADF F with σ(F ) = V . The following proposi-
tion recalls results which are either explicitly stated or imme-
diate consequences of [Pührer, 2015] and [Strass, 2015].
Proposition 1. A set of interpretations V is realizable under

• ad iff V 6= ∅ and V = cl(V );

• pr iff V 6= ∅ and V is incompatible;

• mo iff V ⊆ V2;

• st iff V ⊆ V2 and vt1 6⊆ vt2, vt2 6⊆ vt1 for all v1, v2 ∈ V .

For σ ∈ {ad, pr,mo, st} it holds that σ(F ) ∩ σ(G) is re-
alizable under σ for arbitrary ADFs F and G, given that
σ(F )∩σ(G) 6= ∅. This does not hold for co and gr in general.

Definition 2. Given a semantics σ, the function fσ : 2V 7→
FA maps sets of interpretations to ADFs such that σ(fσ(V )) =
V if V is realizable under σ and σ(fσ(V )) = u. . .u other-
wise.

Note that canonical constructions for fσ(V ) for realizable
sets V can be found in [Pührer, 2015] and [Strass, 2015]. Al-
though fσ is not unique in general, it is assumed to be fixed
for every σ throughout the paper. In particular, fσ(V ) =
{〈a,¬a〉 | a ∈ A} for V not realizable under σ.

2.2 Belief Revision
The most prominent approach to belief revision was intro-
duced by Alchourrón et al. [1985] and reformulated for
propositional formulas by Katsuno and Mendelzon [1991].
They define an equivalent version of the AGM-postulates for
operators ∗ mapping pairs of formulas to a revised formula.

(R1) ψ ∗ µ |= µ.
(R2) If ψ ∧ µ is satisfiable, then ψ ∗ µ = ψ ∧ µ.
(R3) If µ is satisfiable, then ψ ∧ µ is also satisfiable.
(R4) If ψ1 ≡ ψ2 and µ1 ≡ µ2, then ψ1 ∗ µ1 ≡ ψ2 ∗ µ2.
(R5) (ψ ∗ µ) ∧ φ |= ψ ∗ (µ ∧ φ).
(R6) If (ψ∗µ)∧φ is satisfiable, then ψ∗(µ∧φ) |= (ψ∗µ)∧φ.

While postulates R1 to R4 are self-explanatory, note that
R5 and R6 ensure that revision is performed with minimal
change to the revised formula ψ.

The main result of [Katsuno and Mendelzon, 1991] is
that there is a one-to-one correspondence between opera-
tors which are rational according to the AGM postulates and
functions mapping each formula to a certain binary relation
among interpretations. Thus, for constructing an AGM oper-
ator, a necessary and sufficient condition is the existence of
such a function.
Definition 3. A preorder � on V is a reflexive, transitive bi-
nary relation on V . The preorder � is
• total if v1 � v2 or v2 � v1 for any v1, v2 ∈ V ,
• i-max-total if v1 � v2 or v2 � v1 for any v1, v2 ∈ V with
v1 6≤i v2 and v2 6≤i v1.

Moreover, for v1, v2 ∈ V , v1 ≺ v2 denotes the strict part of
�, i.e. v1 � v2 and v2 6� v1. We write v1 ≈ v2 in case
v1 � v2 and v2 � v1.

Given a preorder, the construction of the corresponding op-
erator is then based on the following selection function:

min(V,�) = {v1 ∈ V | @v2 ∈ V : v2 ≺ v1}.

3 Revising ADFs
In this section we apply the AGM approach to the revision
of ADFs by studying operators ∗ : FA × FA 7→ FA. It is
inspired by the approach by Diller et al. [2015] to revision of
AFs. We begin by reformulating the postulates for our setting,
parameterized by the used semantics.

(A1σ) σ(F ∗G) ⊆ σ(G).

(A2σ) If σ(F )∩ σ(G) 6= ∅, then σ(F ∗G) = σ(F ) ∩ σ(G).

(A3σ) If σ(G) 6= ∅, then σ(F ∗G) 6= ∅.
(A4σ) If σ(G) = σ(H), then σ(F ∗G) = σ(F ∗H).

(A5σ) σ(F ∗G) ∩ σ(H) ⊆ σ(F ∗ fσ(σ(G) ∩ σ(H))).

(A6σ) If σ(F ∗ G) ∩ σ(H) 6= ∅, then
σ(F ∗ fσ(σ(G) ∩ σ(H))) ⊆ σ(F ∗G) ∩ σ(H).

Next we define two types of rankings which will be the
counterpart to the postulates in the representation results.

Definition 4. Given a semantics σ and an ADF F , a preorder
�F is a (i-max-)faithful ranking for F if it is (i-max-)total and
for all (incompatible) interpretations v1, v2 ∈ V it holds that

(i) if v1, v2 ∈ σ(F ) then v1 ≈F v2, and

(ii) if v1 ∈ σ(F ) and v2 /∈ σ(F ) then v1 ≺F v2.

A function mapping each ADF to a (i-max-)faithful ranking is
called (i-max-)faithful assignment.

3.1 Revision under Preferred Semantics
In the remainder of this section we will focus on the preferred
semantics. To fulfill the postulates, a revision operator will
have to result in an ADF having certain preferred interpreta-
tions. However, as can be already seen by Proposition 1, pre-
ferred semantics (and all the others) underlie certain limits
in terms of expressiveness. That is, certain desired outcomes
may not be realizable. We first give sufficient conditions for
realizability we will make use of in the following.

Proposition 2. A set of interpretations V ⊆ V is realizable
under pr if one of the following holds:

1. V ⊆ pr(F ) and V 6= ∅ for some F ∈ FA;

2. V = {v1, v2} and v1 and v2 are incompatible; or

3. V = {v}.
The following example shows that the standard set of pos-

tulates is not enough to get a correspondence to preorders on
interpretations.

Example 2. Consider an arbitrary ADF F and the binary re-
lation � having pr(F ) as least elements, containing the cy-
cle uft ≺ ttf ≺ fut ≺ tuf ≺ uft and being a linear
order otherwise. Note that � is not transitive and therefore



only a pseudo-preorder. However, the revision operator ∗ in-
duced by� can be shown to satisfy all postulatesA1pr−A6pr.
Moreover, every binary relation �′ inducing the same oper-
ator ∗ must contain this cycle. Consider the pair of inter-
pretations uft and ttf . They are incompatible, hence re-
alizable (cf. Proposition 1). Therefore the revision of F by
fpr({uft, ttf}) must have uft as single preferred interpreta-
tion, hence uft ≺′ ttf . This holds for every neighboring pair
of the cycle, hence �′ must contain the same cycle.

The following postulate, which is adapted from Delgrande
and Peppas [2015], closes this gap. Note that it is redundant
in classical AGM revision.

(Acycσ) If for 1 ≤ i < n, σ(F ∗ Gi+1) ∩ σ(Gi) 6= ∅ and
σ(F ∗G1) ∩ σ(Gn) 6= ∅ then σ(F ∗Gn) ∩ σ(G1) 6= ∅.

We are now ready to give our first representation result.
Theorem 1. Let F be an ADF and�F an i-max-faithful rank-
ing for F . Define an operator ∗ : FA ×FA 7→ FA by

F ∗G = fpr(min(pr(G),�F )).

Then ∗ satisfies postulates A1pr −A6pr and Acycpr.

Proof. By definition of fpr and the fact that any non-empty
V ⊆ pr(G) is realizable under pr (cf. Proposition 2.1) it holds
that pr(fpr(min(pr(G),�F ))) = min(pr(G),�F ), hence
pr(F ∗G) = min(pr(G),�F ). Thus A1pr and A4pr follow.

For A2pr, assume pr(F ) ∩ pr(G) 6= ∅. Since �F is i-
max-faithful and all v1, v2 ∈ pr(G) are pairwise incompatible
we get that min(pr(G),�F ) = pr(F ) ∩ pr(G) and hence
pr(F ∗G) = pr(F ) ∩ pr(G).

As �F is transitive (by being a preorder) and A is finite,
min(pr(G),�F ) 6= ∅, hence A3pr holds.

For A5pr and A6pr we consider the non-trivial case where
pr(F ∗ G) ∩ pr(H) 6= ∅. Recalling that pr(F ) ∩ pr(G)
is realizable under pr (cf. Proposition 1), we have to show
that min (pr(G),�F )∩pr(H) = min (pr(G) ∩ pr(H),�F ).
Towards a contradiction assume there is some v ∈
min(pr(G),�F ) ∩ pr(H) such that v /∈ min(pr(G) ∩
pr(H),�F ). As then v ∈ pr(G) and v ∈ pr(H) there
must be some v′ ∈ pr(G) ∩ pr(H) with v′ ≺F v, contra-
dicting v ∈ min(pr(G),�F ). On the other hand assume,
again to the contrary, that there is some v ∈ min(pr(G) ∩
pr(H),�F ) such that v /∈ min(pr(G),�F ) ∩ pr(H). From
v ∈ pr(H) we get v /∈ min(pr(G),�F ). As by assump-
tion pr(F ∗ G) ∩ prf(H) 6= ∅, let v′ ∈ min(pr(G),�F )
and v′ ∈ pr(H). Then also v′ ∈ pr(G) ∩ pr(H). Since
v, v′ ∈ pr(H), v and v′ are incompatible, �F is i-max-
total and v ∈ min(pr(G) ∩ pr(H),�F ) by assumption, we
get v �F v′. Thus v ∈ min(pr(G),�F ) because v′ ∈
min(pr(G),�F ), a contradiction.

For Acycpr consider a sequence of ADFs G1, . . . , Gn such
that pr(F ∗ Gi+1) ∩ pr(Gi) 6= ∅ for 1 ≤ i < n and pr(F ∗
G1) ∩ pr(Gn) 6= ∅. Let 1 ≤ i < n. By definition of ∗
we have pr(fpr(min(pr(Gi+1),�F ))) ∩ pr(Gi) 6= ∅. Then,
by Proposition 2, min(pr(Gi+1),�F ) ∩ pr(Gi) 6= ∅ follows.
Hence there is some v′i ∈ pr(Gi) such that v′i �F vi+1 for all
vi+1 ∈ pr(Gi+1). From transitivity of �F we infer that there
is a v′1 ∈ pr(G1) such that v′1 �F vn for all vn ∈ pr(Gn).

From pr(F ∗G1) ∩ pr(Gn) 6= ∅ it follows that there is some
v′′1 ∈ min(G1,�F ) (hence also v′′1 ∈ pr(G1) and v′′1 �F v′1)
with v′′1 ∈ pr(Gn). We have v′′1 �F v′1 �F vn (for each
vn ∈ pr(Gn)), hence v′′1 ∈ min(pr(Gn),�F ). This together
with v′′1 ∈ pr(G0) means that pr(F ∗ Gn) ∩ pr(G1) 6= ∅,
which was to show.

Theorem 2. Let ∗ : FA × FA 7→ FA be a revision operator
satisfying postulatesA1pr−A6pr and Acycpr. Then there is an
assignment mapping each ADF F to an i-max-faithful ranking
� such that pr(F ∗G) = min(pr(G),�) for every ADF G.

Proof. Assume an arbitrary ADF F . We will define � and
show that it is an i-max-faithful ranking for F and that pr(F ∗
G) = min(pr(G),�).

First let �′ be the relation on V such that for each v ∈ V ,
v ≈′ v, and for any incompatible interpretations v1, v2 ∈ V ,

v1 �′ v2 ⇔ v1 ∈ pr(F ∗ fpr({v1, v2})).

The relation � is defined as the transitive closure of �′:

v � v′ ⇔ ∃w1, . . . , wn : v �′ w1 �′ · · · �′ wn �′ v′.

First,� is clearly reflexive and transitive, making it a preorder
on V . Moreover, for incompatible interpretations v1, v2 ∈
V we know from Proposition 2.2 that {v1, v2} is realizable
under pr, hence pr(fpr({v1, v2})) = {v1, v2}. By A1pr and
A3pr we therefore get that either v1 �′ v2 or v2 �′ v1, and,
consequently, also v1 � v2 or v2 � v1, hence � is i-max-
total.

We proceed by showing that � is i-max-faithful. To show
(i), let v1, v2 ∈ pr(F ) and note that pr(fpr({v1, v2})) =

{v1, v2}. Hence, by A2pr, we get pr(F ∗ fpr({v1, v2})) =

{v1, v2}. Therefore, by definition of�, v1 � v2 and v2 � v1,
i.e. v1 ≈ v2. For (ii), we begin with the intermediate state-
ment

for v1 . . . vn ∈ V : v1 �′ · · · �′ vn �′ v1 ⇒ v1 �′ vn (1)

For n ≤ 2 the statement is immediate. Assume n > 2.
By definition of �′ we first get that vi and vi+1 for i ∈
{1, . . . , n − 1} as well as vn and v1 are incompatible, hence
fpr({vi, vi+1}) = {vi, vi+1} and fpr({vn, v1}) = {vn, v1} by
Proposition 2. Moreover, we get vi ∈ pr(F ∗ fpr({vi, vi+1}))
for i ∈ {1, . . . , n − 1} and vn ∈ pr(F ∗ fpr({vn, v1})). It
follows that v1 ∈ pr(F ∗ fpr({v1, v2})) ∩ {vn, v1}, vi ∈
pr(F ∗fpr({vi, vi+1}))∩{vi−1, vi} for i ∈ {2, . . . , n−1}, and
vn ∈ pr(F ∗ fpr({vn, v1})) ∩ {vn−1, vn}. Considering Acyc
we get pr(F ∗ fpr({vn, v1})) ∩ {v1, v2} 6= ∅, meaning fur-
ther by A5pr and A6pr that pr(F ∗ fpr({vn, v1}))∩{v1, v2} =

pr(F ∗ fpr({vn, v1} ∩ {v1, v2})) = pr(F ∗ fpr({v1})). By
pr(fpr({v1})) = {v1} (cf. Proposition 2.3), A1pr and A3pr,
we follow that v1 ∈ pr(F ∗ fpr({vn, v1})), meaning that
v1 �′ vn, concluding the proof for (1). We proceed by show-
ing the statement

for v1, v2 ∈ V : v1 ≺′ v2 ⇒ v1 ≺ v2 (2)

v1 � v2 is clear by definition. Assume, towards a contra-
diction, that v2 � v1. Then ∃w1, . . . , wn such that v1 �′



w1 �′ · · · �′ wn �′ v2. As by assumption v1 �′ v2 we
follow by (1) that v2 �′ v1, a contradiction to v1 ≺′ v2,
showing (2). Now let v1 and v2 be incompatible interpreta-
tions such that v1 ∈ pr(F ) and v2 /∈ pr(F ). By A2pr we get
pr(F ∗ fpr({v1, v2})) = pr(F ) ∩ {v1, v2} = {v1}, implying
v1 �′ v2. Therefore, by (2), also v1 � v2, showing (ii) and,
consequently, that � is i-max-faithful.

Before showing that ∗ is indeed simulated by �, we prove

for v1, v2 ∈ V s.t. v1 �′ v2, G ∈ FA :

v1 ∈ pr(G) ∧ v2 ∈ pr(F ∗G)⇒ v1 ∈ pr(F ∗G)
(3)

Let G ∈ FA such that v1 ∈ pr(G) and v2 ∈ pr(F ∗ G).
First note that, by ∗ fulfilling A1pr, v2 ∈ pr(G), meaning that
v1 and v2 are incompatible and therefore pr(fpr({v1, v2})) =

{v1, v2}. From A5pr and A6pr we then get that pr(F ∗
G) ∩ {v1, v2} = pr(F ∗ fpr(pr(G) ∩ {v1, v2})) = pr(F ∗
fpr({v1, v2})). By the assumption that v1 �′ v2 it holds that
v1 ∈ pr(F ∗ fpr({v1, v2})), hence (3) follows. The last inter-
mediate step is to show that

for G ∈ FA : min(pr(G),�) = min(pr(G),�′) (4)

Consider some G ∈ FA. (⊆) Let v1 ∈ min(pr(G),�) and
suppose there exists an v2 ∈ pr(G) with v2 ≺′ v1. This
means, by (2), that also v2 � v1, a contradiction. Hence
v2 6≺′ v1 for all v2 ∈ pr(G), i.e. v1 ∈ min(pr(G),�′).
(⊇) Let v1 ∈ min(pr(G),�′) and v2 ∈ pr(G). We show
that v1 �′ v2, since then v1 � v2 and, consequently, v1 ∈
min(pr(G),�) follows by definition of �. If v1 = v2 we
have v1 �′ v2 by definition of�′. If v1 6= v2 observe that, by
v1, v2 ∈ pr(G), v1 and v2 are incompatible, hence at least one
of v1 �′ v2 and v2 �′ v1 must hold. By v1 ∈ min(pr(G),�′)
it cannot hold that v2 ≺′ v1, hence v1 �′ v2.

We are now ready to show that, for any ADF G, pr(F∗G) =
min(pr(G),�). Considering (4) we just have to show that

for G ∈ FA : pr(F ∗G) = min(pr(G),�′) (5)

(⊆) Let v ∈ pr(F ∗ G) and keep in mind that, by A1pr,
also v ∈ pr(G). We show for each w ∈ pr(G) that v �′ w.
Consider an arbitrary w ∈ pr(G). Note that by v, w ∈ pr(G)
we have that pr(fpr({v, w})) = {v, w}. From A5pr and A6pr

we get pr(F ∗G)∩ {v, w} = pr(F ∗ fpr(pr(G)∩ {v, w})) =

pr(F ∗ fpr({v, w})). As by assumption v ∈ pr(F ∗ G) we
get v �′ w by definition of �′. (⊇) Towards a contradiction,
assume some v ∈ min(pr(G),�′) such that v /∈ pr(F ∗ G)
(again note that also v ∈ pr(G) by A1pr). By A3pr and the
fact that pr(G) 6= ∅ there is somew ∈ pr(F ∗G). From (3) we
infer that v 6�′ w. But the by assumption also w 6�′ v. Since
v and w must be incompatible by v, w ∈ pr(G) this means
pr(F ∗ fpr({v, w})) ∩ {v, w} = ∅ and by ∗ fulfilling A1pr

even pr(F ∗ fpr({v, w})) = ∅, a contradiction to ∗ satisfying
A3pr.

With Theorems 1 and 2 we have obtained a one-to-one
correspondence between i-max-faithful rankings and revision
operators satisfying all postulates. In particular, we can use
standard revision operators from the literature which work
on faithful rankings (as each faithful ranking is also i-max-
faithful) to get concrete revision operators. To exemplify

the obtained result, we consider Dalal’s operator (1988), cus-
tomized to the three-valued setting (using the same distance
measure as, for instance, in [Arieli, 2008]):
Definition 5. Given an ADF F and semantics σ, the ranking
�σF based on three-valued distance is defined as

v1 �σF v2 ⇔ min
v∈σ(F )

(v4v1) ≤ min
v∈σ(F )

(v4v2).

for each v1, v2 ∈ V . The operator ∗Dσ induced by �σF returns
F ∗Dσ G = fpr(min(σ(G),�σF )) for each G ∈ FA.

It is easy to see that �σF is i-max-faithful, as the minimal
distance to σ(F ) is 0 for interpretations v ∈ σ(F ) and greater
than 0 for interpretations v /∈ σ(F ). Hence, by Theorem 1,
∗Dσ satisfies all postulates.
Example 3. Consider the ADF F = {〈a, a〉, 〈b, a〉,
〈c,¬a ∧ b〉}, having pr(F ) = {ttf , f f f}. First note that the
minimal elements of �pr

F coincide with pr(F ), i.e. ttf ≈pr
F

f f f ≺pr
F others. Now consider the revision by the ADF G

having pr(G) = {tft, ttu, f fu} and observe that ttu ≈pr
F

f fu ≺pr
F tft (ttu and f fu have minimal distance to pr(F )

of 1
2 , while tft has 2). Therefore we get F ∗Dpr G =

fpr({ttu, f fu}). On the other hand consider the ADF G′ =

{〈a,>〉, 〈b,¬a〉, 〈c,¬b〉}, having pr(G′) = {tft}. The revi-
sion of F by G′ obviously results in an ADF also having tft
– minimal distance 2 to pr(F ) – as only preferred interpre-
tation. Inspecting the set of admissible interpretations of G′,
which can be seen as reasonable (but not maximal) positions
in the revising ADF, ad(G′) = {tft, tfu, tuu,uuu}, we ob-
serve that it contains elements which are closer to pr(F ) than
tft. In particular, the interpretation tuu has distance 1 to
pr(F ) and is even admissible in F .

3.2 Revision under Admissible Semantics
Example 3 suggests to take the admissible interpretations into
account when revising with respect to the preferred interpre-
tations. A quite radical step would be to just revise with re-
spect to admissible interpretations instead. By the fact that
ad(F1) ∩ ad(F2) 6= ∅ for all ADFs F1, F2 ∈ FA we get only
one operator satisfying postulate A2ad and the following re-
sult immediately follows:
Theorem 3. An operator ∗ : FA×FA 7→ FA fulfills A1ad−
A6ad iff ∗ is defined as F ∗G = fad(ad(F ) ∩ ad(G)).

It is important to note that admissible semantics is closed
under intersection (cf. Proposition 1), therefore fad(ad(F ) ∩
ad(G)) always realizes ad(F ) ∩ ad(G).
Example 4. Again consider the ADFs F and G′ from Exam-
ple 3 and note that ad(F ) = {ttf , f f f , ttu, tuf , f fu, tuu,
fuu,uuu} and ad(G′) = {tft, tfu, tuu,uuu}. Moreover,
let ∗ad be the operator from Theorem 3. As expected, we get
F ∗ad G

′ = fad({tuu,uuu}), i.e. the resulting ADF has tuu
as single preferred interpretation, which was somehow seen
as one of the more desired scenarios in Example 3.

But now consider the ADF G′′ having ad(G′′) =
{utf ,uuu} and observe that F ∗ad G

′′ = fad({uuu}). From
the perspective of the preferred interpretations of F (being
{ttf , f f f}) this might not be desired, as utf is admissible in
G′′ and has a distance of only 1

2 to pr(F ), while the result of
the revision has distance 3

2 .



3.3 Hybrid Approach
Due to the problem illustrated in Example 4 we are interested
in operators selecting out of the admissible interpretations of
the revising ADF (in a sense accepting all reasonable positions
as valid outcomes of the revision), but basing the amount of
change on the preferred interpretations of the original ADF.
To this end we reformulate the postulates to this setting:

(P1) pr(F ? G) ⊆ ad(G).

(P2) If pr(F )∩ad(G) 6= ∅, then pr(F?G) = pr(F )∩ad(G).

(P3) If ad(G) 6= ∅, then pr(F ? G) 6= ∅.
(P4) If ad(G) = ad(H), then pr(F ? G) = pr(F ? H).

(P5) pr(F ? G) ∩ ad(H) ⊆ pr(F ? fad(ad(G) ∩ ad(H))).

(P6) If pr(F ? G) ∩ ad(H) 6= ∅, then
pr(F ? fad(ad(G) ∩ ad(H))) ⊆ pr(F ? G) ∩ ad(H).

(Acyc) If for 1 ≤ i < n, pr(F ∗ Gi+1) ∩ ad(Gi) 6= ∅ and
pr(F ∗G1)∩ad(Gn) 6= ∅ then pr(F ∗Gn)∩ad(G1) 6= ∅.

As admissible semantics may give pairwise compatible in-
terpretations, we will not restrict ourselves to i-max-faithful
rankings for the representation result. However, we face an-
other challenge, as illustrated in the following example.

Example 5. Consider the ranking f f ≺ others ≺ tu ≈
ut ≺ tt ≺ uu and the ADFs F = {〈a,⊥〉, 〈b,⊥〉},
G = {〈a,>〉, 〈b,>〉}, and H = {〈a,¬a ∨ b〉, 〈b, a ∨ ¬b〉}.
We have pr(F ) = {f f}, ad(G) = {uu,ut, tu, tt}, and
ad(H) = {uu, tt}. It can be seen that � is a faithful ranking
for F . However, the revision operator ? induced by � gives
us F ? G = fpr({ut, tu}) and we further get

• pr(F ? G) ∩ ad(H) = {uu}, but

• pr(F ? fad(ad(G) ∩ ad(H))) = {tt}.
Therefore ? violates P5. The problem is somehow hidden
in the fact that ut and tu are compatible. That is, the set of
interpretations {ut, tu} cannot be realized under preferred
semantics, hence pr(fpr({ut, tu})) = {uu}.

To overcome this issue we introduce the concept of com-
pliance, generalizing similar notions from [Delgrande et al.,
2013; Delgrande and Peppas, 2015; Diller et al., 2015].

Definition 6. A preorder � is σ-τ -compliant if, for every
ADF F ∈ FA, min(τ(F ),�) is realizable under σ.

In general, this condition depends on the concrete capabil-
ities in terms of realizability of σ and τ . Fortunately, we can
capture pr-ad-compliance with conditions on the ranking.

Proposition 3. A preorder � is pr-ad-compliant iff: if
v1, v2 ∈ V are compatible and v1 ≈ v2 then ∃v3 ∈
cl(v1, v2) : v3 ≺ v1, v2.

We will make use of the following properties of the adm-
closure in the following results.

Lemma 1. For each V, V1, V2 ⊆ V and v, v′ ∈ V it holds:

1. cl(V ) = cl(cl(V )) (idempotence)

2. V1 ⊆ V2 ⇒ cl(V1) ⊆ cl(V2) (monotonicity)

3. ∀v′′ ∈ cl(v, v′) : cl(v, v′′) ⊆ cl(v, v′).

Proof. Note that V ⊆ cl(V ) for any V ⊆ V is clear by defi-
nition. (1) cl(V ) ⊆ cl(cl(V )) follows from the initial obser-
vation. Assume there is some v ∈ cl(cl(V )) with v /∈ cl(V ).
The latter means that ∃a ∈ (vt ∪ vf )∃v2 ∈ [v]2 s.t. @v′ ∈ V :
v′ ≤i v2 ∧ v′(a) = v(a). Now for this particular a and v2 it
holds, by v ∈ cl(cl(V )), that ∃w ∈ cl(V ) : w ≤i v2∧w(a) =
v(a). Hence ∃w′ ∈ V : w′ ≤i v2 ∧ w′(a) = w(a). We have
w′(a) = w(a) = v(a), a contradiction.
(2) Let v ∈ cl(V1) and consider some a ∈ vt ∪ vf and v2 ∈
[v]2. There is some v′ ∈ V1 s.t. v′ ≤i v2 and v(a) = v′(a).
As V1 ⊆ V2 by assumption, also v ∈ V2, hence v ∈ cl(V2).
(3) Consider some v′′ ∈ cl(v, v′), i.e. ∀a ∈ v′′t ∪ v′′f∀v2 ∈
[v′′]2(v ≤i v2∧v(a) = v′′(a))∨ (v′ ≤i v2∧v′(a) = v′′(a)).
Assume there is some w ∈ cl(v, v′′) and w /∈ cl(v, v′). The
latter means that ∃a ∈ wt ∪ wf∃w2 ∈ [w]2 s.t. ¬(v ≤i w2 ∧
v(a) = w(a)) ∧ ¬(v′ ≤i w2 ∧ v′(a) = w(a)). Hence, by
w ∈ cl(v, v′′), we get for this particular a and w2 that v′′ ≤i
w2 and v′′(a) = w(a). From a ∈ wt ∪wf and v′′(a) = w(a)
it follows that a ∈ v′′t ∪ v′′f and from v′′ ≤i w2 we get
w2 ∈ [v′′]2. Therefore, from v′′ ∈ cl(v, v′) and ¬(v′ ≤i
w2 ∧ v′(a) = w(a)), we get v ≤i w2 and v(a) = v′′(a) and,
consequently, v(a) = w(a), a contradiction.

We now show the representation result for our hybrid oper-
ators which work on the admissible interpretations of the re-
vising ADF but basing the distance measure on the preferred
interpretations of the original ADF. The first direction follows
similar to Theorem 1 with the help of pr-ad-compliance.
Theorem 4. Let F be an ADF and �F a pr-ad-compliant,
faithful ranking for F . Define operator ? : FA × FA 7→ FA
by F ?G = fpr(min(ad(G),�F )). Then ? satisfies postulates
P1− P6 and Acyc.
Theorem 5. Let ? be a revision operator satisfying P1−P6
and Acyc. Then there is an assignment mapping each ADF
F to a faithful ranking � for F that is pr-ad-compliant and
pr(F ? G) = min(ad(G),�) for every ADF G.

Proof. Given a revision operator ? satisfying P1 − P6 and
Acyc, let F be an arbitrary ADF. We will gradually define the
ranking � and show that it is faithful and pr-ad-compliant
and it indeed simulates ?. First, we define �′ as

v1 �′ v2 ⇔ v1 ∈ pr(F ? fad(cl(v1, v2)))

for each v1, v2 ∈ V . Note that�′ is reflexive, but neither tran-
sitive nor total. This is because there might be interpretations
v1, v2 ∈ V for which pr(F ? fad(cl(v1, v2))) ∩ {v1, v2} = ∅
due to cl(v1, v2) ⊃ {v1, v2}. After showing three properties
of �′ we will extend it first to the transitive �t and then to
the desired ranking �.

for v1, v2 ∈ V s.t. v1 �′ v2, G ∈ FA :

v1 ∈ ad(G) ∧ v2 ∈ pr(F ? G)⇒ v1 ∈ pr(F ? G)
(6)

Let G ∈ FA, v1 ∈ ad(G), v2 ∈ pr(F ? G) with v1 �′ v2.
First, we get v2 ∈ ad(G) from P1. Moreover, from P5 and
P6 we get pr(F ? G) ∩ cl(v1, v2) = pr(F ? fad(ad(G) ∩
cl(v1, v2)). As both v1, v2 ∈ ad(G) we get that cl(v1, v2) ⊆
ad(G) from Lemma 1.2, hence pr(F ? G) ∩ cl(v1, v2) =
pr(F ?fad(cl(v1, v2)). Now as v1 �′ v2 by assumption it must
hold that v1 ∈ pr(F ? fad(v1, v2)), hence v1 ∈ pr(F ? G).



We proceed with

for G ∈ FA : min(ad(G),�′) = pr(F ? G) (7)

(⊆): To the contrary, assume some v1 ∈ min(ad(G),�′)
with v1 /∈ pr(F ? G). From P3 we know pr(F ? G) 6= ∅, so
assume an arbitrary v2 ∈ pr(F ?G). From (6) we follow that
v1 6�′ v2 and, consequently, from v1 ∈ min(ad(G,�′) also
v2 6�′ v1. By the definition of �′ and considering P3 there
must then be some v3 ∈ pr(F ? fad(cl(v1, v2))). From P1 it
follows that v3 ∈ fad(cl(v1, v2)), i.e. v3 ∈ cl(v1, v2). Then
from P5 and P6 we get pr(F ? fad(cl(v1, v2)))∩ cl(v1, v3) =
pr(F?fad(cl(v1, v2)∩cl(v1, v3))). From Lemma 1.3 it follows
that cl(v1, v3) ⊆ cl(v1, v2), hence pr(F ? fad(cl(v1, v2))) ∩
cl(v1, v3) = pr(F ? fad(cl(v1, v3))). Therefore v1 /∈ pr(F ?
fad(cl(v1, v3))) and v3 ∈ pr(F ? fad(cl(v1, v3))), hence
v3 ≺′ v1. Finally, note that cl(v1, v2) ⊆ ad(G), hence
v3 ∈ ad(G) contradicting v1 ∈ min(ad(G,�′). (⊇): Let
v1 ∈ pr(F ? G) and consider an arbitrary v2 ∈ ad(G). Ob-
serving v1 ∈ ad(G) by P1 we get pr(F ? G) ∩ cl(v1, v2) =
pr(F ? fad(ad(G) ∩ cl(v1, v2))) by P5 and P6. Moreover,
cl(v1, v2) ⊆ ad(G) by Lemma 1.2, hence pr(F ? G) ∩
cl(v1, v2) = pr(F ? fad(cl(v1, v2))) and, consequently, v1 ∈
pr(F ? fad(cl(v1, v2))), meaning v1 �′ v2. Therefore, recall-
ing that v2 was chosen arbitrarily, v1 ∈ min(ad(G),�′).

The following can be shown similarly as (1).

for v1, . . . , vn ∈ V : v1 �′ · · · �′ vn �′ v1 ⇒ v1 �′ vn (8)

Now we define �t to be the transitive closure of �′. As a
consequence of (8) we infer

for v1, v2 ∈ V : v1 ≺′ v2 ⇒ v1 ≺t v2 (9)

Defining, for any set of interpretations V , max(V,�t) as
the set {v1 ∈ V | @v2 ∈ V : v1 ≺t v2} we get, by (8) and the
fact that V is finite, that

for V ⊆ V : V 6= ∅ ⇒ max(V,�t) 6= ∅ (10)

We are now ready to define �. To this end consider the
sequence of sets of interpretations V0, V1, . . . defined as

V0 = max(V,�t),
V1 = max

(
V \ V0,�t

)
,

Vi = max(V \
⋃

0≤j<i

Vj ,�t) for i > 1.

Since V is finite we conclude from (10) that the sequence will
reach the empty set of interpretations at some point and each
of the following elements will also be empty. The sequence
V1, . . . , Vm of non-empty sets of interpretation then forms a
partition of V . Based on this we define � as

v1 � v2 ⇔ ∃Vi, Vj s.t. v1 ∈ Vi, v2 ∈ Vj , i ≥ j

for each v1, v2 ∈ V . It is easy to see that � is total, reflexive,
and transitive. Its minimal elements coincide with �′:

for G ∈ FA : min(ad(G),�) = min(ad(G),�′) (11)

Let Vk be the last set in the sequence V0, . . . , Vm such that
Vk ∩ ad(G) 6= ∅. By definition of �, min(ad(G),�) =
Vk ∩ ad(G). Hence we have to show that Vk ∩ ad(G) =

min(ad(G),�′). (⊆): Assume there is some v ∈ Vk ∩ ad(G)
such that v /∈ min(ad(G),�′). From the latter it follows
that ∃v0 ∈ ad(G) : v0 ≺′ v. From (9) we get v0 ≺t
v, hence v0 /∈ max(Vk,�t). As Vk is the last set with
Vk ∩ ad(G) 6= ∅ it must hold that v0 ∈ Vj with j < k,
i.e. v0 ∈ max(V \

⋃
0≤i<j Vi,�t). Therefore, recalling

v0 ≺t v, v /∈ V \
⋃

0≤i<j Vi, contradicting v ∈ Vk and j < k.
(⊇): Assume there is some v0 ∈ min(ad(G),�′) such that
v0 /∈ Vk ∩ ad(G). That means v0 ∈ ad(G) and v0 /∈ Vk and
further that v0 ∈ Vj for j < k. Now let v1 ∈ Vk ∩ ad(G).
As j < k hence v1 ∈ V \

⋃
0≤i<j Vi. Since v0 is maximal

wrt. �t in this set, v0 6≺t v1 and further by (9) v0 6≺′ v1. It
holds that v0 ∈ pr(F ? fad(cl(v0, v1))) and therefore v0 �′ v1
though. We show this by assuming, towards a contradiction,
that v0 /∈ pr(F ? fad(cl(v0, v1))). Hence v0 6�′ v1. As
v0 ∈ min(ad(G),�′) by assumption, then also v1 6�′ v0.
By P3 there has to be some v2 ∈ pr(F ? fad(cl(v0, v1))).
As also v2 ∈ cl(v0, v2) we get by P5 and P6 that v2 ∈
pr(F ? fad(cl(v0, v1)∩cl(v0, v2))). From Lemma 1.2 we infer
that cl(v0, v2) ⊆ cl(v0, v1), hence v2 ∈ pr(F ? fad(v0, v2)),
meaning that v2 �′ v0. Moreover, v0 /∈ pr(F ? fad(v0, v2)),
hence even v2 ≺′ v0. As v2 ∈ ad(G) from v0, v1 ∈ ad(G)
and cl(v0, v1) ⊆ cl(ad(G)) = ad(G), we get a contradic-
tion to v0 ∈ min(ad(G),�′). Now consider an arbitrary
v3 ∈ V \

⋃
0≤i<j Vi such that v1 �t v3. From v0 �′ v1 �t v3

we get v0 �t v3. But since v0 ∈ max(V \
⋃

0≤i<j Vi,�t)
it must also hold that v3 �t v0, meaning, together with
v0 �′ v1, that v3 �t v1. As v3 was chosen arbitrarily we
have that v1 ∈ max(V \

⋃
0≤i<j Vi,�t), i.e. v1 ∈ Vj , a con-

tradiction to v1 ∈ Vk and j < k.
The fact that� indeed simulates ? is now obtained from (7)

and (11): We get that pr(F ? G) = min(ad(G),�) for each
ADF G. This also makes � pr-ad-compliant. To show that �
is faithful for F assume pr(F ) 6= ∅ (otherwise faithfulness is
trivial). By P2 it holds that pr(F ? fad(V)) = pr(F ), hence
pr(F ) = min(V,�), meaning that (i) v1 ≈ v2 for v1, v2 ∈
pr(F ) and (ii) v1 ≺ v2 for v1 ∈ pr(F ) and v2 /∈ pr(F ).

With the insights from Theorems 4 and 5 we obtain con-
crete operators from faithful and pr-ad-compliant rankings.
For instance, a valid operator is induced from the ranking�F
where pr(F ) are the minimal elements and all other interpre-
tations form a ≺F -chain. The three-valued version of Dalal’s
operator (cf. Definition 5) is not directly applicable here, as
�pr
F does not yield a pr-ad-compliant ranking for every ADF:

Example 6. Consider the ADF F = {〈a, a ∧ b〉, 〈b, a ∧ b〉}
having pr(F ) = {tt, f f}. It yields the ranking tt ≈pr

F f f ≺pr
F

tu ≈pr
F ut ≈pr

F uf ≈pr
F fu ≺pr

F tf ≈pr
F ft ≈pr

F uu.
Now consider the compatible interpretations tu and uf and
observe that all v ∈ cl(tu,uf) = {uu, tu,ut, tf} have
v 6≺pr

F tu,uf . Therefore, according to Proposition 3, �pr
F

is not pr-ad-compliant. In practice, this means that F ∗Dpr G,
where ad(G) = {uu, tu,uf , tf}, would yield fpr({tu,uf});
but as {tu,uf} is not realizable under pr we do net get the
preferred interpretations prescribed by the postulates.

A refinement of the distance measure in order to result in
pr-ad-compliant rankings is subject to future work.



4 Discussion
Summary. We have characterized operators for the revision
of ADFs under preferred semantics. Using recent insights on
realizability we showed that rankings giving rise to concrete
operators underlie milder conditions than in classical AGM
revision (i-max-faithful versus faithful). We have exemplified
these results by a three-valued version of Dalal’s operator.
While admissible semantics yield a single rational operator,
we have proposed an alternative family of revision operators
combining admissible and preferred semantics. Their repre-
sentation by rankings is based on pr-ad-compliance.
Other semantics. First consider complete semantics and
recall that there might be ADFs F and G such that their
common complete interpretations might not be realizable un-
der complete semantics. Therefore, when revising F by G,
it is impossible to satisfy A2co since it would require the
resulting ADF to have exactly co(F ) ∩ co(G) as complete
interpretations. The same applies to grounded semantics.
Therefore it holds that for σ ∈ {co, gr} there is no operator
∗ : FA ×FA 7→ FA satisfying A1σ −A6σ .

For supported models, on the other hand, we observe that
they have the same expressiveness as propositional logic,
therefore results from classical AGM revision carry over.

Finally, stable models have similar sufficient conditions for
realizability as preferred semantics, namely that a set of inter-
pretations V is realizable if (1) V ⊆ st(F ) for some F ∈ FA,
(2) V = {v1, v2} for v1, v2 ∈ V2 with vt1 and vt2 being ⊆-
incomparable, or (3) V = {v} with v ∈ V2. Therefore we
expect to get similar representation results as for preferred se-
mantics, just with slightly different conditions on the ranking.
Future work. While in this work we only dealt with the
semantic outcome of operators, we also plan to study syn-
tactic aspects of revision. Moreover, we want to study the
computational complexity of Dalal’s operator under preferred
semantics, given that the complexity of reasoning tasks in
ADFs is studied comprehensively [Strass and Wallner, 2015;
Gaggl et al., 2015]. Finally, we want to see how gained in-
sights carry over to the revision of AFs: operators combining
preferred and admissible semantics as well as revision under
three-valued semantics [Caminada and Gabbay, 2009].
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