
COMPLEXITY THEORY

Lecture 4: Undecidability and Recursion

Markus Krötzsch
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Undecidability so far

We have seen several undecidable problems for TMs:

• The Halting Problem: recognise TM-word pairs where the TM halts

• The Non-Halting Problem: recognise TM-word pairs where the TM does not halt

• The ε-Halting Problem: recognise TMs that halt on the empty input

Many further TM-related problems are undecidable . . .

. . . but we can use a shortcut to proving many of them:

Theorem 4.1 (Rice’s Theorem, informal): Any interesting property related to the
language recognised by a given TM is undecidable.
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Rice’s Theorem

We can make this formal as follows:

Definition 4.2: Let P be a set of languages. A language L has the property P if
L ∈ P. Property P is a non-trivial property of recognisable languages if there are
TM-recognisable languages that have it and others that do not have it.

Theorem 4.1 (Rice’s Theorem): If P is a non-trivial property of recognisable lan-
guages, then the following problem is undecidable:

P-ness = {⟨M⟩ | L(M) ∈ P}
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Proof of Rice’s Theorem
Theorem 4.1 (Rice’s Theorem): If P is a non-trivial property of recognisable lan-
guages, then the following problem is undecidable:

P-ness = {⟨M⟩ | L(M) ∈ P}

Proof: We reduce ε-Halting to P-ness.
• Assume w.l.o.g. that ∅ < P (otherwise do the proof for P)
• LetML be some TM that recognises a language L ∈ P
• Given any TMM, compute a TMM∗ that behaves as follows:

On input w ∈ Σ∗: (1) SimulateM on input ε

(2) IfM halts, simulateML on w

• Then L(M∗) = L ∈ P ifM halts on ε, and
L(M∗) = ∅ < P ifM does not halt on ε

For the required Turing reduction, we construct a TM that:
(Step 1) checks if the input is a TM encoding ⟨M⟩ and rejects otherwise,
(Step 2) returns the result of the check ⟨M∗⟩ ∈ P-ness. This would decide ε-Halting. □
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Using Rice’s Theorem

Here are some simple results that Rice gives us:

Corollary 4.3: Given an arbitrary TM M, it is undecidable whether the language
recognised by M has any of the following properties:

• emptiness

• finiteness

• decidability

• regularity

• context-freedom

• contains any given word w (word problem for TMs)

Attention: There are of course many non-trivial properties of TMs that can be decided,
and which do not relate to their language:

Example 4.4: It is decidable if a TM has at least three states.
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Semi-decidability and Co-semi-decidability

We can distinguish the following two cases:

(1) L is Turing-recognisable: L is semi-decidable

(2) L is Turing-recognisable: L is co-semi-decidable

We have seen examples for both:

Theorem 4.5: The Halting Problem is semi-decidable.

Proof: Use the universal TM to simulate an input TM, and accept if it halts. □

Corollary 4.6: The Non-Halting Problem is co-semi-decidable.
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Semi-decidable + Co-semi-decidable = Decidable

An easy but important observation:

Theorem 4.7: If L is semi-decidable and co-semi-decidable, then L is decidable.

Proof: On input w, simulate, in parallel, a recogniser for L and a recogniser for L. At
least one of them eventually must halt, so we can decide if w ∈ L. □

We thus obtain an example of a problem that is not Turing-recognisable.

Corollary 4.8: The Non-Halting Problem is not Turing-recognisable.
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Turing reductions and semi-decidability

Observation:

• If Q is decidable and P ≤T Q, then P is decidable (Theorem 3.17)

• But: if Q is semi-decidable and P ≤T Q, then P may or may not be semi-decidable

Reason: An oracle for Halting is as good as an oracle for Non-Halting, since we are free
to complement the answer in an oracle machine.
This is a general insight: complementing oracles has no effect

To preserve (co-)semi-decidability, one needs a more restricted form of reduction:

Definition 4.9: A language P is many-one reducible to a language Q, written
P ≤m Q if there exists a total computable function f : Σ∗ → Σ∗ such that, for all
w ∈ Σ∗:

w ∈ P if and only if f (w) ∈ Q.

This is sometimes called a mapping-reduction or an m-reduction.
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Properties of Many-One-Reductions
Many-one reductions are special kinds of Turing reductions:

Theorem 4.10: If P ≤m Q then P ≤T Q.

Proof: We obtain an OTM with oracle Q that recognises P as follows:
• On input w, compute f (w)
• Call the oracle and return its result (yes = accept; no = reject) □

An easy consequence of Theorem 3.17 therefore is:

Corollary 4.11: If P ≤m Q and Q is decidable, then P is decidable.

However, now we also have the following:

Theorem 4.12: If P ≤m Q and Q is semi-decidable, then P is semi-decidable.

Proof: Given a TM that recognises Q, we obtain a TM that recognises P as follows:
• On input w, compute f (w)
• Simulate the TM for Q and return the result (if any) □
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Example: Many-one Reduction
Some of our previous Turing-reductions can easily be described as many-one, e.g.,
Halting can be many-one reduced to ε-Halting. Here is another example:

Definition 4.13: Two TMs M and N are equivalent if L(M) = L(N).

Theorem 4.14: Equivalence of Turing machines is undecidable.

(Note that we could also get this from Rice’s Theorem, but we want to try out our new machinery.)

Proof: We define f such that w ∈ ε-Halting iff f (w) ∈ Equivalence.

LetMa be a TM that accepts all inputs.

For a TMM, we define the following TMM∗:
• SimulateM on the empty input.
• IfM halts, accept.

ThenM∗ is equivalent toMa iffM halts on the empty input. We define f :

f (w) =

 ⟨M∗,Ma⟩ if w = ⟨M⟩
ε (an invalid input) if w is no encoded TM □
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Equivalence is Hard
We can show a somewhat stronger result:

Theorem 4.15: Equivalence of Turing machines is neither semi-decidable nor co-
semi-decidable.

Proof: We have already shown ε-Halting ≤m Equivalence. Since we know that ε-Halting
is not co-semi-decidable (similar to Halting), we conclude that Equivalence is neither.

However, we can also show that ε-Halting ≤m Equivalence.
• Note that the TMM∗ defined on the previous slide either accepts all inputs (ifM

halts on ε) or none (if it doesn’t)
• Equivalence toMa corresponds to ε-Halting
• On the other hand, equivalence to a TMM∅, which rejects all inputs, corresponds

to ε-non-Halting
We can therefore use the reduction f :

f (w) =

 ⟨M∗,M∅⟩ if w = ⟨M⟩
⟨M∅,M∅⟩ (equivalent TMs) if w is no encoded TM (since then w ∈ ε-Halting)

□
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Recursion
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A Paradox

A Paradox in the Study of Life:

(1) Living things are machines.

(2) Living things can reproduce.

(3) Machines cannot reproduce.

Rationale:

(1) Viewpoint of modern biology.

(2) Evident.

(3) If a machine A produces a machine B, then A must be more complex than B. For
example, a car-producing factory is more complex than the cars it produces, as it
contains the design of the cars and, in addition, the design of all manufacturing
robots, among others. Since no machine is more complex than itself, a machine
cannot reproduce itself.
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Resolving the Paradox

A Paradox in the Study of Life:

(1) Living things are machines.

(2) Living things can reproduce.

(3) Machines cannot reproduce.

Question: How to resolve this paradox?

Answer: Assertion (3) is wrong.

In particular, the underlying argument of “more information” and “greater complexity”
needed by the producing machine is flawed: there are TMs that reproduce themselves
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Quines

Reproduction of TMs is closely related to the task of creating a program that prints its
own source code:

Definition 4.16: A quine is a program that, when started without any input, will
print out its own source code, and then stop.

Can Quines be created? How?

Example 4.17 (A quine in English): Print this sentence.

However, we cannot turn this into a program, since “this sentence” does often not
correspond to available programming constructs.

Example 4.18 (Another quine in English): Print the following sentence twice,
the second time in quotes. "Print the following sentence twice, the second time in
quotes."
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Some Real Quines

Example 4.19 (A classic C quine): main()char *c="main()char
*c=%c%s%c;printf(c,34,c,34);";printf(c,34,c,34);

Example 4.20 (The shortest C quine, by Szymon Rusinkiewicz):

Example 4.21 (A Python quine by Frank Stajano):
l=’l=%s;print l%%‘l‘’;print l%‘l‘

Note: A variation are ouroboros quines that print out another program that prints out the original
again. More steps are possible. See, e.g., https://github.com/mame/quine-relay for one
with 100 steps.

Other variations exist (see Wikipedia).
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Towards a TM Quine

We define a TM SELF that ignores its input and prints out a description of itself.
(A TM quine, where “source code” is interpreted as “encoding of the TM”)

The following small result is helpful:

Lemma 4.22: There is a computable function q : Σ∗ → Σ∗ such that, for each
w ∈ Σ∗, the word q(w) is (the encoding of) a TM that prints w and halts.

Proof: For any word w, let Pw be a TM that replaces the tape contents with the word w
(clearly, this can easily be found for any w).

Now q is simply computed by a TM that, given w as input, constructs Pw and then
computes and outputs ⟨Pw⟩. □

Intuition: If we were using another programming language, the TM Pw might be,
e.g., print(w), and the function we seek would simply turn input string w into
output string "print(w)".
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Defining the TM SELF
Like other quines, SELF consists of two parts:

A Compute the “source code” ⟨B⟩ of a suitable program B

B Use ⟨B⟩ to print out:
(1) source code ⟨A⟩ that computes ⟨B⟩ and (2) the source code ⟨B⟩ itself

We know how to implement part A: use the TM P⟨B⟩
(however, to actually do this, we need to know B first)

B in turn can work as follows:

Given some input string ⟨M⟩:

• compute q(⟨M⟩)
• concatenate the TMs given by q(⟨M⟩) and ⟨M⟩

(take a disjoint union of states where any halting state of q(⟨M⟩) gets a transition to the starting state of ⟨M⟩)

• output the encoding of the resulting machine

Then part B does not depend on A, so we can really define A as P⟨B⟩
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Summary: SELF TM

So how did we construct our TM quine now?

Step 1: We define some TM B that behaves as follows:

Given some input string ⟨M⟩:

• compute q(⟨M⟩)
• concatenate the TMs given by q(⟨M⟩) and ⟨M⟩

(take a disjoint union of states where any halting state of q(⟨M⟩) gets a transition to the starting state of ⟨M⟩)

• output the encoding of the resulting machine

Step 2: We define SELF to be the TM constructed by B on input ⟨B⟩

Exercise: Use this recipe to create a quine in your favourite programming lan-
guage (or just use Python). What is the equivalent of “TM concatenation” here?
Also note that the function q is often more complicated than one might think, due
to character escaping.
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The Recursion Theorem

Going further, we can allow any TM to access its own description during the
computation:

Theorem 4.23 (Recursion Theorem): Let t : Σ∗×Σ∗ → Σ∗ be a function computed
by some TM T (assuming a suitable encoding of pairs of words over Σ∗). Then
there is a TM R that computes a function r : Σ∗ → Σ∗ such that

r(w) = t(⟨R⟩, w)

for every w ∈ Σ∗.

Intuition: To make a TM that can use its own description, we first devise a TM T (to
compute t) that receives the description of a machine as extra input. The theorem yields
a TM R that operates like T does but with R’s description filled in automatically.
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The Recursion Theorem: Proof

Theorem 4.23 (Recursion Theorem): Let t : Σ∗×Σ∗ → Σ∗ be a function computed
by some TM T (assuming a suitable encoding of pairs of words over Σ∗). Then
there is a TM R that computes a function r : Σ∗ → Σ∗ such that r(w) = t(⟨R⟩, w) for
every w ∈ Σ∗.

Proof: The proof is similar to the construction of SELF, using a TM with three parts A, B
and T:

• A: print ⟨BT⟩ (like P⟨BT⟩ but without deleting the input)
we use BT to denote the concatenation of the TM parts B and T in one TM

• B: on an input of form w⟨M⟩, replace ⟨M⟩ by an encoding of the concatenation of
q′(⟨M⟩) and ⟨M⟩
where q′(v) is like q but returns a TM that adds v at the end of the tape

• T: run T on an input of form w⟨N⟩

We assume here that our TM encoding can be written next to the input w without risk of
confusion. Then R is the TM obtained as the concatenation of A, B, and T.
We can get an encoding of this TM by running B on input ε⟨BT⟩. □
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Using the Recursion Theorem

By the Recursion Theorem, we can now use instructions like “obtain own description
⟨M⟩” in our informal descriptions of TMs.

Example 4.24: We can describe a TM quine in the style of our previous SELF as
follows:

On any input:

• Obtain own description ⟨M⟩

• Print ⟨M⟩

We can construct such a TM by applying the Recursion Theorem to the TM T
described as follows:

On input ⟨w,M⟩, print ⟨M⟩

The Recursion Theorem turns this into a TM R that is a quine.
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Halting is Undecidable: Proof by Introspection

We can also use the Recursion Theorem for alternative proofs:

Theorem 3.11 The Halting Problem PHalt is undecidable.

Proof: By contradiction: Suppose there is a decider H for the Halting Problem

We construct a TMM that, on input w, acts as follows:

(1) Obtain own description ⟨M⟩

(2) Simulate H on input ⟨M⟩##⟨w⟩, that is, check ifM halts on w

(3) If yes, enter an infinite loop;
if no, halt and accept

ThenM halts on w if and only if it doesn’t – contradiction. □
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Minimal TMs

Definition 4.25: A TM M is called minimal if there is no TM equivalent to M that
has a shorter description. The problem of deciding if a TM is minimal is:

MINTM = {⟨M⟩ | M is a minimal TM}

Theorem 4.26: MINTM is not Turing-recognisable.

Proof: Assume there is some TM E enumerating MINTM.

We define a TM C that processes an input w as follows:

(1) Obtain own description ⟨C⟩

(2) Simulate E until some TM D is printed such that ⟨D⟩ is longer than ⟨C⟩

(3) Simulate D on w

Then C is equivalent to D, but it has a shorter description, contradicting the assumption
that D is minimal. □
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Summary and Outlook

Most properties related to the computation of TMs are undecidable

Many-one reductions establish a closer relationship between two problems than Turing
reductions

There are non-semi-decidable problems

Turing machines can work with their own description

What’s next?

• Defining complexity classes

• Time complexity

• Non-deterministic time
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