

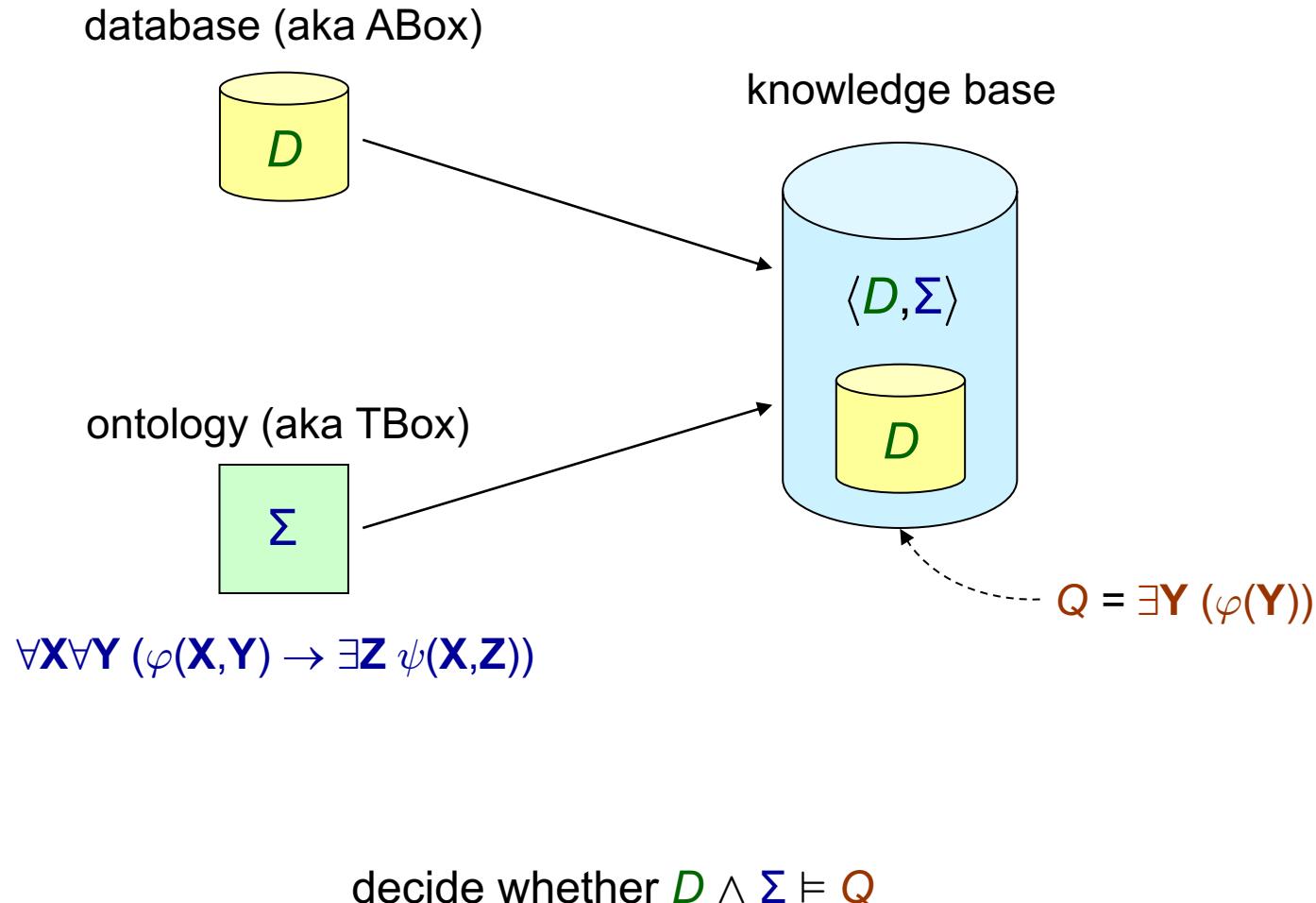
Sebastian Rudolph

International Center for Computational Logic
TU Dresden

Existential Rules – Lecture 8

Adapted from slides by Andreas Pieris and Michaël Thomazo
Winter Term 2025/26

BCQ-Answering: Our Main Decision Problem

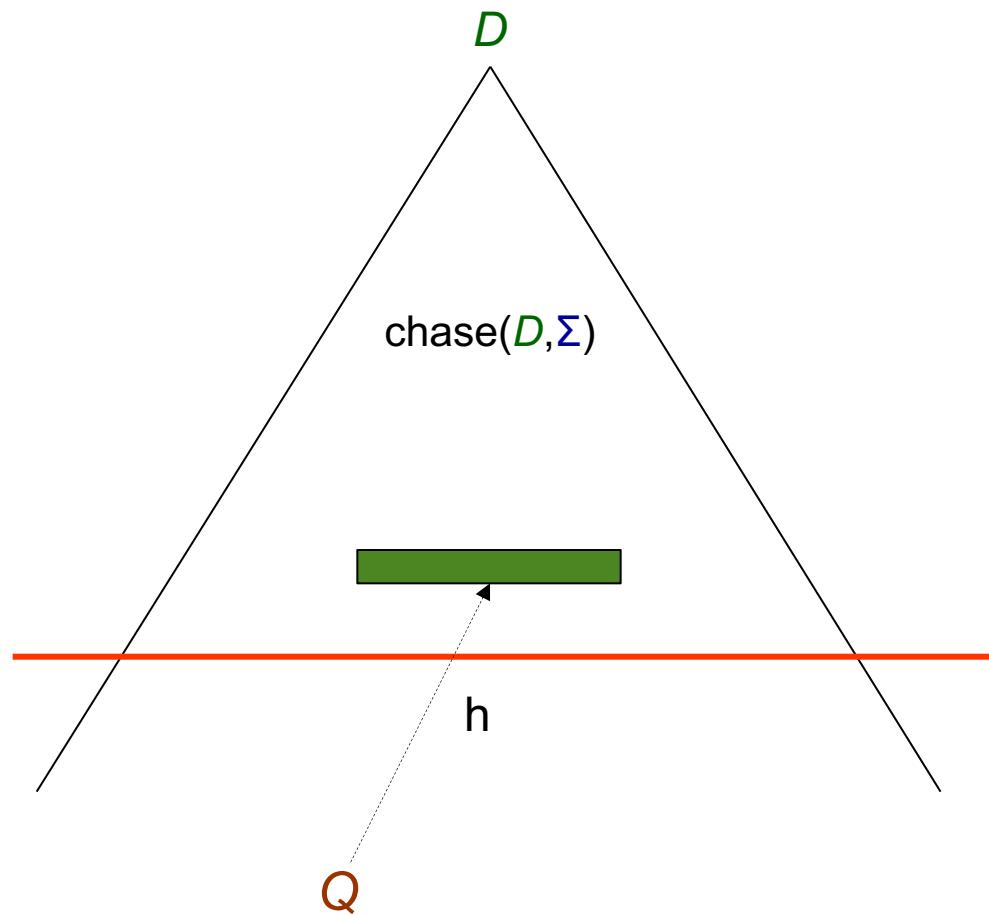


Sum Up

Data Complexity		
FULL	PTIME-c	Naïve algorithm
		Reduction from Monotone Circuit Value problem
ACYCLIC		
LINEAR	in LOGSPACE	Second part of our course

Combined Complexity		
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-c	Small witness property
		Reduction from Tiling problem
LINEAR	PSPACE-c	Level-by-level non-deterministic algorithm
		Simulation of a deterministic polynomial space TM

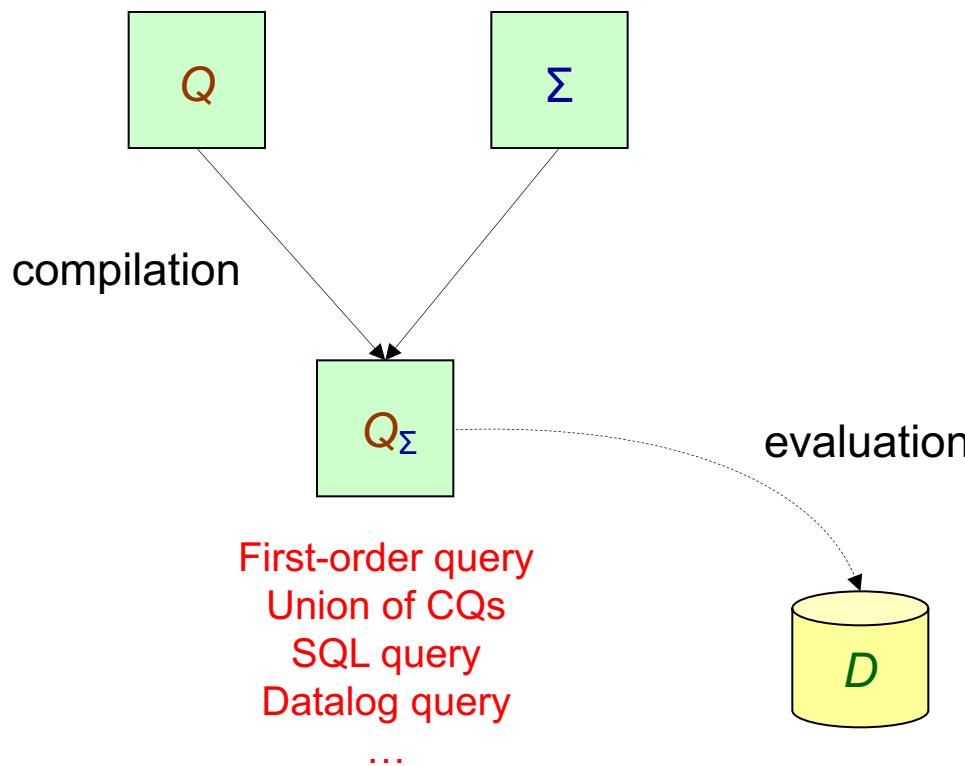
Forward Chaining Techniques



Useful techniques for establishing optimal upper bounds

...but **not practical** - we need to store instances of very large size

Query Rewriting



$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow D \models Q_\Sigma$$

evaluated and optimized by
exploiting existing technology

Query Rewriting: Formal Definition

Consider a class of existential rules \mathcal{L} , and a query language \mathcal{Q} .

BCQ-Answering under \mathcal{L} is **\mathcal{Q} -rewritable** if, for every $\Sigma \in \mathcal{L}$ and BCQ \mathcal{Q} ,

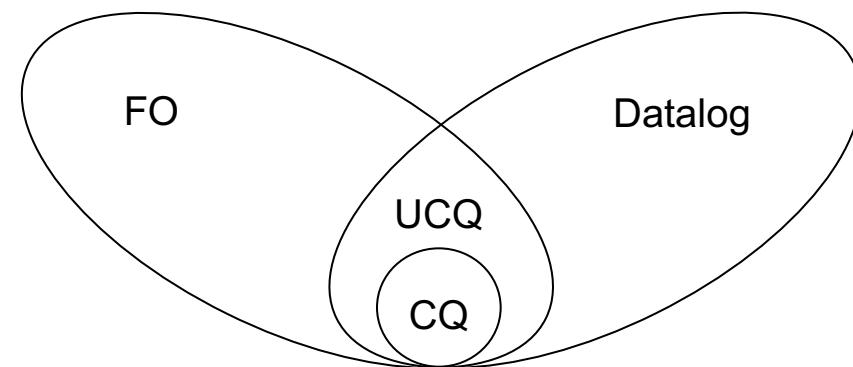
we can construct a query $\mathcal{Q}_\Sigma \in \mathcal{Q}$ such that,

for every database D , $D \wedge \Sigma \models \mathcal{Q}$ iff $D \models \mathcal{Q}_\Sigma$

NOTE: The construction of \mathcal{Q}_Σ is **database-independent** – the pure approach to query rewriting

Target Query Language

we target the weakest query language



	CQ	UCQ	FO	Datalog
FULL	✗	✗	✗	✓
ACYCLIC	✗	✓	✓	✓
LINEAR	✗	✓	✓	✓

UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following **two steps**:
 1. Rewriting
 2. Minimization
- The standard algorithm is designed for **normalized existential rules**, where only one atom appears in the head

Normalization Procedure

$$\forall X \forall Y (\varphi(X, Y) \rightarrow \exists Z (P_1(X, Z) \wedge \dots \wedge P_n(X, Z)))$$

$$\forall X \forall Y (\varphi(X, Y) \rightarrow \exists Z \text{ Auxiliary}(X, Z))$$

$$\forall X \forall Z (\text{Auxiliary}(X, Z) \rightarrow P_1(X, Z))$$

$$\forall X \forall Z (\text{Auxiliary}(X, Z) \rightarrow P_2(X, Z))$$

...

$$\forall X \forall Z (\text{Auxiliary}(X, Z) \rightarrow P_n(X, Z))$$

NOTE 1: Acyclicity and linearity are preserved

NOTE 2: We obtain an equivalent set w.r.t. query answering (not logically equivalent)

UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following **two steps**:
 1. Rewriting
 2. Minimization
- The standard algorithm is designed for **normalized existential rules**, where only one atom appears in the head

Rewriting Step

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X))\}$$

$$Q = \exists A \exists B hasCollaborator(A, db, B)$$

$$g = \{X \rightarrow B, Y \rightarrow db, Z \rightarrow A\}$$

$$hasCollaborator(A, db, B)$$

Thus, we can simulate a “backward chase step” by a resolution step

$$Q_\Sigma = \exists A \exists B hasCollaborator(A, db, B)$$

∨

$$\exists B (project(B) \wedge inArea(B, db))$$

Unsound Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X))\}$$

$$Q = \exists B hasCollaborator(c, db, B)$$

$$g = \{X \rightarrow B, Y \rightarrow db, Z \rightarrow c\}$$

$$hasCollaborator(c, db, B)$$

After applying the rewriting step we obtain the following UCQ

$$Q_\Sigma = \exists B hasCollaborator(c, db, B)$$

\vee

$$\exists B (project(B) \wedge inArea(B, db))$$

Unsound Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X))\}$$

$$Q = \exists B hasCollaborator(c, db, B)$$

$$Q_\Sigma = \exists B hasCollaborator(c, db, B)$$

∨

$$\exists B (project(B) \wedge inArea(B, db))$$

- Consider the database $D = \{project(a), inArea(a, db)\}$
- Clearly, $D \models Q_\Sigma$
- However, $D \wedge \Sigma$ does not entail Q since there is no way to obtain an atom of the form $hasCollaborator(c, db, _)$ during the chase

Unsound Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X))\}$$

$$Q = \exists B hasCollaborator(c, db, B)$$

$$Q_\Sigma = \exists B hasCollaborator(c, db, B)$$

∨

$$\exists B (project(B) \wedge inArea(B, db))$$

the information about the constant c in the original query is lost after the application of the rewriting step since c is unified with an \exists -variable

Unsound Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X))\}$$

$$Q = \exists B hasCollaborator(B, db, B)$$

$$g = \{X \rightarrow B, Y \rightarrow db, Z \rightarrow B\}$$

$$hasCollaborator(B, db, B)$$

After applying the rewriting step we obtain the following UCQ

$$Q_\Sigma = \exists B hasCollaborator(B, db, B)$$

∨

$$\exists B (project(B) \wedge inArea(B, db))$$

Unsound Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X))\}$$

$$Q = \exists B hasCollaborator(B, db, B)$$

$$Q_\Sigma = \exists B hasCollaborator(c, db, B)$$

∨

$$\exists B (project(B) \wedge inArea(B, db))$$

- Consider the database $D = \{project(a), inArea(a, db)\}$
- Clearly, $D \models Q_\Sigma$
- However, $D \wedge \Sigma$ does not entail Q since there is no way to obtain an atom of the form $hasCollaborator(t, db, t)$ during the chase

Unsound Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X))\}$$
$$Q = \exists B hasCollaborator(B, db, B)$$
$$Q_\Sigma = \exists B hasCollaborator(c, db, B)$$
$$\vee$$
$$\exists B (project(B) \wedge inArea(B, db))$$

the fact that B in the original query participates in a join is lost after the application of the rewriting step since B is unified with an \exists -variable

Applicability Condition

Consider a BCQ Q , an atom α in Q , and a (normalized) rule σ .

We say that σ is applicable to α if the following conditions hold:

1. $\text{head}(\sigma)$ and α unify via $h : \text{terms}(\text{head}(\sigma)) \rightarrow \text{terms}(\alpha)$
2. For every variable X in $\text{head}(\sigma)$, if $h(X)$ is a constant, then X is a \forall -variable
3. For every variable X in $\text{head}(\sigma)$, if $h(X) = h(Y)$, where Y is a shared variable of α , then X is a \forall -variable
4. If X is an \exists -variable of $\text{head}(\sigma)$, and Y is a variable in $\text{head}(\sigma)$ such that $X \neq Y$, then $h(X) \neq h(Y)$

...but, although this is crucial for soundness, it may destroy completeness

Incomplete Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X)),$$
$$\forall X \forall Y \forall Z (hasCollaborator(X, Y, Z) \rightarrow collaborator(X))\}$$

$$Q = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$$

$$Q_\Sigma = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$$

∨

$$\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A, B, C) \wedge hasCollaborator(A, E, F))$$

- Consider the database $D = \{project(a), inArea(a, db)\}$
- Clearly, $\text{chase}(D, \Sigma) = D \cup \{hasCollaborator(z, db, a), collaborator(z)\} \models Q_\Sigma$

However, D does not entail Q_Σ

Incomplete Rewritings

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X)),$$
$$\forall X \forall Y \forall Z (hasCollaborator(X, Y, Z) \rightarrow collaborator(X))\}$$
$$Q = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$$
$$Q_\Sigma = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$$
$$\vee$$
$$\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A, B, C) \wedge hasCollaborator(A, E, F))$$
$$\vee$$
$$\exists B \exists C (project(C) \wedge inArea(C, B))$$

...but, we cannot obtain the last query due to the applicability condition

Minimization Step

$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X)),$
 $\forall X \forall Y \forall Z (hasCollaborator(X, Y, Z) \rightarrow collaborator(X))\}$

$Q = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$

$Q_\Sigma = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$

\vee

$\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A, B, C) \wedge hasCollaborator(A, E, F))$

$hasCollaborator(A, B, C)$

Minimization Step

$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X)),$
 $\forall X \forall Y \forall Z (hasCollaborator(X, Y, Z) \rightarrow collaborator(X))\}$

$Q = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$

$Q_\Sigma = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$

\vee

$\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A, B, C) \wedge hasCollaborator(A, E, F))$

\vee

$\exists A \exists B \exists C (hasCollaborator(A, B, C))$ - by minimization

Minimization Step

$$\Sigma = \{\forall X \forall Y (project(X) \wedge inArea(X, Y) \rightarrow \exists Z hasCollaborator(Z, Y, X)),$$
$$\forall X \forall Y \forall Z (hasCollaborator(X, Y, Z) \rightarrow collaborator(X))\}$$
$$Q = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$$
$$Q_\Sigma = \exists A \exists B \exists C (hasCollaborator(A, B, C) \wedge collaborator(A))$$
$$\vee$$
$$\exists A \exists B \exists C \exists E \exists F (hasCollaborator(A, B, C) \wedge hasCollaborator(A, E, F))$$
$$\vee$$
$$\exists A \exists B \exists C (hasCollaborator(A, B, C)) \text{ - by minimization}$$
$$\vee$$
$$\exists B \exists C (project(C) \wedge inArea(C, B)) \text{ - by rewriting}$$

UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following **two steps**:
 1. Rewriting
 2. Minimization
- The standard algorithm is designed for **normalized existential rules**, where only one atom appears in the head

The Rewriting Algorithm

```
 $Q_\Sigma := Q;$ 
repeat
   $Q_{aux} := Q_\Sigma;$ 
  foreach disjunct  $q$  of  $Q_{aux}$  do
    //Rewriting Step
    foreach atom  $\alpha$  in  $q$  do
      foreach rule  $\sigma$  in  $\Sigma$  do
        if  $\sigma$  is applicable to  $\alpha$  then
           $q_{rew} := \text{rewrite}(q, \alpha, \sigma);$  // resolve  $\alpha$  using  $\sigma$ 
          if  $q_{rew}$  does not appear in  $Q_\Sigma$  (modulo variable renaming) then
             $Q_\Sigma := Q_\Sigma \vee q_{rew};$ 
    //Minimization Step
    foreach pair of atoms  $\alpha, \beta$  in  $q$  that unify do
       $q_{min} := \text{minimize}(q, \alpha, \beta);$  // apply most general unifier of  $\alpha$  and  $\beta$  on  $q$ 
      if  $q_{min}$  does not appear in  $Q_\Sigma$  (modulo variable renaming) then
         $Q_\Sigma := Q_\Sigma \vee q_{min};$ 
until  $Q_{aux} = Q_\Sigma;$ 
return  $Q_\Sigma;$ 
```


Termination

Theorem: The rewriting algorithm terminates under **ACYCLIC** and **LINEAR**

Proof (**ACYCLIC**):

- Key observation: after arranging the disjuncts of the rewriting in a tree T , the branching of T is finite, and the depth of T is at most the number of predicates occurring in the rule set
- Therefore, only finitely many partial rewritings can be constructed - in general, exponentially many

Termination

Theorem: The rewriting algorithm terminates under **ACYCLIC** and **LINEAR**

Proof (**LINEAR**):

- Key observation: the size of each partial rewriting is at most the size of the given CQ Q
- Thus, each partial rewriting can be transformed into an equivalent query that contains at most $|Q| \cdot \text{maxarity}$ variables
- The number of queries that can be constructed using a finite number of predicates and a finite number of variables is finite
- Therefore, only finitely many partial rewritings can be constructed - in general, exponentially many

Complexity of BCQ-Answering

Data Complexity		
FULL	PTIME-c	Naïve algorithm
		Reduction from Monotone Circuit Value problem
ACYCLIC		
LINEAR	in LOGSPACE	UCQ-rewriting

Combined Complexity		
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-c	Small witness property
		Reduction from Tiling problem
LINEAR	PSPACE-c	Level-by-level non-deterministic algorithm
		Simulation of a deterministic polynomial space TM

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? **NO!!!**

$$\Sigma = \{\forall X (R_k(X) \rightarrow P_k(X))\}_{k \in \{1, \dots, n\}} \quad Q = \exists X (P_1(X) \wedge \dots \wedge P_n(X))$$

$$\begin{array}{ccc} \exists X (P_1(X) \wedge \dots \wedge P_n(X)) & & \\ \nearrow & & \nwarrow \\ P_1(X) \vee R_1(X) & & P_n(X) \vee R_n(X) \end{array}$$

thus, we need to consider 2^n disjuncts

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? **NO!!!**
- **Although the standard rewriting algorithm is worst-case optimal, it can be significantly improved**
- **Optimization techniques can be applied in order to compute efficiently small rewritings - field of intense research**

Minimization Step Revisited

$$\Sigma = \{\forall X (P(X) \rightarrow \exists Y R(X, Y))\}$$

$$Q = \exists A_1 \dots \exists A_n \exists B (S_1(A_1) \wedge R(A_1, B) \wedge \dots \wedge S_n(A_n) \wedge R(A_n, B))$$

exponentially many minimization steps must be applied in order to get the query

$$\exists A \exists B (S_1(A) \wedge \dots \wedge S_n(A) \wedge R(A, B))$$

and then apply the rewriting step, which will lead to the query

$$\exists A (S_1(A) \wedge \dots \wedge S_n(A) \wedge P(A))$$

Minimization Step Revisited

$$\Sigma = \{\forall X (P(X) \rightarrow \exists Y R(X, Y))\}$$

$$Q = \exists A_1 \dots \exists A_n \exists B (S_1(A_1) \wedge R(A_1, B) \wedge \dots \wedge S_n(A_n) \wedge R(A_n, B))$$

Piece-based Rewriting

- Instead of rewriting a single atom
- Rewrite a set of atoms that have to be rewritten together

Computing the Piece

Input: CQ q , atom $\alpha = R(t_1, \dots, t_n)$ in q , rule σ

Output: piece of α in q w.r.t. σ

$Piece := \{R(t_1, \dots, t_n)\};$

while TRUE do

 if $Piece$ and $\text{head}(\sigma)$ do not unify then

 return \emptyset ;

$h :=$ most general unifier of $Piece$ and $\text{head}(\sigma)$;

 if h violates points 2 or 4 of the applicability condition then

 return \emptyset ;

 if h violates point 3 of the applicability condition then

$Piece := Piece \cup \{\text{atoms containing a variable that unifies with an } \exists\text{-variable}\};$

 else

 return $Piece$;

The Piece-based Rewriting Algorithm

```
 $Q_\Sigma := Q;$ 
repeat
   $Q_{aux} := Q_\Sigma;$ 
  foreach disjunct  $q$  of  $Q_{aux}$  do
    foreach atom  $a$  in  $q$  do
      foreach rule  $\sigma$  in  $\Sigma$  do
        //Rewriting Step
        if  $\sigma$  is applicable to  $a$  then
           $q_{rew} := \text{rewrite}(q, a, \sigma);$  // resolve  $a$  using  $\sigma$ 
          if  $q_{rew}$  does not appear in  $Q_\Sigma$  (modulo variable renaming) then
             $Q_\Sigma := Q_\Sigma \vee q_{rew};$ 
        //Minimization Step
         $P := \text{piece of } a \text{ in } q \text{ w.r.t. } \sigma;$ 
         $q_{min} := \text{minimize}(q, P);$  // apply the most general unifier of  $P$  on  $q$ 
        if  $q_{min}$  does not appear in  $Q_\Sigma$  (modulo variable renaming) then
           $Q_\Sigma := Q_\Sigma \vee q_{min};$ 
until  $Q_{aux} = Q_\Sigma;$ 
return  $Q_\Sigma;$ 
```


Termination

$$\Sigma = \{\forall X \forall Y (R(X, Y) \wedge P(Y) \rightarrow P(X))\}$$

$$Q = \exists X P(X)$$

$$Q_\Sigma = \exists X P(X)$$

∨

$$\exists X \exists Y_1 (R(c, Y_1) \wedge P(Y_1))$$

∨

$$\exists X \exists Y_1 \exists Y_2 (R(c, Y_1) \wedge R(Y_1, Y_2) \wedge P(Y_2))$$

∨

$$\exists X \exists Y_1 \exists Y_2 \exists Y_3 (R(c, Y_1) \wedge R(Y_1, Y_2) \wedge R(Y_2, Y_3) \wedge P(Y_3))$$

∨

...

- The piece-based rewriting algorithm does not terminate
- However, there exists a finite UCQ-rewritings, that is, $\exists X P(X)$

...careful application of the homomorphism check

Limitations of UCQ-Rewritability

$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow \text{oval}(D \models Q_\Sigma)$$

evaluated and optimized by
exploiting existing technology

- What about the size of Q_Σ ? - very large, no rewritings of polynomial size
- What kind of ontology languages can be used for Σ ? - below PTIME