Query answering as decision problem

\[\sim \text{consider Boolean queries} \]

Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq \text{ExpTime} \]
An Algorithm for Evaluating FO Queries

function Eval(\(\varphi, I \))

01 \textbf{switch} \(\varphi \) {
02 \textbf{case} \(p(c_1, \ldots, c_n) \) : \textbf{return} \langle c_1, \ldots, c_n \rangle \in p^I \\
03 \textbf{case} \neg \psi : \textbf{return} \neg \text{Eval}(\psi, I) \\
04 \textbf{case} \psi_1 \land \psi_2 : \textbf{return} \text{Eval}(\psi_1, I) \land \text{Eval}(\psi_2, I) \\
05 \textbf{case} \exists x. \psi : \\
06 \quad \textbf{for} \ c \in \Delta^I \{ \\
07 \quad \quad \textbf{if} \ \text{Eval}(\psi[x \mapsto c], I) \ \textbf{then} \ \textbf{return} \ \text{true} \\
08 \quad \} \\
09 \quad \textbf{return} \ \text{false} \\
10 \}
Let \(m \) be the size of \(\varphi \), and let \(n = |I| \) (total table sizes).
Let m be the size of φ, and let $n = |I|$ (total table sizes)

- How many recursive calls of Eval are there?
 \leadsto one per subexpression: at most m

- Maximum depth of recursion?
 \leadsto bounded by total number of calls: at most m

- Maximum number of iterations of for loop?
 $\leadsto |\Delta^I| \leq n$ per recursion level
 \leadsto at most n^m iterations

- Checking $\langle c_1, \ldots, c_n \rangle \in p^I$ can be done in linear time w.r.t. n

Runtime in $m \cdot n^m \cdot n = m \cdot n^{m+1}$
Let m be the size of φ, and let $n = |\mathcal{I}|$ (total table sizes)

Runtime in $m \cdot n^{m+1}$

Time complexity of FO query evaluation

- Combined complexity: in ExpTime
- Data complexity (m is constant): in P
- Query complexity (n is constant): in ExpTime
FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of φ, and let $n = |\mathcal{I}|$ (total table sizes)

- For each (recursive) call, store pointer to current subexpression of φ: $\log m$
- For each variable in φ (at most m), store current constant assignment (as a pointer): $m \cdot \log n$
- Checking $\langle c_1, \ldots, c_n \rangle \in \mathcal{D}$ can be done in logarithmic space w.r.t. n

Memory in $m \log m + m \log n + \log n = m \log m + (m + 1) \log n$
Let m be the size of φ, and let $n = |\mathcal{T}|$ (total table sizes)

Memory in $m \log m + (m + 1) \log n$

Space complexity of FO query evaluation

- Combined complexity: in PSpace
- Data complexity (m is constant): in L
- Query complexity (n is constant): in PSpace
The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation
The algorithm shows that FO query evaluation is in PSpace. Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation

\[\sim \text{QBF satisfiability} \]

Let \(Q_1X_1.Q_2X_2.\cdots Q_nX_n.\varphi[X_1, \ldots, X_n] \) be a QBF (with \(Q_i \in \{\forall, \exists\} \))

- Database instance \(I \) with \(\Delta^I = \{0, 1\} \)
- One table with one row: true(1)
- Transform input QBF into Boolean FO query

\[
Q_1x_1.Q_2x_2.\cdots Q_nx_n.\varphi[X_1 \mapsto \text{true}(x_1), \ldots, X_n \mapsto \text{true}(x_n)]
\]

It is easy to check that this yields the required reduction. \(\square \)
PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF \(\exists p. \neg p \) leads to FO query \(\exists x. \neg \text{true}(x) \)
PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p. \neg p$ leads to FO query $\exists x. \neg \text{true}(x)$

Better approach:

- Consider QBF $\bigwedge_{i=1}^n Q_i X_i. \varphi[X_1, \ldots, X_n]$ with φ in negation normal form: negations only occur directly before variables X_i (still PSpace-complete: exercise)
- Database instance \mathcal{I} with $\Delta^{\mathcal{I}} = \{0, 1\}$
- Two tables with one row each: true(1) and false(0)
- Transform input QBF into Boolean FO query

$$\bigwedge_{i=1}^n Q_i x_i. \bigwedge_{i=1}^n \varphi'$$

where φ' is obtained by replacing each negated variable $\neg X_i$ with $\text{false}(x_i)$ and each non-negated variable X_i with $\text{true}(x_i)$.
Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to combined complexity.
Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2: The evaluation of FO queries is PSpace-complete with respect to query complexity.
The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity

Open questions:

- What is the data complexity of FO queries?
- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?