
Presburger Büchi Tree Automata with
Applications to Logics with Expressive Counting

Bartosz Bednarczyk1,2 B and Oskar Fiuk2

1 Computational Logic Group, Technische Universität Dresden, Germany
2 Institute of Computer Science, University of Wrocław, Poland

bartosz.bednarczyk@cs.uni.wroc.pl, 307023@uwr.edu.pl

Abstract. We introduce two versions of Presburger Automata with the
Büchi acceptance condition, working over infinite, finite-branching trees.
These automata, in addition to the classical ones, allow nodes for check-
ing linear inequalities over labels of their children. We establish tight
NP and ExpTime bounds on the complexity of the non-emptiness prob-
lem for the presented machines. We demonstrate the usefulness of our
automata models by polynomially encoding the two-variable guarded
fragment extended with Presburger constraints, improving the existing
triply-exponential upper bound to a single exponential.

1 Introduction
Description Logics (DLs) [3] are a robust family of first-order logic (FO) fragments
designed for knowledge representation and reasoning. They serve as the core of
the Web Ontology Languages (OWL) and are successfully used in the bio-medical
domain, e.g. in Snomed CT [17]. Unfortunately, the expressiveness of DLs is quite
limited: as description logics are fragments of FO, they are not able to express
even simple statistical properties. Such information is crucial to reason about
real-life scenarios as witnessed by the following example:

Example 1. Consider a knowledge base of Citizens voting for their new mayor.
During the election, they must decide for each candidate whether they reject
him or not. Moreover, each citizen can give at most two accepting votes. This
situation can be modelled, in a DL-like language as follows with:

Citizen v (≤ 2.votedForAcc).>, Winner v (> 50%)votedForAcc−.Citizen,

so the elected winner received more than 50% of accepting votes from Citizens.

The above-mentioned properties can be formalised in extensions of the standard
description logic ALC with Presburger arithmetic, as was done e.g. in [1,15,19].
However, to model Example 1 one additionally requires the use of inverses of roles,
making the logics from the cited papers not directly applicable in our setting.
The decidability status of ALC with inverses and arithmetics was established
only a few months ago in [5], but with a non-optimal 3NExpTime complexity.
The aim of this short paper is to improve this complexity to a single exponential.

http://orcid.org/0000-0002-8267-7554

2 Bartosz Bednarczyk and Oskar Fiuk

Our results. We follow a well-established automata-theoretic approach to decid-
ability of description logics, as treated in several papers, see e.g. [2,11,12]. We
present two models of tree automata, working over infinite finite-branching trees,
with Büchi accepting conditions. The first of them, called SPBTA, assumes the
powerset alphabet and has an ExpTime-complete non-emptiness problem. That
makes SPBTA an attractive automata model for encoding modal and descrip-
tion logics with Presburger constraints. The other one, called PBTA, works over
the usual alphabet and turns out to be NP-complete, complementing already
existing results on finite tree automata with expressive counting from [22,23].
As an application of our results, we provide a translation from an extension of
ALCI with expressive cardinality constraints, namely the two-variable guarded
fragment with Presburger arithmetics [5], to our automata. This yields ExpTime-
completeness of the mentioned logic.

Related automata models. We briefly discuss what distinguishes our automata
models in comparison to the existing models. First of all, our automata work over
unordered and unranked trees, hence all different automata models do not apply
to our case. Second, our trees are infinite, hence the framework of [22,23] cannot
simply be transferred here. Third, several tree automata models with arithmetics
were proposed quite recently [9,7,6] but in their case the complexity of the non
emptiness problem is either higher ExpTime or is nondeterministic, disallowing
a reasonable translation of description logics into it. Finally, standard automata
models used for description logics, e.g. the ones from [8] are not applicable to
our case as they cannot impose Presburger constraints on successors.

2 Preliminaries
We assume that the reader is familiar with basics on formal languages, com-
putability [24], and tree automata [14].

Let n denote the set {k ∈ N | k < n}. By a tree, we mean a finite-branching
tree, in which every branch is infinite. More formally, t is a prefix-closed subset
of Nω, such that for every x ∈ t we have x0 ∈ t and there is n ∈ N so that no xn
belongs to t. The elements of t are called nodes. W.l.o.g. we assume that trees
are children-closed, i.e. if x ∈ t and n ∈ N then xn ∈ t implies xk for all k ∈ n.
Given x ∈ t we define the subtree of x (resp. children of x), denoted Subt(x)
(resp. Chld(x)), as the set {z ∈ t | z = xy} (resp. {xn ∈ t | n ∈ N}). The degree
d(x) (resp. height h(x)) of x is |Chld(x)| (resp. |x|). A branch of t is any infinite
sequence v0, v1, v2, . . . of nodes of t, such that v0 = ε and for all i the node vi+1 is
a child of vi. A Σ-labelled tree is a pair (`, t), composed of a tree t and a mapping
` : t→ Σ. Sometimes we will also think about finite trees, defined in a natural
way, with all the definitions adopted to them as the reader may expect.

By a linear constraint we mean an expression of the form

C +Σn
i=0ai · xi ./ D +Σm

i=0bi · yi,

where xi, yi are variables from some countably-infinite set V, ./ is one of ≤, <,≡k
(the last one denotes equality modulo3 k) and ai, bi, k > 0, C,D are integers

3 Constraints with ≡k can be eliminated [4].

Presburger Büchi Tree Automata with Applications to Logics 3

encoded in binary. We define systems of constraints and their solutions over N
in the expected way. Given a solution S : V → N to a system E, the support
supp(S) of S is defined as the set {v ∈ V | S(v) 6= 0}.

Testing solvability (over N) of systems of constraints is NP-complete [10].
Moreover, the following less-known lemma provides the existence of a “sparse
and small” solution; consult: [16, Theorem 1], [1, Lemma 3] and [21].

Lemma 2. Let I be a system of E linear constraints with integer coefficients
absolutely bounded by C. Assume a solution S to I (over N). Then there is a
solution S′ to I (over N) with |supp(S′)| ≤ 2E ·log(4EC) and supp(S′) ⊆ supp(S).
Moreover, the maximal absolute value assigned to variables by S′ is bounded by
V (E · C)2E+1, where V is the total number of variables.

3 Suitable tree automata models
Henceforth, we consider two tree automata models, starting from the more suc-
cinct and expressive one:

Definition 3. A Succinct Presburger Büchi Tree Automata (SPBTA) A is a
tuple A = (Σ,Q, F,Q0, I), where all of its components are finite, Σ is an alpha-
bet, Q is a set of states, F ⊆ Q is a set of final states, Q0 ⊆ Q is an initial
configuration and I is a finite set of instructions of the form:

– ±q → ±q′, q ∧ q′ → q′′ for q, q′, q′′ ∈ Q,
– q → ±a,±a→ q for q ∈ Q and a ∈ Σ, and
– q → C, C → q, where C is a linear constraint over V = {xS | S ⊆ Q}. For
succinctness, only the variables mentioned in V are required to be explicitly
written in C.

Our automata work over 2Σ-labelled trees and labels each node with a subset of
Q. Such a labelling is required to be compatible with Q0, i.e. ε is labelled with
Q0. Moreover, it should be compatible with I, i.e. that the presence of a state
in a node v implies the absence/presence of a state/letter in v, and that linear
constraints over the labellings of v’s children, where the value of the variable xS
is the total number of v’s children labelled by some superset of S. Formally:

Definition 4. A run of an SPBTA A = (Σ,Q, F,Q0, I) over a 2Σ-labelled tree
(`t, t) is a 2Q-labelled tree (`At , t) s.t. `At (ε) = Q0, and for all v ∈ t, q ∈ `At (v):

– if (q → q′) ∈ I (resp. (q → −q′) ∈ I) with q′ ∈ Q, then q′ ∈ `At (v) (resp.
q′ 6∈ `At (v)), and if (q∧q′)→ q′′ ∈ I with q′, q′′ ∈ Q then q, q′ ∈ `At (v) implies
q′′ ∈ `At (v),

– if (q → ±a) ∈ I (resp. (q → −a) ∈ I) with a ∈ Σ, then a ∈ `t(v) (resp.
a 6∈ `t(v)),

– if (q → C) ∈ I with C being a linear constraint, then xS 7→ |{u ∈ Chld(v) :
S ⊆ `At (u)}| is a solution to C.

Omitted cases are symmetric. A run is successful, if every branch of t has inf.
many elements v fulfilling the condition: “there is an accepting state qf ∈ F

4 Bartosz Bednarczyk and Oskar Fiuk

such that qf ∈ `A(v)”. An SPBTA A accepts a 2Σ-labelled tree (`t, t) if there
is a successful run over (`t, t). A language of A, denoted L(A), is the set of all
2Σ-labelled trees accepted by A.

The succinct representation of the alphabet and constraints in SPBTA will turn
out to be especially useful for encoding models of modal and description logics
with Presburger constraints (due to their tree-like model property). This is the
biggest advantage of SPBTA in contrast to other automata models mentioned in
the introduction. In order to translate logics into automata in the usual setting,
the user must first provide a bound on the number of children that a node may
have4. This essentially forces the user to prove some kind of a “small-branching
tree model lemma” before you proceed with tree-encoding. Our automata model
will do it automatically Lemma 16, so you can encode tree-models without the
need of finding an appropriate bound (which sometimes can be difficult).

In what follows we present yet another model of tree automata, which is
simpler due to the use of a standard alphabet. Within a run, nodes are labelled
with exactly one state, and therefore, many of the presented instructions can be
removed. While PBTA does not have any direct applications to logic, we find
the drop of complexity interesting.

Definition 5. A Presburger Büchi Tree Automata (PBTA) A is a tuple A =
(Σ,Q, F, q0, I), where all its components are finite, Σ is an alphabet, Q is a set
of states, F ⊆ Q is a set of final states, q0 ∈ Q is an initial configuration and I
is a finite set of instructions of the form:

– (q, a) → C, where q ∈ Q, a ∈ Σ and C is a linear constraint with variables
V = {xq | q ∈ Q}.

We define runs of PBTAs analogously to the case of SPBTAs.

Definition 6. A run of a PBTA A = (Σ,Q, F, q0, I) over a Σ-labelled tree (`t, t)
is a Q-labelled tree (`At , t) such that `At (ε) = q0, and for all v ∈ t with qv=`At (v)
and av=`t(v):

– if ((qv, av)→ C) ∈ I, then xq 7→ |{u ∈ Chld(v) | q=`At (u)}| is a solution to C.

A run is successful, if every branch of t has infinitely many elements v fulfilling
the condition: “there is an accepting state qf ∈ F such that qf = `A(v)”.

The notion of accepted trees and the language of PBTA are defined analo-
gously to the case of SPBTA. Note that the languages accepted by (S)PBTA are
no longer regular (in the sense of MSO-definability). Consider:

Example 7. A language {t | ∀v ∈ t d(v) ≡2 0} is clearly not regular, but can
be recognized by the PBTA A = ({a}, {q}, {q}, q, {(q, a)→ xq ≡2 0}).

4 Of course we may always restrict ourselves to binary trees by employing standard
tricks, but then the verification of Presburger constraints becomes a challenge.

Presburger Büchi Tree Automata with Applications to Logics 5

The non-emptiness problem asks whether the language of a given (S)PBTA is
non-empty. An immediate reduction from the solvability (over N) of systems of
linear equations yields NP-hardness for testing non-emptiness of PBTA.

Lemma 8. The non-emptiness for PBTAs is NP-hard.

Proof. Take a system of linear equations I and let Σ = {a0}, Q = F = {qv | v ∈
V(I)}, I = {(qv, a0)→ C | v ∈ V(I), C ∈ I}. Choose v0 to be an arbitrary vari-
able in V(I). Then the language recognized by automaton A = (Σ,Q, F, qv0 , I)
is non-empty iff I has a solution.

In the sequel, we provide a matching upper bound.

4 Non-emptiness problem for PBTA is in NP
Henceforth, we fix a PBTA A = (Σ,Q, F, q0, I). By its size, denoted with |A|, we
mean the size of some reasonable succinct representation ofA, where the numbers
in constraints are encoded in binary. We start with auxiliary definitions.

Definition 9. Let (`A, t) be an accepting run of A on a tree (`t, t). Then a
state q ∈ Q has an occurrence in a node v ∈ t iff `A(v) = q. If there is v ∈ t,
such that q occurs in v, then q has an occurrence in an automaton run (`A, t).
An occurrence of q ∈ Q in v ∈ t is safe iff either q ∈ F or on each branch
v1, v2, v3, . . . starting in v there exists an occurrence of some state from F before
the next occurrence of q (if any), i.e. inf{i | `A(vi) ∈ F} < inf{i | `A(vi) = q}. A
safe subtree of a safe occurrence q ∈ Q in v ∈ t, denoted as SSubt(q, v), is a pair
(v, t′) such that t′ is a singleton {ε} whenever q ∈ F or otherwise is a finite tree
{x | vx ∈ Subt(v),∀st = x, t 6= ε, `A(vs) 6∈ F}, i.e. accepting states occur only
in leaves.

Lemma 10. If q ∈ Q has an occurrence in an accepting run (`A, t) of A, then
it has a safe one.

Proof. Suppose that there is q ∈ `A(t), such that no occurrence is safe. Clearly, q 6∈
F . Then one can construct an infinite branch without any state from F , yield-
ing a contradiction with the Büchi acceptance condition. Employ the following
process. Start with any occurrence of q in some v ∈ t. Then by assumption it is
not safe. Therefore, it contains a branch that reaches another occurrence of q in
some other v′ before reaching any state from F . Repeat from v′.

To get an NP-upper bound, we construct a regular tree, generated by a pair
of functions and a state, that will serve as a witness for the non-emptiness test
of a given automaton.

Definition 11. For functions α : Q→ Σ, γ : Q→ Q+, and an element q0 ∈ Q,
define inductively a family of sets:

– T0 = {(ε, q0)}, and Tn+1 = {(xk, γ(q)k) | (x, q) ∈ Tn, k = 0, . . . , |γ(q)| − 1}.

Let T =
⋃
n≥0 Tn. Then

6 Bartosz Bednarczyk and Oskar Fiuk

– t = {x | (x, q) ∈ T } is a tree,
– `Q is taken as any Q-labelling of t such that (x, `Q(x)) ∈ T ,
– `Σ is taken as any Σ-labelling of t such that `Σ(x) = α(`Q(x)).

The role of α is to name elements with letters and the role of γ is to create fresh
state-labelled children of a given node. Note that we are working with unordered
trees, thus w.l.o.g. we assume that γ is “sorted”. Thus γ can represented as a
function Γ : Q→ NQ defined as:

γ(q) = q1 . . . q1︸ ︷︷ ︸
Γ (q)(q1) times

. . . q|Q| . . . q|Q|︸ ︷︷ ︸
Γ (q)(q|Q|) times

.

The role of Γ is to encode potential solutions to a system of inequalities from
the I component of A. Finally, we say that (`Q, t) (resp. (`Σ , t)) is Q-generated
(resp. Σ-generated) tree by a triple (q0, α, Γ).

Lemma 12. Let u = (q0, α, Γ) generate a tree t accepted by A. Then there is a
triple u′ = (q0, α, Γ

′) generating another tree t′ that is still accepted by A, and
which has small values in Γ , i.e. log max{Γ (q)(q′) | q, q′ ∈ Q2} = O(poly(|A|)).

Proof. Since u generates t accepted by A, the values of Γ (q) (after a renaming)
are solutions to constraints q → C given by A. By Lemma 2 we get smaller
solutions that can be encoded as Γ ′. Then the tree t′ generated by (q0, α, Γ

′) is
clearly accepted by A. Indeed, suppose that there is a branch with only finitely
many accepting states. Then, by the inclusion of supports for the solutions and
due to the way the tree t′ is generated, there will be a branch in the original tree
t with the same Q-labelling, yielding a contradiction.

The next crucial lemma shows how to generate a small regular tree, serving
as a witness for our non-emptiness test.

Lemma 13. If L(A) is nonempty, then there is a tree t and a triple u = (q0, α, Γ)
satisfying: (1) (`Σ , t) ∈ L(A), and is Σ-generated by u, (2) (`Q, t) is an accepting
run of A on the tree (`Σ , t), and is Q-generated by u, and (3) the triple u has
size polynomial in |A|.

Proof. Fix a tree (`t′ , t′) ∈ L(A) and a corresponding accepting run (`At′ , t′) of A.
Let Q0 = {q1, . . . , qk} be the set of states appearing in `At′ (t′). For each qi ∈ Q0
fix a safe occurrence in some vi ∈ t′ and let (ui, ti) = SSubt(qi, vi). We also
fix some post-order enumeration of nodes from ti and let PO(ti, v) denotes the
position of v ∈ ti in such order.

A solution in a node v is a function Sv : Q→ N such that

Sv(q) = |{u ∈ Chld(v) : `At′ (u) = q}|.

We define a witness injection j : Q0 → N2 × N∗, that will be used to define α
and Γ components of u, as follows:

j(qi) = min{(r, s, x) | x ∈ tr, qi = `At′ (urx), PO(tr, x) = s},

Presburger Büchi Tree Automata with Applications to Logics 7

where the minimum is taken with respect to the lexicographic order. The intuition
behind the function j is that it assigns, for each state, the deepest leftmost occur-
rence of this state in the safe subtree with the lowest possible index. Therefore,
if the node is not a leaf, any outgoing edge leads to a child with a strictly smaller
value of j. Since all leaves are labelled with accepting states, any branch in the
resulting tree that visits the same node twice must pass through the accepting
state.

Suppose that j(qi) = (ri, si, xi). Then we simply put α(qi) = `t′(urixi) and
Γ (qi) = Surixi for each qi ∈ Q0, and let α(q) = ⊥ and Γ (q) = ⊥ for each
q ∈ Q \Q0. One can show (see Appendix A) that (`Q, t) is indeed an accepting
run of A on the tree (`Σ , t) with respect to the given definition of (q0, α, Γ). Thus,
by applying Lemma 12 we conclude that u has a polynomial size description.

Lemma 14. Given A and a tuple u = (q0, α, Γ), it is in PTime to test if u
generates a tree from L(A).

Proof. We can clearly verify all constraints from the I component of A, since Γ
encodes all the required solutions. For the Büchi acceptance condition build a
directed graph on the verticesQ and edges E={(q, q′) ∈ Q2 | q 6∈ F, Γ (q)(q′) > 0}.
Then if the graph (Q,E) is acyclic, output Yes, and No otherwise.

Thus as a corollary of Lemmas 8, 13, 14 we conclude:

Theorem 15. The non-emptiness problem for Presburger Büchi Tree Automata
is NP-complete.

5 Non-emptiness for SPBTA
Fix an SPBTA A = (Σ,Q, F,Q0, I). W.l.o.g. we can assume that Σ is empty; if
not, then we simply introduce fresh states qa per each letter a ∈ Σ and replace
all occurrences of a in I by qa. Take E be the number of constraints in I and let
C be the minimal absolute bound on the coefficients from I.

We start with a “small accepted tree lemma”:

Lemma 16. If there is an accepting run (`At , t) of A on some tree (`t, t), then
there is a tree (`t′ , t′) with an accepting run (`At′ , t′) of A satisfying the following
conditions:

– for all nodes v ∈ t′ we have |Chld(v)| ≤ 2|Q|(E · C)2E+1 and |{`At′ (u) | u ∈
Chld(v)}| ≤ 2E · log(4CE).

– On any path v1, v2, . . . , vn of length n > 2|Q| in t′ there is a node v such that
`At′ (v) contains a final state.

Proof. We construct (`At′ , `t′ , t′) recursively, starting from (`At , `t, t). The second
condition can be established simply by taking any finite path v1, v2, . . . , vn of
length n > 2|Q| violating it and by observing, by the pigeonhole principle, that
two nodes vi, vj (i < j) have the same value of `At′ . Hence, we obtain a new tree by
replacing the subtree of vi by a subtree of vj . We repeat the process indefinitely.
For the first condition, assume that there is a node v violating the condition. Per

8 Bartosz Bednarczyk and Oskar Fiuk

each subset X ⊆ Q let vX be any fixed child of v with `At′ (vX) = X (if it exists).
Let I = {C | q ∈ `At′ (v), (q → C) ∈ I} be a system of inequalities. Note that in I
we have unknowns of the form xX per each X ⊆ Q, which by the semantics of
A counts nodes labelled by some superset of X. But I can be rewritten into a
system I ′ (by applying the inclusion–exclusion principle) so that the unknowns
xX indicates the total number of children labelled by precisely the set X. Thus,
the assignment S : X 7→ |{u ∈ Chld(v) | `At′ (u) = X}| is the solution to I ′. By
employing Lemma 2 to I ′ we infer the existence of a “sparse and small” solution
S′ to I ′ with supp(S′) ⊆ supp(S). We conclude by modifying t′ as follows: we
remove all descendants of v and for any subset X ⊆ Q with S′(xX) 6= 0 we
assign as children of v precisely S′(xX) copies of the previously selected elements
vX . The labellings `At′ , `t′ are as indicated by the “copies”. The resulting tree
is accepted by A: systems of constraints are satisfied (again by applying the
inclusion-exclusion principle on S′) and the Büchi acceptance condition still
holds, since the “copied” subtrees were present in the original run.

We next describe APSpace (= ExpTime by [13]) procedure for testing
non-emptiness of L. It will be tableaux-like: we start by guessing a node, then we
guess its children, verify the consistency of the guess with the transition function
of A and repeat the process from a universally selected child. In the pseudocode
below we identify a node with a pair (q, `) ∈ 2Q × 2Σ . We employ two counters,
stored in binary. The counter FCnt is responsible for counting how many times we
encountered an accepting state (if FCnt > 2|Q| we know that we ended up in the
same accepting configuration twice and hence, we can build the tree by making
precisely the same choices as we did in the past). The counter QCnt is responsible
for counting how many configurations we have visited without entering into an
accepting state. If QCnt > 2|Q| then some non-final state was surely repeated
twice, violating the second condition of Lemma 16.

Speaking informally, the role of counters is to prevent us from mixing-up the
numbers of already visited non-accepting and accepting elements on a branch:
we want to make sure that there is a repetition of an accepting state but the
path between two accepting nodes can be long (more than 2Q), which potentially
spoils the counting. The second counter ensures us that we count correctly.

1 Guess the root node v = (q, `) and set FCnt = 0.
2 If FCnt > 2|Q| then Accept else set QCnt = 0.
3 Guess ≤ 2E · log(4CE) nodes (qi, `i) that will be repeated guessed

ni ≤ 2|Q|(E · C)2E+1 times.
4 Check if the guessed children are consistent with the transition function of A.
5 Universally choose (qi, `i) as v = (q, `).
6 If q contains a final state then FCnt++ and goto 2.
7 QCnt++. If QCnt > 2|Q| then Reject else goto 3.

A proof of correctness can be found in Appendix B. We conclude:

Theorem 17. The non-emptiness problem for SPBTAs is decidable in ExpTime.

Presburger Büchi Tree Automata with Applications to Logics 9

6 Applications in Logic
We assume familiarity the basics on (description) logics and model theory [3,20].
The two-variable guarded fragment of first-order logic, GF2, is a relevant fragment
of FO that captures many standard description logics up to ALCIHbself [3,18].
Here we consider its expressive extension with local Presburger quantifiers, GP2,
introduced in [5]. For brevity we introduce it already in a suitable, polynomially
computable, normal form [5, p. 10]. A formula ϕ is in GP2 if it has the shape:

∀x γ(x)∧
n∧
i=1

(
∀x∀y Ei(x, y)→ αi(x, y)

)
∧
m∧
i=1
∀xAi(x)→

(mi∑
j=1

λi,j ·#Ri,j
y [>] ~i δi

)
,

where γ(x), αi(x, y) are quantifier-free formulae in NNF, each ei, Ai, ri,j are
relational symbols, all λi,j ’s, δi’s are integers, and ~i is one of =, 6=, ≤, ≥, ≡d or
6≡d, where d ∈ N+. Here ≡d denotes the congruence modulo d. W.l.o.g. assume
that there is a symbol D so that any element is required to a D-successor.

We restrict ourselves to finite-branching structures (the logic trivialises if we
allow for infinite branching). The semantics of GP2 is like in FO, except for the
expressions #Ri

y [>], which evaluate to the total number of Ri-successors y of x.

A, x/a |=
n∑
i=1

λi ·#Ri
y [>] ~ δ iff

n∑
i=1

λi ·|{b | A, x/a, y/b |= Ri(x, y)}| ~ δ

A GP2-knowledge-base (kb for brevity) is a pair K = (D, T), where D is a database,
i.e. the set of ground facts emplying indv. names and unary/binary predicates,
and T is s set of GP2 formulae. A structure A satisfies K (written A |= K) if
A |=

∧
T ∧

∧
D. In the kb-satisfiability problem we ask whether an input GP2-

kb has a (finite branching, possibly infinite) model. Note that this generalises
the usual formula satisfiability. Fix a GP2-kb K = (D, T). The main goal is to
construct an SPBTA A from K such that L(A) is non-empty iff K has a model.

We first argue that we can restrict ourselves to tree-like models (i.e. models
whose underlying structure is a tree). Let A be a (finite branching) model of K.
Let G = (V,E) be a Gaifman graph of A, i.e. we have domain elements of A
as nodes of G and undirected edges in G between any two elements linked by
some binary relation. Let names(K) be the set of all individual names appearing
in K. By a K-named element in A we mean any element aA for a ∈ names(K).
By a K-path in A we mean any word v1, v2, . . . , vn from A+ such that: (i) v1 is
K-named in A, (ii) v2 is not K-named, (iii) any two vi, vi+1 are connected by an
edge in G, and (iv) any three consecutive vi, vi+1, vi+2 are pairwise different.
Definition 18. The K-unravelling of A is a structure B, which domain is com-
posed of all K-paths in A and the relational symbols appearing in K are interpreted
as follows for all words wd ∈ A∗A and wde ∈ A∗AA:

– aB = aA for all a ∈ names(K), and wd ∈ PB iff d ∈ PA for all unary P,
– For any x, y ∈ B we put (x, y) ∈ RB if and only if:
(i) x = aB, y = bB and (aA,bA) ∈ RA, (ii) x=y=wd and (d,d) ∈ RA, (iii)
x = wd, y = wde and (d, e) ∈ RA, or (iv) x = wde, y = wd and (e,d) ∈ RA.

10 Bartosz Bednarczyk and Oskar Fiuk

The following fact justifies the use of unravellings and follows directly from the
semantics of GP2 (after a trivial renaming of structures).

Fact 19 B |= K and for any a ∈ names(K) the substructure of B restricted to
all K-paths starting from aA constitute a tree.

Call a database simple, if it has the form {U(a)} for some indv. name a and a
unary predicate symbol U. It is a standard trick in DLs that one can reduce the
kb-satisfiability problem to polynomially many subtasks of kb-satisfiability for
instances having simple databases only. Indeed, observe first that the unravelled
model B is just a collection of trees rooted at named elements, were the roots can
be interlinked by some binary relations. As the number of individual names ap-
pearing in names(K) is clearly linear in |K|, one can simply guess the substructure
C := B � {aB | a ∈ names(K)} |= D and after verifying its consistency (doable in
polynomial time), encode connection between a given root and the other roots
as follows. Let us introduce fresh unary predicates DB±R(a,b),DB±U(a), Roota
per each binary relation symbol R and names a,b ∈ names(K), and a binary
predicate symbol insideDB. Fix a name a ∈ names(K); we shall write a reduction
for an aB point of view. The reduction for other individual names is analogous.
We append to the T -component of K the following formulae: (i) whenever Roota
is satisfied at x then for each b 6= a ∈ names(K) we have that x has precisely one
insideDB-successor y labelled with Rootb; moreover the pair (x, y) should satisfy
precisely the same unary and binary relations as indicated in C. (ii) Whenever x
satisfies Roota, it encodes the full structure C with the help of unary predicate
symbols DB±R(a,b),DB±U(a), e.g. if (cB, dB) 6∈ SB then the satisfaction of Roota
implies the satisfaction of DB−S(c,d). Note that we do not impose any constraints
on successors of the elements labelled with Rootb for b 6= a. This will be taken
into account in the reduction for other individual names (here the role of such
elements is only to make the counting constraints of K work). This yields the de-
sired reduction. Take KC

a = ({Roota(a)}, ϕC
a :=

∧
ϕ∈T ϕ ∧ ψC

a), where ψC
a simply

contains the extra formulae that we discussed. It is easy to show that:

Lemma 20. A GP2-kb K is satisfiable iff there is a structure C |= D (with at
most |names(K)| elements) such that all KC

a (defined above) are satisfiable.

Proof. (⇒). Take the unravelled model B of K = (D, T), and let C to be the
restriction of B to the roots of B. Make aB to be the only elements satisfying the
symbol Roota and interpret predicate symbols DB±R(a,b), DB±U(a) in a above-
described way. Finally let insideDBB be the full (non-reflexive) binary relation
on C. Take Ba as the substructure of B obtained by removing all pairs having
the form (bB, cB) for b 6= a from all binary relations. It follows that Ba |= Ka.
(⇐). Let Ba be tree-models of KC

a . Thus, by definition of DB±R(a,b), DB±U(a)
predicates, there is unique C |= D described inside KC

a . Let Ca be a substructure of
Ba obtained by removing elements that are descendants of insideDB-successors
of aBa labelled with Rootb for b ∈ names(K). Take D to be the disjoint union of
all Ca with aD interpreted as the root of Ca. Finally, make the restriction of D
to the roots of Ca isomorphic to C. The resulting structure D is a model of K.

Presburger Büchi Tree Automata with Applications to Logics 11

After the above reduction, we are going to explain how we will encode tree-like
models inside trees. For the rest of the paper fix the kb KC

a = ({Roota(a)}, ϕC
a).

We first prepare the alphabet for our automaton. Let S0 be the set of all possible
binary and unary atoms for predicate names appearing in ϕC

a , involving only the
variables x and y. Take S1 to be composed of all subformulae of αi and γ from
ϕC

a (consult the normal form if needed). Finally take5 S := S0 ∪ S1 and close it
under a single negation. Note that |S| is of size polynomial in |KC

a |.
Let the alphabet Σ be equal to

Σ := {σψ | ψ ∈ S} ∪ {Roota,Parent,Self,Child}. (1)

The intuition behind Σ is as follows. Roughly speaking, whenever a symbol σψ
will label a node in a tree-encoding of a tree-like structure A, this will indicate that
the corresponding element in A satisfies ψ. To speak about formulae satisfied at a
node, we always think that the variable y is evaluated at the current node, while
the variable x corresponds to its parent. In order to verify cardinality constraints,
note that SPBTA can count only node’s children, while the expressions #Ri,j

y [>]
can also count the node itself as a witness as well as its parent. Thus a naive
translation to automata may destroy counting constraints. To handle this issue,
every node in a tree-encoding of A will have two extra children, being “copies”
of itself and its parent. This, after the introduction of some simple consistency
rules, will make cardinality constraints work.

The formal definition of the encoding is given next. This is going to be
very technical but we are required such a notion in order capture all necessary
properties. The first two items imply the satisfaction of KC

a , while the others
are responsible for the correct evaluation of formulae and for propagating atoms
from parent to child as well as to different copies.

Definition 21. A tree encoding of K is a Σ-labelled tree t satisfying:

– The root of t is the unique node in t labelled with Roota.
– If v is a Child-labelled node or the root of t then it is labelled with σγ and if v
is labelled by σAi(y) then the total number of its children labelled by σRi,j(x,y)
satisfies the cardinality constraint ~i δi (cf. normal form).

– The letters Parent, Child, Self and Roota label disjoint sets of nodes in t.
Every Child-labelled node has a unique child labelled with Parent and a unique
child labelled with Self. The root of t has a unique Self-labelled child, but it
does not have any Parent-labelled children.

– If the root of t is labelled by some σψ then ψ uses the variable y only.
– For every unary (resp. binary) symbol U (resp. B) from KC

a and every node
v from t, v is labelled by precisely one of σ±U(y) (resp. by one of σ±B(y,y)).
If v is neither the root of t nor the Self-labelled child of the root, then we also
take all other atomic formulae involving x and/or y into account.

– Labelling of nodes is consistent, i.e. a node v cannot be labelled by both σλ
and σ¬λ and that if v is labelled by σλ∧λ′ (resp. σλ∨λ′) then v is labelled by
both (resp. one of) σλ, σλ′ (the converse also holds for σλ∨λ′ , σλ∧λ′ from Σ).

5 In the literature S appears under the name of a syntactic closure.

12 Bartosz Bednarczyk and Oskar Fiuk

– If v is a Child-labelled node or the root of t, then (i) if v is labelled by some
letter σ±λ(y) then every Child-labelled child of v is labelled by σ±λ(x), the
Self-labelled child of v is labelled with both σ±λ(y) and σ±λ(x) as well as by
letters obtained by replacing binary relations B(y, y) with B(x, y); (ii) if v
is labelled by some letter σ±λ(x,y) then its Parent-labelled child is labelled by
σ±λ′(x,y), where λ′ is obtained by replacing every occurrence of the variable
x with y and vice-versa.

A crucial lemma, linking tree encodings with tree models is:

Lemma 22. There exists a tree encoding of K iff KC
a is satisfiable.

Proof. (⇐). Let t be the promised tree encoding. First, remove all Parent-labelled
and Self-labelled children from t together with their subtrees. Then, we interpret
unary symbols U so that its interpretation contains precisely the nodes labelled
with σU(y). For binary relations R we take the union of two cases: (i) we include
all pairs (v, v) for v labelled with σR(y,y), (ii) we include all parent-child pairs
(v, w) (resp. child-parent pairs (w, v)) for which we have that v is labelled with
σR(x,y) (resp. σR(y,x)). Let A be the obtained structure. It is immediate to see by
construction that A, x/v, y/w |= ±λ whenever w is labelled with σ±λ where λ
ranges over subformulae from S and v is a parent of w. The constraints from KC

a
are fulfilled due to our trick with extra nodes (we took parents and the elements
themselves into account when counting). Hence, A |= KC

a .
(⇒). For the opposite side we will take a tree model A |= KC

a and “convert
it” into a tree representation. As the prelimiary step, label all the elements of
A but root with a Child predicate symbol. After the first step, we select any
Child-labelled element v, create a fresh copy of its parent w and insert a copy
of w as a child of v. We maintain all the relations between v and the copy of
w as they were between v and w. Finally, we make the Parent predicate to be
satisfied at the copy of w. After the second step, for every element v in A we
copy v and make the copy a child of v and make the predicate Self to be satisfied
at the copy. Then each of these copies is connected to their original elements
with all binary R for which v has an R-loop. We repeat the process infinitely
often in order to provide a child per each node. Finally, take any element v and
label it with all predicates from {σ±λ(y) | A, v |= λ, λ ∈ S}, and whenever v
has a Child-labelled child w then we additionally make w to be labelled with
{σ±λ(x), σ±λ′(x,y) | A, x/v, y/w |= λ′,A, x/v |= λ, λ, λ′ ∈ S}. It is immediate to
check that the structure (`t, t = A) with `t inherited from A is a tree-encoding.

Relying on Definition 21, the construction of a polynomial-size SPBTA A ac-
cepting Σ-labelled tree encoding is straightforward. Thus, we delegate it to Ap-
pendix C. Since the satisfiability of GP2 is known to be ExpTime-hard, we
conclude the last result of the paper:

Theorem 23. The knowledge-base satisfiability problem for GP2 over finite-
branching models is ExpTime-complete. Hence, the non-emptiness problem for
SPBTA is ExpTime-hard.

Presburger Büchi Tree Automata with Applications to Logics 13

Acknowledgements
This work was supported by the Polish Ministry of Science and Higher Education
program “Diamentowy Grant” no. DI2017 006447. We are grateful to Tim Lyon
and Reijo Jaakkola for proofreading and language improvements.

Results from this paper will appear in the BSc thesis of Oskar Fiuk, written
under informal supervision of Bartosz Bednarczyk at the University of Wrocław.

References
1. Baader, F.: A new description logic with set constraints and cardinality constraints

on role successors. In: FroCoS 2017 (2017)
2. Baader, F., Hladik, J., Peñaloza, R.: Automata can show pspace results for descrip-

tion logics. Inf. Comput. (2008)
3. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic

(2017)
4. Bednarczyk, B.: One-variable logic meets presburger arithmetic. Theor. Comput.

Sci. (2020)
5. Bednarczyk, B., Orlowska, M., Pacanowska, A., Tan, T.: On Classical Decidable

Logics Extended with Percentage Quantifiers and Arithmetics. In: FSTTCS 2021
(2021)

6. Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Automata for unordered trees. Inf.
Comput. (2017)

7. Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Logics for unordered trees with data
constraints. J. Comput. Syst. Sci. (2019)

8. Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched mu-
calculi. Log. Methods Comput. Sci. (2008)

9. Boneva, I., Talbot, J.: Automata and logics for unranked and unordered trees. In:
Giesl, J. (ed.) RTA 2005

10. Borosh, I., Flahive, M., Treybig, B.: Small solutions of linear diophantine equations.
Discret. Math. (1986)

11. Calvanese, D., Carbotta, D., Ortiz, M.: A practical automata-based technique for
reasoning in expressive description logics. In: Walsh, T. (ed.) IJCAI 2011 (2011)

12. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics via alternating tree-automata. Inf. Comput. (2014)

13. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: FOCS 1976 (1976)
14. Comon, H.: Tree automata techniques and applications (1997)
15. Demri, S., Lugiez, D.: Complexity of modal logics with presburger constraints. J.

Appl. Log. (2010)
16. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res.

Lett. (2006)
17. El-Sappagh, S., Franda, F., Ali, F., Kwak, K.S.: SNOMED CT standard ontology

based on the ontology for general medical science. BMC medical informatics and
decision making (2018)

18. Grädel, E.: Description logics and guarded fragments of first order logic. In: DL
(1998)

19. Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Beklemishev,
L.D., Goranko, V., Shehtman, V.B. (eds.) AIML 2010 (2010)

20. Libkin, L.: Elements of Finite Model Theory (2004)
21. Papadimitriou, C.H.: On the complexity of integer programming. (JACM) (1981)

14 Bartosz Bednarczyk and Oskar Fiuk

22. Schwentick, T.: Trees, automata and XML. In: Beeri, C., Deutsch, A. (eds.) PODS
2004 (2004)

23. Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Flum, J., Grädel,
E., Wilke, T. (eds.) Logic and Automata: History and Perspectives [in Honor of
Wolfgang Thomas] (2008)

24. Sipser, M.: Introduction to the theory of computation. ACM Sigact News (1996)

Presburger Büchi Tree Automata with Applications to Logics 15

A Missing details from the proof of Lemma 13
Now we will show formally, that indeed (`Q, t) is an accepting run of A on the
tree (`Σ , t) with respect to the given definition of (q0, α, Γ).

– Since α and Γ are partial functions, it is necessary to verify that the tree t
is a well-defined, i.e. there is no v ∈ t such that Γ (`Q(v)) = ⊥. But observe
that from construction of Γ we have {q′ ∈ Q | q ∈ Q0, Γ (q)(q′) > 0} ⊆ Q0 =
dom(Γ) = dom(α).

– Clearly, the initial configuration is lQ(ε) = q0.
– All linear constraints from the I component are still satisfied, since the

quantitative Q-labelling of children for each node in t corresponds to the
quantitative Q-labelling of children for some node in the original tree t′ with
the same Σ-label. Here, by quantitative Q-labelling we mean that we care
only for the number of children labelled with a given state.

– Suppose that, there is a branch v1, v2, . . . with only a finite number of states
from F . Let vt be the last node with accepting state. Consider a sequence
{j(`Q(vt+i))}i∈N. Note that j(`Q(vt+i+1)) <lex j(`Q(vt+i)), unless `Q(vt+i) ∈
F , since all leaves in every SSubt(qi, vi) are labelled by the states from F . But
<lex on N2 × N∗ is a well-founded order. Therefore, there must be another
accepting state.

B Correctness proof of the algorithm from Section 5
Let A be a SPBTA given as input to the algorithm. We will show that L(A) 6= ∅
iff the algorithm accepts on A.

– Suppose that L(A) is non-empty. Then let (`t, t) be a tree with accepting
run (`At , t) satisfying Lemma 16. It is clear that the algorithm at each node
can guess the children with a labelling consistent with `t and `At . Since on
each branch final states are appearing infinitely many times and the length
of any path between the node and a predecessor such that both endpoints are
labelled with final states is at most 2|Q|, the QCnt is cleared more often than
every O(2|Q|) steps. Hence, the algorithm will never enter into the Reject
state. On the other hand, each time, whenever the algorithm sees an accepting
state, the FCnt is incremented. Therefore, the algorithm will enter into the
Accept state after at most O(22|Q|) steps.

– In the other direction, suppose that the algorithm accepts. Then one can
construct a tree from L(A). Let (`t, t) and (`At , t) be the finite trees mirroring
the choices of the algorithm in the natural way. Since the FCnt > 2|Q|, on
each path there is a final configuration that appeares at least twice. Trim
the tree in a way that each leaf is labelled with a such final configuration.
Formally, let

t0 = {x ∈ t | ∃y xy ∈ W},

where W = {x ∈ t | ∃st = x, t 6= ε, `At (s) = `At (x), `At (x) ∩ F 6= ∅}, and let
(`t0 , t0) and (`At0

, t0) be the appropriate labellings.
The desired tree can be constructed by employing the following process
indefinitely. For each leaf v of t0 let pv be a node for which exists x 6= ε such

16 Bartosz Bednarczyk and Oskar Fiuk

that pvx = v and `At0
(pv) = `At0

(v), i.e. a predecessor labelled with the same
final configuration. Then replace each leaf v with a whole subtree of pv.
It is clear that all linear constraints from the I component of A are still
satisfied and on each branch an accepting state occurs infinitely many times.
Thus, a resulting tree is in L(A).

The last thing is to ensure that the procedure indeed can be implemented
in a polynomial space. But before doing so, we need to make assumptions on
encoding of SPBTA. We assume that |Q|, |Σ|, |I| ∈ O(|A|), where |I| is the
size of an encoding of I with all the coefficients encoded in binary. As stated
in Section 2 not all the variables from V(I) have to be mentioned explicitly.
And in Section 5 we defined N to be the number of constraints in the I, hence
N = O(|A|), and C to be the minimal absolute bound on the coefficients from
I, thus logC = O(|A|).

The algorithm needs the 2|Q| bits to keep the binary counters FCnt and QCnt.
For the node v = (q, `) the O(|Q| log |Q|+ |Σ| log |Σ|) = O(|A| log |A|) bits is
enough (a trivial encoding as a list of elements from each set). In the Step 3. the
algorithm needs to guess simultaneously the ≤ 2N · log (4CN) = O(|A|2) triples
(qi, `i, ni), where ni ≤ 2|Q|(N · C)2N+1, i.e. logni ≤ lognmax = O(|A|2). To
verify the consistency of guesses with the transition function of A each constraint
E from I can be checked independently and one by one. This can be done by
computing the values xS =

∑
qi⊇S ni for all xS ∈ V(E), and plugging them into

the expression, and verifying the result. Hence, the space needed for each xS is
log xS ≤ log xSmax = O(|A|2), and for the whole E:

(logC + log xSmax) · |E| ≤ O(|A|3),

where |E| is the number of coefficients in E.
Therefore, the total space can be bounded by

2|Q|+ (2N · log (4CN) + 1) · (|Q| log |Q|+ |Σ| log |Σ|+ lognmax),

which is at most O(|A|4). Thus the described procedure is in APSpace.

C Construction of a polynomial-size SPBTA
Below we give the translation of the Definition 21 into a polynomial-time proce-
dure constructing an SPBTA A = (ΣA, QA, FA, QA0 , IA) such that L(A) consists
of exactly those trees which corresponds to the correctly encoded tree-like models.

For theΣA component just take theΣ from Equation (1). Let at the beginning
QA = ∅ and IA = ∅, and then apply imperatively the following steps:

– Create a "trivial" state q> ∈ QA and add instr. −q> → q> ∈ IA.
– Create a state qσ for each σ ∈ Σ and add instr. σ → qσ, qσ → σ ∈ IA; i.e.
reading input symbols into automaton states.

– Add instr. q> → xqRoota
= 0 ∈ IA; i.e. ensure that only true tree root can be

labelled with Roota.
– Add instr. qa → qσγ(y) ∈ IA for a ∈ {Root,Child}; i.e. ensure the universal
component of the normal form.

Presburger Büchi Tree Automata with Applications to Logics 17

– Add instr. qσAi(y) →
(∑mi

j=1 λi,j ·xqσri,j(x,y)
~i δi

)
∈ IA for each ∀x Ai(x)→(∑mi

j=1 λi,j ·#
ri,j
y [>] ~i δi

)
; i.e. ensure linear constraints on successors.

– Add instr. qa → −qb ∈ IA for each a, b ∈ {Parent,Child,Self,Roota}, a 6= b;
i.e. ensure that Parent, Child, Self and Roota label disjoint set of nodes.

– Add instr. qChild → xqa = 1 ∈ IA for a ∈ {Parent,Self}; i.e. ensure that
every Child-labelled node has exactly one child with label Parent, and exactly
one child with label Self.

– Add instr. qRoota → xqSelf = 1, qRoota → xqParent = 0 ∈ IA; i.e. ensure that
Roota-labelled node has exactly one child with label Self, and no children with
label Parent.

– Add instr. qRoota → −qσψ(x,y) , qRoota → −qσψ(x) ∈ IA; i.e. ensure that root
uses only formulae with y variable.

– Add instr. ±qσa → ∓qσ−a ∈ IA for each a ∈ {U(y) : U unary symbol} ∪
{B(y, y) : B binary symbol}; i.e. ensure that every node is labelled by pre-
cisely one of qσ±U(y) and qσ±B(y,y) .

– Introduce helper states q−Roota , q−Self , q±RootOrSelf ∈ QA with a natural
semantics, i.e. ±qa → ∓q−a ∈ IA for each a ∈ {Roota,Self,RootOrSelf}, and
qRoota → qRootOrSelf , qSelf → qRootOrSelf , q−Roota∧q−Self → q−RootOrSelf ∈ IA.
Then for each

a ∈ {U(x) : U unary symbol}∪{B(x, x), B(x, y), B(y, x) : B binary symbol}

create states qMissing±a and add instr. −qσ±a → qMissing±a, qMissing+a ∧
qMissing−a → qRootOrSelf ∈ IA; i.e. extends previous point with all other
atomic formulae, unless node is labelled with Roota or Self.

– For each pair of states qσλ , qσ¬λ add instr. qσ±λ → −qσ∓λ ∈ IA; similarly
for each triple of states qσλ∧λ′ , qσλ , qσλ′ (resp. qσλ∨λ′ , qσλ , qσλ′) add instr.
qσλ ∧ qσλ′ → qσλ∧λ′ , qσλ∧λ′ → qσλ , qσλ∧λ′ → qσλ′ ∈ I

A (resp. qσ¬λ ∧ qσ¬λ′ →
qσ¬(λ∨λ′) , qσλ → qσλ∨λ′ , qσλ′ → qσλ∨λ′ ∈ I

A); i.e. consistency checking.
– Add instr. ql∧qσ±λ(y) → x{qσ±λ(x) ,ql′}

= xql′ for each l ∈ {Roota,Child}, and
l′ ∈ {Child,Self}; i.e. copy information about unary predicates to all children
and a self-copy.

– Add instr. ql ∧ qσ±Λ → x{qσ±Λ′ ,qSelf} = xqSelf for each l ∈ {Roota,Child} and
(Λ,Λ′) ∈ {(λ(y), λ(y)), (λ(y, y), λ(x, y))}; i.e. copy information about unary
predicates and unravelled loops to a self-copy.

– Add instr. qChild ∧ qσ±λ(x,y) → x{qσ±λ(y,x) ,qParent} = xqParent ; i.e. copy infor-
mation to parent-copy, but with swapped variables x and y.

Finally, set initial configuration Q0 = {qRoota} and accepting states F = {q>}.

	Presburger Büchi Tree Automata with Applications to Logics with Expressive Counting

