

Dr. Hannes Strass

M.A. Jonas Karge

Knowledge Representation and Reasoning

Winter 2024 Term Exercises 5

02-06/12/2024

Problem 1.

We say that an atomic role \mathcal{R} is satisfiable w.r.t. a TBox \mathcal{T} if there exists a model \mathcal{I} of \mathcal{T} such that $\mathcal{R}^{\mathcal{I}} \neq \emptyset$. rite down the following:

- 1. Write a satisfiable $\mathcal{ALC} TBox$ such that Role \mathcal{R} is unsatisfiable w.r.t. \mathcal{T} . An unsatisfiable \mathcal{ALC} -knowledge base \mathcal{K} whose TBox is satisfiable and whose ABox contains only role assertions.
- 2. Reduce the problem of checking satisfiability of an atomic role w.r.t. an ALC T-Box such that role R is unsatisfiable w.r.t. T

Problem 2.

Consider the following interpretation of three coffee places and some beverages they offer:

Do the following:

1. Formalize the queries 1-3 in the language of conjunctive queries.

Query1: All beverages offered by some coffee place.

Query2: All beverages offered by FeelGood and Nice & Good.

Query3: The coffee place that offers cappuccino.

- 2. Provide the answers to those queries given the interpretations above.
- 3. Construct two additional queries: one that yields {*FeelGood*, *Nice&Good*} as the only answers and one that yields {*PlainCoffee*, *PumpkinSpiceLatte*, *MangoJuice*} as the only answers.

Problem 3.

Consider the following TBox \mathcal{T} :

 $\exists hasFather. \top \sqsubseteq Person$ $\exists hasFather^-. \top \sqsubseteq Person$ $Person \sqsubseteq \exists hasFather$

Consider also the following ABox A:

 $\mathcal{A} = \{Person(John), Person(Nick), Person(Toni), hasFather(John, Nick), hasFather(Nick, Toni)\}$

Provide the certain answers to the following queries:

 $q_1(x,y)$ hasFather(x,y)

- $q_2(x) \exists y.hasFather(x,y)$
- $q_3(x) \exists y_1, y_2, y_3.hasFather(x, y_1) \land hasFather(y_1, y_2) \land hasFather(y_2, y_3)$
- $q_4(x, y_3) \exists y_1, y_2$.hasFather $(x, y_1) \land$ hasFather $(y_1, y_2) \land$ hasFather (y_2, y_3)