PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

Lecture 6+7 ASP II * slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 25th Nov, 3rd Dec 2019
Agenda

1. Introduction
2. Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
3. Local Search, Stochastic Hill Climbing, Simulated Annealing
4. Tabu Search
5. Answer-set Programming (ASP)
6. Constraint Satisfaction (CSP)
7. Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8. Evolutionary Algorithms/ Genetic Algorithms
Overview ASP II

- Modeling
 1. Basic Modeling
 2. Methodology

- Language
 3. Motivation
 4. Core language
 5. Extended language

- Language Extensions
 6. Two kinds of negation
 7. Disjunctive logic programs

- Computational Aspects
 9. Complexity
Modeling: Overview

1. Basic Modeling
2. Methodology
Outline

1. Basic Modeling
2. Methodology
Modeling and Interpreting

Modeling

Problem

Logic Program

Interpreting

Solution

Stable Models

Solving
Modeling

- For solving a problem class C for a problem instance I, encode
 1. the problem instance I as a set P_I of facts and
 2. the problem class C as a set P_C of rules
such that the solutions to C for I can be (polynomially) extracted from the stable models of $P_I \cup P_C$

- P_I is (still) called problem instance
- P_C is often called the problem encoding

- An encoding P_C is uniform, if it can be used to solve all its problem instances
 That is, P_C encodes the solutions to C for any set P_I of facts
Outline

1. Basic Modeling
2. Methodology
Basic methodology

Methodology

Generate and Test (or: Guess and Check)

| Generator | Generate potential stable model candidates
| | (typically through non-deterministic constructs) |
| Tester | Eliminate invalid candidates
| | (typically through integrity constraints) |
Basic methodology

Methodology

Generate and Test (or: *Guess and Check*)

Generator
Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester
Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)
Outline

1. Basic Modeling

2. Methodology
 - Satisfiability
 - Queens
 - Traveling Salesperson
Satisfiability testing

- **Problem Instance**: A propositional formula \(\phi \) in CNF
- **Problem Class**: Is there an assignment of propositional variables to true and false such that a given formula \(\phi \) is true

Example: Consider formula \((a \lor \neg b) \land (\neg a \lor b)\)

Logic Program:

\[
\begin{align*}
\{a, b\} & \leftarrow \text{not } a, \text{not } b \\
X_1 & = \{a, b\} \\
X_2 & = \{\}
\end{align*}
\]
Satisfiability testing

- **Problem Instance**: A propositional formula ϕ in CNF
- **Problem Class**: Is there an assignment of propositional variables to true and false such that a given formula ϕ is true

- **Example**: Consider formula

 \[(a \lor \neg b) \land (\neg a \lor b)\]

- **Logic Program**:

 Generator: $\{a, b\}$

 Tester:
 - $\leftarrow \text{not } a, b$
 - $\leftarrow a, \text{not } b$

 Stable models:
 - $X_1 = \{a, b\}$
 - $X_2 = \{\}$
Satisfiability testing

- **Problem Instance:** A propositional formula \(\phi \) in CNF
- **Problem Class:** Is there an assignment of propositional variables to true and false such that a given formula \(\phi \) is true

- **Example:** Consider formula

\[
(a \lor \neg b) \land (\neg a \lor b)
\]

- **Logic Program:**

 \[
 \text{Generator} \quad \{ a, b \} \quad \leftarrow \\
 \text{Tester} \quad \leftarrow \not a, b \\
 \quad \leftarrow a, \not b \\
 \text{Stable models} \\
 X_1 = \{ a, b \} \\
 X_2 = \{ \}
 \]
Satisfiability testing

- **Problem Instance:** A propositional formula ϕ in CNF
- **Problem Class:** Is there an assignment of propositional variables to true and false such that a given formula ϕ is true

- **Example:** Consider formula

 \[(a \lor \neg b) \land (\neg a \lor b)\]

- **Logic Program:**

 Generator

 \[
 \begin{align*}
 \{ a, b \} & \leftarrow \\
 \end{align*}
 \]

 Tester

 \[
 \begin{align*}
 & \leftarrow \text{not } a, b \\
 & \leftarrow a, \text{not } b \\
 \end{align*}
 \]

 Stable models

 \[
 \begin{align*}
 X_1 & = \{ a, b \} \\
 X_2 & = \{ \} \\
 \end{align*}
 \]
Satisfiability testing

- **Problem Instance:** A propositional formula ϕ in CNF
- **Problem Class:** Is there an assignment of propositional variables to true and false such that a given formula ϕ is true

- **Example:** Consider formula

 $$(a \lor \neg b) \land (\neg a \lor b)$$

- **Logic Program:**

 \[
 \begin{array}{c}
 \text{Generator} \\
 \{ a, b \} \leftarrow \\
 \end{array} \quad \begin{array}{c}
 \text{Tester} \\
 \leftarrow \not a, b \\
 \leftarrow a, \not b \\
 \end{array} \quad \begin{array}{c}
 \text{Stable models} \\
 X_1 = \{ a, b \} \\
 X_2 = \{ \} \\
 \end{array}
 \]
Outline

1. Basic Modeling

2. Methodology
 - Satisfiability
 - Queens
 - Traveling Salesperson
The n-Queens Problem

- Place n queens on an $n \times n$ chessboard
- Queens must not attack one another
Defining the Field

- Create file `queens.lp`
- Define the field
 - n rows
 - n columns

```lp
row(1..n).
col(1..n).
```
Defining the Field

Running ...

```
$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \ncol(1) col(2) col(3) col(4) col(5)
SATISFIABLE

Models : 1
Time   : 0.000
  Prepare : 0.000
  Prepro. : 0.000
  Solving : 0.000
```
Guess a solution candidate
by placing some queens on the board
Placing some Queens

Running ...

$ gringo queens.lp --const n=5 | clasp 3
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(1,1)
Answer: 3
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(2,1)
SATISFIABLE

Models : 3+
...

TU Dresden, 25th Nov, 3rd Dec 2019 PSSAI slide 22 of 199
Placing some Queens: Answer 1

Answer 1

```
 1 2 3 4 5
5 0 0 0 0
4 0 0 0 0
3 0 0 0 0
2 0 0 0 0
1 0 0 0 0
```
Placing some Queens: Answer 2

Answer 2

1 2 3 4 5

 TU Dresden, 25th Nov, 3rd Dec 2019 PSSAI
Placing some Queens: Answer 3

Answer 3

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
Placing \(n \) Queens

\[
\text{queens.lp}
\]

\begin{verbatim}
row(1..n).
col(1..n).
\{ queen(I,J) : row(I), col(J) \}.
:- not n \{ queen(I,J) \} n.
\end{verbatim}

- Place exactly \(n \) queens on the board
Running ...

```
$ gringo queens.lp --const n=5 | clasp 2
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
...```

Placing $n$ Queens
Placing $n$ Queens: Answer 1

Answer 1

- Place 5 queens on the board as shown.
Placing $n$ Queens: Answer 2
Horizontal and Vertical Attack

queens.lp

\begin{verbatim}
row(1..n).
col(1..n).
\{ queen(I,J) : row(I), col(J) \}.
:- not n \{ queen(I,J) \} n.
:- queen(I,J), queen(I,J'), J != J'.
\end{verbatim}

- Forbid horizontal attacks
Horizontal and Vertical Attack

**queens.lp**

```prolog
row(1..n).
col(1..n).
\{ \text{queen}(I,J) : \text{row}(I), \text{col}(J) \}.
:- not n \{ \text{queen}(I,J) \} n.
:- \text{queen}(I,J), \text{queen}(I,J'), J \neq J'.
:- \text{queen}(I,J), \text{queen}(I',J), I \neq I'.
```

- Forbid horizontal attacks
- Forbid vertical attacks
Horizontal and Vertical Attack

Running ...

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \ncol(1) col(2) col(3) col(4) col(5) \nqueen(5,5) queen(4,4) queen(3,3) \nqueen(2,2) queen(1,1)
...
Horizonal and Vertical Attack: Answer 1

Answer 1

TU Dresden, 25th Nov, 3rd Dec 2019
Forbid diagonal attacks
Diagonal Attack

Running ...

```
$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \ncol(1) col(2) col(3) col(4) col(5) \nqueen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)
SATISFIABLE

Models : 1+
Time : 0.000
 Prepare : 0.000
 Prepro. : 0.000
 Solving : 0.000
```
Diagonal Attack: Answer 1

Answer 1

 TU Dresden, 25th Nov, 3rd Dec 2019  
PSSAI  
slide 36 of 199
Optimizing

queen-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.
1 { queen(1..n,J) } 1 :- J = 1..n.
:- 2 { queen(D-J,J) }, D = 2..2*n.
:- 2 { queen(D+J,J) }, D = 1-n..n-1.

- Encoding can be optimized
- Much faster to solve
And sometimes it rocks

$ clingo -c n=5000 queens-opt-diag.lp -config=jumpy -q -stats=3
clingo version 4.1.0
Solving...
SATISFIABLE

Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s

Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)
   Binary : 0 (Ratio: 0.00%)
   Ternary : 0 (Ratio: 0.00%)
   Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
   Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
   Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
   Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
   Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

TU Dresden, 25th Nov, 3rd Dec 2019  PSSAI slide 38 of 199
Outline

1 Basic Modeling

2 Methodology
   - Satisfiability
   - Queens
   - Traveling Salesperson
Traveling Salesperson
Traveling Salesperson

node (1..6).

edge (1, (2; 3; 4)). edge (2, (4; 5; 6)). edge (3, (1; 4; 5)).
edge (4, (1; 2)). edge (5, (3; 4; 6)). edge (6, (2; 3; 5)).
Traveling Salesperson

node(1..6).

dge(1, (2;3;4)).  edge(2, (4;5;6)).  edge(3, (1;4;5)).
dge(4, (1;2)).  edge(5, (3;4;6)).  edge(6, (2;3;5)).

cost(1,2,2).  cost(1,3,3).  cost(1,4,1).
cost(2,4,2).  cost(2,5,2).  cost(2,6,4).
cost(3,1,3).  cost(3,4,2).  cost(3,5,2).
cost(4,1,1).  cost(4,2,2).
cost(5,3,2).  cost(5,4,2).  cost(5,6,1).
cost(6,2,4).  cost(6,3,3).  cost(6,5,1).
Traveling Salesperson

node(1..6).

cost(1,2,2).  cost(1,3,3).  cost(1,4,1).
cost(2,4,2).  cost(2,5,2).  cost(2,6,4).
cost(3,1,3).  cost(3,4,2).  cost(3,5,2).
cost(4,1,1).  cost(4,2,2).
cost(5,3,2).  cost(5,4,2).  cost(5,6,1).
cost(6,2,4).  cost(6,3,3).  cost(6,5,1).

edge(X,Y) :- cost(X,Y,_).
Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
:- node(Y), not reached(Y).
#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
Traveling Salesperson

\[
1 \{ \text{cycle}(X, Y) : \text{edge}(X, Y) \} 1 :: \text{node}(X).
1 \{ \text{cycle}(X, Y) : \text{edge}(X, Y) \} 1 :: \text{node}(Y).
\]

\[
\text{reached}(Y) :: \text{cycle}(1, Y).
\text{reached}(Y) :: \text{cycle}(X, Y), \text{reached}(X).
\]
Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).
Traveling Salesperson

1 \{ \text{cycle}(X,Y) : \text{edge}(X,Y) \} \ 1 :- \ \text{node}(X).\n1 \{ \text{cycle}(X,Y) : \text{edge}(X,Y) \} \ 1 :- \ \text{node}(Y).\n
\text{reached}(Y) :- \ \text{cycle}(1,Y).\n\text{reached}(Y) :- \ \text{cycle}(X,Y), \ \text{reached}(X).\n
:- \ \text{node}(Y), \ \text{not} \ \text{reached}(Y).\n
\#\text{minimize} \{ \ C,X,Y : \text{cycle}(X,Y), \ \text{cost}(X,Y,C) \}.\n
Language: Overview

3 Motivation
4 Core language
5 Extended language
Outline

3 Motivation

4 Core language

5 Extended language
Basic language extensions

- The expressiveness of a language can be enhanced by introducing new constructs
- To this end, we must address the following issues:
  - What is the syntax of the new language construct?
  - What is the semantics of the new language construct?
  - How to implement the new language construct?
The expressiveness of a language can be enhanced by introducing new constructs.

To this end, we must address the following issues:

- What is the syntax of the new language construct?
- What is the semantics of the new language construct?
- How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the new constructs, e.g. classical negation.
Basic language extensions

- The expressiveness of a language can be enhanced by introducing new constructs.
- To this end, we must address the following issues:
  - What is the syntax of the new language construct?
  - What is the semantics of the new language construct?
  - How to implement the new language construct?
- A way of providing semantics is to furnish a translation removing the new constructs, eg. classical negation.
- This translation might also be used for implementing the language extension.
Outline

3 Motivation

4 Core language
   - Integrity constraint
   - Choice rule
   - Cardinality rule
   - Weight rule

5 Extended language
   - Conditional literal
   - Optimization statement
Integrity constraint

- **Idea** Eliminate unwanted solution candidates
- **Syntax** An integrity constraint is of the form

\[ \leftarrow a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \]

where \(0 \leq m \leq n\) and each \(a_i\) is an atom for \(1 \leq i \leq n\)

- **Example**

\[ :- \text{edge}(3,7), \text{color}(3,\text{red}), \text{color}(7,\text{red}). \]
Integrity constraint

- **Idea** Eliminate unwanted solution candidates
- **Syntax** An *integrity constraint* is of the form

\[
\leftarrow a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n
\]

where \(0 \leq m \leq n\) and each \(a_i\) is an atom for \(1 \leq i \leq n\)

- **Example**

\[
\begin{aligned}
\text{:- edge(3,7), color(3,red), color(7,red).}
\end{aligned}
\]

- **Embedding** The above integrity constraint can be turned into the normal rule

\[
x \leftarrow a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n, \text{not } x
\]

where \(x\) is a new symbol, that is, \(x \notin A\).
Outline

3 Motivation

4 Core language
   - Integrity constraint
   - Choice rule
   - Cardinality rule
   - Weight rule

5 Extended language
   - Conditional literal
   - Optimization statement
Choice rule

- **Idea** Choices over subsets
- **Syntax** A choice rule is of the form

\[
\{a_1, \ldots, a_m\} \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o
\]

where \(0 \leq m \leq n \leq o\) and each \(a_i\) is an atom for \(1 \leq i \leq o\)
Choice rule

- **Idea** Choices over subsets
- **Syntax** A choice rule is of the form
  \[
  \{a_1, \ldots, a_m\} \leftarrow a_{m+1}, \ldots, a_n, not\ a_{n+1}, \ldots, not\ a_o
  \]
  where \(0 \leq m \leq n \leq o\) and each \(a_i\) is an atom for \(1 \leq i \leq o\)
- **Informal meaning** If the body is satisfied by the stable model at hand, then any subset of \(\{a_1, \ldots, a_m\}\) can be included in the stable model
Choice rule

- **Idea** Choices over subsets
- **Syntax** A choice rule is of the form

\[
\{ a_1, \ldots, a_m \} \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o
\]

where \(0 \leq m \leq n \leq o\) and each \(a_i\) is an atom for \(1 \leq i \leq o\)

- **Informal meaning** If the body is satisfied by the stable model at hand, then any subset of \(\{ a_1, \ldots, a_m \}\) can be included in the stable model

- **Example**

\[
\{ \text{buy(pizza)}; \text{buy(wine)}; \text{buy(corn)} \} \leftarrow \text{at(grocery)}.
\]
Choice rule

- Idea: Choices over subsets
- Syntax: A choice rule is of the form

\[ \{a_1, \ldots, a_m\} \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o \]

where \(0 \leq m \leq n \leq o\) and each \(a_i\) is an atom for \(1 \leq i \leq o\).

- Informal meaning: If the body is satisfied by the stable model at hand, then any subset of \(\{a_1, \ldots, a_m\}\) can be included in the stable model.

- Example:

\[ \{ \text{buy(pizza)}; \text{buy(wine)}; \text{buy(corn)} \} \leftarrow \text{at(grocery)}. \]

- Another Example: \(P = \{\{a\} \leftarrow b, b \leftarrow\}\) has two stable models: \(\{b\}\) and \(\{a, b\}\).
Embedding in normal rules

- A choice rule of form

\[ \{a_1, \ldots, a_m\} \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o \]

can be translated into \(2m + 1\) normal rules

\[
\begin{align*}
b & \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o \\
a_1 & \leftarrow b, \text{not } a'_1 \ldots a_m \leftarrow b, \text{not } a'_m \\
a'_1 & \leftarrow \text{not } a_1 \ldots a'_m \leftarrow \text{not } a_m
\end{align*}
\]

by introducing new atoms \(b, a'_1, \ldots, a'_m\).
Embedding in normal rules

- A choice rule of form

\[ \{a_1, \ldots, a_m\} \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o \]

can be translated into \(2m + 1\) normal rules

\[
\begin{align*}
  b &\leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o \\
  a_1 &\leftarrow b, \text{not } a'_1 \quad \ldots \quad a_m &\leftarrow b, \text{not } a'_m \\
  a'_1 &\leftarrow \text{not } a_1 \quad \ldots \quad a'_m &\leftarrow \text{not } a_m
\end{align*}
\]

by introducing new atoms \(b, a'_1, \ldots, a'_m\).
Embedding in normal rules

- A choice rule of form

\[
\{a_1, \ldots, a_m\} \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o
\]

can be translated into \(2m + 1\) normal rules

\[
b \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o
\]

\[
a_1 \leftarrow b, \text{not } a'_1 \ldots a_m \leftarrow b, \text{not } a'_m
\]

\[
a'_1 \leftarrow \text{not } a_1 \ldots a'_m \leftarrow \text{not } a_m
\]

by introducing new atoms \(b, a'_1, \ldots, a'_m\).
Outlook

3 Motivation

4 Core language
   - Integrity constraint
   - Choice rule
   - **Cardinality rule**
   - Weight rule

5 Extended language
   - Conditional literal
   - Optimization statement
Cardinality rule

- **Idea** Control (lower) cardinality of subsets
- **Syntax** A cardinality rule is the form

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \]

where \(0 \leq m \leq n\) and each \(a_i\) is an atom for \(1 \leq i \leq n\); 
\(l\) is a non-negative integer.
Cardinality rule

- **Idea** Control (lower) cardinality of subsets
- **Syntax** A cardinality rule is the form

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \]

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom for \( 1 \leq i \leq n \);
\( l \) is a non-negative integer.

- **Informal meaning** The head atom belongs to the stable model, if at least \( l \) elements of the body are included in the stable model
- **Note** \( l \) acts as a lower bound on the body
Cardinality rule

- **Idea** Control (lower) cardinality of subsets
- **Syntax** A cardinality rule is the form

\[
a_0 \leftarrow l \{ \ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \ \}
\]

where \(0 \leq m \leq n\) and each \(a_i\) is an atom for \(1 \leq i \leq n\);
\(l\) is a non-negative integer.

- **Informal meaning** The head atom belongs to the stable model, if at least \(l\) elements of the body are included in the stable model
- **Note** \(l\) acts as a lower bound on the body

- **Example**
  \[
pass(c42) :- 2 \{ \ pass(a1); \ pass(a2); \ pass(a3) \ }.
\]
Cardinality rule

- **Idea** Control (lower) cardinality of subsets
- **Syntax** A cardinality rule is the form

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \]

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom for \( 1 \leq i \leq n \);
\( l \) is a non-negative integer.

- **Informal meaning** The head atom belongs to the stable model, if at least \( l \) elements of the body are included in the stable model

- **Note** \( l \) acts as a lower bound on the body

- **Example**
  \[
  \text{pass(c42)} : - 2 \{ \text{pass(a1)}; \text{pass(a2)}; \text{pass(a3)} \}. 
  \]

- **Another Example** \( P = \{ a \leftarrow 1\{b, c\}, \ b \leftarrow \} \) has stable model \( \{a, b\} \)
Embedding in normal rules

- Replace each cardinality rule

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \]

by \[ a_0 \leftarrow \text{ctr}(1, l) \]

where atom \( \text{ctr}(i, j) \) represents the fact that at least \( j \) of the literals having an equal or greater index than \( i \), are in a stable model.
Embedding in normal rules

- Replace each cardinality rule

\[
a_0 \leftarrow l \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n\}
\]

by

\[
a_0 \leftarrow \text{ctr}(1, l)
\]

where atom \(\text{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable model

- The definition of \(\text{ctr}/2\) is given for \(0 \leq k \leq l\) by the rules

\[
\begin{align*}
\text{ctr}(i, k+1) & \leftarrow \text{ctr}(i + 1, k), a_i \\
\text{ctr}(i, k) & \leftarrow \text{ctr}(i + 1, k) & \text{for } 1 \leq i \leq m \\
\text{ctr}(j, k+1) & \leftarrow \text{ctr}(j + 1, k), \text{not } a_j \\
\text{ctr}(j, k) & \leftarrow \text{ctr}(j + 1, k) & \text{for } m + 1 \leq j \leq n \\
\text{ctr}(n + 1, 0) & \leftarrow
\end{align*}
\]
Embedding in normal rules

- Replace each cardinality rule

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n \} \]

by \[ a_0 \leftarrow ctr(1, l) \]

where atom \( ctr(i, j) \) represents the fact that at least \( j \) of the literals having an equal or greater index than \( i \), are in a stable model.

- The definition of \( ctr/2 \) is given for \( 0 \leq k \leq l \) by the rules

\[
\begin{align*}
ctr(i, k+1) & \leftarrow ctr(i + 1, k), a_i \\
ctr(i, k) & \leftarrow ctr(i + 1, k) & \text{for } 1 \leq i \leq m \\
ctr(j, k+1) & \leftarrow ctr(j + 1, k), not \ a_j \\
ctr(j, k) & \leftarrow ctr(j + 1, k) & \text{for } m + 1 \leq j \leq n \\
ctr(n + 1, 0) & \leftarrow
\end{align*}
\]
Embedding in normal rules

- Replace each cardinality rule

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \]

by

\[ a_0 \leftarrow \text{ctr}(1, l) \]

where atom \( \text{ctr}(i, j) \) represents the fact that at least \( j \) of the literals having an equal or greater index than \( i \), are in a stable model.

- The definition of \( \text{ctr}/2 \) is given for \( 0 \leq k \leq l \) by the rules

\[
\begin{align*}
\text{ctr}(i, k+1) & \leftarrow \text{ctr}(i + 1, k), a_i & \quad \text{for } 1 \leq i \leq m \\
\text{ctr}(i, k) & \leftarrow \text{ctr}(i + 1, k) & \\
\text{ctr}(j, k+1) & \leftarrow \text{ctr}(j + 1, k), \text{not } a_j & \quad \text{for } m + 1 \leq j \leq n \\
\text{ctr}(j, k) & \leftarrow \text{ctr}(j + 1, k) & \\
\text{ctr}(n + 1, 0) & \leftarrow \\
\end{align*}
\]
Embedding in normal rules

- Replace each cardinality rule

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n \} \]

by \[ a_0 \leftarrow ctr(1, l) \]

where atom \( ctr(i, j) \) represents the fact that at least \( j \) of the literals having an equal or greater index than \( i \), are in a stable model

- The definition of \( ctr/2 \) is given for \( 0 \leq k \leq l \) by the rules

\[
\begin{align*}
ctr(i, k+1) & \leftarrow ctr(i + 1, k), a_i \\
ctr(i, k) & \leftarrow ctr(i + 1, k) & \text{for } 1 \leq i \leq m \\
ctr(j, k+1) & \leftarrow ctr(j + 1, k), not \ a_j \\
ctr(j, k) & \leftarrow ctr(j + 1, k) & \text{for } m + 1 \leq j \leq n \\
ctr(n + 1, 0) & \leftarrow \\
\end{align*}
\]
Embedding in normal rules

- Replace each cardinality rule

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \]

by

\[ a_0 \leftarrow ctr(1, l) \]

where atom \( ctr(i, j) \) represents the fact that at least \( j \) of the literals having an equal or greater index than \( i \), are in a stable model

- The definition of \( ctr/2 \) is given for \( 0 \leq k \leq l \) by the rules

\[
\begin{align*}
ctr(i, k+1) & \leftarrow ctr(i + 1, k), a_i \\
ctr(i, k) & \leftarrow ctr(i + 1, k) \\
ctr(j, k+1) & \leftarrow ctr(j + 1, k), \text{not } a_j \\
ctr(j, k) & \leftarrow ctr(j + 1, k) \\
ctr(n + 1, 0) & \leftarrow \\
\end{align*}
\]

for \( 1 \leq i \leq m \)

for \( m + 1 \leq j \leq n \)
Embedding in normal rules

- Replace each cardinality rule

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \not a_{m+1}, \ldots, \not a_n \} \]

by \[ a_0 \leftarrow ctr(1, l) \]

where atom \( ctr(i, j) \) represents the fact that at least \( j \) of the literals having an equal or greater index than \( i \), are in a stable model

- The definition of \( ctr/2 \) is given for \( 0 \leq k \leq l \) by the rules

\[
\begin{align*}
ctr(i, k+1) & \leftarrow ctr(i + 1, k), a_i \\
ctr(i, k) & \leftarrow ctr(i + 1, k) & \text{for } 1 \leq i \leq m \\
ctr(j, k+1) & \leftarrow ctr(j + 1, k), \not a_j \\
ctr(j, k) & \leftarrow ctr(j + 1, k) & \text{for } m + 1 \leq j \leq n \\
ctr(n + 1, 0) & \leftarrow \\
\end{align*}
\]
An example

- Program \( \{ a \leftarrow, c \leftarrow 1 \{a, b\} \} \) has the stable model \( \{a, c\} \)
An example

- Program \{ a \leftarrow, c \leftarrow 1 \{a, b\}\} has the stable model \{a, c\}

- Translating the cardinality rule yields the rules

\[
\begin{align*}
    a & \leftarrow \\
    c & \leftarrow \text{ctr}(1, 1) \\
    \text{ctr}(1, 2) & \leftarrow \text{ctr}(2, 1), a \\
    \text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 1) \\
    \text{ctr}(2, 2) & \leftarrow \text{ctr}(3, 1), b \\
    \text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 1) \\
    \text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 0), a \\
    \text{ctr}(1, 0) & \leftarrow \text{ctr}(2, 0) \\
    \text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 0), b \\
    \text{ctr}(2, 0) & \leftarrow \text{ctr}(3, 0) \\
    \text{ctr}(3, 0) & \leftarrow
\end{align*}
\]

having stable model \{a, \text{ctr}(3, 0), \text{ctr}(2, 0), \text{ctr}(1, 0), \text{ctr}(1, 1), c\}
An example

- Program \{a ←, c ← 1 \{a, b\}\} has the stable model \{a, c\}
- Translating the cardinality rule yields the rules

\[
\begin{align*}
a & \leftarrow \\
c & \leftarrow \text{ctr}(1, 1) \\
\text{ctr}(1, 2) & \leftarrow \text{ctr}(2, 1), a \\
\text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 1) \\
\text{ctr}(2, 2) & \leftarrow \text{ctr}(3, 1), b \\
\text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 1) \\
\text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 0), a \\
\text{ctr}(1, 0) & \leftarrow \text{ctr}(2, 0) \\
\text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 0), b \\
\text{ctr}(2, 0) & \leftarrow \text{ctr}(3, 0) \\
\text{ctr}(3, 0) & \leftarrow \\
\end{align*}
\]

having stable model \{a, \text{ctr}(3, 0), \text{ctr}(2, 0), \text{ctr}(1, 0), \text{ctr}(1, 1), c\}
An example

- Program \( \{ a \leftarrow, c \leftarrow 1 \{a, b\}\} \) has the stable model \( \{a, c\} \)
- Translating the cardinality rule yields the rules

\[
\begin{align*}
  a & \leftarrow \\
  c & \leftarrow ctr(1, 1) \\
  ctr(1, 2) & \leftarrow ctr(2, 1) \\
  ctr(1, 1) & \leftarrow ctr(2, 1) \\
  ctr(2, 2) & \leftarrow ctr(3, 1) \\
  ctr(2, 1) & \leftarrow ctr(3, 1) \\
  ctr(1, 1) & \leftarrow ctr(2, 0) \\
  ctr(1, 0) & \leftarrow ctr(2, 0) \\
  ctr(2, 1) & \leftarrow ctr(3, 0) \\
  ctr(2, 0) & \leftarrow ctr(3, 0) \\
  ctr(3, 0) & \leftarrow \\
\end{align*}
\]

having stable model \( \{a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c\} \)
An example

- Program \( \{ a \leftarrow, \ c \leftarrow \ 1 \ \{a, b\}\} \) has the stable model \( \{a, c\}\)
- Translating the cardinality rule yields the rules

\[
\begin{align*}
  a & \leftarrow \\
  c & \leftarrow \ \text{ctr}(1, 1) \\
  \text{ctr}(1, 2) & \leftarrow \ \text{ctr}(2, 1), a \\
  \text{ctr}(1, 1) & \leftarrow \ \text{ctr}(2, 1) \\
  \text{ctr}(2, 2) & \leftarrow \ \text{ctr}(3, 1), b \\
  \text{ctr}(2, 1) & \leftarrow \ \text{ctr}(3, 1) \\
  \text{ctr}(1, 1) & \leftarrow \ \text{ctr}(2, 0), a \\
  \text{ctr}(1, 0) & \leftarrow \ \text{ctr}(2, 0) \\
  \text{ctr}(2, 1) & \leftarrow \ \text{ctr}(3, 0), b \\
  \text{ctr}(2, 0) & \leftarrow \ \text{ctr}(3, 0) \\
  \text{ctr}(3, 0) & \leftarrow \\
\end{align*}
\]

having stable model \( \{a, \ \text{ctr}(3, 0), \ \text{ctr}(2, 0), \ \text{ctr}(1, 0), \ \text{ctr}(1, 1), c\}\)
An example

- Program \( \{ a \leftarrow, \ c \leftarrow 1 \ \{a, b\} \} \) has the stable model \( \{a, c\} \)
- Translating the cardinality rule yields the rules

\[
\begin{align*}
a & \leftarrow \\
c & \leftarrow \text{ctr}(1, 1) \\
\text{ctr}(1, 2) & \leftarrow \text{ctr}(2, 1), a \\
\text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 1) \\
\text{ctr}(2, 2) & \leftarrow \text{ctr}(3, 1), b \\
\text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 1) \\
\text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 0), a \\
\text{ctr}(1, 0) & \leftarrow \text{ctr}(2, 0) \\
\text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 0), b \\
\text{ctr}(2, 0) & \leftarrow \text{ctr}(3, 0) \\
\text{ctr}(3, 0) & \leftarrow
\end{align*}
\]

having stable model \( \{a, \text{ctr}(3, 0), \text{ctr}(2, 0), \text{ctr}(1, 0), \text{ctr}(1, 1), c\} \)
An example

- Program \( \{a \leftarrow, c \leftarrow 1 \{a, b\}\} \) has the stable model \( \{a, c\} \)
- Translating the cardinality rule yields the rules

\[
\begin{align*}
a & \leftarrow \\
c & \leftarrow \text{ctr}(1, 1) \\
\text{ctr}(1, 2) & \leftarrow \text{ctr}(2, 1), a \\
\text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 1) \\
\text{ctr}(2, 2) & \leftarrow \text{ctr}(3, 1), b \\
\text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 1) \\
\text{ctr}(1, 1) & \leftarrow \text{ctr}(2, 0), a \\
\text{ctr}(1, 0) & \leftarrow \text{ctr}(2, 0) \\
\text{ctr}(2, 1) & \leftarrow \text{ctr}(3, 0), b \\
\text{ctr}(2, 0) & \leftarrow \text{ctr}(3, 0) \\
\text{ctr}(3, 0) & \leftarrow \\
\end{align*}
\]

having stable model \( \{a, \text{ctr}(3, 0), \text{ctr}(2, 0), \text{ctr}(1, 0), \text{ctr}(1, 1), c\} \)
... and vice versa

• A normal rule

\[
a_0 \leftarrow a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n
\]

can be represented by the cardinality rule

\[
a_0 \leftarrow n \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n\}
\]
Cardinality rules with upper bounds

- A rule of the form

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} u \]  

(1)

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom for \( 1 \leq i \leq n \); 
\( l \) and \( u \) are non-negative integers.
Cardinality rules with upper bounds

- A rule of the form

\[
a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} u
\]

where \(0 \leq m \leq n\) and each \(a_i\) is an atom for \(1 \leq i \leq n\);
\(l\) and \(u\) are non-negative integers

stands for

\[
\begin{align*}
a_0 & \leftarrow b, \text{not } c \\
b & \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \\
c & \leftarrow u+1 \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \}
\end{align*}
\]

where \(b\) and \(c\) are new symbols
Cardinality rules with upper bounds

- A rule of the form

\[ a_0 \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \ u \]  

(1)

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom for \( 1 \leq i \leq n \);
\( l \) and \( u \) are non-negative integers

stands for

\[
\begin{align*}
a_0 & \leftarrow b, \text{not } c \\
b & \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \\
c & \leftarrow u+1 \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \}
\end{align*}
\]

where \( b \) and \( c \) are new symbols

- Note The single constraint in the body of the cardinality rule (1) is referred to as a cardinality constraint
Cardinality constraints

- **Syntax** A cardinality constraint is of the form

\[ l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} u \]

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom for \( 1 \leq i \leq n \);
\( l \) and \( u \) are non-negative integers.
Cardinality constraints

- **Syntax** A cardinality constraint is of the form

  \[ l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} u \]

  where \( 0 \leq m \leq n \) and each \( a_i \) is an atom for \( 1 \leq i \leq n \);
  \( l \) and \( u \) are non-negative integers

- **Informal meaning** A cardinality constraint is satisfied by a stable model \( X \), if the number of its contained literals satisfied by \( X \) is between \( l \) and \( u \) (inclusive)
Cardinality constraints

- **Syntax** A cardinality constraint is of the form

\[ l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} u \]

where \(0 \leq m \leq n\) and each \(a_i\) is an atom for \(1 \leq i \leq n\); \(l\) and \(u\) are non-negative integers.

- **Informal meaning** A cardinality constraint is satisfied by a stable model \(X\), if the number of its contained literals satisfied by \(X\) is between \(l\) and \(u\) (inclusive).

- In other words, if

\[ l \leq | (\{a_1, \ldots, a_m\} \cap X) \cup (\{a_{m+1}, \ldots, a_n\} \setminus X) | \leq u \]
Cardinality constraints as heads

- A rule of the form

\[ l \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n\} \leftarrow a_{n+1}, \ldots, a_o, \text{not } a_{o+1}, \ldots, \text{not } a_p \]

where \(0 \leq m \leq n \leq o \leq p\) and each \(a_i\) is an atom for \(1 \leq i \leq p\); \(l\) and \(u\) are non-negative integers
Cardinality constraints as heads

- A rule of the form

\[
l \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n\} \ u \leftarrow a_{n+1}, \ldots, a_o, \text{not } a_{o+1}, \ldots, \text{not } a_p
\]

where \(0 \leq m \leq n \leq o \leq p\) and each \(a_i\) is an atom for \(1 \leq i \leq p\);
\(l\) and \(u\) are non-negative integers

stands for

\[
\begin{align*}
b & \leftarrow a_{n+1}, \ldots, a_o, \text{not } a_{o+1}, \ldots, \text{not } a_p \\
\{a_1, \ldots, a_m\} & \leftarrow b \\
c & \leftarrow l \{a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n\} \ u \\
& \leftarrow b, \text{not } c
\end{align*}
\]

where \(b\) and \(c\) are new symbols
Cardinality constraints as heads

- A rule of the form

\[
\begin{align*}
  l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} & \quad u \leftarrow a_{n+1}, \ldots, a_o, \text{not } a_{o+1}, \ldots, \text{not } a_p \\
\end{align*}
\]

where \(0 \leq m \leq n \leq o \leq p\) and each \(a_i\) is an atom for \(1 \leq i \leq p\); \(l\) and \(u\) are non-negative integers stands for

\[
\begin{align*}
  b & \leftarrow a_{n+1}, \ldots, a_o, \text{not } a_{o+1}, \ldots, \text{not } a_p \\
  \{ a_1, \ldots, a_m \} & \leftarrow b \\
  c & \leftarrow l \{ a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n \} \quad u \\
 & \leftarrow b, \text{not } c
\end{align*}
\]

where \(b\) and \(c\) are new symbols

- **Example**  
  \[
  l\{ \text{color(v42,red); color(v42,green); color(v42,blue)} \}l.
  \]
Outline

3  Motivation

4  Core language
   - Integrity constraint
   - Choice rule
   - Cardinality rule
   - Weight rule

5  Extended language
   - Conditional literal
   - Optimization statement
Weight rule

- **Syntax** A weight rule is the form

\[ a_0 \leftarrow l \{ \, w_1 : a_1, \ldots, w_m : a_m, w_{m+1} : not a_{m+1}, \ldots, w_n : not a_n \, \} \]

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom;
\( l \) and \( w_i \) are integers for \( 1 \leq i \leq n \)

- A weighted literal \( w_i : \ell_i \) associates each literal \( \ell_i \) with a weight \( w_i \)
Weight rule

- **Syntax** A weight rule is the form

  \[ a_0 \leftarrow l \{ w_1 : a_1, \ldots, w_m : a_m, w_{m+1} : not a_{m+1}, \ldots, w_n : not a_n \} \]

  where \( 0 \leq m \leq n \) and each \( a_i \) is an atom;
  \( l \) and \( w_i \) are integers for \( 1 \leq i \leq n \)

- **A weighted literal** \( w_i : \ell_i \) associates each literal \( \ell_i \) with a weight \( w_i \)

- **Note** A cardinality rule is a weight rule where \( w_i = 1 \) for \( 0 \leq i \leq n \)
Weight constraints

- **Syntax** A weight constraint is of the form

\[ l \{ w_1 : a_1, \ldots, w_m : a_m, w_{m+1} : not a_{m+1}, \ldots, w_n : not a_n \} u \]

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom;
\( l, u \) and \( w_i \) are integers for \( 1 \leq i \leq n \)
Weight constraints

- **Syntax** A weight constraint is of the form

  \[
  l \{ w_1 : a_1, \ldots, w_m : a_m, w_{m+1} : \text{not } a_{m+1}, \ldots, w_n : \text{not } a_n \} \leq u
  \]

  where \(0 \leq m \leq n\) and each \(a_i\) is an atom;
  \(l, u\) and \(w_i\) are integers for \(1 \leq i \leq n\)

- **Meaning** A weight constraint is satisfied by a stable model \(X\), if

  \[
  l \leq \left( \sum_{1 \leq i \leq m, a_i \in X} w_i + \sum_{m < i \leq n, a_i \not\in X} w_i \right) \leq u
  \]
Weight constraints

- **Syntax** A weight constraint is of the form

\[
 l \{ w_1 : a_1, \ldots, w_m : a_m, w_{m+1} : not a_{m+1}, \ldots, w_n : not a_n \} u
\]

where \( 0 \leq m \leq n \) and each \( a_i \) is an atom; \( l, u \) and \( w_i \) are integers for \( 1 \leq i \leq n \)

- **Meaning** A weight constraint is satisfied by a stable model \( X \), if

\[
l \leq \left( \sum_{1 \leq i \leq m, a_i \in X} w_i + \sum_{m \leq i \leq n, a_i \not\in X} w_i \right) \leq u
\]

- **Note** (Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions
Weight constraints

- **Syntax** A weight constraint is of the form

  \[ l \{ w_1 : a_1, \ldots, w_m : a_m, w_{m+1} : not \ a_{m+1}, \ldots, w_n : not \ a_n \} u \]

  where \( 0 \leq m \leq n \) and each \( a_i \) is an atom; \( l, u \) and \( w_i \) are integers for \( 1 \leq i \leq n \)

- **Meaning** A weight constraint is satisfied by a stable model \( X \), if

  \[ l \leq \left( \sum_{1 \leq i \leq m, a_i \in X} w_i + \sum_{m < i \leq n, a_i \notin X} w_i \right) \leq u \]

- **Note** (Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions

- **Example**

  10 \{ 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) \} 20
Outline

3. Motivation

4. Core language

5. Extended language
Outline

3 Motivation

4 Core language
   - Integrity constraint
   - Choice rule
   - Cardinality rule
   - Weight rule

5 Extended language
   - Conditional literal
   - Optimization statement
Conditional literals

- **Syntax** A conditional literal is of the form

  \[ \ell : \ell_1, \ldots, \ell_n \]

  where \( \ell \) and \( \ell_i \) are literals for \( 0 \leq i \leq n \)

- **Informal meaning** A conditional literal can be regarded as the list of elements in the set \( \{ \ell \mid \ell_1, \ldots, \ell_n \} \)
Conditional literals

- **Syntax** A conditional literal is of the form

\[ \ell : \ell_1, \ldots, \ell_n \]

where \( \ell \) and \( \ell_i \) are literals for \( 0 \leq i \leq n \)

- **Informal meaning** A conditional literal can be regarded as the list of elements in the set \( \{ \ell \mid \ell_1, \ldots, \ell_n \} \)

- **Note** The expansion of conditional literals is context dependent
Conditional literals

- Syntax A conditional literal is of the form

\[ \ell : \ell_1, \ldots, \ell_n \]

where \( \ell \) and \( \ell_i \) are literals for \( 0 \leq i \leq n \)

- Informal meaning A conditional literal can be regarded as the list of elements in the set \( \{ \ell | \ell_1, \ldots, \ell_n \} \)

- Note The expansion of conditional literals is context dependent

- Example Given ‘\( p(1..3) \), \( q(2) \).’

\[
\begin{align*}
r(X) &: p(X), not q(X) :- r(X) : p(X), not q(X); 1 \{ r(X) : p(X), not q(X) \}. \\
\end{align*}
\]

is instantiated to

\[
\begin{align*}
r(1); r(3) &:- r(1), r(3), 1 \{ r(1), r(3) \}.
\end{align*}
\]
Conditional literals

- **Syntax** A conditional literal is of the form

  \[ \ell : \ell_1, \ldots, \ell_n \]

  where \( \ell \) and \( \ell_i \) are literals for \( 0 \leq i \leq n \)

- **Informal meaning** A conditional literal can be regarded as the list of elements in the set \( \{ \ell | \ell_1, \ldots, \ell_n \} \)

- **Note** The expansion of conditional literals is context dependent

- **Example** Given `p(1..3). q(2).`

  \[
  r(X) : p(X), \text{not } q(X) :- r(X) : p(X), \text{not } q(X); 1 \{ r(X) : p(X), \text{not } q(X) \}.
  \]

  is instantiated to

  \[
  r(1); r(3) :- r(1), r(3), 1 \{ r(1), r(3) \}.
  \]
Conditional literals

- **Syntax** A conditional literal is of the form
  \[ \ell : \ell_1, \ldots, \ell_n \]
  where \( \ell \) and \( \ell_i \) are literals for \( 0 \leq i \leq n \)

- **Informal meaning** A conditional literal can be regarded as the list of elements in the set \( \{ \ell \mid \ell_1, \ldots, \ell_n \} \)

- **Note** The expansion of conditional literals is context dependent

- **Example** Given ‘\( p(1..3). \quad q(2). \)’

\[
\begin{align*}
r(X) : p(X), \text{not} \ q(X) & : \ r(X) : p(X), \text{not} \ q(X) ; \ 1 \ \{ \ r(X) : p(X), \text{not} \ q(X) \ \}.
\end{align*}
\]

is instantiated to

\[
\begin{align*}
r(1); \ r(3) & : \ r(1), \ r(3) ; \ 1 \ \{ \ r(1), \ r(3) \ \}.
\end{align*}
\]
Conditional literals

- **Syntax** A conditional literal is of the form
  \[ \ell : \ell_1, \ldots, \ell_n \]
  where \( \ell \) and \( \ell_i \) are literals for \( 0 \leq i \leq n \)

- **Informal meaning** A conditional literal can be regarded as the list of elements in the set \( \{ \ell \mid \ell_1, \ldots, \ell_n \} \)

- **Note** The expansion of conditional literals is context dependent

- **Example** Given ‘\( p(1..3). \quad q(2). \)’

  \[ r(X) : p(X), \text{not} \ q(X) \ :- \ r(X) : p(X), \text{not} \ q(X) ; \ 1 \ \{ \ r(X) : p(X), \text{not} \ q(X) \ \} . \]

  is instantiated to

  \[ r(1) ; \ r(3) \ :- \ r(1), \ r(3) , \ 1 \ \{ \ r(1), \ r(3) \ \} . \]
Conditional literals

- **Syntax** A conditional literal is of the form

  \[ \ell : \ell_1, \ldots, \ell_n \]

  where \( \ell \) and \( \ell_i \) are literals for \( 0 \leq i \leq n \)

- **Informal meaning** A conditional literal can be regarded as the list of elements in the set \( \{ \ell | \ell_1, \ldots, \ell_n \} \)

- **Note** The expansion of conditional literals is context dependent

- **Example** Given ‘\( p(1..3). \ q(2). \)’

  \[ r(X) : p(X), \text{not} \ q(X) :- r(X) : p(X), \text{not} \ q(X); \ 1 \ \{ r(X) : p(X), \text{not} \ q(X) \}. \]

  is instantiated to

  \[ r(1); r(3) :- r(1), r(3), 1 \ \{ r(1), r(3) \}. \]
Outline

3 Motivation

4 Core language
   - Integrity constraint
   - Choice rule
   - Cardinality rule
   - Weight rule

5 Extended language
   - Conditional literal
   - Optimization statement
Optimization statement

- **Idea** Express (multiple) cost functions subject to minimization and/or maximization
- **Syntax** A minimize statement is of the form

\[
\text{minimize } \{ w_1 @ p_1 : \ell_1, \ldots, w_n @ p_n : \ell_n \}.
\]

where each \( \ell_i \) is a literal; and \( w_i \) and \( p_i \) are integers for \( 1 \leq i \leq n \)
Optimization statement

- **Idea** Express (multiple) cost functions subject to minimization and/or maximization

- **Syntax** A minimize statement is of the form

\[
\text{minimize} \ \{ \ w_1@p_1 : \ell_1, \ldots, w_n@p_n : \ell_n \}.
\]

where each \( \ell_i \) is a literal; and \( w_i \) and \( p_i \) are integers for \( 1 \leq i \leq n \)

Priority levels, \( p_i \), allow for representing lexicographically ordered minimization objectives
Optimization statement

- **Idea** Express (multiple) cost functions subject to minimization and/or maximization
  
- **Syntax** A minimize statement is of the form

  \[
  \text{minimize} \ \{ \ w_1 @ p_1 : \ell_1, \ldots, w_n @ p_n : \ell_n \}. 
  \]

  where each \( \ell_i \) is a literal; and \( w_i \) and \( p_i \) are integers for \( 1 \leq i \leq n \)

  Priority levels, \( p_i \), allow for representing lexicographically ordered minimization objectives

- **Meaning** A minimize statement is a directive that instructs the ASP solver to compute optimal stable models by minimizing a weighted sum of elements
Optimization statement

- A maximize statement of the form

\[
\text{maximize } \{ \ w_1 @ p_1 : \ell_1, \ldots, w_n @ p_n : \ell_n \ \}
\]

stands for minimize \{ \ -w_1 @ p_1 : \ell_1, \ldots, -w_n @ p_n : \ell_n \ \}
Optimization statement

- A maximize statement of the form

\[
\text{maximize} \ \{ \ w_1@p_1 : \ell_1, \ldots, w_n@p_n : \ell_n \ \} 
\]

stands for \text{minimize} \ \{ \ -w_1@p_1 : \ell_1, \ldots, -w_n@p_n : \ell_n \ \}

- Example When configuring a computer, we may want to maximize hard disk capacity, while minimizing price

#maximize \ \{ \ 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) \ \}. 
#minimize \ \{ \ 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) \ \}.

The priority levels indicate that (minimizing) price is more important than (maximizing) capacity
Language Extensions: Overview

6  Two kinds of negation

7  Disjunctive logic programs
Outline

6 Two kinds of negation

7 Disjunctive logic programs
Motivation

• Classical versus default negation
  – Symbol $\neg$ and *not*
Motivation

- Classical versus default negation
  - Symbol $\neg$ and $\text{not}$
  - Idea
    - $\neg a \approx \neg a \in X$
    - $\text{not} \ a \approx \ a \notin X$
Motivation

- Classical versus default negation
  - Symbol \( \neg \) and \textit{not}
  - Idea
    - \( \neg a \approx \neg a \in X \)
    - \textit{not a} \( \approx a \notin X \)
  - Example
    - \textit{cross} \( \leftarrow \neg \text{train} \)
    - \textit{cross} \( \leftarrow \text{not train} \)
Classical negation

- We consider logic programs in negation normal form
  - That is, classical negation is applied to atoms only
Classical negation

- We consider logic programs in negation normal form
  - That is, classical negation is applied to atoms only
- Given an alphabet $\mathcal{A}$ of atoms, let $\overline{\mathcal{A}} = \{-a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}} = \emptyset$
Classical negation

- We consider logic programs in negation normal form
  - That is, classical negation is applied to atoms only
- Given an alphabet $\mathcal{A}$ of atoms, let $\overline{\mathcal{A}} = \{-a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}} = \emptyset$
- Given a program $P$ over $\mathcal{A}$, classical negation is encoded by adding

$$P^- = \{a \leftarrow b, \neg b \mid a \in (\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}$$
Classical negation

- Given an alphabet $\mathcal{A}$ of atoms, let $\overline{\mathcal{A}} = \{\neg a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}} = \emptyset$
- Given a program $P$ over $\mathcal{A}$, classical negation is encoded by adding

$$P^\neg = \{a \leftarrow b, \neg b \mid a \in (\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}$$

- A set $X$ of atoms is a **stable model** of a program $P$ over $\mathcal{A} \cup \overline{\mathcal{A}}$, if $X$ is a stable model of $P \cup P^\neg$
An example

- The program

\[ P = \{ a \leftarrow \text{not } b, \ b \leftarrow \text{not } a \} \cup \{ c \leftarrow b, \ \neg c \leftarrow b \} \]
An example

- The program

\[
P = \{a \leftarrow \neg b, \ b \leftarrow \neg a\} \cup \{c \leftarrow b, \ \neg c \leftarrow b\}
\]

induces

\[
P^- = \begin{cases}
a & \leftarrow a, \neg a \\
\neg a & \leftarrow a, \neg a \\
b & \leftarrow a, \neg a \\
\neg b & \leftarrow a, \neg a \\
c & \leftarrow a, \neg a \\
\neg c & \leftarrow a, \neg a \\
\end{cases}
\]

\[
\begin{array}{ccccccc}
a & \leftarrow b, \neg b & & a & \leftarrow c, \neg c & & a & \leftarrow c, \neg c \\
\neg a & \leftarrow b, \neg b & & \neg a & \leftarrow c, \neg c & & \neg a & \leftarrow c, \neg c \\
b & \leftarrow b, \neg b & & b & \leftarrow c, \neg c & & b & \leftarrow c, \neg c \\
\neg b & \leftarrow b, \neg b & & \neg b & \leftarrow c, \neg c & & \neg b & \leftarrow c, \neg c \\
c & \leftarrow b, \neg b & & c & \leftarrow c, \neg c & & c & \leftarrow c, \neg c \\
\neg c & \leftarrow b, \neg b & & \neg c & \leftarrow c, \neg c & & \neg c & \leftarrow c, \neg c \\
\end{array}
\]
An example

- The program

\[ P = \{a \leftarrow \text{not } b, \ b \leftarrow \text{not } a\} \cup \{c \leftarrow b, \ \neg c \leftarrow b\} \]

induces

\[ P^- = \begin{cases} 
  a & \leftarrow a, \neg a \\
  \neg a & \leftarrow a, \neg a \\
  b & \leftarrow a, \neg a \\
  \neg b & \leftarrow a, \neg a \\
  c & \leftarrow a, \neg a \\
  \neg c & \leftarrow a, \neg a \\
  a & \leftarrow b, \neg b \\
  \neg a & \leftarrow b, \neg b \\
  b & \leftarrow b, \neg b \\
  \neg b & \leftarrow b, \neg b \\
  c & \leftarrow b, \neg b \\
  \neg c & \leftarrow b, \neg b \\
  a & \leftarrow c, \neg c \\
  \neg a & \leftarrow c, \neg c \\
  b & \leftarrow c, \neg c \\
  \neg b & \leftarrow c, \neg c \\
  c & \leftarrow c, \neg c \\
  \neg c & \leftarrow c, \neg c 
\end{cases} \]

- The stable models of \( P \) are given by the ones of \( P \cup P^- \), viz \( \{a\} \)
Properties

• The only inconsistent stable “model” is $X = \mathcal{A} \cup \overline{\mathcal{A}}$
Properties

• The only inconsistent stable “model” is $X = \mathcal{A} \cup \overline{\mathcal{A}}$

• Note Strictly speaking, an inconsistent set like $\mathcal{A} \cup \overline{\mathcal{A}}$ is not a model
Properties

• The only inconsistent stable “model” is $X = A \cup \overline{A}$

• Note Strictly speaking, an inconsistent set like $A \cup \overline{A}$ is not a model

• For a logic program $P$ over $A \cup \overline{A}$, exactly one of the following two cases applies:
  1. All stable models of $P$ are consistent or
  2. $X = A \cup \overline{A}$ is the only stable model of $P$
Train spotting

- $P_1 = \{\text{cross} \leftarrow \text{not train}\}$
- $P_2 = \{\text{cross} \leftarrow \neg \text{train}\}$
- $P_3 = \{\text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow\}$
- $P_4 = \{\text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow, \neg \text{cross} \leftarrow\}$
- $P_5 = \{\text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow \text{not train}\}$
- $P_6 = \{\text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow \text{not train}, \neg \text{cross} \leftarrow\}$
Train spotting

- $P_1 = \{\text{cross} \leftarrow \text{not train}\}$
  - stable model: $\{\text{cross}\}$
Train spotting

• \( P_2 = \{\text{cross} \leftarrow \neg \text{train}\} \)
Train spotting

- $P_2 = \{\text{cross } \leftarrow \neg \text{train}\}$
  - stable model: $\emptyset$
Train spotting

- $P_3 = \{\text{cross } \leftarrow \neg \text{train}, \neg \text{train } \leftarrow\}$
Train spotting

- $P_3 = \{\text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow\}$
  - stable model: $\{\text{cross}, \neg \text{train}\}$
Train spotting

• $P_4 = \{ \text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow, \neg \text{cross} \leftarrow \}$
Train spotting

- $P_4 = \{cross \leftarrow \neg train, \neg train \leftarrow, \neg cross \leftarrow\}$
  - stable model: $\{cross, \neg cross, train, \neg train\}$ inconsistent as $\mathcal{A} \cup \bar{\mathcal{A}}$
Train spotting

- \( P_5 = \{ \text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow \text{not train} \} \)
Train spotting

- $P_5 = \{\text{cross} \leftarrow \neg\text{train}, \neg\text{train} \leftarrow \text{not train}\}$
  - stable model: $\{\text{cross}, \neg\text{train}\}$
Train spotting

- \( P_6 = \{ \text{cross} \leftarrow \neg \text{train}, \neg \text{train} \leftarrow \text{not train}, \neg \text{cross} \leftarrow \} \)
Train spotting

• $P_6 = \{ \text{cross } \leftarrow \neg \text{train}, \neg \text{train } \leftarrow \text{not train}, \neg \text{cross } \leftarrow \}$
  – no stable model
Train spotting

- $P_1 = \{\text{cross } \leftarrow \text{not train}\}$
  - stable model: $\{\text{cross}\}$
- $P_2 = \{\text{cross } \leftarrow \neg\text{train}\}$
  - stable model: $\emptyset$
- $P_3 = \{\text{cross } \leftarrow \neg\text{train}, \neg\text{train } \leftarrow\}$
  - stable model: $\{\text{cross}, \neg\text{train}\}$
- $P_4 = \{\text{cross } \leftarrow \neg\text{train}, \neg\text{train } \leftarrow, \neg\text{cross } \leftarrow\}$
  - stable model: $\{\text{cross}, \neg\text{cross}, \text{train}, \neg\text{train}\}$ inconsistent as $A \cup \bar{A}$
- $P_5 = \{\text{cross } \leftarrow \neg\text{train}, \neg\text{train } \leftarrow \text{not train}\}$
  - stable model: $\{\text{cross}, \neg\text{train}\}$
- $P_6 = \{\text{cross } \leftarrow \neg\text{train}, \neg\text{train } \leftarrow \text{not train}, \neg\text{cross } \leftarrow\}$
  - no stable model
Default negation in rule heads

- We consider logic programs with default negation in rule heads.
Default negation in rule heads

- We consider logic programs with default negation in rule heads
- Given an alphabet $\mathcal{A}$ of atoms, let $\tilde{\mathcal{A}} = \{\tilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \tilde{\mathcal{A}} = \emptyset$
Default negation in rule heads

- We consider logic programs with default negation in rule heads
- Given an alphabet $\mathcal{A}$ of atoms, let $\tilde{\mathcal{A}} = \{\tilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \tilde{\mathcal{A}} = \emptyset$
- Given a program $P$ over $\mathcal{A}$, consider the program

$$\tilde{P} = \{r \in P \mid \text{head}(r) \neq \text{not } a\} \cup \{\leftarrow \text{body}(r) \cup \{\text{not } \tilde{a}\} \mid r \in P \text{ and } \text{head}(r) = \text{not } a\} \cup \{\tilde{a} \leftarrow \text{not } a \mid r \in P \text{ and } \text{head}(r) = \text{not } a\}$$
Default negation in rule heads

- Given an alphabet $\mathcal{A}$ of atoms, let $\tilde{\mathcal{A}} = \{\tilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \tilde{\mathcal{A}} = \emptyset$
- Given a program $P$ over $\mathcal{A}$, consider the program

$$\tilde{P} = \{ r \in P \mid \text{head}(r) \neq \text{not } a \}$$

$$\quad \cup \{ \leftarrow \text{body}(r) \cup \{\text{not } \tilde{a}\} \mid r \in P \text{ and } \text{head}(r) = \text{not } a \}$$

$$\quad \cup \{ \tilde{a} \leftarrow \text{not } a \mid r \in P \text{ and } \text{head}(r) = \text{not } a \}$$

- A set $X$ of atoms is a **stable model** of a program $P$ (with default negation in rule heads) over $\mathcal{A}$, if $X = Y \cap \mathcal{A}$ for some stable model $Y$ of $\tilde{P}$ over $\mathcal{A} \cup \tilde{\mathcal{A}}$
Outline

6 Two kinds of negation

7 Disjunctive logic programs
Disjunctive logic programs

- A disjunctive rule, \( r \), is of the form

\[
a_1; \ldots; a_m \leftarrow a_{m+1}, \ldots, a_n, not \ a_{n+1}, \ldots, not \ a_o
\]

where \( 0 \leq m \leq n \leq o \) and each \( a_i \) is an atom for \( 0 \leq i \leq o \)

- A disjunctive logic program is a finite set of disjunctive rules
Disjunctive logic programs

- A disjunctive rule, $r$, is of the form

  $$a_1 ; \ldots ; a_m \leftarrow a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o$$

  where $0 \leq m \leq n \leq o$ and each $a_i$ is an atom for $0 \leq i \leq o$

- A disjunctive logic program is a finite set of disjunctive rules

- Notation

  \[
  \begin{align*}
  \text{head}(r) & = \{a_1, \ldots, a_m\} \\
  \text{body}(r) & = \{a_{m+1}, \ldots, a_n, \text{not } a_{n+1}, \ldots, \text{not } a_o\} \\
  \text{body}(r)^+ & = \{a_{m+1}, \ldots, a_n\} \\
  \text{body}(r)^- & = \{a_{n+1}, \ldots, a_o\} \\
  \text{atom}(P) & = \bigcup_{r \in P} \left( \text{head}(r) \cup \text{body}(r)^+ \cup \text{body}(r)^- \right) \\
  \text{body}(P) & = \{\text{body}(r) \mid r \in P\}
  \end{align*}
  \]
Disjunctive logic programs

- A disjunctive rule, \( r \), is of the form

\[
a_1 ; \ldots ; a_m \leftarrow a_{m+1}, \ldots, a_n, \neg a_{n+1}, \ldots, \neg a_o
\]

where \( 0 \leq m \leq n \leq o \) and each \( a_i \) is an atom for \( 0 \leq i \leq o \)

- A disjunctive logic program is a finite set of disjunctive rules

- Notation

\[
\begin{align*}
\text{head}(r) &= \{a_1, \ldots, a_m\} \\
\text{body}(r) &= \{a_{m+1}, \ldots, a_n, \neg a_{n+1}, \ldots, \neg a_o\} \\
\text{body}(r)^+ &= \{a_{m+1}, \ldots, a_n\} \\
\text{body}(r)^- &= \{a_{n+1}, \ldots, a_o\} \\
\text{atom}(P) &= \bigcup_{r \in P} \left( \text{head}(r) \cup \text{body}(r)^+ \cup \text{body}(r)^- \right) \\
\text{body}(P) &= \{\text{body}(r) \mid r \in P\}
\end{align*}
\]

- A program is called **positive** if \( \text{body}(r)^- = \emptyset \) for all its rules
Stable models

- **Positive programs**
  - A set $X$ of atoms is **closed under** a positive program $P$ iff for any $r \in P$, $\text{head}(r) \cap X \neq \emptyset$ whenever $\text{body}(r)^+ \subseteq X$
  - $X$ corresponds to a model of $P$ (seen as a formula)
  - The set of all $\subseteq$-minimal sets of atoms being closed under a positive program $P$ is denoted by $\text{min}_{\subseteq}(P)$
  - $\text{min}_{\subseteq}(P)$ corresponds to the $\subseteq$-minimal models of $P$ (ditto)
Stable models

● Positive programs
  – A set $X$ of atoms is closed under a positive program $P$ iff for any $r \in P$, $\text{head}(r) \cap X \neq \emptyset$ whenever $\text{body}(r)^+ \subseteq X$
  • $X$ corresponds to a model of $P$ (seen as a formula)
  – The set of all $\subseteq$-minimal sets of atoms being closed under a positive program $P$ is denoted by $\text{min}_{\subseteq}(P)$
    • $\text{min}_{\subseteq}(P)$ corresponds to the $\subseteq$-minimal models of $P$ (ditto)

● Disjunctive programs
  – The reduct, $P^X$, of a disjunctive program $P$ relative to a set $X$ of atoms is defined by

$$P^X = \{\text{head}(r) \leftarrow \text{body}(r)^+ \mid r \in P \text{ and } \text{body}(r)^- \cap X = \emptyset\}$$
Stable models

- **Positive programs**
  - A set $X$ of atoms is **closed under** a positive program $P$ iff for any $r \in P$, $head(r) \cap X \neq \emptyset$ whenever $body(r)^+ \subseteq X$
  - $X$ corresponds to a model of $P$ (seen as a formula)
  - The set of all $\subseteq$-minimal sets of atoms being closed under a positive program $P$ is denoted by $\text{min}_{\subseteq}(P)$
    - $\text{min}_{\subseteq}(P)$ corresponds to the $\subseteq$-minimal models of $P$ (ditto)

- **Disjunctive programs**
  - The **reduct**, $P^X$, of a disjunctive program $P$ relative to a set $X$ of atoms is defined by
    \[
P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}\]
  - A set $X$ of atoms is a **stable model** of a disjunctive program $P$, if $X \in \text{min}_{\subseteq}(P^X)$
A “positive” example

\[ P = \left\{ \begin{array}{c}
  a \\
  b ; c \leftarrow a
\end{array} \right\} \]
A “positive” example

\[ P = \left\{ \begin{array}{c} a \\ b ; c \leftarrow a \end{array} \right\} \]

- The sets \( \{a, b\} \), \( \{a, c\} \), and \( \{a, b, c\} \) are closed under \( P \)
A “positive” example

\[ P = \{ \begin{array}{c} a \\ b ; c \leftrightarrow a \end{array} \} \]

- The sets \{a, b\}, \{a, c\}, and \{a, b, c\} are closed under \( P \)
- We have \( \min_{\subseteq}(P) = \{\{a, b\}, \{a, c\}\} \)
Graph coloring (reloaded)

node(1..6).

edge(1, (2;3;4)). edge(2, (4;5;6)). edge(3, (1;4;5)).
edge(4, (1;2)). edge(5, (3;4;6)). edge(6, (2;3;5)).

color(X,r) ; color(X,b) ; color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

col(r). col(b). col(g).

color(X,C) : col(C) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
More Examples

• $P_1 = \{a ; b ; c \leftarrow\}$
More Examples

- $P_1 = \{a ; b ; c \leftarrow\}$
  - stable models $\{a\}$, $\{b\}$, and $\{c\}$
More Examples

- $P_2 = \{a \; b \; c \leftarrow , \leftarrow a\}$
More Examples

\[ P_2 = \{a ; b ; c \leftarrow , \leftarrow a\} \]

- stable models \( \{b\} \) and \( \{c\} \)
More Examples

\[ P_3 = \{ a ; b ; c \leftarrow , \leftarrow a , b \leftarrow c , c \leftarrow b \} \]
More Examples

• $P_3 = \{a ; b ; c \leftarrow , \leftarrow a , b \leftarrow c , c \leftarrow b\}$
  – stable model $\{b, c\}$

TU Dresden, 25th Nov, 3rd Dec 2019
More Examples

- \( P_4 = \{a ; b \leftarrow c \ , \ b \leftarrow \text{not } a, \text{not } c \ , \ a ; c \leftarrow \text{not } b\} \)
• $P_4 = \{a \leftarrow c, b \leftarrow not \ a, not \ c, a \leftarrow not \ b\}$
  – stable models $\{a\}$ and $\{b\}$
More Examples

- $P_1 = \{a \; b \; c \leftarrow\}$
  - stable models $\{a\}, \{b\},$ and $\{c\}$

- $P_2 = \{a \; b \; c \leftarrow, \leftarrow a\}$
  - stable models $\{b\}$ and $\{c\}$

- $P_3 = \{a \; b \; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$
  - stable model $\{b, c\}$

- $P_4 = \{a \; b \leftarrow c, b \leftarrow not a, not c, a ; c \leftarrow not b\}$
  - stable models $\{a\}$ and $\{b\}$
Some properties

• A disjunctive logic program may have zero, one, or multiple stable models.
• If $X$ is a stable model of a disjunctive logic program $P$, then $X$ is a model of $P$ (seen as a formula).
• If $X$ and $Y$ are stable models of a disjunctive logic program $P$, then $X \not\subset Y$. 

Some properties

- A disjunctive logic program may have zero, one, or multiple stable models.
- If \( X \) is a stable model of a disjunctive logic program \( P \), then \( X \) is a model of \( P \) (seen as a formula).
- If \( X \) and \( Y \) are stable models of a disjunctive logic program \( P \), then \( X \not\subset Y \).
- If \( A \in X \) for some stable model \( X \) of a disjunctive logic program \( P \), then there is a rule \( r \in P \) such that
  \[
  \text{body}(r)^+ \subseteq X, \text{body}(r)^- \cap X = \emptyset, \text{and} \text{head}(r) \cap X = \{A\}.
  \]
An example with variables

\[ P = \left\{ \begin{array}{c}
    a(1, 2) \\
    b(X); c(Y) \\
    \leftrightarrow \\
    a(X, Y), \text{not } c(Y)
\end{array} \right\} \]
An example with variables

\[
P = \begin{cases} 
  a(1, 2) & \leftarrow \ a(X, Y), \ not \ c(Y) \\
  b(X) \; c(Y) & \leftarrow \ a(X, Y), \ not \ c(Y) 
\end{cases}
\]

\[
ground(P) = \begin{cases} 
  a(1, 2) & \leftarrow \ a(1, 1), \ not \ c(1) \\
  b(1) \; c(1) & \leftarrow \ a(1, 1), \ not \ c(1) \\
  b(1) \; c(2) & \leftarrow \ a(1, 2), \ not \ c(2) \\
  b(2) \; c(1) & \leftarrow \ a(2, 1), \ not \ c(1) \\
  b(2) \; c(2) & \leftarrow \ a(2, 2), \ not \ c(2) 
\end{cases}
\]
An example with variables

\[ P = \{ a(1,2) \leftarrow b(X) ; c(Y) \leftarrow a(X,Y), \text{not } c(Y) \} \]

\[ \text{ground}(P) = \{ a(1,2) \leftarrow b(1) ; c(1) \leftarrow a(1,1), \text{not } c(1) \]
\[ \quad b(1) ; c(2) \leftarrow a(1,2), \text{not } c(2) \]
\[ \quad b(2) ; c(1) \leftarrow a(2,1), \text{not } c(1) \]
\[ \quad b(2) ; c(2) \leftarrow a(2,2), \text{not } c(2) \} \]

For every stable model \( X \) of \( P \), we have

- \( a(1,2) \in X \) and
- \( \{a(1,1), a(2,1), a(2,2)\} \cap X = \emptyset \)
An example with variables

\[ \text{ground}(P) = \begin{cases} 
    a(1, 2) \leftarrow \\
    b(1) ; c(1) \leftarrow a(1, 1), \text{not} \ c(1) \\
    b(1) ; c(2) \leftarrow a(1, 2), \text{not} \ c(2) \\
    b(2) ; c(1) \leftarrow a(2, 1), \text{not} \ c(1) \\
    b(2) ; c(2) \leftarrow a(2, 2), \text{not} \ c(2) 
\end{cases} \]
An example with variables

$$\text{ground}(P) = \begin{cases} 
  a(1, 2) & \leftarrow 
  \hspace{0.5cm} b(1) \land c(1) \leftarrow a(1, 1), \text{not c(1)} \\
  b(1) \land c(2) \leftarrow a(1, 2), \text{not c(2)} \\
  b(2) \land c(1) \leftarrow a(2, 1), \text{not c(1)} \\
  b(2) \land c(2) \leftarrow a(2, 2), \text{not c(2)} 
\end{cases}$$

- Consider $X = \{a(1, 2), b(1)\}$
An example with variables

\[ ground(P)^X = \begin{cases} 
  a(1, 2) & \leftarrow a(1, 1) \\
  b(1); c(1) & \leftarrow a(1, 2) \\
  b(1); c(2) & \leftarrow a(2, 1) \\
  b(2); c(1) & \leftarrow a(2, 2) \\
  b(2); c(2) & \leftarrow a(2, 2) 
\end{cases} \]

- Consider \( X = \{a(1, 2), b(1)\} \)
An example with variables

\[
\text{ground}(P)^X = \left\{ \begin{array}{l}
a(1,2) \quad \leftarrow \quad a(1,1) \\
b(1) ; c(1) \quad \leftarrow \quad a(1,1) \\
b(1) ; c(2) \quad \leftarrow \quad a(1,2) \\
b(2) ; c(1) \quad \leftarrow \quad a(2,1) \\
b(2) ; c(2) \quad \leftarrow \quad a(2,2) \\
\end{array} \right. 
\]

- Consider \( X = \{a(1,2), b(1)\} \)
- We get \( \min_\subseteq(\text{ground}(P)^X) = \{ \{a(1,2), b(1)\}, \{a(1,2), c(2)\} \} \)
An example with variables

\[ \text{ground}(P)^X = \begin{cases} 
  a(1, 2) & \leftarrow \\
  b(1); c(1) & \leftarrow a(1, 1) \\
  b(1); c(2) & \leftarrow a(1, 2) \\
  b(2); c(1) & \leftarrow a(2, 1) \\
  b(2); c(2) & \leftarrow a(2, 2) 
\end{cases} \]

- Consider \( X = \{a(1, 2), b(1)\} \)
- We get \( \min_{\subseteq} (\text{ground}(P)^X) = \{ \{a(1, 2), b(1)\}, \{a(1, 2), c(2)\} \} \)
- \( X \) is a stable model of \( P \) because \( X \in \min_{\subseteq} (\text{ground}(P)^X) \)
An example with variables

\[\text{ground}(P) = \left\{ \begin{array}{ll}
  a(1, 2) & \leftarrow a(1, 1), \neg c(1) \\
  b(1) ; c(1) & \leftarrow a(1, 2), \neg c(2) \\
  b(1) ; c(2) & \leftarrow a(2, 1), \neg c(1) \\
  b(2) ; c(1) & \leftarrow a(2, 2), \neg c(2) \\
  b(2) ; c(2) & \leftarrow \end{array} \right\} \]
An example with variables

\[
\text{ground}(P) = \left\{ \begin{array}{l}
a(1, 2) \leftarrow a(1, 1), \text{not } c(1) \\
b(1) ; c(1) \leftarrow a(1, 2), \text{not } c(2) \\
b(1) ; c(2) \leftarrow a(2, 1), \text{not } c(1) \\
b(2) ; c(1) \leftarrow a(2, 2), \text{not } c(1) \\
b(2) ; c(2) \leftarrow a(2, 2), \text{not } c(2)
\end{array} \right. 
\]

- Consider \( X = \{a(1, 2), c(2)\} \)
An example with variables

\[
\text{ground}(P)^X = \begin{cases}
    a(1, 2) & \leftarrow \\
    b(1) ; c(1) & \leftarrow a(1, 1) \\
    b(2) ; c(1) & \leftarrow a(2, 1)
\end{cases}
\]

- Consider \( X = \{a(1, 2), c(2)\} \)
An example with variables

\[
\text{ground}(P)^X = \begin{cases} 
  a(1, 2) & \leftarrow \\
  b(1) ; c(1) & \leftarrow a(1, 1) \\
  b(2) ; c(1) & \leftarrow a(2, 1) 
\end{cases}
\]

- Consider \( X = \{a(1, 2), c(2)\} \)
- We get \( \text{min}_{\subseteq} (\text{ground}(P)^X) = \{ \{a(1, 2)\} \} \)
An example with variables

\[\text{ground}(P)^X = \begin{cases} 
\quad a(1, 2) \leftarrow \\
\quad b(1) ; c(1) \leftarrow a(1, 1) \\
\quad b(2) ; c(1) \leftarrow a(2, 1) \end{cases}\]

- Consider \( X = \{a(1, 2), c(2)\} \)
- We get \( \text{min}_{\subseteq} (\text{ground}(P)^X) = \{ \{a(1, 2)\} \} \)
- \( X \) is no stable model of \( P \) because \( X \notin \text{min}_{\subseteq} (\text{ground}(P)^X) \)
Default negation in rule heads

- Consider disjunctive rules of the form

$$a_1; \ldots; a_m; \text{not } a_{m+1}; \ldots; \text{not } a_n \leftarrow a_{n+1}, \ldots, a_o, \text{not } a_{o+1}, \ldots, \text{not } a_p$$

where $0 \leq m \leq n \leq o \leq p$ and each $a_i$ is an atom for $0 \leq i \leq p$
Default negation in rule heads

- Consider disjunctive rules of the form

\[ a_1 ; \ldots ; a_m ; \text{not } a_{m+1} ; \ldots ; \text{not } a_n \leftarrow a_{n+1}, \ldots, a_o, \text{not } a_{o+1}, \ldots, \text{not } a_p \]

where \(0 \leq m \leq n \leq o \leq p\) and each \(a_i\) is an atom for \(0 \leq i \leq p\)

- Given a program \(P\) over \(A\), consider the program

\[
\tilde{P} = \{ \text{head}(r)^+ \leftarrow \text{body}(r) \cup \{ \text{not } \tilde{a} \mid a \in \text{head}(r)^- \} \mid r \in P \} \\
\cup \{ \tilde{a} \leftarrow \text{not } a \mid r \in P \text{ and } a \in \text{head}(r)^- \}
\]
Default negation in rule heads

- Consider disjunctive rules of the form

\[ a_1 ; \ldots ; a_m ; not \ a_{m+1} ; \ldots ; not \ a_n \leftarrow a_{n+1}, \ldots, a_o, not \ a_{o+1}, \ldots, not \ a_p \]

where \( 0 \leq m \leq n \leq o \leq p \) and each \( a_i \) is an atom for \( 0 \leq i \leq p \)

- Given a program \( P \) over \( \mathcal{A} \), consider the program

\[
\tilde{P} = \left\{ head(r)^+ \leftarrow body(r) \cup \{ not \ \tilde{a} \mid a \in head(r)^- \} \mid r \in P \right\}
\cup \{ \tilde{a} \leftarrow not \ a \mid r \in P \text{ and } a \in head(r)^- \}
\]

- A set \( X \) of atoms is a stable model of a disjunctive program \( P \) (with default negation in rule heads) over \( \mathcal{A} \), if \( X = Y \cap \mathcal{A} \) for some stable model \( Y \) of \( \tilde{P} \) over \( \mathcal{A} \cup \tilde{\mathcal{A}} \).
An example

- The program

\[ P = \{ a \; ; \; \text{not } a \leftarrow \} \]
An example

- The program

\[ P = \{ a; \neg a \leftarrow \} \]

yields

\[ \tilde{P} = \{ a \leftarrow \neg \tilde{a} \} \cup \{ \tilde{a} \leftarrow \neg a \} \]
An example

- The program
  
  \[ P = \{ a \ ; \ not \ a \leftarrow \} \]

  yields
  
  \[ \tilde{P} = \{ a \leftarrow not \tilde{a} \} \cup \{ \tilde{a} \leftarrow not a \} \]

- \( \tilde{P} \) has two stable models, \( \{ a \} \) and \( \{ \tilde{a} \} \)
An example

- The program
  \[ P = \{ a ; \text{not } a \leftarrow \} \]
  yields
  \[ \tilde{P} = \{ a \leftarrow \text{not } \tilde{a} \} \cup \{ \tilde{a} \leftarrow \text{not } a \} \]
- \( \tilde{P} \) has two stable models, \( \{ a \} \) and \( \{ \tilde{a} \} \)
- This induces the stable models \( \{ a \} \) and \( \emptyset \) of \( P \)
Complexity

Let $a$ be an atom and $X$ be a set of atoms
Complexity

Let \( a \) be an atom and \( X \) be a set of atoms

- For a positive normal logic program \( P \):
  - Deciding whether \( X \) is the stable model of \( P \) is \( P \)-complete
  - Deciding whether \( a \) is in the stable model of \( P \) is \( P \)-complete
Complexity

Let \( a \) be an atom and \( X \) be a set of atoms

- For a positive normal logic program \( P \):
  - Deciding whether \( X \) is the stable model of \( P \) is P-complete
  - Deciding whether \( a \) is in the stable model of \( P \) is P-complete

- For a normal logic program \( P \):
  - Deciding whether \( X \) is a stable model of \( P \) is P-complete
  - Deciding whether \( a \) is in a stable model of \( P \) is NP-complete
Complexity

Let $a$ be an atom and $X$ be a set of atoms

- For a positive normal logic program $P$:
  - Deciding whether $X$ is the stable model of $P$ is P-complete
  - Deciding whether $a$ is in the stable model of $P$ is P-complete

- For a normal logic program $P$:
  - Deciding whether $X$ is a stable model of $P$ is P-complete
  - Deciding whether $a$ is in a stable model of $P$ is NP-complete

- For a normal logic program $P$ with optimization statements:
  - Deciding whether $X$ is an optimal stable model of $P$ is co-NP-complete
  - Deciding whether $a$ is in an optimal stable model of $P$ is $\Delta^P_2$-complete
Complexity

Let $a$ be an atom and $X$ be a set of atoms

- For a positive disjunctive logic program $P$:
  - Deciding whether $X$ is a stable model of $P$ is co-NP-complete
  - Deciding whether $a$ is in a stable model of $P$ is NP$^\text{NP}$-complete

- For a disjunctive logic program $P$:
  - Deciding whether $X$ is a stable model of $P$ is co-NP-complete
  - Deciding whether $a$ is in a stable model of $P$ is NP$^\text{NP}$-complete

- For a disjunctive logic program $P$ with optimization statements:
  - Deciding whether $X$ is an optimal stable model of $P$ is co-NP$^\text{NP}$-complete
  - Deciding whether $a$ is in an optimal stable model of $P$ is $\Delta^P_3$-complete
Let $a$ be an atom and $X$ be a set of atoms

- For a positive disjunctive logic program $P$:
  - Deciding whether $X$ is a stable model of $P$ is co-NP-complete
  - Deciding whether $a$ is in a stable model of $P$ is $NP^{NP}$-complete

- For a disjunctive logic program $P$:
  - Deciding whether $X$ is a stable model of $P$ is co-NP-complete
  - Deciding whether $a$ is in a stable model of $P$ is $NP^{NP}$-complete

- For a disjunctive logic program $P$ with optimization statements:
  - Deciding whether $X$ is an optimal stable model of $P$ is co-$NP^{NP}$-complete
  - Deciding whether $a$ is in an optimal stable model of $P$ is $\Delta^P_3$-complete

- For a propositional theory $\Phi$:
  - Deciding whether $X$ is a stable model of $\Phi$ is co-NP-complete
  - Deciding whether $a$ is in a stable model of $\Phi$ is $NP^{NP}$-complete
Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.

*Answer Set Solving in Practice.*

Synthesis Lectures on Artificial Intelligence and Machine Learning.
doi=10.2200/S00457ED1V01Y201211AIM019.

- **See also:** [http://potassco.sourceforge.net](http://potassco.sourceforge.net)