
Deciding Hyperproperties Combined
with Functional Specifications

Raven Beutner

CISPA Helmholtz Center for

Information Security

Germany

David Carral

LIRMM, Inria, University of

Montpellier, CNRS

France

Bernd Finkbeiner

CISPA Helmholtz Center for

Information Security

Germany

Jana Hofmann

CISPA Helmholtz Center for

Information Security

Germany

Markus Krötzsch

Technische Universität Dresden

Germany

ABSTRACT
We study satisfiability for HyperLTL with a ∀∗∃∗ quantifier prefix,
known to be highly undecidable in general. HyperLTL can express

system properties that relate multiple traces (so-called hyperprop-
erties), which are often combined with trace properties that specify
functional behavior on single traces. Following this conceptual

split, we first define several safety and liveness fragments of ∀∗∃∗
HyperLTL, and characterize the complexity of their (often much

easier) satisfiability problem. We then add LTL trace properties

as functional specifications. Though (highly) undecidable in many

cases, this way of combining “simple” HyperLTL and arbitrary LTL

also leads to interesting new decidable fragments. This systematic

study of ∀∗∃∗ fragments is complemented by a new (incomplete)

algorithm for ∀∃∗-HyperLTL satisfiability.

CCS CONCEPTS
• Theory of computation → Logic and verification; Modal
and temporal logics.

KEYWORDS
Hyperproperties, HyperLTL, Satisfiability

ACM Reference Format:
Raven Beutner, David Carral, Bernd Finkbeiner, Jana Hofmann, and Markus

Krötzsch. 2022. Deciding Hyperproperties Combined with Functional Speci-

fications. In 37th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS) (LICS ’22), August 2–5, 2022, Haifa, Israel. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3531130.3533369

1 INTRODUCTION
Hyperproperties are properties that relate multiple execution traces

of a system [14] and comprise a range of relevant properties from

many areas of computer science. Examples are symmetry, optimal-

ity, robustness, and noninterference. The most prominent logic

for expressing hyperproperties is HyperLTL [13], which extends

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9351-5/22/08.

https://doi.org/10.1145/3531130.3533369

LTL with trace quantification. Generalized noninterference [34],

for example, states that high-security inputs do not influence the

input-output behavior observable by a low-security user, which

can be expressed in HyperLTL as follows.

∀π∀π ′∃π ′′.
(∧
a∈Lout∪Lin

(aπ ↔ aπ ′′) ∧
∧

a∈Hin

(aπ ′ ↔ aπ ′′)

)
The formula states that for every two traces π ,π ′

, there exists a

trace π ′′
that combines the low-security inputs and outputs on π

and the high-security inputs on π ′
.

In this paper, we study the satisfiability problem of HyperLTL.

For LTL, satisfiability is PSPACE-complete [40]. For hyperproperties,

satisfaction cannot be decided by analyzing single traces in isolation,

making formal reasoning challenging. Deciding satisfiability in the

∃∗∀∗ fragment of HyperLTL is already EXPSPACE-complete [20];

and deciding hyperproperties with a ∀∗∃∗ trace quantifier alterna-
tions is, in general, strongly undecidable, namely Σ1

1
-complete [25].

Nevertheless, the ∀∗∃∗ fragment contains many relevant properties

like generalized noninterference, program refinement, and soft-

ware doping [16, 34]. Despite its importance, positive results for

the ∀∗∃∗ fragment have been very rare and were only obtained by

heavy restrictions on the use of temporal operators or by assuming

finite models [33] (see related work below). Algorithms, even if

incomplete, are similarly missing.

In this work, we address these shortcomings by studying ways of

solving satisfiability of ∀∗∃∗ HyperLTL specifications. We identify

simple yet expressive fragments of ∀∗∃∗ with better computational

properties, where our approach derives interesting fragments in

two steps. First, we split a specification into hyperproperty and trace

property, so that we can focus on “simple” hyperproperties. Second,

to find such simple hyperproperties, we systematically study frag-

ments of temporal safety and temporal liveness hyperproperties.

This work towards new decidable fragments is complemented by a

new (incomplete but often successful) algorithm that is applicable

to arbitrary ∀∃∗ specifications.

Splitting in Hyperproperties and Trace Properties. So far, all Hyper-
LTL decidability results were obtained by considering HyperLTL

specifications in isolation. Most of the time, however, specifications

refer to a specific system. The hyperproperty itself is often rela-

tively simple (like the noninterference property above) and only

https://orcid.org/0000-0001-6234-5651
https://orcid.org/0000-0001-7287-4709
https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0003-1660-2949
https://orcid.org/0000-0002-9172-2601
https://doi.org/10.1145/3531130.3533369
https://doi.org/10.1145/3531130.3533369

LICS ’22, August 2–5, 2022, Haifa, Israel R. Beutner, D. Carral, B. Finkbeiner, J. Hofmann, and M. Krötzsch

gets difficult to satisfy given a specification of the functional behav-

ior of the system.
1
The following example highlights this interplay

between functional property and hyperproperty.

Example 1.1. Consider a system of agents that send and receive

data. Each trace describes the behavior of a single agent. We want

the system to satisfy the following hyperproperty.

φ B ∀π∃π ′. (sendπ ∧ recπ ′)

The formula states that each agent eventually sends its information

and that there exists some agent receiving it. The formula on its

own is easily satisfiable already by a one-trace model. In addition

to the hyperproperty we add the simple functional specification

(trace property)

ψ B (¬rec)U(rec ∧ ⃝ ¬rec) ∧ (rec ↔ ⃝send)

which expresses that each agent receives data exactly once and

sends it forth in the next step. Every model that satisfies the com-
bination of φ and ψ needs to be infinite. Automatically checking

satisfiability is thus complex as we cannot iteratively search for

models of bounded (finite) size. ◁

A satisfiability checker that distinguishes between a functional

specification and hyperproperties could be used to sanity-check

whether a hyperproperty is satisfiable in combination with the

specification of the system at hand.

Temporal Safety and Temporal Liveness. The classification into

safety and liveness has a long tradition in the study of trace proper-

ties, where especially safety often allows for easier algorithms. For

our analysis, we define analogous fragments: a HyperLTL formula

is temporal safety (resp. temporal liveness) if its LTL body describes

a safety (resp. liveness) property. We study the relationship to the

existing notations of hypersafety and hyperliveness defined by Clark-
son and Schneider [14]. Guided by our insights into the complete

fragments, we derive several more specific classes of temporal safety

and liveness properties, for which satisfiability is easier to decide.

Main Results. Our results are summarized in Table 1, where each

line represents a class of HyperLTL properties, and the columns

distinguish whether or not additional (arbitrarily complex) LTL

specifications are allowed. All hardness results for ∀∗∃∗ fragments,

except in the NEXP cases, already hold for ∀∃∗. The restriction to

temporal safety makes the satisfiability of HyperLTL drop from

Σ1
1
to coRE, which we show by an effective reduction to satisfia-

bility of first-order logic. While still undecidable, this enables the

use of common first-order techniques such as resolution, tableaux,

and related methods [37]. Hardness already holds for simple for-

mulas consisting only of a single with ⃝s in its scope. If we

add (non-safety) functional specifications, hardness jumps back to

Σ1
1
. In contrast to temporal safety properties, the class of tempo-

ral liveness HyperLTL formulas is of analytical complexity, even

without additional LTL specifications. However, again in contrast

to (⃝∗), formulas from the ∀∃∗. (⃝∗) fragment are decidable,

even when combined with an arbitrary LTL specification. This is

the first HyperLTL decidability result for formulas that can enforce

1
Of course, we can incorporate the LTL property in the HyperLTL formula: we con-

ceptually divide the specification into a (complicated) trace property and a (simple)

hyperproperty.

Table 1: Deciding satisfiability of HyperLTL specifications.
All results, expect for decidability (dec.), denote complete-
ness. Our notation is found in Section 2.3, e.g., ∀∗∃∗. (⃝∗)

is the class of ∀∗∃∗ formulas whose LTL body uses a single
operator with optional ⃝ operators in its scope.

no LTL spec. with LTL spec.

complete fragment coRE [Thm. 3.7] Σ1
1
[Thm. 3.11]

∀∗∃∗ . ⃝∗ NEXP [Thm. 3.12] NEXP [Thm. 3.12]

∀∗∃∗ . NEXP [Lem. 3.13] Σ1
1
[Thm. 3.11]

Te
m
po

ra
l

Sa
fe
ty

∀∗∃∗ . (⃝∗) coRE [Lem. 3.10] Σ1
1
[Thm. 3.11]

complete fragment Σ1
1
[Thm. 4.2] Σ1

1
[Thm. 4.2]

∀∃∗ . det-liveness trivial [Prop. 4.15] Σ1
1
[Cor. 4.16]

∀∃∗ . (⃝∗) NP [Lem. 4.4] dec. [Thm. 4.6]

Te
m
po

ra
l

Li
ve

ne
ss

∀∗∃∗ . ∧ · · · ∧ NP [Lem. 4.4] Σ1
1
[Thm. 4.12]

models with infinitely many traces. The class also contains the

specification from Example 1.1. This decidability result is tight in

the sense that already conjunctions of multiple eventualities are

analytical again.

Finally, to complement our decidability results, we propose a

general approximation algorithm to find the largest model for spec-

ifications consisting of a HyperLTL formula and an LTL formula.

Our experimental evaluation shows that our algorithm performs

significantly better than approaches that iteratively search for mod-

els of bounded size [21, 33] and can even show unsatisfiability for

many formulas (which is impossible in bounded approaches).

Structure. The remainder of this paper is structured as follows.

We give some basic preliminaries and introduce HyperLTL in Sec-

tion 2. We study the fragment of temporal safety in Section 3. We

begin this study with the full fragment, and then gradually decrease

in expressiveness all the way to the fragment containing only ⃝

operators. We then move to temporal liveness in Section 4. Analo-

gous to the safety case, we begin with the full fragment, gradually

decreasing to the fragment of pure eventualities, for which we

establish decidability. Finally, in Section 5, we describe our approxi-

mation for finding the largest models and report on experimental

results in Section 6.

Related Work. In recent years, many logics to express hyper-

properties have been developed. Most approaches extend existing

logics with trace or path quantification, examples besides Hyper-

LTL are HyperCTL
∗
[14], HyperQPTL [36], HyperPDL-∆ [27], and

HyperATL
∗
[7]. Monadic first-order logics can be extended by

adding a special equal-level predicate [23] or using different types of

quantifiers [4]. Recently, hyperproperties have also been obtained

via a team semantics for trace logics [30, 43]. Apart from plain tem-

poral logics, there are also hyperlogics for hyperproperties that are

asynchronous [5, 12, 28], quantitative [22], or probabilistic [1, 17].

HyperLTL remains the most used among the proposed hyper-

logics. Its satisfiability problem is known to be challenging: if we

define fragments based on quantifier prefixes (but with an arbi-

trary body), then ∃∗∀∗ is the most general fragment for which

Deciding Hyperproperties Combined with Functional Specifications LICS ’22, August 2–5, 2022, Haifa, Israel

satisfiability is still decidable (and EXPSPACE-complete), whereas

∀∃∗ already leads to undecidability [20]. In fact, the ∀∗∃∗ fragment

is already satisfiability-complete: any HyperLTL formula can be

effectively translated into equisatisfiable ∀∗∃∗ formula [33]. Ana-

lyzing the case of (unrestricted) HyperLTL in more detail, Fortin

et al. show satisfiability to be Σ1
1
-complete, and therefore above all

problems in the arithmetic hierarchy [25]. In a more fine-grained

analysis, Mascle and Zimmermann show that the problem becomes

decidable if one only considers models of a bounded size or if, for

selected quantifier prefixes, temporal operators are not nested [33].

In particular, ∀∃∗ properties using only and (without ⃝s) are

decidable (and always have a finite model), as no “diagonal” com-

parison between trace positions is possible [33]. The satisfiability

of the logics HyperQPTL and HyperCTL
∗
, which both subsume

HyperLTL, has been studied as well [15].

2 PRELIMINARIES
We assume a fixed, finite set of atomic propositions AP and write

Σ B 2
AP

. Given a symbol π , we write APπ for the set {aπ | a ∈

AP}. A trace t is an element in Σω . For i ∈ N, t(i) denotes the ith
element in t (starting with the 0th) and t[i,∞] is the suffix of a

trace starting in point in time i . For a finite trace u ∈ Σ∗ and an

infinite trace t ∈ Σω , u is a prefix of t (written u ⋖ t) if for every
0 ≤ i < |u |,u(i) = t(i). A trace property P is a set of traces, whereas

a hyperproperty H is a set of sets of traces [14].

2.1 Trace Properties and LTL
Linear temporal logic (LTL) defines trace properties by combining

temporal operators with boolean connectives. Its syntax is defined

by the following grammar.

ψ B a | ¬ψ | ψ ∧ψ | ⃝ψ | ψUψ

where a ∈ AP . We also use the standard Boolean connectives ∧,→,

↔ and constants ⊤,⊥, as well as the derived LTL operators eventu-
ally ψ B ⊤Uψ , and globally ψ B ¬ ¬ψ . The semantics of

LTL is defined as usual.

t |= a iff a ∈ t(0)

t |= ¬ψ iff t ̸ |= ψ

t |= ψ1 ∧ψ2 iff t |= ψ1 and t |= ψ2

t |= ⃝ψ iff t[1,∞] |= ψ

t |= ψ1Uψ2 iff ∃i . t[i,∞] |= ψ2 and ∀j < i . t[j,∞] |= ψ1

Safety and liveness properties are prominent classes of trace

properties [2]. Safety properties are characterized by the fact that

each violation is caused after a finite time. Liveness properties

characterize that something good happens eventually.

Definition 2.1. A property P is safety if it holds that for every

trace t < P , there exists a u ⋖ t such that for every t ′ with u ⋖ t ′,
we have t ′ < P . A property P is liveness if for every u ∈ Σ∗, there
exists a t ∈ Σω with u ⋖ t and t ∈ P . ◁

2.2 Hyperproperties and HyperLTL
HyperLTL [13] extends LTL with explicit quantification over traces,

thereby lifting it from a logic expressing trace properties to one

expressing hyperproperties [14]. Let V be a set of trace variables.

We define HyperLTL formulas with the following grammar.

φ B ∃π .φ | ∀π .φ | ϕ

ϕ B aπ | ¬ϕ | ϕ ∧ ϕ | ⃝ϕ | ϕUϕ

Here, π ∈ V and a ∈ AP . We consider only closed formulas, i.e.,

formulas where for each atom aπ the trace variable π is bound by

some trace quantifier. The semantics of HyperLTL is given with re-

spect to a set of tracesT and a trace assignment Π, which is a partial
mapping Π : V ⇀ Σω . For π ∈ V and t ∈ T , we write Π[π 7→ t]
for the trace assignment obtained by updating the value of π to t .
We write Π[i,∞] for the assignment Π[i,∞](π) B Π(π)[i,∞].

Π |=T aπ iff a ∈ Π(π)(0)

Π |=T ¬ϕ iff Π ̸ |=T ϕ

Π |=T ϕ1 ∧ ϕ2 iff Π |=T ϕ1 and Π |=T ϕ2

Π |=T ⃝ϕ iff Π[1,∞] |=T ϕ

Π |=T ϕ1Uϕ2 iff ∃i .Π[i,∞] |=T ϕ2 and

∀j < i .Π[j,∞] |=T ϕ1

Π |=T ∃π .φ iff ∃t ∈ T .Π[π 7→ t] |=T φ

Π |=T ∀π .φ iff ∀t ∈ T .Π[π 7→ t] |=T φ

We say that T is a model of φ (written T |= φ) if ∅ |=T φ, where ∅
denotes the empty trace assignment.

Remark 2.2. HyperLTL is closed under conjunction (and, more

generally, under any boolean combination) [36]. For two Hyper-

LTL formulas φ1,φ2, we therefore write φ1 ∧ φ2 for some Hyper-
LTL formula expressing the conjunction of φ1,φ2. For examples(∀π∃π ′. (aπ ↮ aπ ′)

)
∧
(∀π . bπ

)
can be expressed as the Hyper-

LTL formula ∀π∀π ′∃π ′′. (aπ ↮ aπ ′′) ∧ bπ ′ . ◁

Analogous to trace properties, we can characterize hyperproper-

ties as hypersafety and hyperliveness [14].We lift the prefix relation

⋖ to sets of traces: a set U ⊆ Σ∗ of finite traces is a prefix of a set
T ⊆ Σω (written U ⋖ T) if, for every u ∈ U , there exists a t ∈ T
such that u ⋖ t .

Definition 2.3. A hyperproperty H is hypersafety if for every

T ⊆ Σω with T < H , there exists a finite set U ⊆ Σ∗ with U ⋖ T
such that, for every T ′ ⊆ Σω with U ⋖ T ′

, we have T ′ < H . A

property H is hyperliveness if for every finite set U ⊆ Σ∗, there
exists T ⊆ Σω withU ⋖T and T ∈ H . ◁

Intuitively, a violation of a hypersafety property can be explained

by the finite interaction of finitely many traces. Conversely, a hy-

perproperty is hyperliveness, if such a set can always be extended

to a set satisfying the property.

2.3 Specifications and Notation
We study the combination of ∀∗∃∗ HyperLTL formulas and arbi-

trary LTL formulas, and call such pairs specifications.

Definition 2.4. A specification is a pair (ψ ,φ) whereψ is an LTL

formula and φ a HyperLTL formula. We say that (ψ ,φ) is satisfiable
iff there exists a non-empty set of traces T ⊆ Σω such that ∀t ∈

T . t |= ψ and T |= φ. ◁

LICS ’22, August 2–5, 2022, Haifa, Israel R. Beutner, D. Carral, B. Finkbeiner, J. Hofmann, and M. Krötzsch

In general, we write (ψ ,φ) for specifications with arbitrary LTL

and HyperLTL formulas. We use the following notation for frag-

ments of specifications. We write (⊤,φ) to indicate that no LTL for-

mula is given or, equivalently, the trace specification is true. We rep-

resent the quantifier prefix of the HyperLTL property using regular

expressions. For example, ∀∃∗ is a prefix consisting of a single uni-

versal quantifier followed by any number of existential quantifiers.

We write Q∗
for an arbitrary prefix. The body of a HyperLTL for-

mula is structured based on the use of temporal operators. We allow

propositional (temporal-operator-free) formulas as conjuncts if not

stated otherwise Consider the following example. A ∀∗∃∗. (⃝∗)

formula is of the form ∀π1 . . . ∀πn∃πn+1 . . . ∃πn+m . (ϕ) ∧ ϕ ′,
where ϕ may contain (potentially nested) ⃝ operators and ϕ ′ does
not contain any temporal operators. Analogously, a formula in

∀∗∃∗. describes formulas as the one above but ϕ may not contain

⃝s. A formula in ∀∗∃∗. ∧ uses a conjunction of two eventual-

ities (also without ⃝s).

2.4 Complexity of Undecidable Problems
Many problems considered in this paper are highly undecidable.

To enable precise quantification of “how undecidable”, we briefly

recall the arithmetic and analytical hierarchy. We only provide a

brief overview and refer to [38] for details. The arithmetic hierarchy

contains all problems (languages) that can be expressed in first-

order arithmetic over the natural numbers. It contains the class of

recursively enumerable (RE) and co-enumerable problems (coRE)
in its first level. The class Σ1

1
(sitting in the analytical hierarchy)

contains all problems that can be expressed with existential second-

order quantification (over sets of numbers) followed by a first-

order arithmetic formula. Analogously, the class Π1

1
contains all

problems expressible using universal second-order quantification.

Consequently, both Σ1
1
andΠ1

1
(strictly) contain the entire arithmetic

hierarchy.

2.5 Machines
As a basic model of computation to show hardness we use two-

counter machines. A nondeterministic 2-counter machine (2CM)

consists of a finite set of instructions l1, . . . ln , which modify two

counters c1, c2. Each instruction li is of one of the following forms,

where x ∈ {1, 2} and 1 ≤ j,k ≤ n.

• li :
[
cx B cx + 1; goto {lj , lk }

]
• li :

[
cx B cx − 1; goto {lj , lk }

]
• li :

[
if cx = 0 then goto lj else goto lk

]
• li : halt

Here, goto {lj , lk } indicates that the machine nondeterministically

chooses between instructions lj and lk . A configuration of a 2CM

is a tuple (li ,v1,v2), where li is the next instruction to be executed,

and v1,v2 ∈ N denote the values of the counters. The initial con-

figuration of a 2CM is (l1, 0, 0). The transition relation between

configurations is defined as expected. Decrementing a counter that

is already 0 leaves the counter unchanged. A 2CM halts if a configu-

ration with a halt instruction is reached. Deciding if a machine has

a halting computation is RE-complete and deciding if it has an infi-

nite computation is coRE-complete [35]. An infinite computation is

recurring if it visits instruction l1 infinitely many times. Deciding if

a machine has a recurring computation, is Σ1
1
-hard [3, 24].

3 TEMPORAL SAFETY
In this section, we study the satisfiability problem of temporal

safety HyperLTL formulas. We begin by defining temporal safety

and argue why, compared to hypersafety, it is the more suitable

fragment in the context of satisfiability. Subsequently, we show that

temporal safety specifications improve the general Σ1
1
-hardness of

∀∗∃∗ hyperproperties [25] to coRE-complete. We obtain this result

by a reduction to satisfiability of first-order logic. In the next step,

we investigate the combination of temporally safe hyperproperties

with arbitrary functional trace specifications given in LTL. The

complexity jumps again to Σ1
1
-completeness, perhaps surprisingly

already for very basic ∀∃∗ formulas only using one as temporal

operator. We, therefore, analyze the remaining fragments for decid-

ability results and establish that hyperproperties that only use ⃝s

as temporal operators are NEXPTIME-complete, even when adding

arbitrary LTL specifications. The same holds for hyper-invariants

(using) without an LTL specification.

3.1 Hypersafety and Temporal Safety
The safety fragment of LTL is one of the most successful fragments

of temporal logics as it is amendable to easier monitoring and ver-

ification than arbitrary ω-regular properties [31]. The concept of
a safety property (i.e., every violation is caused after a finite time)

naturally extends to hyperproperties, giving the general class of hy-

persafety (cf. Definition 2.3) [14]. However, hypersafety is not well

suited for a systematic study of the decidability of hyperproperties.

Deciding if a property is hypersafety is already highly undecid-

able and deciding if a hypersafety property is satisfiable is directly

reducible to LTL satisfiability.

Proposition 3.1. Deciding if a HyperLTL formula φ is hyper-
safety is Π1

1
-hard.

Proof. As shown in [19, Thm. 23], for any HyperLTL formula φ
we can effectively construct a formula φ ′ such that φ is unsatisfied

iff φ ′ is hypersafety. As HyperLTL unsatisfiability is Π1

1
-hard [25],

the hardness follows. □

Proposition 3.2. Given a HyperLTL formulaφ that is hypersafety,
satisfiability of φ is decidable in PSPACE.

Proof. As hypersafety properties are closed under subsets [14],

φ is satisfiable iff it is satisfiable by a single trace model. Therefore,

we can collapse all quantifiers in φ to universal ones, giving an eq-

uisatisfiable (but not equivalent) ∀∗ formula for which satisfiability

is decidable in PSPACE [20]. □

Instead of focusing on hypersafety, we study the satisfiability

problem for a broader fragment of formulas which we call tempo-

rally safe.

Definition 3.3. A HyperLTL formula Qπ1 . . .Qπn .ϕ is temporal
safety if ϕ (interpreted as an LTL formula over APπ1 ∪ . . . ∪ APπn)
describes a safety property. ◁

Similar to the case of LTL [31], the safety restriction on the body

of the HyperLTL formula allows for easier verification (see, e.g.,

[8, 9]). We argue that temporal safety is also an interesting frag-

ment to study in the context of satisfiability. First, compared with

hypersafety, it is decidable whether a formula is temporally safe, as

Deciding Hyperproperties Combined with Functional Specifications LICS ’22, August 2–5, 2022, Haifa, Israel

safety is recognizable for LTL [39]. Second, the next two proposi-

tions show that temporal safety defines an expressive fragment: it

subsumes all ∀∗∃∗ hypersafety properties.

Proposition 3.4. For any ∀∗ hypersafety property, there exists
an equivalent ∀∗ property that is temporally safe.

Proof. Let φ = ∀π1 . . . πn .ϕ be the hypersafety property. For

any function f : {1, . . . ,n} → {1, . . . ,n} (of which there are nn

many) we define the formula ϕ[f] as the formula obtained by re-

placing each trace variable πi for 1 ≤ i ≤ m with πf (i). Define
φ ′ B ∀π1 . . . πn .ϕ ′ where

ϕ ′ B
∧

f :{1, ...,n }→{1, ...,n }

ϕ[f]

It is easy to see that φ ≡ φ ′ (using the semantics of universal

quantification). We claim that ϕ ′ expresses a safety property when

interpreted as trace property over APπ1 ∪ · · · ∪ APπn . Take any
trace t over APπ1 ∪ · · · ∪ APπn with t ̸ |= ϕ ′ (as in the definition of

safety, cf. Definition 2.1). Let T = {t1, . . . , tn } be the set obtained
by splitting t into n traces, i.e., ti is a trace over AP that copies the

assignments to APπi on t . By construction of T we get T ̸ |= φ ′ and,
asφ ≡ φ ′ is hypersafety, we get a finite set of finite tracesU ⋖T such

that no extension ofU satisfies φ. We assume thatU = {u1, . . . ,un }
whereui⋖ti for each i . This assumption is w.l.o.g., as we can replace

multiple prefixes of the same ti by the longest among those prefixes,

and add an arbitrary prefix of each ti that previously had no prefix

inU . We further assume, again w.l.o.g., that all ui s have the same

length, say k . Now define u as the finite trace (of length k) over
APπ1 ∪ · · · ∪ APπn , where the assignment to APπi is taken from

ui . As ui ⋖ ti for each i , we get u ⋖ t . It remains to argue that u is

a bad prefix of ϕ ′. Let t ′ be any trace with u ⋖ t ′. We, again, split

t ′ into traces t ′
1
, . . . , t ′n . Now T ′ B {t ′

1
, . . . , t ′n } satisfiesU ⋖T

′
, so

T ′ ̸ |= φ. By the semantics of universal quantification, there thus

exists a f such that [π1 7→ t ′f (1), . . . ,πn 7→ t ′f (n)] ̸|= ϕ and so

[π1 7→ t ′
1
, . . . ,πn 7→ t ′n] ̸|= ϕ[f]. This implies that t ′ ̸ |= ϕ[f] in the

LTL semantics so t ′ ̸ |= ϕ ′ as required. □

Remark 3.5. We do not claim that every ∀∗ hypersafety prop-

erty is temporally safe. Instead, Proposition 3.4 only states that

there exists an equivalent temporally safe property. For example,

∀π∀π ′. (aπ ∧ ¬aπ ′) is unsatisfiable and thus hypersafety but

(aπ ∧ ¬aπ ′) is not a safety property. ◁

Proposition 3.6. For any ∀∗∃∗ hypersafety property, there exists
an equivalent ∀∗ property that is temporally safe.

Proof. Let φ = ∀π1 . . . πn∃π ′
1
. . . π ′

m .ϕ be hypersafety. For a

function д : {1, . . . ,m} → {1, . . . ,n} we define the formula ϕ[д]
as the formula obtained by replacing each trace variable π ′

i for

1 ≤ i ≤ m with πд(i). Now define:

φ ′ B ∀π1 . . . πn .
∨

д:{1, ...,m }→{1, ...,n }

ϕ[д]

We claim that φ ≡ φ ′. Showing that φ ′ implies φ is easy as the

disjunction gives an explicit witness for the existential quantifiers.

For the other direction, assume T |= φ for some model T . Let
t1, . . . , tn ∈ T be arbitrary. As φ is a hypersafety property and

{t1, . . . , tn } ⊆ T , we get that {t1, . . . , tn } |= φ. In particular, if

we bind each πi to ti (in φ), we get witness traces t ′
1
, . . . , t ′m ∈

{t1, . . . , tn } for the existential quantifiers in φ. Now define д by

mapping each 1 ≤ j ≤ m to i ∈ {1, . . . ,n} with t ′j = ti . The trace

assignment [π1 7→ t1, . . . ,πn 7→ tn] satisfies ϕ[д]. As we can find

such a д for every t1, . . . , tn ∈ T , we get that T |= φ ′ as required.
As φ ′ is a ∀∗ formula, we can conclude using Proposition 3.4. □

While temporal safety subsumes ∀∗∃∗ hypersafety, it is a strictly
larger fragment as shown by the following formula.(∃π . aπ) ∧ (∀π . (aπ → ⃝ ¬aπ)

)
∧
(∀π∃π ′. (aπ ↔ ⃝aπ ′)

)
Every model of this property must contain infinitely many traces.

Hypersafety properties, on the other hand, are closed under subsets

and are therefore always satisfiable by a single trace model (if

satisfiable at all) [14].

3.2 Temporal Safety without Functional
Specifications

Having established that temporal safety spans a broad spectrum of

properties, we now establish that the general analytical hardness

of HyperLTL [25] drops to coRE-completeness for temporal safety.

Theorem 3.7. The satisfiability problem for temporally safe
HyperLTL is coRE-complete.

We show the upper bound of Theorem 3.7 by giving an effective

translation from temporally safe HyperLTL to first-order logic using

the fact that satisfiability of first-order logic is coRE-complete [26].

Our translation enables the application of first-order satisfiability

solvers in the realm of hyperproperties.

In our construction, we represent the body of a temporally safe

HyperLTL formula as a safety automaton.

Definition 3.8. A safety automaton over alphabet Σ is a tuple

A = (Q,q0,δ) where Q is a finite set of states, q0 ∈ Q a unquiet

initial state, and δ ⊆ Q × Σ ×Q is the transition relation. A trace

t ∈ Σω is accepted by A if there exists some infinite run r ∈ Qω

such that r (0) = q0 and for all i , (r (i), t(i), r (i + 1)) ∈ δ . For every
safety trace property ϕ, there exists a safety automaton that accepts

exactly those traces that satisfy ϕ [31]. ◁

Proposition 3.9. The satisfiability problem of temporally safe
HyperLTL is in coRE.

Proof. Let φ = Q1π1 . . .Qnπn .ϕ be a temporally safe Hyper-

LTL formula. Let Aϕ = (Qϕ ,q0,ϕ ,δϕ) be a safety automaton over

Σ B 2
APπ

1
∪···∪APπn that accepts ϕ (when interpreted as an LTL

formula over APπ1 ∪ · · · ∪ APπn). We define in the following an

equisatisfiable first-order formula Θ, which can be computed from

φ. For readability, we use two-sorted first-order logic, which is eq-

uisatisfiable to standard first-order logic. We use two sorts: Trace,
which contains trace variables, and TimePoint, which contains time

variables. We use the constant i0 : TimePoint to indicate the initial

time point. The predicate Succ(·, ·) over TimePoint × TimePoint en-
codes the successor relation on time. For each a ∈ AP , we use a
predicate Pa (·, ·) over Trace × TimePoint to indicate that on trace t ,
a holds at point in time i . For each state q ∈ Qϕ we use a predicate

Stateq over Tracen ×TimePoint. Informally, Stateq (x1, . . . ,xn , i) in-
dicates that a run of A on traces x1, . . . ,xn can be in state q at

timepoint i .

LICS ’22, August 2–5, 2022, Haifa, Israel R. Beutner, D. Carral, B. Finkbeiner, J. Hofmann, and M. Krötzsch

We first ensure that each point in time has a successor and that

the set of traces is non-empty.

ϕsucc B ∀i : TimePoint. ∃i ′ : TimePoint. Succ(i, i ′)

ϕnon-empty B ∃x : Trace.⊤

For each stateq ∈ Qϕ , we construct a formula ρq (over free variables
x1, . . . ,xn), describing that, for any choice of traces and at any point
in time, there is a transition in A to some successor state.

ρq B ∀i, i ′ : TimePoint. Stateq (x1, . . . ,xn , i) ∧ Succ(i, i ′)

→
∨

(q,σ ,q′)∈δϕ

(∧
aπj ∈σ

Pa (x j , i) ∧
∧

aπj <σ
¬Pa (x j , i) ∧

Stateq′(x1, . . . ,xn , i ′)
)

Now, define Θ as follows

Θ B Q1x1 : Trace. . . .Qnxn : Trace. ϕsucc ∧ ϕnon-empty

∧
∧
q∈Q

ρq ∧ Stateq0 (x1, . . . ,xn , io).

The last conjunct ensures that all trace tuples chosen by the quan-

tifiers have an infinite run in A starting in the initial state and in

the initial time point. If Θ is satisfiable, we can construct a trace

assignment by setting the propositions based on the evaluation

of Pa (·, ·) in a satisfying first-order model of Θ and vice versa. A

detailed proof can be found in the full version [6]. Note that our

construction is limited to safety automata. If we were to use, e.g.

Büchi automata, we could not ensure infinitely many visits to an

accepting state. □

To complement the upper bound, we show coRE-hardness by
reducing the complement of the halting problem of deterministic

Turing machines. The proof shows that already a single with

nested ⃝s suffices for coRE-hardness.

Lemma 3.10. The satisfiability problem is coRE-hard for specifica-
tions (⊤,φ) where φ is of the form ∀∃∗. (⃝∗).

Proof Sketch. We encode the non-termination of deterministic

Turning machines, which is coRE-hard. Each trace represents a

configuration of the machine and the ∀∃ formula demands that

each configuration encoded in trace π has a successor configuration

on some trace π ′
. As the transitions of a TM can be checked locally,

we can encode a successor configuration by comparing every three

consecutive positions on π and π ′
, which is possible with a single

globally. We give a detailed proof in the full version [6]. □

This completes the proof of Theorem 3.7.

3.3 Temporal Safety with Functional
Specifications

We now investigate satisfiability for the combination of temporally

safe HyperLTL formulas and LTL properties. If the LTL specifica-

tion is safety, we can simply merge the trace property with the

temporally safe hyperproperty, maintaining the applicability of

Theorem 3.7. The situation changes if we allow non-safety trace

properties.

Theorem 3.11. The satisfiability problem is Σ1
1
-hard for specifica-

tions (ψ ,φ) where φ is of the form ∀∃∗. .

Proof Sketch. To show Σ1
1
-hardness, we encode recurring com-

putations of nondeterministic two-counter machines. We represent

each configuration by encoding the current instruction and two

atomic propositions c1, c2 that hold exactly once, i.e., counter x
has value v if cx occurs in the vth position. To ensure a recur-

ring computation, we add a third counter t that decreases in each

step. When it reaches 0, the trace must encode the initial instruc-

tion, at which point t is reset to any value. The key idea of the

proof is that each trace in the model represents two consecutive

configurations, which are encoded over disjoint copies of AP (for

i ∈ {1, 2}, APi = {ai | a ∈ AP}). In LTL, we can express that the

second configuration encoded in a trace is a successor of the first

configuration in that trace. Furthermore, we express in LTL that

the value of t either decreases or the initial instruction is executed.

In the HyperLTL property we ensure the existence of the initial

configuration, and state that for each trace π , there exist a π ′
such

that the second configuration on π equals the first on π ′
. We can

express the latter as

∀π∃π ′.
(∧
a∈AP

(
a2π ↔ a1π ′

))
.

The resulting specification is satisfiable if and only if the machine

has a recurring computation. We give a detailed proof in the full

version [6]. □

3.4 Propositional Hyperproperties and
Invariants

As we have seen, with arbitrary LTL properties present, a single

operator suffices to jump to Σ1
1
. This leaves hyperproperties ex-

pressed using only⃝s as the only sub-analytical fragment.We settle

the precise complexity of the resulting problem to be NEXPTIME-
complete.

Theorem 3.12. The satisfiability problem is NEXPTIME-complete
for specifications (ψ ,φ)where φ is of the formQ∗.⃝∗. Hardness holds
already forψ = ⊤, a ∀∗∃∗ prefix, and propositional φ.

Proof Sketch. To show containment, we nondeterministically

guess a set of finite traces M ⊆ Σk , where k is the number of

⃝ operators in the formula. We then verify that each trace in M
can be extended to one satisfying ψ and that M is a model of the

hyperproperty. For the lower bound, we reduce the acceptance of

an exponential-time bounded nondeterministic Turing machine

to a HyperLTL formula. Our encoding is a ∀∗∃∗-formula, which

does not contain any temporal operators (not even ⃝) and no trace

property. Each trace in our model encodes a piece of information

(s,p,γ ,q), where s,p ∈ N, γ is a tape symbol of the TM, and q either

a state of the TM or⊥. The tuple (s,p, t ,q) encodes that in time-step

s and at position p, the tape content is γ , and either the head is

at position p and the machine is in state q, or the head is not at

position p (if q = ⊥). As the TM is time (and thus space) bounded, s
and p are bound by 2

n
for some n. We show that we can express in

HyperLTL that the information encoded in a given model defines a

valid accepting run of the TM. The resulting formula is satisfiable

iff TM has an accepting computation. As we can never refer to all

exponentially many positions explicitly, we use ∀∗∃∗ formulas to

encode a counter that references all positions. We give a formal

proof in the the full version [6]. □

Deciding Hyperproperties Combined with Functional Specifications LICS ’22, August 2–5, 2022, Haifa, Israel

We note that HyperLTL without temporal operators has a strong

connection to quantified boolean formulas (QBF), the validity of

which is a standard PSPACE-complete problem [41]. In contrast

to QBF, where the quantifier structure spans the polynomial hi-

erarchy, our proof shows that in HyperLTL, the ∀∗∃∗ fragment

suffices to show NEXPTIME-hardness (refuting a conjecture in [33]

that temporal-operator-free HyperLTL is equivalent to QBF). The

reason is that HyperLTL satisfiability asks for the existence of some

model for which the formula holds (which is related to the more

general second-order QBF problem [32]).

If we forgo the additional trace property, we can also show the

following lemma. Hardness already holds if we disallow proposi-

tional formulas outside of the .

Lemma 3.13. The satisfiability problem is NEXPTIME-complete for
specifications (⊤,φ) where φ is of the form ∀∗∃∗. .

Proof. A property φ = ∀n∃m . (ϕ) ∧ ϕ ′ (where ϕ,ϕ ′ do not

contain any temporal operators) is satisfiable iff ∀n∃m .ϕ ∧ ϕ ′ is
satisfiable. The result then follows using Theorem 3.12. □

4 TEMPORAL LIVENESS
The natural counterparts of safety properties are liveness properties,

which postulate that “something good happens eventually”. Similar

to the case of hypersafety, hyperliveness as a fragment is not well-

suited when studying satisfiability: any hyperliveness property is,

by definition, satisfiable. Analogously to our study of temporal

safety, we instead study HyperLTL properties whose body is a

liveness property.

Definition 4.1. AHyperLTL formulaQπ1 . . .Qπn .ϕ is a temporal
liveness property if ϕ (interpreted as an LTL formula over APπ1 ∪
· · · ∪ APπn) describes a liveness property. ◁

We examine the temporal liveness fragment following the struc-

ture of Section 3 and point out analogous results wherever possible.

As in Section 3, we first examine the entire class of temporal live-

ness and then gradually restrict this class to obtain new decidability

results.

4.1 Hyperliveness and Temporal Liveness
As opposed to the safety case (cf. Proposition 3.6), temporal live-

ness and hyperliveness are incomparable. In temporal liveness, we

can easily express falsity via ∀π∀π ′. (aπ ∧ ¬aπ ′), which is not

hyperliveness. Conversely, the property ∀π∃π ′. (aπ ↮ aπ ′) is

hyperliveness (as we can always add more witness traces) but not

expressible in temporal liveness.

4.2 General Temporal Liveness
Analogous to Theorem 3.7, we consider the full fragment of tem-

poral liveness. Different from the fragment of temporal safety, the

class of temporal liveness is already Σ1
1
-hard.

Theorem 4.2. The satisfiability problem for ∀∃∗ temporal liveness
HyperLTL is Σ1

1
-hard.

To prove Theorem 4.2, we show a stronger result: we can effec-

tively reduce every ∀∗∃∗ HyperLTL property to an equisatisfiable

temporal liveness property.

Theorem 4.3. Let (ψ ,φ) be a specification where φ is of the form
∀n∃m .ϕ, and ψ and ϕ are arbitrary but satisfiable LTL formulas.
Then there is an effectively computable specification (ψ ′,φ ′) such
thatψ ′ is an LTL liveness property, φ ′ is a ∀n∃m temporal liveness
property, and (ψ ,φ) and (ψ ′,φ ′) are equisatisfiable.

Proof. The idea is to move the start position of the formula

under a operator. We introduce a fresh atomic proposition † and

ensure that all traces satisfy the liveness property († ∧ ⃝ ¬†).

The unique position where † ∧ ⃝ ¬† holds (the last time that

† is true) is then the “start position” to evaluate the formula. Let

φ = Q∗.ϕ where Q∗ = ∀π1 . . . πn∃πn+1 . . . πn+m is the quantifier

prefix of φ. Define

φ ′ B Q∗.

(n+m∧
i=1

†πi ∧
(
⃝

n+m∧
i=1

¬ †πi

)
∧ ϕ

)
In similar fashion, we defineψ ′ B († ∧ (⃝ ¬†) ∧ψ). It is easy
to see that both the LTL body of φ ′ andψ ′

are liveness properties.

Here it is crucial that we assumed thatψ and ϕ are satisfiable.

We now claim that (ψ ,φ) is satisfiable if and only if (ψ ′φ ′) is
satisfiable. For the first direction, assume thatT is a model for (ψ ,φ).
The model with † added to the first step of all traces satisfies (ψ ′,φ ′).
For the other direction, let T be a model of (ψ ′,φ ′). We assume

w.l.o.g. that there is no subset T ′ ⊊ T such that T ′
is also a model

for (ψ ′,φ ′). The property enforces that for any traces t1, . . . , tn+m ,

where tn+1, . . . , tn+m are the witness traces for t1, . . . , tm , † holds

for the last time at a common time point. As T ′
is minimal, every

trace serves as a witness for some other traces. Therefore the last

position where † holds is the same for all traces in T ′
. Let i be this

position. Then {t[i,∞] | t ∈ T ′} is a model of (ψ ,φ). □

By Theorem 3.11, satisfiability of ∀∃∗ HyperLTL is Σ1
1
-hard (note

that we transform any specification (ψ ,∀n∃m .ϕ) with n ≥ 1 into

an equivalent specification (⊤,∀n∃m .ϕ ′) by integrating the trace

property into the body of the HyperLTL formula). Theorem 4.3

thus gives a proof of Theorem 4.2. More generally, every Hyper-

LTL formula can be effectively reduced to an equisatisfiable ∀2∃∗
HyperLTL formula [33, Thm. 5], so Theorem 4.3 shows that decid-

ing temporal liveness can be used to decide full HyperLTL.

4.3 Simple Liveness Properties
The general class of temporal liveness thus does not define an

“easier” fragment of HyperLTL. As in the case of safety properties,

we study the precise boundary at which the jump to Σ1
1
occurs by

restricting to simpler forms of temporal liveness. Analogously to

the case of invariants (described with), we study eventualities ().

Theorem 3.12 already shows that satisfiability is NEXPTIME-hard for
propositional formulas. We therefore distinguish whether or not

propositional conjuncts may occur outside the eventualities.

Lemma 4.4. The satisfiability problem is NP-complete for specifica-
tions (⊤,φ) where φ is of the form ∀∗∃∗. (⃝∗) ∧ · · · ∧ (⃝∗) and
no propositional conjunct occurs outside of the operators. Hardness
already holds for a single eventuality.

Proof Sketch. We collapse all universal quantifiers in φ and

thereby reduce satisfiability of (⊤,φ) to boolean satisfiability. We

give a detailed proof in the full version [6]. □

LICS ’22, August 2–5, 2022, Haifa, Israel R. Beutner, D. Carral, B. Finkbeiner, J. Hofmann, and M. Krötzsch

If we allow properties where propositional formulas occur out-

side of the operators, the complexity jumps back to NEXPTIME:

Lemma 4.5. The satisfiability problem is NEXPTIME-complete for
specifications (⊤,φ) where φ is of the form ∀∗∃∗. (⃝∗) ∧ · · · ∧

(⃝∗) (and we allow propositional conjuncts to occur outside of the
operators).

Proof. Assume we are given a formula φ = ∀∗∃∗. (ϕ1)∧ · · ·∧

(ϕn) ∧ ϕ ′ where ϕ1, . . . ,ϕn ,ϕ
′
contain only ⃝s. We get that

φ is satisfiable iff both ∀∗∃∗. (ϕ1) ∧ · · · ∧ (ϕn) and ∀∗∃∗.ϕ ′
are satisfiable. The former is decidable in NP (see Lemma 4.4) and

the latter in NEXPTIME (see Theorem 3.12), so the NEXPTIME upper
bound follows. Hardness follows immediately from Theorem 3.12

(by simply ignoring the s). □

It is worth to contrast these results with the analogous find-

ings for simple temporally safe formulas. Lemma 4.4 shows that

when adding an operator around a propositional formula, the

problem drops from NEXPTIME (Theorem 3.12) to NP. This is in con-

trast to adding operators, which remains NEXPTIME-complete

(Lemma 3.13). Invariants with nested ⃝ and propositional con-

juncts are undecidable (Lemma 3.10), whereas eventualities with

nested ⃝ operators and propositional conjuncts remain decidable

(Lemma 4.5).

4.4 Eventualities with Functional
Specifications

Surprisingly, the sharp contrast between and continues if

we add functional specifications as LTL trace properties. For ,

the resulting problem directly jumps to full analytical hardness

(cf. Theorem 3.11). For , we now show that the problem remains

decidable. Our result reads as follows.

Theorem 4.6. The satisfiability problem is decidable for specifica-
tions (ψ ,φ) where φ is of the form ∀∃∗. (⃝∗).

This result is interesting for two reasons. First, it outlines the

precise difference between and . Second, it defines a new decid-

able class that contains many properties of interest. In particular,

formulas of the fragment can enforce infinite models.
2
For exam-

ple, the specification in Example 1.1 falls in this newly identified

fragment.

The remainder of this subsection provides a proof for Theo-

rem 4.6. We introduce necessary concepts along the way.

4.4.1 Eliminating Nexts. We first show how to eliminate the ⃝

operators in φ.

Lemma 4.7. Let (ψ ,φ) be a specification where φ is of the form
∀n∃m . (⃝∗). There exists an effectively computable specification
(ψ ′,φ ′) where φ ′ is the of the form ∀n∃m . such that (ψ ,φ) and
(ψ ′,φ ′) are equisatisfiable.

Proof Sketch. Let φ = ∀n∃m . (ϕ) ∧ ϕ ′. We eliminate ⃝ op-

erators in ϕ by letting traces range over tuples. Instead of consid-

ering traces in Σω , we consider traces in (Σk)ω , where k is the

lookahead needed to evaluate ϕ (which is upper bounded by the

2
Existing decidability results for HyperLTL consider fragments that, if satisfiable, are

satisfiable by a finite set of traces of bounded size. This includes the ∃∗∀∗ fragment

studied in [20] and the decidable fragments identified in [33].

r0 r1 r2 r3 r4

· · ·

F W

F

F W B

W B

B

W

Figure 1: Model for ∀π∃π ′. ϕ formulas. Dashed boxes indi-
cate the witness points for the operator.

number of ⃝s in ϕ). For each trace t ∈ Σω , we define t ′ ∈ (Σk)ω by

t ′(i) B (t(i), t(i + 1), . . . , t(i + k)). This reduces the evaluation of ϕ
to a formula without ⃝s. We also modify the LTL formula (which

is allowed to contain ⃝ operators) to assert that the tuples in each

tuple trace are consistent, i.e., for each step i if t(i) = (l1, . . . , lk)
then t(i + 1) = (l2, . . . , lk , lk+1). A detailed proof can be found in

the full version [6]. □

Using Lemma 4.7, we can assume that in Theorem 4.6, the Hyper-

LTL formula φ contains a single as the only temporal operator.

For now, we make two further assumptions: First, we assume that

φ contains only a single ∃ quantifier, and, second, we assume that

there are no additional propositional conjuncts outside the . So

let φ = ∀π∃π ′. ϕ where ϕ contains no temporal operators. We

begin by translating the trace propertyψ into a Büchi automaton.

Definition 4.8. A state-labeled Büchi automaton over alphabet

Σ is a tuple A = (Q,Q0,δ , F ,L), where Q is a finite set of states,

Q0 ⊆ Q the initial states, δ ⊆ Q ×Q the transition relation, F ⊆ Q
the set of accepting states, and L : Q → Σ a state labeling function.

An accepting run r of A is an infinite sequence r ∈ Qω such that

1) r (0) ∈ Q0, 2) (r (i), r (i + 1)) ∈ δ for every i , and 3) r (i) ∈ F for

infinitely many i . The trace L(r) ∈ Σω associated to a run is defined

by applying L pointwise, i.e., L(r)(i) B L(r (i)). For a set X ⊆ Q ,
we define StepA (X) B {q ∈ Q | ∃q′ ∈ X . (q′,q) ∈ δ } as all states
reachable in one step from X and ReachA (n) as all states reachable
in n steps from a state in Q0. ◁

Note that we use state-labeled automata (as opposed to transition-

labeled automata) to simplify our construction. Let Aψ =

(Qψ ,Q0,ψ ,δψ , Fψ ,Lψ) be a (state-labeled) Büchi automaton over

2
AP

acceptingψ [42]. We say a state q ∈ Qψ is non-empty if there

exists an accepting infinite run starting in q. We assume that Aψ
only includes non-empty states. This is w.l.o.g. as we can remove all

empty states without changing the language of Aψ . Detecting if a

state is non-empty can be done easily using, e.g., nested depth-first

search.

4.4.2 Models for ∀∃. Intuitively, our decidability result can be

derived as follows. Assume we had a modelT of (ψ ,φ). Let R ⊆ Qωψ
be a set of accepting runs of Aψ associated to T , i.e., T = {Lψ (r) |
r ∈ R}. As we consider a ∀∃ formula, we can arrange the runs in

R as a sequence: we choose r0, r1, . . . ∈ R (not necessarily distinct)

Deciding Hyperproperties Combined with Functional Specifications LICS ’22, August 2–5, 2022, Haifa, Israel

such that, for each i , ri+1 serves as a witness for ri , i.e., [π 7→

Lψ (ri),π
′ 7→ Lψ (ri+1)] |= ϕ. For two elements σ ,σ ′ ∈ Σ = 2

AP
,

we write σ ⊗ σ ′ |= ϕ if the assignment {aπ | a ∈ σ } ∪ {aπ ′ | a ∈

σ ′} ∈ 2
APπ∪APπ ′ satisfies ϕ (recall that ϕ contains no temporal

operators so this is a simple propositional satisfaction check). We

say n0,n1, . . . are witness points for the sequence of runs r0, r1, . . . if
Lψ (ri (ni)) ⊗ Lψ (ri+1(ni)) |= ϕ for every i , i.e., the ni point to a step
at which the eventuality holds. The trace arrangement is depicted

in Figure 1 (ignoring the blue smaller nodes and gray edges for

now). For each i , the dashed box denotes the witness point ni where
ri and ri+1 satisfy ϕ.

As an intermediate step, we describe an infinite-state Büchi

system (a Büchi automaton without labels) that guesses such a

“linear” model of (ψ ,φ). The states of the system are triples (q,b,n),
where q ∈ Qψ is a state in Aψ , b ∈ {⇛,⇚} gives a running
direction, and n ∈ N. Each state (q,b,n) additionally satisfies q ∈

ReachAψ (n). The initial states of the system are all states (q0,⇛, 0)
with q0 ∈ Q

0,ψ . In each step, the system has three options: it

can either run forwards, run backwards, or claim to have found a

witness. In a forward step (F-step), the automatonmoves from (q,⇛
,n) to (q′,⇛,n + 1), where (q,q′) ∈ δψ . Similarly, in a backwards

step (B-step), it runs from (q,⇚,n+ 1) to (q′,⇚,n), where (q′,q) ∈
δψ . Note that in the backwards step, we always ensure that q′ ∈
ReachAψ (n). Lastly, the system can claim to have found a witness

(W-step): if in state (q,b,n), it can select any q′ ∈ ReachAψ (n) such

that Lψ (q) ⊗ Lψ (q
′) |= ϕ. Afterward, the system continues in state

(q′,b ′,n), where b ′ ∈ {⇛,⇚} is chosen nondeterministically. Call

the resulting system S. We claim the following.

Lemma 4.9. S has an infinite run that usesW-steps infinitely often
if and only if (ψ ,φ) is satisfiable.

Proof. We sketch both directions. For the “if” direction, assume

there is a model for (ψ ,φ). We can arrange a subset of this model as

depicted in Figure 1. Let r0, r1, . . . , with ri ∈ Qωψ be the sequence

of accepting runs in Aψ and ni the witness points. Traversing the

graph as shown by the small blue states in Figure 1 creates a run

of S. We start in (r0(0),⇛, 0) and move forward (using F-steps)
until the counter reaches n0. At this point, we take the W-step

from (r0(n0),⇛,n0) to (r1(n0),b,n0), which is a valid edge in S by

definition of the witness points. Afterward, we run towards counter

value n1, i.e., if n1 < n0, we set the running direction b to⇚ and

otherwise to⇛. We continue this procedure to construct an infinite

run. For the example situation depicted in Figure 1, the resulting

run would start with:

(r0(0),⇛, 0)
F
−→ (r0(1),⇛, 1)

W
−−→ (r1(1),⇛, 1)

F
−→ (r1(2),⇛, 2)

F
−→ (r1(3),⇛, 3)

W
−−→ (r2(3),⇚, 3)

B
−→ (r2(2),⇚, 2)

W
−−→ · · ·

The resulting sequence is a run of S and uses W-steps infinitely

many times.

For the “only if” direction, assume an infinite run r = (q0,b0,m0)

→ (q1,b1,m1) → · · · of S. We split r into infinitely many fi-

nite segments x0,x1, . . . ∈ (Qψ × N)∗ by splitting each time r
takes a W-step (and discard the running direction). In the ex-

ample run above we would get x0 = (r0(0), 0)(r0(1), 1), x1 =
(r1(1), 1)(r1(2), 2)(r1(3), 3), In general, let xi be the sequence

(q0i ,m
0

i) . . . (q
ki
i ,m

ki
i). From xi , we construct a finite run ri ∈ Q∗

ψ
of Aψ starting in a state in Q

0,ψ such that for every 0 ≤ j ≤ ki ,

ri (m
j
i) = q

j
i . Using the fact that for each state (q,b,n) in S, we have

q ∈ ReachAπ (n), this is always possible. It is crucial that we can-
not reverse the running direction between two W-steps. The finite

ri ends in a state in Aψ , so by the assumption that all states are

non-empty, we can extend it into an infinite accepting run r ′i ∈ Qωψ .

The set {Lψ (r
′
0
),Lψ (r

′
1
), . . .} is a model of (ψ ,φ). □

4.4.3 From Infinite State to Pushdown. The construction of S re-

quires infinitely many states as we need to carry the natural number

n to ensure valid B andW steps (which need access to ReachAψ (n)).
We show next that we can replace this infinite state space by a finite

pushdown system.

Definition 4.10. A Büchi pushdown system is a tuple P = (Q, Γ,
Q0,γ0,δ , F), whereQ is a finite set of states, Γ a finite stack alphabet,
Q0 ⊆ Q initial states, γ0 ∈ Γ the initial stack symbol, δ ⊆ (Q ×Γ+)×
(Q × Γ∗) a finite transition relation, and F ⊆ Q a set of accepting

states. The system operates on configuration (q,α), where q ∈ Q
and α ∈ Γ∗. A transition ⟨q,α⟩ ⇝ ⟨q′,α ′⟩ ∈ δ describes that the

system, if in state q and α ∈ Γ+ is a prefix of the current stack,

pops α , pushes α ′ ∈ Γ∗ to the stack and moves to state q′. An
accepting run is an infinite sequence of configurations that starts

in (q0, [γ0]) for some q0 ∈ Q0, respects δ , and visits states in F
infinitely many times. It is decidable in polynomial time if a Büchi

pushdown system has an accepting run [11]. ◁

We replace S with a pushdown system P. Conceptually, we

represent a state (q,b,n) in S by the pushdown configuration with

state (q,b) and stack content [ReachAψ (n), . . . ,ReachAψ (0)], i.e.,

the length of the stack is n + 1 and the ith element are all states

reachable in i steps. The states in the pushdown system thus have

the form (q,b) with q ∈ Qψ ,b ∈ {⇛,⇚} and the stack alphabet is

2
Qψ

. The initial stack symbol is γ0 B Q
0,ψ and the initial states are

{(q0,⇛) | q0 ∈ Q
0,ψ }. The transitions are of the following form:

(q,q′) ∈ δψ
(F) 〈

(q,⇛), [A]
〉
⇝

〈
(q′,⇛), [StepAψ

(A),A]
〉

q′ ∈ A2 (q′,q) ∈ δψ
(B) 〈

(q,⇚), [A1,A2]
〉
⇝

〈
(q′,⇚), [A2]

〉
q′ ∈ A Lψ (q) ⊗ Lψ (q

′) |= ϕ b,b ′ ∈ {⇛,⇚}
(W) 〈

(q,b), [A]
〉
⇝

〈
(q′,b ′), [A]

〉
Note the close correspondence with the transitions in S. In particu-

lar, in F-steps, we compute ReachAψ (n + 1) based on ReachAψ (n).
In B-steps, the stack provides access to all states that are reachable,

and thus guarantees the invariant that q ∈ ReachAψ (n) for each

state (q,b,n) in S. It is not hard to see that P has a run that uses

W-steps infinitely often iff S has a run that usesW-steps infinitely

often. Combined with Lemma 4.9 we thus get:

Lemma 4.11. P has an accepting run that uses W-steps infinitely
often if and only if (ψ ,φ) is satisfiable.

Lastly, we can easily translate a Büchi pushdown system with

transition-based acceptance (as in P) to state-based acceptance (as

LICS ’22, August 2–5, 2022, Haifa, Israel R. Beutner, D. Carral, B. Finkbeiner, J. Hofmann, and M. Krötzsch

in Definition 4.10). Using the decidability of pushdown systems

[11], we thus get that the satisfiability of (ψ ,φ) is decidable. Note
that our proof gives an elementary upper bound of 2-EXPTIME (for

∀∃ properties).
3

4.4.4 Propositional Conjuncts and ∀∃∗. We can now lift the two

assumptions we made earlier. As a first extension, we modify our

construction to also support formulas of the form ∀π∃π ′.(ϕ)∧ϕ ′.
To do so, we keep track of the first state of the run we are currently

considering. In a W-step, we then only select a witness state q′

that stems from an initial state which satisfies the propositional

requirement ϕ ′ when combined with the initial state of the current

run. We can access the set of all such states by keeping track of the

set of states reachable from every individual state (by changing the

stack alphabet to functions Qψ → 2
Qψ

).

As a second extension, we can show decidability for a ∀∃m
prefix by moving to alternating Büchi pushdown systems (defined

as expected, see [11] for details). For ∀∃m , we can no longer arrange

the traces of a model in a linear sequence (as depicted in Figure 1)

and instead usem-ary trees labeled by traces such that the children

of a node correspond to witness traces of that trace. In a W-step

from a state (q,b), we now selectm states q1, . . . ,qm (whereas we

previously picked only q′) such that q,q1, . . . ,qm together satisfy

ϕ. Afterward, we need to find a new witnesses for each of the qi . We

accomplish this by introducing a universal transition that branches

into states (qi ,bi) for each 1 ≤ i ≤ m (leaving the stack unchanged

as before). The F and B steps stay purely nondeterministic. The

resulting alternating pushdown system has an accepting run (which

now has the form of a tree) iff (ψ ,φ) is satisfiable. As emptiness

of alternating pushdown systems is still decidable (albeit only in

exponential time) [11], we get a proof of Theorem 4.6 for the full

∀∃∗-fragment. Note that, for the ∀∃∗-fragment, our proof gives an

elementary upper bound of 3-EXPTIME.

4.5 Conjunctions of Eventualities
We show that Theorem 4.6 is tight in the sense that already a con-

junction of eventualities combined with an arbitrary trace property

is undecidable (and even Σ1
1
-hard).

Theorem 4.12. The satisfiability problem is Σ1
1
-hard for specifica-

tions (ψ ,φ) where φ is of the form ∀∃∗. ∧ ∧ .

Proof. We encode the problem of whether a nondeterministic

2CMwith instructions l1, . . . , ln has a recurring computation [3, 24].

Let AP =
⋃
x ∈{1,2,t }{�x ,■x , isZerox } ∪ {l1, . . . , ln }. Each trace

encodes a configuration of the machine as follows. The current

value of counter x ∈ {1, 2} is encoded as a trace in ∅∗{�x }{■x }∅
ω

such that the (unique) step at which �x holds indicates the current

value of cx . We later use proposition ■x (which always holds the

step after �x) to encode the update of the counter. The proposition

isZerox holds exactly if the counter is zero. The current instruction

is encoded by propositions {l1, . . . , ln }, of which exactly one holds

globally along a trace. Finally, to ensure a recurring computation,

we use a third counter t , which is encoded analogously to the

counters above and counts down the steps to the next visit to l1. It

3
The size of Qψ is at most exponential inψ [42], so the size of the stack alphabet of

P is at most double exponential inψ . As deciding the emptiness of a Büchi pushdown

system is possible in polynomial time, the 2EXPTIME upper bound follows.

is easy to see that we can encode the validity of a configuration in

an LTL formulaψ . For x ∈ {1, 2, t} we ensure a valid counter via

(¬ �x ∧¬■x)U
(
(�x ∧ ¬■x)

∧ ⃝(■x ∧ ¬�x) ∧ ⃝ ⃝ (¬ �x ∧¬■x)
)

and correct placement of isZerox by (isZerox) ∨ (¬isZerox) to-
gether with isZerox ↔ �x . Finally, we assert that the propositions

{l1, . . . , ln } are set correctly, i.e.,
∨
i
(

li ∧
∧
j,i ¬lj

)
. In the hy-

perproperty, we encode that there exists a trace representing the

initial configuration as follows (note that we allow counter t to
have any value):

φinit B ∃π .(l1)π ∧ (isZero1)π ∧ (isZero2)π

Lastly, we express that each trace has a successor. For each instruc-

tion li , we write c(li) ∈ {1, 2} for the counter that is changed or

tested in instruction li . We define 1 B 2 and 2 B 1 for the other

counter. We then define

φ B ∀π∃π ′.
(∨

i ∈{1, ...,n }

(li)π ∧ exec(li)
)
∧(∨

i ∈{1, ...,n }

(li)π ∧ (�c(li)
)π ∧ (�c(li)

)π ′

)
∧((

(isZerot)π ∧ (l1)π
)
∨
(
(�t)π ∧ (■t)π ′

))
.

Here, exec(li) denotes that the action or test of instruction li is
performed on c(li). For example, if li :

[
cx B cx+1; goto {lj , lk }

]
,

we define exec(li) as(
(lj)π ′ ∨ (lk)π ′

)
∧ (■x)π ∧ (�x)π ′ .

Note that (■x)π ∧ (�x)π ′ encodes that the counter x is incre-

mented. For a decrement operation, we can replace this with

(■x)π ′ ∧ (�x)π . If li :
[
if cx = 0 then goto lj else goto lk

]
,

we define exec(li) as

(�x)π ∧ (�x)π ′∧(
(isZerox)π → (lj)π ′

)
∧
(
¬(isZerox)π → (lk)π ′

)
.

Inφ, the first conjunct thus encodes that the counter c(li) is updated
and/or tested as required by li . The second conjunct states that the

counter that is not involved in li is left unchanged. As the current
instruction is set consistently along a trace, both eventualities refer

to the same instruction. Finally, the third conjunct ensures that

the counter t either decreases or is already zero, at which point

the current instruction is l1. In case the t-counter is zero, it can
be reset to any value on π ′

. This ensures a recurring computation

of the machine. It is easy to see that (ψ ,φinit ∧ φ) is satisfiable
iff the 2CM has a recurring computation (note that φinit ∧ φ is a

∀∃2-formula). □

While Theorem 4.12 requires three conjunctions of eventualities

to show Σ1
1
-hardness, already two eventualities suffice to show

undecidability. To do so, we can encode the non-termination of a

2CM (avoiding the t counter). This further underlines the tightness
of Theorem 4.6.

Lemma 4.13. The satisfiability problem is undecidable for specifi-
cations (ψ ,φ) where φ is of the form ∀∃∗. ∧ .

Deciding Hyperproperties Combined with Functional Specifications LICS ’22, August 2–5, 2022, Haifa, Israel

Example 4.14. Using similar ideas as in Theorem 4.12, we can

encode that a one-countermachine has an infinite computationwith

only a single eventuality (as we only need to ensure that the single
counter is updated consistently). Combined with Theorem 4.6, we

derive that we can decide the existence of an infinite computation

in a one-counter machine. While this is long known (see, e.g., [29]),

it nevertheless emphasizes that our newly identified decidable class

is broader than it seems at first glance. ◁

4.6 Deterministic Liveness
Liveness for trace properties (cf. Definition 2.1) and hyperliveness

(cf. Definition 2.3) already imply that a property is satisfiable. As

demonstrated by Theorem 4.2, the same does not hold for temporal

liveness hyperproperties. We can, however, identify a fragment

within temporal liveness for which the intuition that liveness im-

plies satisfiability transfers to the realm of hyperproperties. We

say an LTL property ϕ is a deterministic liveness property if it is a

liveness property and can be recognized by a deterministic Büchi
automaton.

Proposition 4.15. HyperLTL formulas of the form φ = ∀∃∗.ϕ
where ϕ is a deterministic liveness property are always satisfiable and
have a finite model.

Proof Sketch. In a deterministic automaton describing a live-

ness property, any reachable state has a path to an accepting state.

We use this to iteratively construct a model. The full proof can be

found in the full version [6]. □

Note that the same does not hold if we consider more than one

universal quantifier. As an example, the formula ∀π∀π ′. (aπ ∧

¬aπ ′) is unsatisfiable but (aπ ∧ ¬aπ ′) is a deterministic liveness

property. If we consider deterministic liveness in combination with

trace properties, we again obtain a jump to Σ1
1
-hardness.

Corollary 4.16. Satisfiability is Σ1
1
-hard for specifications of the

form (ψ ,φ) where φ is of the form ∀∃∗.ϕ and ϕ is a deterministic
liveness property.

Proof. Follows directly from Theorem 4.12 as conjunctions of

eventualities are deterministic liveness. □

4.7 Overview: Liveness vs Safety
Our results provide a clear picture of the (un)decidability bound-

aries within fragments of HyperLTL. In particular, our systematic

study allows a direct comparison between temporal safety and

temporal liveness. For the full fragment, temporal liveness already

subsumes satisfiability of full HyperLTL, which contrasts strongly

with the much cheaper (albeit still undecidable) problem for tempo-

ral safety. This changes if we consider simpler fragments. Here, the

fragment is drastically better behaved in terms of complexity and

even admits large decidable fragments for cases where the safety

counterpart already exhibits full analytical hardness.

5 FINDING LARGEST MODELS
To complement the decidability results from the previous sections,

we propose a new (incomplete) algorithm to detect (un)satisfiability

of ∀∃∗ HyperLTL formulas. So far, the only available algorithm

Algorithm 1: Algorithm that searches for the largest model
of a ∀∃ property. Initially, A is a Büchi automaton that ac-
cepts the body of the HyperLTL property.

1: procedure findModel(A)

2: if L(A∀) = ∅ then
3: return UNSAT;

4: if L(A∃) ⊆ L(A∀) then
5: return SAT, model: L(A∀);
6: Anew B A ∩A∀

π ′ ;

7: findModel(Anew);

checks for finite models of bounded size and then iteratively in-

creases the bound [21, 33]. Such an approach finds smallest models

and cannot determine unsatisfiability. The key insight for our al-

gorithm is that ∀∃∗ formulas are closed under union, therefore, a

formula φ is satisfiable iff there is a (unique) largest model satisfy-

ing φ. To find such models algorithmically, we iteratively eliminate

choices for the ∃∗ quantifiers that admit no witness trace when

chosen for the ∀ quantifier. Thereby, we do not only find largest

models but can also detect unsatisfiability. Our incremental elimi-

nation is closely related to a recent algorithm used in the context of

finite-trace properties (which was developed independently) [10].

For presentation reasons, we present the algorithm for ∀∃ formu-

las. Our implementation (see Section 6) supports full ∀∃∗ properties.

5.1 Algorithm
For a Büchi automaton A over APπ ∪ APπ ′ , we define A∀

and

A∃
as the automata (over AP) that (existentially) project A on

the alphabet APπ and APπ ′ , respectively. Let φ = ∀π∃π ′.ϕ be the

HyperLTL formula for which we check satisfiability and let Aϕ
be an automaton over APπ ∪ APπ ′ accepting ϕ. In particular, A∀

ϕ
accepts all words for which there exists a witness trace for the

existential quantifier. Our algorithm is depicted in Algorithm 1.

Initially, we call findModel(Aϕ).

The first candidate is thus A = Aϕ . If L(A∀) = ∅, i.e., no trace

has a witness trace in A, φ is unsatisfiable. If all potential witness

traces in L(A∃) are contained in L(A∀) (so they have a witness

trace themself), φ is satisfiable and L(A∀) is a model. If neither is

the case, we refineA by removing all traces whose ∃ component is

not in L(A∀). We defineAnew as the intersectionA∩A∀
π ′ where

A∀
π ′ is A

∀
with the alphabet changed from AP to APπ ′ . We can

compute Anew via a standard intersection construction on Büchi

automata. Automaton Anew might again contain witness traces

that themselves have no witness trace, so we recurse.

5.2 Correctness
The algorithm maintains the following invariants.

Lemma 5.1. In every iteration of Algorithm 1 it holds thatL(Anew)

⊆ L(A), and for any trace set T with T |= ∀π∃π ′.ϕ, T ⊆ L(A∀).
Using Lemma 5.1 it is easy to see the following.

Proposition 5.2. If Algorithm 1 terminates with UNSAT, then φ
is unsatisfiable. If it terminates with SAT and model L(A∀), then
L(A∀) is the unique largest model of φ.

LICS ’22, August 2–5, 2022, Haifa, Israel R. Beutner, D. Carral, B. Finkbeiner, J. Hofmann, and M. Krötzsch

Table 2: Comparison of LMHyper and MGHyper on randomly
generated formulas of varying size. We give the size of the
formula’s AST (Size), the percentage of solved formulas (p),
the average time spent on solved cases in ms (t), and the av-
erage number of iterations (number of recursive calls) used
by LMHyper (#Iter). The timeout is set to 5 sec per formula.

MGHyper LMHyper

Size p t p t #Iter

15 95 % 40 100 % 235 0.38

16 93 % 39 99 % 239 0.44

17 95 % 39 100 % 221 0.43

18 92 % 38 100 % 201 0.39

19 95 % 40 100 % 180 0.43

20 97 % 42 100 % 215 0.27

To generalize to ∀∃∗, we intersect the ∀-projection (A∀
) with

each of the projections on existentially quantified positions. Models

for ∀∗∃∗-properties are, in general, not closed under union, so our

algorithm does not extend beyond ∀∃∗.

6 IMPLEMENTATION AND EXPERIMENTS
We have implemented the algorithm described in Section 5 in a tool

called LMHyper (short for LargestModel of HyperLTL). LMHyper
reads both a ∀∃∗ HyperLTL formula φ and LTL formula ψ and

searches for an (un)satisfiability proof for (ψ ,φ). Internally, we rep-
resent the current candidate as a generalized Büchi automaton and

use spot [18] to perform automata operations. The only other avail-

able tool for ∀∃∗ HyperLTL satisfiability is MGHyper [21], which

implements the incremental approach to find models of bounded

size.

6.1 Random Benchmarks
We compare LMHyper against MGHyper on random formulas where

we sample the LTL body of a formula using randltl [18]. The

results are given in Table 2. On our benchmarks, LMHyper usually
takes longer than MGHyper but can handle a larger percentage of

formulas. We observe that randomly generated HyperLTL formulas

are, in most cases, satisfiable by a model with a single trace, as

the atomic propositions are seldom shared between different trace

variables. This explains the high success rate of MGHyper (see [21])

even though MGHyper cannot prove unsatisfiability.

6.2 Infinite and Large Models
We compiled a small number of more interesting properties that

do not have single-trace models. Our results are depicted in Ta-

ble 3. The Inf specification expresses that a model has infinitely

many traces. Example 1.1 is the example from the introduction. The

Enforce-n specification enforces a model that has at least n traces.

It is defined as ∀π∃π1 . . . πn .∧i<j (aπi ↮ aπj). The Unsat-n
specifications are unsatisfiable. Their definition is a trace property

ψ B (¬a)U(a∧⃝ ¬a)∧⃝n ¬a combined with the hyperprop-

erty φ B ∀π∃π ′. (aπ ∧ ⃝aπ ′). The formula is designed such

Table 3: Comparison of LMHyper and MGHyper on hand-
crafted specifications. We give the result (Res) (✓ if the spec-
ification is satisfiable and ✗ if it is unsatisfiable), the time
in ms (t), and the number of iterations needed by LMHyper
(#Iter). The timeout is set to 5 min.

MGHyper LMHyper

Instance Res t Res t #Iter

Inf - TO ✓ 350 1

Example 1.1 - TO ✓ 232 1

Enforce-2 ✓ 444 ✓ 262 0

Enforce-3 TO ✓ 334 0

Enforce-5 - TO ✓ 491 0

Unsat-3 - TO ✗ 777 3

Unsat-5 - TO ✗ 1363 5

Unsat-9 - TO ✗ 1681 9

that Algorithm 1 requires n iterations to discover unsatisfiability.

MGHyper times out for most of the examples; even on simple prop-

erties like Enforce-3. In contrast, LMHyper can verify properties

enforcing many traces in a single iteration because the number of

iterations is independent of the number of traces in a model. As

expected, Unsat-n is unsatisfiable and LMHyper requires multiple

iterations to show this.

7 CONCLUSION
We have studied the satisfiability problem for ∀∗∃∗ HyperLTL for-

mulas in combination with LTL formulas describing functional

behavior. To obtain results below the general Σ1
1
complexity of

HyperLTL, we have focused on simpler hyperproperties belong-

ing to the classes of temporal safety and temporal liveness as well

as fragments thereof. We have shown that temporal safety is an

expressive class that is very well suited for satisfiability studies

and enjoys coRE-completeness. In combination with general LTL

properties, already very simple formulas like invariants cause Σ1
1
-

completeness. The temporal liveness class, on the other hand, is

Σ1
1
-complete in general but contains non-trivial fragments that are

decidable, even in combination with arbitrary LTL formulas.

We have shown that functional specifications given in LTL play

a significant role in the undecidability of general hyperproperties.

The main open question for future work is whether further decid-

able fragments can be found by restricting the operator structure

of the functional specification.

ACKNOWLEDGMENTS
All authors are partially supported by the German Research Founda-
tion (DFG) in project 389792660, TRR 248 (Center for Perspicuous

Systems). M. Krötzsch is additionally supported by the Bundesmin-
isterium für Bildung und Forschung (BMBF) in project ScaDS.AI

(Center for Scalable Data Analytics and Artificial Intelligence), and

by the Center for Advancing Electronics Dresden (cfaed). R. Beut-

ner and J. Hofmann carried out this work as members of the Saar-

brücken Graduate School of Computer Science.

Deciding Hyperproperties Combined with Functional Specifications LICS ’22, August 2–5, 2022, Haifa, Israel

REFERENCES
[1] Erika Ábrahám, Ezio Bartocci, Borzoo Bonakdarpour, and Oyendrila Dobe. 2020.

Probabilistic Hyperproperties with Nondeterminism. In International Symposium
on Automated Technology for Verification and Analysis, ATVA 2020 (Lecture Notes
in Computer Science, Vol. 12302). Springer. https://doi.org/10.1007/978-3-030-

59152-6_29

[2] Bowen Alpern and Fred B. Schneider. 1985. Defining Liveness. Inf. Process. Lett.
21, 4 (1985). https://doi.org/10.1016/0020-0190(85)90056-0

[3] Rajeev Alur and Thomas A. Henzinger. 1994. A Really Temporal Logic. J. ACM
41, 1 (1994). https://doi.org/10.1145/174644.174651

[4] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic, and

Ana Oliveira da Costa. 2022. Flavors of Sequential Information Flow. In In-
ternational Conference on Verification, Model Checking, and Abstract Interpre-
tation, VMCAI 2022 (Lecture Notes in Computer Science, Vol. 13182). Springer.
https://doi.org/10.1007/978-3-030-94583-1_1

[5] Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and

César Sánchez. 2021. A Temporal Logic for Asynchronous Hyperproperties. In

International Conference on Computer Aided Verification, CAV 2021 (Lecture Notes
in Computer Science, Vol. 12759). Springer. https://doi.org/10.1007/978-3-030-

81685-8_33

[6] Raven Beutner, David Carral, Bernd Finkbeiner, Jana Hofmann, and Markus

Krötzsch. 2022. Deciding Hyperproperties Combined with Functional Specifica-

tions. CoRR abs/2205.15138 (2022). arXiv:2205.15138

[7] Raven Beutner and Bernd Finkbeiner. 2021. A Temporal Logic for Strategic

Hyperproperties. In International Conference on Concurrency Theory, CONCUR
2021 (LIPIcs, Vol. 203). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.CONCUR.

2021.24

[8] Raven Beutner and Bernd Finkbeiner. 2022. Prophecy Variables for Hyperproperty

Verification. In IEEE Computer Security Foundations Symposium, CSF 2022. IEEE.
[9] Raven Beutner and Bernd Finkbeiner. 2022. Software Verification of Hyperproper-

ties Beyond k -Safety. In International Conference on Computer Aided Verification,
CAV 2022 (Lecture Notes in Computer Science). Springer.

[10] Borzoo Bonakdarpour and Sarai Sheinvald. 2022. Finite-Word Hyperlanguages.

arXiv:2201.01670

[11] Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability Analysis

of Pushdown Automata: Application to Model-Checking. In International Confer-
ence on Concurrency Theory, CONCUR 1997 (Lecture Notes in Computer Science,
Vol. 1243). Springer. https://doi.org/10.1007/3-540-63141-0_10

[12] Laura Bozzelli, Adriano Peron, and César Sánchez. 2021. Asynchronous Exten-

sions of HyperLTL. In Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2021. IEEE. https://doi.org/10.1109/LICS52264.2021.9470583

[13] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,

Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties.

In International Conference on Principles of Security and Trust, POST 2014 (Lecture
Notes in Computer Science, Vol. 8414). Springer. https://doi.org/10.1007/978-3-

642-54792-8_15

[14] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In IEEE
Computer Security Foundations Symposium, CSF 2008. IEEE. https://doi.org/10.

1109/CSF.2008.7

[15] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. 2019.

The Hierarchy of Hyperlogics. In Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019. IEEE. https://doi.org/10.1109/LICS.2019.8785713

[16] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner, and Holger

Hermanns. 2017. Is Your Software on Dope? - Formal Analysis of Surreptitiously

"enhanced" Programs. In European Symposium on Programming, ESOP 2017 (Lec-
ture Notes in Computer Science, Vol. 10201). Springer. https://doi.org/10.1007/978-

3-662-54434-1_4

[17] Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah. 2020. Probabilistic

Hyperproperties of Markov Decision Processes. In International Symposium on
Automated Technology for Verification and Analysis, ATVA 2020 (Lecture Notes in
Computer Science, Vol. 12302). Springer. https://doi.org/10.1007/978-3-030-59152-

6_27

[18] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud

Michaud, Etienne Renault, and Laurent Xu. 2016. Spot 2.0 - A Framework for

LTL and ω-Automata Manipulation. In International Symposium on Automated
Technology for Verification and Analysis, ATVA 2016 (Lecture Notes in Computer
Science, Vol. 9938). https://doi.org/10.1007/978-3-319-46520-3_8

[19] Bernd Finkbeiner, Lennart Haas, and Hazem Torfah. 2019. Canonical Repre-

sentations of k-Safety Hyperproperties. In IEEE Computer Security Foundations
Symposium, CSF 2019. IEEE. https://doi.org/10.1109/CSF.2019.00009

[20] Bernd Finkbeiner and Christopher Hahn. 2016. Deciding Hyperproperties. In

International Conference on Concurrency Theory, CONCUR 2016 (LIPIcs, Vol. 59).
Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.CONCUR.2016.13

[21] Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. 2018. MGHyper: Checking

Satisfiability of HyperLTL Formulas Beyond the ∃∗∀∗ Fragment. In International
Symposium on Automated Technology for Verification and Analysis, ATVA 2018
(Lecture Notes in Computer Science, Vol. 11138). Springer. https://doi.org/10.1007/

978-3-030-01090-4_31

[22] Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. 2018. Model Checking

Quantitative Hyperproperties. In International Conference on Computer Aided
Verification, CAV 2018 (Lecture Notes in Computer Science, Vol. 10981). Springer.
https://doi.org/10.1007/978-3-319-96145-3_8

[23] Bernd Finkbeiner and Martin Zimmermann. 2017. The First-Order Logic of

Hyperproperties. In Symposium on Theoretical Aspects of Computer Science, STACS
2017 (LIPIcs, Vol. 66). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.STACS.

2017.30

[24] Michael J. Fischer and Richard E. Ladner. 1979. Propositional Dynamic Logic of

Regular Programs. J. Comput. Syst. Sci. 18, 2 (1979). https://doi.org/10.1016/0022-

0000(79)90046-1

[25] Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. 2021.

HyperLTL Satisfiability is Σ1
1
-complete, HyperCTL* Satisfiability is Σ2

1
-complete.

In International Symposium on Mathematical Foundations of Computer Science,
MFCS 2021 (LIPIcs, Vol. 202). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.

MFCS.2021.47

[26] Kurt Gödel. 1929. Über die vollständigkeit des logikkalküls.
[27] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2020. Propo-

sitional Dynamic Logic for Hyperproperties. In International Conference on
Concurrency Theory, CONCUR 2020 (LIPIcs, Vol. 171). Schloss Dagstuhl. https:

//doi.org/10.4230/LIPIcs.CONCUR.2020.50

[28] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2021. Automata

and fixpoints for asynchronous hyperproperties. Proc. ACM Program. Lang. 5,
POPL (2021). https://doi.org/10.1145/3434319

[29] Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. 2009.

Reachability in Succinct and Parametric One-Counter Automata. In International
Conference on Concurrency Theory, CONCUR 2009 (Lecture Notes in Computer
Science, Vol. 5710). Springer. https://doi.org/10.1007/978-3-642-04081-8_25

[30] Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. 2018.

Team Semantics for the Specification and Verification of Hyperproperties. In

International Symposium on Mathematical Foundations of Computer Science, MFCS
2018 (LIPIcs, Vol. 117). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.MFCS.

2018.10

[31] Orna Kupferman and Moshe Y. Vardi. 1999. Model Checking of Safety Properties.

In International Conference on Computer Aided Verification, CAV 1999 (Lecture
Notes in Computer Science, Vol. 1633). Springer. https://doi.org/10.1007/3-540-

48683-6_17

[32] Martin Lück. 2016. Complete Problems of Propositional Logic for the Exponential

Hierarchy. CoRR abs/1602.03050 (2016). arXiv:1602.03050

[33] Corto Mascle and Martin Zimmermann. 2020. The Keys to Decidable HyperLTL

Satisfiability: Small Models or Very Simple Formulas. In EACSL Annual Conference
on Computer Science Logic, CSL 2020 (LIPIcs, Vol. 152). Schloss Dagstuhl. https:

//doi.org/10.4230/LIPIcs.CSL.2020.29

[34] Daryl McCullough. 1988. Noninterference and the composability of security

properties. In IEEE Symposium on Security and Privacy, Oakland, SP 1988. IEEE.
https://doi.org/10.1109/SECPRI.1988.8110

[35] Marvin Lee Minsky. 1967. Computation. Prentice-Hall Englewood Cliffs.

[36] Markus N. Rabe. 2016. A temporal logic approach to information-flow control.
Ph.D. Dissertation. Saarland University.

[37] John Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Automated
Reasoning. MIT Press.

[38] Hartley Rogers Jr. 1987. Theory of recursive functions and effective computability.
MIT press.

[39] A Prasad Sistla. 1994. Safety, liveness and fairness in temporal logic. Formal
Aspects of Computing 6, 5 (1994).

[40] A Prasad Sistla and Edmund M Clarke. 1985. The complexity of propositional

linear temporal logics. J. ACM 32, 3 (1985).

[41] Larry J. Stockmeyer. 1976. The Polynomial-Time Hierarchy. Theor. Comput. Sci.
3, 1 (1976). https://doi.org/10.1016/0304-3975(76)90061-X

[42] Moshe Y. Vardi and Pierre Wolper. 1994. Reasoning About Infinite Computations.

Inf. Comput. 115, 1 (1994). https://doi.org/10.1006/inco.1994.1092

[43] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang.

2021. Linear-Time Temporal Logic with Team Semantics: Expressivity and Com-

plexity. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2021 (LIPIcs, Vol. 213). Schloss Dagstuhl.
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52

https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1145/174644.174651
https://doi.org/10.1007/978-3-030-94583-1_1
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://arxiv.org/abs/2205.15138
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://arxiv.org/abs/2201.01670
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1007/3-540-48683-6_17
https://doi.org/10.1007/3-540-48683-6_17
https://arxiv.org/abs/1602.03050
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Trace Properties and LTL
	2.2 Hyperproperties and HyperLTL
	2.3 Specifications and Notation
	2.4 Complexity of Undecidable Problems
	2.5 Machines

	3 Temporal Safety
	3.1 Hypersafety and Temporal Safety
	3.2 Temporal Safety without Functional Specifications
	3.3 Temporal Safety with Functional Specifications
	3.4 Propositional Hyperproperties and Invariants

	4 Temporal Liveness
	4.1 Hyperliveness and Temporal Liveness
	4.2 General Temporal Liveness
	4.3 Simple Liveness Properties
	4.4 Eventualities with Functional Specifications
	4.5 Conjunctions of Eventualities
	4.6 Deterministic Liveness
	4.7 Overview: Liveness vs Safety

	5 Finding Largest Models
	5.1 Algorithm
	5.2 Correctness

	6 Implementation and Experiments
	6.1 Random Benchmarks
	6.2 Infinite and Large Models

	7 Conclusion
	Acknowledgments
	References

