Exercise Sheet 10: Randomised Computation

David Carral

January 23, 2020
Exercise 1

Exercise. Show that MajSat is in PP.

MajSat = \{ \phi \mid \phi \text{ is some propositional logic formula that is satisfied by more than half of its assignments} \}

Definition. A probabilistic Turing machine (PTM) is a Turing machine with two deterministic transition functions, \(\delta_0 \) and \(\delta_1 \). A run of a PTM is a TM run that uses either of the two transitions in each step.

Definition. A language \(L \) is in Polynomial Probabilistic Time (PP) if there is a PTM \(M \) such that all of the following hold.

- There is a polynomial function \(f \) such that \(M \) will always halt after \(f(|w|) \) steps on all input words \(w \).
- If \(w \in L \), then \(\Pr [M \text{ accepts } w] > \frac{1}{2} \).
- If \(w \notin L \), then \(\Pr [M \text{ accepts } w] \leq \frac{1}{2} \).
Exercise 1

Exercise. Show that MajSat is in PP.

\[
\text{MajSat} = \{ \phi \mid \phi \text{ is some propositional logic formula that is satisfied by more than half of its assignments} \}
\]

Solution. Let \(M \) be the PTM that performs the following computation on input \(\phi \).

1. We randomly produce an assignment \(I \) for \(\phi \).
2. \(M \) accepts \(\phi \) iff \(I \models \phi \).

Remarks.

- \(M \) runs in polynomial time in the size of the input.
- If \(\phi \in L \), then the probability of producing an assignment \(I \) with \(I \models \phi \) is strictly larger than \(\frac{1}{2} \) (as we are equally likely to produce any assignment). Hence, \(M \) accepts \(\phi \) with probability (strictly) larger than \(\frac{1}{2} \).
- If \(\phi \notin L \), then the probability of producing \(I \) with \(I \models \phi \) is at most \(\frac{1}{2} \). Hence, \(M \) accepts \(\phi \) with probability smaller or equal than \(\frac{1}{2} \).
Exercise 2

Exercise. Show $\text{BPP} = \text{coBPP}$.

Definition. A language L is in *Bounded-Error Polynomial Probabilistic Time* (BPP) if there is a PTM M such that all of the following hold.

1. There is a polynomial function f such that M will always halt after $f(|w|)$ steps on all input words w.
2. If $w \in L$, then $\Pr[M\text{ accepts } w] \geq \frac{2}{3}$.
3. If $w \notin L$, then $\Pr[M\text{ accepts } w] \leq \frac{1}{3}$.

Remark.

$$(2) \land (3) \iff \forall w \in \Sigma^*(\Pr[M(w) = L(w)] \geq \frac{2}{3})$$
Exercise 2

Exercise. Show $\text{BPP} = \text{coBPP}$.

Solution. We show that $\text{coBPP} \subseteq \text{BPP}$.

1. We show that any arbitrarily chosen $L \in \text{coBPP}$ is also in BPP.
2. By (1), $\overline{L} \in \text{BPP}$.
3. By (2), there is a poly-time PTM M with $\Pr[\overline{L}(w) = M(w)] \geq \frac{2}{3}$ for all $w \in \Sigma^*$.
4. Let M' be the PTM that results from exchanging all accepting and rejecting states in M.
5. By (3) and (4), M' is poly-time bounded.
6. By (3) and (4), $\Pr[M(w)] \geq \frac{2}{3}$ for all $w \in \overline{L}$. Hence, $\Pr[M'(w)] \leq \frac{1}{3}$.
7. By (3) and (4), $\Pr[M(w)] \leq \frac{1}{3}$ for all $w \notin \overline{L}$. Hence, $\Pr[M'(w)] \geq \frac{2}{3}$.
8. By (6) and (7), M' is a PTM with $\Pr[L(w) = M'(w)] \geq \frac{2}{3}$.
9. By (5) and (8), $L \in \text{BPP}$.

We can make an analogous argument to show $\text{BPP} \subseteq \text{coBPP}$.
Exercise 3

Exercise. Show $\text{BPP}^{\text{BPP}} = \text{BPP}$.

Theorem 21.14. Consider a language L and a poly-time PTM M for which there is some $c > 0$ such that $\Pr[M(w) = L(w)] \geq \frac{1}{2} + \frac{1}{|w|^c}$ for all $w \in \Sigma^*$. Then, for all $d > 0$, there is a poly-time PTM M' such that $\Pr[M(w) = L(w)] \geq 1 - \frac{1}{2^{|w|^d}}$.

Solution. High-level structure.

- Let $L \in \text{BPP}^O$ for some $O \in \text{BPP}$.
- There is some POTM M^O such that M^O that accepts L, M^O has error probability smaller than $1/16$, and M^O is time bounded by some polynomial $p(n)$.
- Starting from M^O, we define a polytime PTM M' accepting L with error probability smaller than $\frac{135}{256}$.
Solution.

1. There is some PTM \mathcal{N} that accepts O, has error probability $< 2^{-p(n)}$, and is time bounded by some polynomial $q(n)$.

2. Let \mathcal{M}' be the TM that behaves like \mathcal{M} does, but instead of querying the oracle it calls the machine \mathcal{N} directly.

3. We show that \mathcal{M}' accepts L with error probability of $< \frac{1}{3}$.

 3.1 By (1), $\Pr[\mathcal{M}'(w) = L(w)] = \left(1 - \frac{1}{2^{p(|w|)}}\right)^{p(|w|)} \cdot \frac{15}{16}$ for all $w \in \Sigma^*$.

 3.2 Proof via induction: $(1 - \frac{1}{2^k})^k \geq \frac{9}{16}$ for all $k \geq 2$.

 3.3 By (1) and (2), at least $\frac{9}{16} \cdot \frac{15}{16} = \frac{135}{256} > \frac{1}{2}$ of the computations of \mathcal{M}' are correct.

 3.4 Hence, \mathcal{M}' accepts L with error probability smaller than $\frac{135}{256}$.

4. We show that \mathcal{M}' is poly-time bounded.

 4.1 On input w, \mathcal{M}' makes at most $p(|w|)$ "oracle" calls (i.e., calls to \mathcal{N}), each of with input of length at most $p(|w|)$. Hence, this takes time at most $q(p(|w|))$ steps.

 4.2 \mathcal{M}' is bounded by $p(n) \cdot q(p(n))$.

 4.3 Since $p(n)$ and $q(n)$ are polynomials, $p(n) \cdot q(p(n))$ is also a polynomial.
Exercise 4

Exercise. Find the error in the following argument that shows $\text{PP} = \text{BPP}$:

Let $L \in \text{PP}$. Then there exists a poly-time bounded PTM accepting L with error probability smaller than $\frac{1}{2}$. Using error reduction, we can make this error arbitrarily small, and in particular smaller than $\frac{1}{3}$. Hence, $L \in \text{BPP}$.

Theorem 21.14. Consider a language L and a poly-time PTM M for which there is some $c > 0$ such that $\Pr [M(w) = L(w)] \geq \frac{1}{2} + \frac{1}{|w|^c}$ for all $w \in \Sigma^*$. Then, for all $d > 0$, there is a poly-time PTM M' such that $\Pr [M'(w) = L(w)] \geq 1 - \frac{1}{2|w|^d}$.

Solution. Step by step counter-example.

1. Let $L \in \text{PP}$.
2. There is some PTM M such that $\Pr[M(w) = L(w)] > \frac{1}{2}$ for all $w \in \Sigma^*$ and M is time bounded by some polynomial $p(n)$.
3. It is possible that the $\Pr[M(w) = L(w)] = \frac{1}{2} + \frac{1}{2^p(n)}$ (discuss MajSat).
4. We cannot apply Theorem 21.14 to verify the existence of a machine M' that characterises L with bounded error probability of at most $\frac{1}{3}$.
Exercise 5

Exercise. Let \mathcal{M} be a polynomial-time PTM. We say that \mathcal{M} has error probability smaller than $\frac{1}{3}$ if and only if, for all $w \in \Sigma^*$, $Pr[\mathcal{M} \text{ accepts } w] < \frac{1}{3}$ or $Pr[\mathcal{M} \text{ accepts } w] \geq \frac{2}{3}$. Show that deciding whether a polynomial-time probabilistic TM has error probability smaller than $\frac{1}{3}$ is undecidable.

Solution. High-level idea.

1. We define a many-one reduction from E_{TM} (i.e., the empty word problem).
2. Let \mathcal{M} be a TM.
3. We construct a 2-tape PTM \mathcal{N} with error probability $< \frac{1}{3}$ iff \mathcal{M} accepts the empty word iff $\langle \mathcal{M} \rangle \in E_{TM}$.

On input w, the 2-tape PTM \mathcal{N} performs the following computation.

1. Make a coin flip and reject if the result is heads.
2. Otherwise, simulate \mathcal{M} on the empty word using the working tape for $|w|$ steps.
3. If this simulation accepts, the machine accepts. Otherwise, it rejects.

Discuss: If $\langle \mathcal{M} \rangle \notin E_{TM}$, then \mathcal{N} rejects all inputs.
Exercise 5

Exercise. Let \mathcal{M} be a polynomial-time probabilistic Turing machine. We say that \mathcal{M} has *error probability smaller than* $\frac{1}{3}$ if and only if, for all $w \in \Sigma^*$, $\Pr[\mathcal{M} \text{ accepts } w] < \frac{1}{3}$ or $\Pr[\mathcal{M} \text{ accepts } w] \geq \frac{2}{3}$. Show that deciding whether a polynomial-time probabilistic TM has error probability smaller than $\frac{1}{3}$ is undecidable.

Solution. On input w, the 2-tape PTM \mathcal{N} performs the following computation.

1. Make a coin flip and reject if the result is heads.
2. Otherwise, simulate \mathcal{M} on the empty word using the working tape for $|w|$ steps.
3. If this simulation accepts, the machine accepts. Otherwise, it rejects.

Discuss: If $\langle \mathcal{M} \rangle \notin E_{TM}$, then \mathcal{N} rejects all inputs.

We show that if $\langle \mathcal{M} \rangle \in E_{TM}$, then there is some input word w that \mathcal{N} accepts with probability $\frac{1}{2}$.

1. For some $k \geq 0$, the TM \mathcal{M} accepts ε after k steps.
2. By (1), any word w with $|w| \geq k$ is accepted by \mathcal{N} with probability $\frac{1}{2}$.
3. By (2), the PTM \mathcal{N} does not have error probability $< \frac{1}{3}$.

Since \mathcal{N} can be computed from \mathcal{M}, we obtain a reduction from E_{TM} (which is undecidable) to the problem of recognising poly-time PTMs with error probability $< \frac{1}{3}$.
Exercise 6

Exercise. Show that \(\text{NP} \subseteq \text{PP} \).

Solution.

1. Let \(L \in \text{NP} \).
2. There is a poly-time bounded NDTM \(M \) that decides \(L \) such that every state in \(M \) has at most 2 outgoing transitions for the same input.
3. Let \(M' \) be the PTM defined as follows: \(M' \) is identical to \(M \), but instead of choosing an option non-deterministically, it flips a coin and chooses randomly.
4. For all \(w \in L \), \(\Pr [M' \text{ accepts } w] > 0 \).
5. For all \(w \notin L \), \(\Pr [M' \text{ accepts } w] = 0 \).
6. We construct yet another TM \(M'' \) which, on input \(w \), performs the following computation:
 - Toss a coin and accept if the result is heads.
 - Simulate \(M' \) on \(w \). Accept if and only if this simulation accepts.
7. For all \(w \in L \), \(\Pr [M'' \text{ accepts } w] > \frac{1}{2} \).
8. For all \(w \notin L \), \(\Pr [M'' \text{ accepts } w] = \frac{1}{2} \).
9. \(M'' \) is poly-time bounded.
10. By (7-9), \(L \in \text{PP} \).
Exercise 7

Exercise. Show the Schwartz-Zippel lemma: Consider a non-zero multivariate polynomial \(f(x_1, \ldots, x_n) \) of total degree \(\leq d \), and a finite set \(S \) of integers. If \(r_1, \ldots, r_n \) are chosen randomly (with replacement) from \(S \), then \(\Pr[f(r_1, \ldots, r_n)] = 0 \leq d \frac{|S|}{|S|} \).

Solution.

1. Theorem: A polynomial of degree \(d \) can have at most \(d \) distinct real roots.
2. Proof via induction: we directly proceed with the induction step.
3. We write \(f(x_1, \ldots, x_n) \) as a polynomial in the first variable
 \[
 f(x_1, \ldots, x_n) = x_1^k \cdot c_k(x_2, \ldots, x_n) + \ldots + (x_1^0 \cdot) c_0(x_2, \ldots, x_n)
 \]
 such that \(c_k(x_2, \ldots, x_n) \) is not the zero polynomial.
4. Let \(E_1 \) to be the event “\(c_k(r_2, \ldots, r_n) = 0 \)” . Randomly choose the values of \(r_2, \ldots, r_n \) and assume that \(E_1 \) did not occur.
5. Let \(g(r_1) = f(r_1, r_2, \ldots, r_n) \)
6. Discuss: \(\Pr[g(r_1) = 0 \mid \neg E_1] \leq \frac{k}{|S|} \) (note that \(g \) is a non-zero polynomial).
7. Let \(E_2 \) be the event “\(g(r_1) = 0 \)”, which is equivalent to “\(f(r_1, \ldots, r_n) = 0 \)”.

Exercise 7

Exercise. Show the Schwartz-Zippel lemma: Consider a non-zero multivariate polynomial $f(x_1, \ldots, x_n)$ of total degree $\leq d$, and a finite set S of integers. If r_1, \ldots, r_n are chosen randomly (with replacement) from S, then $\Pr[f(r_1, \ldots, r_n)] = 0 \leq \frac{d}{|S|}$.

Solution.

- E_1 is the event “$c_k(r_2, \ldots, r_n) = 0$”
- E_2 be the event “$g(r_1) = 0$” (that is, “$f(r_1, \ldots, r_n) = 0$”)
- $\Pr[E_2 \mid \neg E_1] \leq \frac{k}{|S|}$
- Discuss: $\Pr[E_1] \leq \frac{d-k}{|S|}$

$$
\begin{align*}
\Pr[E_2] &= \Pr[E_2 \land E_1] + \Pr[E_2 \land \neg E_1] \\
&\leq \Pr[E_2 \land E_1] + \Pr[E_2 \mid \neg E_1] \cdot \Pr[\neg E_1] \\
&\leq \Pr[E_1] + \Pr[E_2 \mid \neg E_1] \\
&\leq \frac{d-k}{|S|} + \frac{k}{|S|} = \frac{d}{|S|}
\end{align*}
$$