TECHNISCHE <& International Center @-?Computahonql

DRDERSTAT W for Computational Logic ‘,I-.D Logic - Group

Sebastian Rudolph
International Center for Computational Logic
TU Dresden

Existential Rules — Lecture 6

Adapted from slides by Andreas Pieris and Michaél Thomazo
Summer Term 2023

BCQ-Answering: Our Main Decision Problem

database (aka ABox)

knowledge base

YN

N

ontology (aka V @
s \i/

VXYY (o(X,Y) = 3Z (X,2Z))

decide whether DA 2 E Q

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 2

Query Answering via the Chase

Theorem: D A 2 E Q iff UE Q, where U is a universal model of D A

+

Theorem: chase(D, %) is a universal model of D A 2

Corollary: DA ZE Q iff chase(D,2)F Q

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 3

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 4

Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 5

Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog
v

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 6

Acyclic Existential Rules

» The definition of a predicate P does not depend on P - formal definition via the

predicate graph

« The predicate graph of a set 2 of existential rules, denoted PG(%), is the graph
(V,E), where

o V={P|P ¢ sch(X)}

o E={(P,R) | VXYY (... APOX,Y) A ... 5 3Z (.. ARX,Z) A ...)) € 3}

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

C Person

7'
P .
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 7

hasParent

Acyclic Existential Rules

» The definition of a predicate P does not depend on P - formal definition via the

predicate graph

« The predicate graph of a set 2 of existential rules, denoted PG(%), is the graph
(V,E), where

o V={P|Pcsch(z)}
o E={(P,R) | VXYY (... APOX,Y) A ... 5 3Z (.. ARX,Z) A ...)) € 3}

« Aset 2 of existential rules is acyclic if the graph PG(X) is acyclic

We denote ACYCLIC the class of acyclic existential rules

7'
P .
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 8

The Naive Algorithm for ACYCLIC

« The naive algorithm shows that BCQ-Answering under ACYCLIC is
o in PTIME w.r.t. the data complexity

o in 2ZEXPTIME w.r.t. the combined complexity

...can we do better than the naive algorithm?

YES!

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 9

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined

complexity

Proof: We first need to establish the so-called small witness property

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 10

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined
complexity

Proof: Guess-and-check, using the so-called small witness property

We cannot do better than the previous algorithm:

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

7
[Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 11

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

2n

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 12

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

(1,1) =t 1
fo
2
3
2n
Gl
GLEH" Existential Rules — Lecture 6 — Sebastian Rudolph Slide 13

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

(1,1) =t 1 {
tt)eH
5 t , (t.t)
3
n
é@?’, Existential Rules — Lecture 6 — Sebastian Rudolph Slide 14

Tiling Problem

Tiling:
Input: T = {t,,...,t,}, a set of square tile types,
H,V C T x T, the horizontal and vertical compatibility relations

n, an integer in unary

Question: decide whether a 2" x 27 tiling exists, that is,

(1,1) =t 1 {
tt)eH
5 t ; (t.t)
3 t"
(tt") eV
n
é@?’, Existential Rules — Lecture 6 — Sebastian Rudolph Slide 15

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 16

NEXPTIME-hardness of ACYCLIC

 The database stores the horizontal and the vertical relations

D = {H(tt) | (tt) e H} U {V(tt)]| (tt) eV}

« We use Z € ACYCLIC to inductively construct 2k x 2ktilings from 2k1 x 2k1tilings

* The key observation is that

X1 X2 Yy Y, Xs | Xg | X4 | Yz | Y3 Y,
Xs | Xe o Ys Yy o Xs 0 X4 | Xg | Yz | Y3 Y,
Zi | Zy | Wy | W, Zy | 4y Ly Wy Wi W,
Zs | Zs | Wi | W, Z. Z, | Zy W, W, W,

=P are 2k1 x 2k1tilings
&=

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 17

NEXPTIME-hardness of ACYCLIC

X X
The 2k x 2k tiling 1 . is represented by an atom of the form
Xy | Xy
ID of the tiling

\

T (S, O, X4, Xy, X3, X4)

:

origin of the tiling, i.e., the upper-left tile

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 18

NEXPTIME-hardness of ACYCLIC

Base step - construct 2 x 2 tilings of the form

VX VXV X3V Xy (H(X1,X2) A H(X3,X4) A V(X4,X3) A V(X2,X4) —

Y T1(Y,X1,X1,X2,X3,X4))

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 19

NEXPTIME-hardness of ACYCLIC

Inductive step - construct 2k x 2k tilings from 2k-1 x 2k-1tilings

X3 X4 X4 Y3 Y3 Yy X4 Xo Y \C
Xz 0 Xe | Xa | Yz | Y3 | Y4 0 Xs Xe | Ys o Yy
Zi | Zy | Zy Wy W, W, ' Zi | Z, | Wi W,
Z: | Zy | Zy W, | W, | W, Zz | Zy | W3 | W,

Th1(S1,04,X4,X2,X3,X4) A Ti1(S2,02,X2,Y 1,X4,Y3) A Ty1(S3,03,Y1,Y2,Y3,Y,) A
Th1(S4,04,X3,X4,24,2Z3) N Ty1(S5,05,X4,Y3,Z2,Wy) A Ty1(S6,06,Y3,Y 4, W, W3) A
Tk—1 (87’07’21122’23124) A Tk—1 (88708’ZZ’W1aZ4aW3) A\ Tk—1(89a09aW1’W2aW31W4) —>

U T(U,04,84,85,$7,8
(v-quantifiers are omitted) K(U,01,84,55,57,0)

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 20

NEXPTIME-hardness of ACYCLIC

Inductive step - construct 2k x 2k tilings from 2k-1 x 2k-1tilings

X3 X4 X4 Y3 Y3 Yy X4 Xo Y \C
Xz 0 Xe | Xa | Yz | Y3 | Y4 0 Xs Xe | Ys o Yy
Zi | Zy | Zy Wy W, W, ' Zi | Z, | Wi W,
Z: | Zy | Zy W, | W, | W, Zz | Zy | W3 | W,

VSVO\V/X1\V/X2VX3VX4 (Tn(S,O,X1,X2,X3,X4) —> T(S,O))

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 21

Concluding NEXPTIME-hardness of ACYCLIC

« Several rules but polynomially many =- feasible in polynomial time
« DAZEIXT(X1)iff a 2" x 2" tiling exists

« Can be formally shown by induction on n

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the

combined complexity

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 22

Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog
v

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

v

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 23

Sum Up

Data Complexity

Naive algorithm
FULL PTIME-c

Reduction from Monotone Circuit Value problem
ACYCLIC in LOGSPACE | covered later...

Combined Complexity

Naive algorithm
FULL EXPTIME-c

Simulation of a deterministic exponential time TM

Small witness property
ACYCLIC NEXPTIME-c

Reduction from Tiling problem
é@?’, Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 24

Recall our Example

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) = D U {hasParent(Alice, z,), Person(z),

hasParent(z4, z,), Person(z,),

hasParent(z,, z3), Person(zs), ...

The above rule can be written as the DL-Lite axiom

Person T 3hasParent.Person

7
[Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 25

Recall our Example

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) = D U {hasParent(Alice, z4), Person(z,),

hasParent(z4, z,), Person(z,),

hasParent(z,, z3), Person(zs), ...

Existential quantification & recursive definitions

are key features for modelling ontologies

7
[Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 26

Challenge

We need classes of existential rules such that

» Existential quantification and recursive definition coexist

= the chase may be infinite

« BCQ-Answering is decidable, and tractable w.r.t. the data complexity

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 27

Linear Existential Rules

« Alinear existential rule is an existential rule of the form

YXYY (POX,Y) = 3Z 1(X,Z))

where P(X,Y) is an atom
« We denote LINEAR the class of linear existential rules

* Alocal property - we can inspect one rule at a time
= given X2, we can decide in linear time whether Z € LINEAR

— 5, € LINEAR, 5, € LINEAR = (Z, U %,) € LINEAR

« Strictly more expressive than DL-Lite

7
[Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 28

LINEAR vs. DL-Lite

Existential rules and DLs rely on first-order semantics - comparable formalisms

DL-Lite Axioms Existential Rules
ACB VX (AX) - B(X))
AC 3R VX (A(X) > 3Y RX,Y))
JRC A VXYY (R(X,Y) — A(X))
JRC 3P VXYY (RX,Y) — 3Z P(X,Z))
AC3IRB VX (AX) = 3Y (REX,Y) A B(Y)))
RCP VXYY (RX,Y) = P(X,Y))
AL -B VX (A(X) A B(X) > 1)

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 29

Linear Existential Rules

 Alinear existential rule is an existential rule of the form
VXYY (P(X,Y) —» 3Z ¢(X,2))

where P(X,Y) is an atom
« We denote LINEAR the class of linear existential rules

* Alocal property - we can inspect one rule at a time
= given X2, we can decide in linear time whether Z € LINEAR
= 241 € LINEAR, 2, € LINEAR = (2 U 2,) € LINEAR

« Strictly more expressive than DL-Lite

 Infinite chase - VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

« But, BCQ-Answering is decidable - the chase has finite treewidth

[Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 30

Treewidth of a Graph
Tree decomposition - a mapping of a graph into a tree

Tree decomposition T = (V',E') of G
Graph G = (V,E)

ABC
B—E—F
BCE
(c 5 CC—»
CDE BEG
©—FE—M®
BFG EGH

1. Foreachv €V, there exists u € V' such thatv € u

2. Foreach (v,w) € E, there exists u € V' such that {v,w} C u
3. Foreachv eV, {u]|v e u}induces a connected subtree

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 31

Treewidth of a Graph
Tree decomposition - a mapping of a graph into a tree

Tree decomposition T = (V',E') of G
Graph G = (V,E)

ABC

BCE Treewidth = 2

CDE BEG

BFG EGH

 The width of T is defined as max, ¢ v {|u]} - 1
* The treewidth of G, denoted tw(G), is the minimum width over all tree

decompositions of G

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 32

Treewidth of an Instance

* Aninstance J can be represented as a graph G, - Gaifman graph

R(a,b,c)

(a) ©
S(c,d) > ’e‘
T(c,d,e) Q a

« The treewidth of J, denoted tw(J), is defined as tw(G,)

 Thus, we can talk about the treewidth of the chase

« Lemma: For a database D, and a set 2 € LINEAR, tw(chase(D,2)) is finite

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 33

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:
1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

A fragment L of first-order logic enjoys the tree model property if: for every ¢ € L,

if © is satisfiable, then there exists J € models(y) such that tw(J) is finite

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 34

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof. The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

Consider a database D, a set 2 € LINEAR, and a BCQ Q
Clearly, DAZEQ iff DAZATQE L

Thus, it suffices to show that, if D A = A 7Q is satisfiable, then it has a model of
finite treewidth

By universality, D A 2 A 7Q is satisfiable implies chase(D,2) A 7Q is satisfiable
Therefore, D A 2 A 7Q is satisfiable implies chase(D,2) is a model of D A Z A 7Q

The claim follows since tw(chase(D,2)) is finite

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 35

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:
1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

...but, what about the complexity of the problem?

we need new techniques

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 36

Chase Graph

The chase can be naturally seen as a graph - chase graph

R(a,b) S(b)
D = {R(ab), S(b)} ==
R(z4,a) S(a)

s) IV RXY)AS(Y) > IZREZX)) v><
VXYY (R(X,Y) — S(X)) E :

For LINEAR, the chase graph is a forest

Existential Rules — Lecture 6 — Sebastian Rudolph Slide 37

Bounded Derivation-Depth Property

D

For LINEAR, k= |Q| - m

chase(D,%) with m = |sch(Z)| - (2 - maxarity)maxarity

depth k
/ o h \ k does not depend on D

chase graph up to depth k

v

chase(D,2) E Q = chaseXD,2)F Q

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 38

The Blocking Algorithm for LINEAR

« The blocking algorithm shows that BCQ-Answering under LINEAR is
o in PTIME w.r.t. the data complexity

o in 2EXPTIME w.r.t. the combined complexity

...we can do better than the blocking algorithm

chase(D,2)

k= |Q| . |sch(Z)| . (2 . maxarity)maxarity
/ h \

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 39

Data Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in LOGSPACE w.r.t. the data

complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject

of the second part of our course.

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 40

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined

complexity

Proof: We first need to establish the so-called small witness property

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 41

Small Witness Property for LINEAR

Lemma: chase(D,2) F Q = there exists a chase sequence
D(01,hq)J1(02,h2)Jo(03,h3)J3 ... (O,,h,)d,
of D w.r.t. Z with
n = (|Q|)? - [sch(Z)| - (2 - maxarity)maxarity
such that J,E Q

Proof:

» By hypothesis, there exists a homomorphism h
such that h(Q) C chase(D, %)

« By the bounded-derivation depth property

chase(D,%)

depth k
k=1Q| - [sch(Z)| - (2 - maxarity)maxarity / /h \

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 42

Small Witness Property for LINEAR

Proof (cont.):
» Let us focus on depth j of the chase graph
 How many atoms do we need?

« No more than |Q]

depth k
Gl
IS |
GL" Existential Rules — Lecture 6 — Sebastian Rudolph Slide 43

Small Witness Property for LINEAR

Proof (cont.):

» Let us focus on depth j of the chase graph
 How many atoms do we need?

« No more than |Q]

« Thus, to entail the query we need at most

k-|Q| Q
= |Q| - [sch(Z)| - (2 - maxarity)maxarity . | Q)

= (|Q])? - [sch(Z)| - (2 - maxarity)maxarity

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 44

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined

complexity

Proof: Consider a database D, a set 2 € LINEAR, and a BCQ Q

Having the small withess property in place, we can exploit the following algorithm:
1. Non-deterministically construct a chase sequence

D(01,h1)J1(02,h2)J2(03,h3)J3 ... (Op,hp)
of Dw.rt. Z withn =(|Q])? - [sch(X)| - (2 - maxarity)maxarity

2. Check for the existence of a homomorphism h such that h(Q) C J,

Can we do better? Any ideas?

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 45

Key Observation

at most |Q| atoms

\ depth J

D
/
n
Q

level-by-level construction

Existential Rules — Lecture 6 — Sebastian Rudolph

depth k

\

Slide 46

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof:

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 47

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity
Proof:
[b
[L\
=
GLE‘J Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 48

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity
Proof:
| L\
[&
=
GLE‘J Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 49

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof:

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 50

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof (cont.):

At each step we need to maintain
« O(|Q]) atoms

« Acounter ctr < (|Q|)? - |sch(X)| - (2 - maxarity)maxarity

« Thus, we need polynomial space

 The claim follows since NPSPACE = PSPACE

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 51

Combined Complexity of LINEAR

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic polynomial space Turing machine

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 52

PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input
string / using a database D, a set 2 € LINEAR, and a BCQ Q such that

D A ZEQ iff Maccepts /using at most n = (|/|)* cells

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 53

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L/}

» Suppose that M halts on / = a;... a,, using n = mk cells, for k>0

Initial configuration - the database D

Config(sinit,01,...,0m,,...,11,1,0,...,0)

7
[Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 54

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L/}

» Suppose that M halts on / = a;... a,, using n = mk cells, for k>0

Transition rule - 93(s4,a) = (s5,3,+1)

foreachie {1,...,n}:

VX (Config(s1,X1,...,X,-_1,G,X,-+1,...,Xn,0,...,0,1, O,,O) —>
COnﬁg(Sz,X1,...,X,‘_1,B, X,‘+1,...,Xn,0 0,1, 0 O))
\// \//

n-i-1

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 55

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L/}

» Suppose that M halts on / = a;... a,, using n = mk cells, for k>0

D A 2 E dX Config(sae..,X) iff Maccepts /

...but, the rules are not constant-free

we can eliminate the constants by applying a simple trick

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 56

PSPACE-hardness of LINEAR

Initial configuration - the database D

auxiliary constants for the states

and the tape alphabet

"

Config(sini,a1,...,0m,,...,1,1,0,...,0,84,...5,,0,1, LI)

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 57

PSPACE-hardness of LINEAR

Transition rule - 8(s4,0) = (so,U,+1)

foreachie {1,...,n}:

Config(S1 ,X1 yeun ,X,'_1 ,Z,X,‘+1 yenn ,Xn,Z, e ,Z,O,Z, . ,Z,S1 ye s .Sg,Z,O,B) —>
COnﬁg(SQ,X1 yeun ,X,'_1 ,B, X,'+1 yenn ,Xn,Z, ... ,Z,O,Z, - ,Z, S1 . .Sg,Z,O,B)
\\// \\//

i n-i-1

(V-quantifiers are omitted)

7'
P |
[Existential Rules — Lecture 6 — Sebastian Rudolph Slide 58

Sum Up

Data Complexity
Naive algorithm
FULL PTIME-c
Reduction from Monotone Circuit Value problem
ACYCLIC
in LOGSPACE | Second part of our course
LINEAR
Combined Complexity
Naive algorithm
FULL EXPTIME-c
Simulation of a deterministic exponential time TM
Small witness property
ACYCLIC NEXPTIME-c
Reduction from Tiling problem
Level-by-level non-deterministic algorithm
LINEAR PSPACE-c
” Simulation of a deterministic polynomial space TM
fﬁﬁ" Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 59

Forward Chaining Techniques

D

chase(D,2)

Useful techniques for establishing optimal upper bounds

...but not practical - we need to store instances of very large size

Existential Rules — Lecture 6 — Sebastian Rudolph

Slide 60

