

International Center for Computational Logic

Sebastian Rudolph International Center for Computational Logic TU Dresden

Existential Rules – Lecture 6

Adapted from slides by Andreas Pieris and Michaël Thomazo Summer Term 2023

BCQ-Answering: Our Main Decision Problem

decide whether $D \land \Sigma \vDash Q$

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

+

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

=

Corollary: $D \land \Sigma \vDash Q$ iff chase $(D, \Sigma) \vDash Q$

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

Existential Rules – Lecture 6 – Sebastian Rudolph

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - \circ Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - o A.k.a. non-recursive existential rules

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - $\circ~$ Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules

 \checkmark

o A.k.a. non-recursive existential rules

Acyclic Existential Rules

- The definition of a predicate *P* does not depend on *P* formal definition via the predicate graph
- The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph (V,E), where

∨ = {P | P ∈ sch(Σ)}
E = {(P,R) | ∀X∀Y (... ∧ P(X,Y) ∧ ... → ∃Z (... ∧ R(X,Z) ∧ ...)) ∈ Σ}

 $\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$

Acyclic Existential Rules

- The definition of a predicate *P* does not depend on *P* formal definition via the predicate graph
- The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph (V,E), where

∨ = {P | P ∈ sch(Σ)}
E = {(P,R) | ∀X∀Y (... ∧ P(X,Y) ∧ ... → ∃Z (... ∧ R(X,Z) ∧ ...)) ∈ Σ}

- A set Σ of existential rules is acyclic if the graph PG(Σ) is acyclic
- We denote ACYCLIC the class of acyclic existential rules

The Naïve Algorithm for ACYCLIC

- The naïve algorithm shows that BCQ-Answering under **ACYCLIC** is
 - o in PTIME w.r.t. the data complexity
 - o in 2EXPTIME w.r.t. the combined complexity

...can we do better than the naïve algorithm?

YES!!!

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Proof: We first need to establish the so-called small witness property

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Proof: Guess-and-check, using the so-called small witness property

We cannot do better than the previous algorithm:

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $H,V\subseteq T\times T,$ the horizontal and vertical compatibility relations

n, an integer in unary

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $H,V\subseteq T\times T,$ the horizontal and vertical compatibility relations

n, an integer in unary

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $H,V\subseteq T\times T,$ the horizontal and vertical compatibility relations

n, an integer in unary

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $\mathsf{H},\mathsf{V}\subseteq\mathsf{T}\times\mathsf{T},$ the horizontal and vertical compatibility relations

n, an integer in unary

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

• The database stores the horizontal and the vertical relations

 $D = \{H(t,t') \mid (t,t') \in H\} \cup \{V(t,t') \mid (t,t') \in V\}$

- We use $\Sigma \in ACYCLIC$ to inductively construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings
- The key observation is that

X ₁	X ₂	Y ₁	Y ₂
X ₃	X_4	Y ₃	Y ₄
Z_1	Z_2	W_1	W_2
Z_3	Z_4	W_3	W_4

is a $2^k \times 2^k$ tiling

X ₁	X ₂	X ₂	Y ₁	Y ₁	Y ₂
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄
Z ₁	Z ₂	Z ₂	W_1	W_1	W_2
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂
Z ₃	Z ₄	Z ₄	W ₃	W ₃	W ₄

```
are 2^{k-1} \times 2^{k-1} tilings
```


iff

Base step - construct 2×2 tilings of the form

$\forall \mathsf{X}_1 \forall \mathsf{X}_2 \forall \mathsf{X}_3 \forall \mathsf{X}_4 \ (\textit{H}(\mathsf{X}_1, \mathsf{X}_2) \land \textit{H}(\mathsf{X}_3, \mathsf{X}_4) \land \textit{V}(\mathsf{X}_1, \mathsf{X}_3) \land \textit{V}(\mathsf{X}_2, \mathsf{X}_4) \rightarrow$

 $\exists Y T_1(Y,X_1,X_1,X_2,X_3,X_4))$

Existential Rules – Lecture 6 – Sebastian Rudolph

Inductive step - construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X ₁	X ₂	X ₂	Y ₁	Y ₁	Y ₂				
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄	X ₁	X ₂	Y ₁	Y ₂
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄	X ₃	X ₄	Y ₃	Y ₄
Z ₁	Z ₂	Z ₂	W ₁	W_1	W ₂	Z ₁	Z ₂	W ₁	W ₂
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂	Z ₃	Z ₄	W ₃	W ₄
Z ₃	Z ₄	Z ₄	W ₃	W ₃	W ₄				

 $T_{k-1}(S_1,O_1,X_1,X_2,X_3,X_4) \land T_{k-1}(S_2,O_2,X_2,Y_1,X_4,Y_3) \land T_{k-1}(S_3,O_3,Y_1,Y_2,Y_3,Y_4) \land$

 $T_{k-1}(S_4, O_4, X_3, X_4, Z_1, Z_2) \land T_{k-1}(S_5, O_5, X_4, Y_3, Z_2, W_1) \land T_{k-1}(S_6, O_6, Y_3, Y_4, W_1, W_2) \land$

 $T_{k-1}(S_7,O_7,Z_1,Z_2,Z_3,Z_4) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_3) \land T_{k-1}(S_9,O_9,W_1,W_2,W_3,W_4) \rightarrow T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_3) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_2) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_2) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_2) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_2) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_2) \land T_{k-1}(S_8,O_8,Z_2,W_1) \land T_{k-1}(S_8,O_8,Z_2)$

 $\exists U T_k(U,O_1,S_1,S_3,S_7,S_9)$

(∀-quantifiers are omitted)

Inductive step - construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X ₁	X ₂	X ₂	Y ₁	Y ₁	Y ₂					
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄		X ₁	X ₂	Y ₁	Y ₂
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄		X ₃	X ₄	Y ₃	Y ₄
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂		Z ₁	Z ₂	W ₁	W ₂
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂		Z ₃	Z_4	W ₃	W ₄
Z ₃	Z ₄	Z ₄	W ₃	W ₃	W ₄	-				

 $\forall S \forall O \forall X_1 \forall X_2 \forall X_3 \forall X_4 \ (T_n(S,O,X_1,X_2,X_3,X_4) \rightarrow T(S,O))$

Concluding NEXPTIME-hardness of ACYCLIC

- Several rules but polynomially many \Rightarrow feasible in polynomial time
- $D \land \Sigma \vDash \exists X T(X,t_0)$ iff a $2^n \times 2^n$ tiling exists
- Can be formally shown by induction on *n*

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - $\circ~$ Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules

 \checkmark

o A.k.a. non-recursive existential rules

Sum Up

	Data Complexity				
FULL		Naïve algorithm			
		Reduction from Monotone Circuit Value problem			
ACYCLIC	in LOGSPACE	covered later			

	Combined Complexity			
FULL		Naïve algorithm		
	EXPTIME-C	Simulation of a deterministic exponential time TM		
ACYCLIC	NEXPTIME-c	Small witness property		
		Reduction from Tiling problem		

Recall our Example

$$\Sigma \\ \forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

chase(D, Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), \}$

 $hasParent(z_1, z_2), Person(z_2),$

 $hasParent(z_2, z_3), Person(z_3), \dots$

The above rule can be written as the DL-Lite axiom

Person $\sqsubseteq \exists hasParent.Person$

Recall our Example

chase(D, Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1)$

 $hasParent(z_1, z_2), Person(z_2),$

 $hasParent(z_2, z_3), Person(z_3), \dots$

Existential quantification & recursive definitions are key features for modelling ontologies

Challenge

We need classes of existential rules such that

- Existential quantification and recursive definition coexist
 ⇒ the chase may be infinite
- BCQ-Answering is decidable, and tractable w.r.t. the data complexity

₩

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Linear Existential Rules

• A linear existential rule is an existential rule of the form

```
\forall \mathsf{X} \forall \mathsf{Y} \ (\mathsf{P}(\mathsf{X},\mathsf{Y}) \to \exists \mathsf{Z} \ \psi(\mathsf{X},\mathsf{Z}))
```

where P(X,Y) is an atom

- We denote LINEAR the class of linear existential rules
- A local property we can inspect one rule at a time \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in LINEAR$ $\Rightarrow \Sigma_1 \in LINEAR, \Sigma_2 \in LINEAR \Rightarrow (\Sigma_1 \cup \Sigma_2) \in LINEAR$
- Strictly more expressive than DL-Lite

LINEAR vs. DL-Lite

Existential rules and DLs rely on first-order semantics - comparable formalisms

DL-Lite Axioms	Existential Rules
$A \sqsubseteq B$	$\forall X \ (A(X) \rightarrow B(X))$
$A \sqsubseteq \exists R$	$\forall X \ (A(X) \rightarrow \exists Y \ R(X,Y))$
$\exists R \sqsubseteq A$	$\forall X \forall Y \ (R(X,Y) \rightarrow A(X))$
$\exists R \sqsubseteq \exists P$	$\forall X \forall Y \ (R(X,Y) \rightarrow \exists Z \ P(X,Z))$
$A \sqsubseteq \exists R.B$	$\forall X \; (A(X) \to \exists Y \; (R(X,Y) \land B(Y)))$
$R \sqsubseteq P$	$\forall X \forall Y \ (R(X,Y) \rightarrow P(X,Y))$
$A \sqsubseteq \neg B$	$\forall X (A(X) \land B(X) \rightarrow \bot)$

Linear Existential Rules

• A linear existential rule is an existential rule of the form

```
\forall \mathsf{X} \forall \mathsf{Y} \ (\mathsf{P}(\mathsf{X},\mathsf{Y}) \to \exists \mathsf{Z} \ \psi(\mathsf{X},\mathsf{Z}))
```

where P(X,Y) is an atom

- We denote LINEAR the class of linear existential rules
- A local property we can inspect one rule at a time \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in LINEAR$ $\Rightarrow \Sigma_1 \in LINEAR, \Sigma_2 \in LINEAR \Rightarrow (\Sigma_1 \cup \Sigma_2) \in LINEAR$
- Strictly more expressive than DL-Lite
- Infinite chase $\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$
- But, BCQ-Answering is decidable the chase has finite treewidth

Treewidth of a Graph

3.

Tree decomposition - a mapping of a graph into a tree

- 1. For each $v \in V$, there exists $u \in V'$ such that $v \in u$
- 2. For each $(v,w) \in E$, there exists $u \in V'$ such that $\{v,w\} \subseteq u$
 - For each $v \in V$, {u | $v \in u$ } induces a connected subtree

Treewidth of a Graph

Tree decomposition - a mapping of a graph into a tree

- The width of T is defined as $\max_{u \in V'} \{|u|\} 1$
- The treewidth of G, denoted tw(G), is the minimum width over all tree decompositions of G

Treewidth of an Instance

• An instance J can be represented as a graph \mathcal{G}_J - Gaifman graph

- The treewidth of J, denoted tw(J), is defined as tw(\mathcal{G}_J)
- Thus, we can talk about the treewidth of the chase
- Lemma: For a database *D*, and a set $\Sigma \in \text{LINEAR}$, tw(chase(*D*, Σ)) is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

- 1. The chase under LINEAR has finite treewidth
- 2. The tree model property implies decidability of satisfiability classical result

A fragment \mathcal{L} of first-order logic enjoys the tree model property if: for every $\varphi \in \mathcal{L}$,

if φ is satisfiable, then there exists $J \in \text{models}(\varphi)$ such that tw(J) is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

- 1. The chase under LINEAR has finite treewidth
- 2. The tree model property implies decidability of satisfiability classical result
- Consider a database *D*, a set $\Sigma \in \text{LINEAR}$, and a BCQ Q
- Clearly, $D \land \Sigma \vDash Q$ iff $D \land \Sigma \land \neg Q \vDash \bot$
- Thus, it suffices to show that, if D ∧ Σ ∧ ¬Q is satisfiable, then it has a model of finite treewidth
- By universality, $D \land \Sigma \land \neg Q$ is satisfiable implies $chase(D, \Sigma) \land \neg Q$ is satisfiable
- Therefore, D ∧ Σ ∧ ¬Q is satisfiable implies chase(D,Σ) is a model of D ∧ Σ ∧ ¬Q
- The claim follows since $tw(chase(D, \Sigma))$ is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

- 1. The chase under LINEAR has finite treewidth
- 2. The tree model property implies decidability of satisfiability classical result

...but, what about the complexity of the problem?

we need new techniques

Chase Graph

The chase can be naturally seen as a graph - chase graph

 $D = \{R(a,b), S(b)\}$ $\Sigma = \begin{cases} \forall X \forall Y (R(X,Y) \land S(Y) \rightarrow \exists Z R(Z,X)) \\ \forall X \forall Y (R(X,Y) \rightarrow S(X)) \end{cases}$

For LINEAR, the chase graph is a forest

Bounded Derivation-Depth Property

The Blocking Algorithm for LINEAR

- The blocking algorithm shows that BCQ-Answering under LINEAR is
 - o in PTIME w.r.t. the data complexity
 - o in 2EXPTIME w.r.t. the combined complexity

Data Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in LOGSPACE w.r.t. the data complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject of the second part of our course.

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined complexity

Proof: We first need to establish the so-called small witness property

Small Witness Property for LINEAR

Lemma: chase(D, Σ) $\models Q \Rightarrow$ there exists a chase sequence

```
D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n
```

of D w.r.t. Σ with

 $n = (|\mathbf{Q}|)^2 \cdot |\operatorname{sch}(\boldsymbol{\Sigma})| \cdot (2 \cdot \operatorname{maxarity})^{\operatorname{maxarity}}$

such that $J_n \vDash \mathbf{Q}$

Proof:

- By hypothesis, there exists a homomorphism h such that h(Q) ⊆ chase(D, Σ)
- By the bounded-derivation depth property

 $k = |Q| \cdot |\operatorname{sch}(\Sigma)| \cdot (2 \cdot \operatorname{maxarity})^{\operatorname{maxarity}}$

Small Witness Property for LINEAR

Proof (cont.):

- Let us focus on depth *i* of the chase graph
- How many atoms do we need?
- No more than |Q|

Small Witness Property for LINEAR

Proof (cont.):

- Let us focus on depth *i* of the chase graph
- · How many atoms do we need?
- No more than |Q|
- Thus, to entail the query we need at most

k · |**Q**|

- = $|\mathbf{Q}| \cdot |\mathrm{sch}(\mathbf{\Sigma})| \cdot (2 \cdot \mathrm{maxarity})^{\mathrm{maxarity}} \cdot |\mathbf{Q}|$
- = $(|Q|)^2 \cdot |sch(\Sigma)| \cdot (2 \cdot maxarity)^{maxarity}$

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined complexity

Proof: Consider a database *D*, a set $\Sigma \in \text{LINEAR}$, and a BCQ Q

Having the small witness property in place, we can exploit the following algorithm:

1. Non-deterministically construct a chase sequence

 $D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$

of D w.r.t. Σ with $n = (|Q|)^2 \cdot |\operatorname{sch}(\Sigma)| \cdot (2 \cdot \operatorname{maxarity})^{\operatorname{maxarity}}$

2. Check for the existence of a homomorphism h such that $h(Q) \subseteq J_n$

Can we do better? Any ideas?

Key Observation

level-by-level construction

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Proof (cont.):

At each step we need to maintain

- $O(|\mathbf{Q}|)$ atoms
- A counter $ctr \le (|Q|)^2 \cdot |sch(\Sigma)| \cdot (2 \cdot maxarity)^{maxarity}$
- Thus, we need polynomial space
- The claim follows since NPSPACE = PSPACE

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined complexity

Proof : By simulating a deterministic polynomial space Turing machine

Our Goal: Encode the polynomial space computation of a DTM *M* on input

string *I* using a database *D*, a set $\Sigma \in \text{LINEAR}$, and a BCQ Q such that

 $D \wedge \Sigma \models Q$ iff *M* accepts *I* using at most $n = (|I|)^k$ cells

- Assume that the tape alphabet is {0,1,⊔}
- Suppose that *M* halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

Initial configuration - the database D

$$Config(s_{init}, \alpha_1, \dots, \alpha_m, \sqcup, \dots, \sqcup, 1, 0, \dots, 0)$$

$$n - m \qquad n - 1$$

- Assume that the tape alphabet is {0,1,⊔}
- Suppose that *M* halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

Transition rule - $\delta(s_1, \alpha) = (s_2, \beta, +1)$

for each $i \in \{1, ..., n\}$:

$\forall X (Config(s_1, X_1, \dots, X_{i-1}, \alpha, X_{i+1}, \dots, X_n, 0, \dots, 0, 1, 0, \dots, 0)) \rightarrow$

Config($s_2, X_1, ..., X_{i-1}, \beta, X_{i+1}, ..., X_n, 0, ..., 0, 1, 0, ..., 0$))

- Assume that the tape alphabet is {0,1,⊔}
- Suppose that *M* halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

$D \land \Sigma \vDash \exists X \ Config(s_{acc}, X) \text{ iff } M \text{ accepts } I$

...but, the rules are not constant-free

we can eliminate the constants by applying a simple trick

Initial configuration - the database D

auxiliary constants for the states

and the tape alphabet

 $Config(s_{init}, \alpha_1, \dots, \alpha_m, \sqcup, \dots, \sqcup, 1, 0, \dots, 0, s_1, \dots, s_\ell, 0, 1, \sqcup)$

Transition rule - $\delta(s_1,0) = (s_2, \sqcup, +1)$

for each $i \in \{1, ..., n\}$:

(∀-quantifiers are omitted)

Sum Up

Û

	Data Complexity				
FULL		Naïve algorithm			
	PTIVIE-C	Reduction from Monotone Circuit Value problem			
ACYCLIC		Second part of our course			
LINEAR	Second part of our course				

	Combined Complexity				
FULL		Naïve algorithm			
	EXPTIME-C	Simulation of a deterministic exponential time TM			
ACYCLIC	NEXPTIME-c	Small witness property			
		Reduction from Tiling problem			
		Level-by-level non-deterministic algorithm			
	PSPACE-C	Simulation of a deterministic polynomial space TM			
Existential Rules – Lecture 6 – Sebastian Rudolph					

Forward Chaining Techniques

Useful techniques for establishing optimal upper bounds

...but not practical - we need to store instances of very large size

