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BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox) 

Q = 9Y ('  (Y))

knowledge base

8X8Y ('  (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q
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Query Answering via the Chase

Theorem: D ^ Σ ² Q  iff U ² Q, where U is a universal model of D ^ Σ

+

Theorem: chase(D, Σ) is a universal model of D ^ Σ

=

Corollary: D ^ Σ ² Q   iff chase(D,Σ) ² Q
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

…syntactic restrictions are needed!!!
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Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules
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Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P
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Acyclic Existential Rules

• The definition of a predicate P does not depend on P - formal definition via the 

predicate graph

• The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph 

(V,E), where

o V = {P | P 2 sch(Σ)}

o Ε = {(P,R) | 8X8Y (… ^ P(X,Y) ^ … ® 9Z (… ^ R(X,Z) ^ …)) 2 Σ}

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

Person hasParent
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Acyclic Existential Rules

• The definition of a predicate P does not depend on P - formal definition via the 

predicate graph

• The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph 

(V,E), where

o V = {P | P 2 sch(Σ)}

o Ε = {(P,R) | 8X8Y (… ^ P(X,Y) ^ … ® 9Z (… ^ R(X,Z) ^ …)) 2 Σ}

• A set Σ of existential rules is acyclic if the graph PG(Σ) is acyclic

• We denote ACYCLIC the class of acyclic existential rules
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The Naïve Algorithm for ACYCLIC

• The naïve algorithm shows that BCQ-Answering under ACYCLIC is

o in PTIME w.r.t. the data complexity

o in 2EXPTIME w.r.t. the combined complexity

…can we do better than the naïve algorithm?

YES!!!
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Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined  

complexity

Proof: We first need to establish the so-called small witness property
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Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined 
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

We cannot do better than the previous algorithm:

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined
complexity

Proof: Guess-and-check, using the so-called small witness property



Existential Rules – Lecture 6 – Sebastian Rudolph Slide 12

Tiling Problem

1 2 3 2n

1

2

3

2n

…

…

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

  H,V µ T £ T, the horizontal and vertical compatibility relations
  n, an integer in unary 

Question: decide whether a 2n £ 2n tiling exists, that is,
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Tiling Problem

1 2 3 2n

1 t0
2

3

2n

…

…

(1,1) = t0

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

  H,V µ T £ T, the horizontal and vertical compatibility relations
  n, an integer in unary 

Question: decide whether a 2n £ 2n tiling exists, that is,
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Tiling Problem

1 2 3 2n

1 t0
2 t t'

3

2n

…

…

(1,1) = t0
(t,t') 2 H

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

  H,V µ T £ T, the horizontal and vertical compatibility relations
  n, an integer in unary 

Question: decide whether a 2n £ 2n tiling exists, that is,
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Tiling Problem

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

  H,V µ T £ T, the horizontal and vertical compatibility relations
  n, an integer in unary 

Question: decide whether a 2n £ 2n tiling exists, that is,

1 2 3 2n

1 t0
2 t t'

3 t''

2n

…

…

(t,t') 2 H

(t,t'') 2 V

(1,1) = t0



Existential Rules – Lecture 6 – Sebastian Rudolph Slide 16

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined 
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

We cannot do better than the previous algorithm
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NEXPTIME-hardness of ACYCLIC

• The database stores the horizontal and the vertical relations

D =  {H(t,t') | (t,t') 2 H}  [  {V(t,t') | (t,t') 2 V}

• We use Σ 2 ACYCLIC to inductively construct 2k £ 2k tilings from 2k-1 £ 2k-1 tilings

• The key observation is that

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

is a 2k £ 2k tiling

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

are 2k-1 £ 2k-1 tilings

iff
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NEXPTIME-hardness of ACYCLIC

X1 X2

X3 X4

The 2k £ 2k  tiling is represented by an atom of the form

ID of the tiling

origin of the tiling, i.e., the upper-left tile

Tk(S, O, X1, X2, X3, X4)
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NEXPTIME-hardness of ACYCLIC

Base step  -  construct 2 £ 2  tilings of the form
X1 X2

X3 X4

8X18X28X38X4 (H(X1,X2) ^ H(X3,X4) ^ V(X1,X3) ^ V(X2,X4) ®

9Y T1(Y,X1,X1,X2,X3,X4))
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NEXPTIME-hardness of ACYCLIC

Inductive step  - construct 2k £ 2k  tilings from 2k-1 £ 2k-1 tilings

Tk-1(S1,O1,X1,X2,X3,X4) ^ Tk-1(S2,O2,X2,Y1,X4,Y3) ^ Tk-1(S3,O3,Y1,Y2,Y3,Y4) ^

Tk-1(S4,O4,X3,X4,Z1,Z2) ^ Tk-1(S5,O5,X4,Y3,Z2,W1) ^ Tk-1(S6,O6,Y3,Y4,W1,W2) ^

           Tk-1(S7,O7,Z1,Z2,Z3,Z4) ^ Tk-1(S8,O8,Z2,W1,Z4,W3) ^ Tk-1(S9,O9,W1,W2,W3,W4) ®

9U Tk(U,O1,S1,S3,S7,S9)

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

(8-quantifiers are omitted)
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NEXPTIME-hardness of ACYCLIC

8S8O8X18X28X38X4 (Tn(S,O,X1,X2,X3,X4) ® T(S,O))

Inductive step  - construct 2k £ 2k  tilings from 2k-1 £ 2k-1 tilings

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4
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Concluding NEXPTIME-hardness of ACYCLIC

• Several rules but polynomially many   )   feasible in polynomial time

• D ^ Σ ² 9X T(X,t0) iff a 2n £ 2n tiling exists

• Can be formally shown by induction on n

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the 

combined complexity
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Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P

P
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Sum Up

Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC in LOGSPACE covered later…

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem
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Recall our Example

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ {hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

The above rule can be written as the DL-Lite axiom

Person v 9hasParent.Person
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Recall our Example

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ {hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

Existential quantification  &  recursive definitions 

are key features for modelling ontologies
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Challenge

We need classes of existential rules such that 

• Existential quantification and recursive definition coexist                   

) the chase may be infinite

• BCQ-Answering is decidable, and tractable w.r.t. the data complexity

 

+

Tame the infinite chase:

Deal with infinite structures without explicitly building them
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Linear Existential Rules

• A linear existential rule is an existential rule of the form

where P(X,Y) is an atom

• We denote LINEAR the class of linear existential rules

• A local property - we can inspect one rule at a time 
) given Σ, we can decide in linear time whether Σ2 LINEAR
) Σ1 2 LINEAR, Σ2 2 LINEAR ) (Σ1 [ Σ2) 2 LINEAR

• Strictly more expressive than DL-Lite

8X8Y (P(X,Y) ® 9Z Ã(X,Z))
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LINEAR vs. DL-Lite

Existential rules and DLs rely on first-order semantics  -  comparable formalisms

DL-Lite Axioms Existential Rules

A v B 8X (A(X) ® B(X))

A v 9R 8X (A(X) ® 9Y R(X,Y))

9R v A 8X8Y (R(X,Y) ® A(X))

9R v 9P 8X8Y (R(X,Y) ® 9Z P(X,Z))

A v 9R.B 8X (A(X) ® 9Y (R(X,Y) ^ B(Y)))

R v P 8X8Y (R(X,Y) ® P(X,Y))

A v ¬B 8X (A(X) ^ B(X) ® ?)
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Linear Existential Rules

• A linear existential rule is an existential rule of the form

where P(X,Y) is an atom

• We denote LINEAR the class of linear existential rules

• A local property - we can inspect one rule at a time 
) given Σ, we can decide in linear time whether Σ2 LINEAR
) Σ1 2 LINEAR, Σ2 2 LINEAR ) (Σ1 [ Σ2) 2 LINEAR

• Strictly more expressive than DL-Lite

• Infinite chase - 8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

• But, BCQ-Answering is decidable  - the chase has finite treewidth

8X8Y (P(X,Y) ® 9Z Ã(X,Z))
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Treewidth of a Graph
Tree decomposition - a mapping of a graph into a tree

1. For each v 2 V, there exists u 2 V' such that v 2 u

2. For each (v,w) 2 E, there exists u 2 V' such that {v,w} µ u

3. For each v 2 V, {u | v 2 u} induces a connected subtree

A B F

C

D E

G

H

A B C

B C E

C D E B E G

B F G E G H

Graph G = (V,E)
Tree decomposition T = (V',E') of G
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Treewidth of a Graph
Tree decomposition - a mapping of a graph into a tree

• The width of T is defined as maxu 2 V' {|u|} - 1

• The treewidth of G, denoted tw(G), is the minimum width over all tree 

decompositions of G

Treewidth = 2

A B F

C

D E

G

H

A B C

B C E

C D E B E G

B F G E G H

Graph G = (V,E)
Tree decomposition T = (V',E') of G
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Treewidth of an Instance

• An instance J can be represented as a graph GJ  - Gaifman graph

• The treewidth of J, denoted tw(J), is defined as tw(GJ)

• Thus, we can talk about the treewidth of the chase

• Lemma: For a database D, and a set Σ 2 LINEAR, tw(chase(D,Σ)) is finite

R(a,b,c)

S(c,d)

T(c,d,e)

a

b

c

d

e
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Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

A fragment L of first-order logic enjoys the tree model property if: for every '         2 L,

if ' is satisfiable, then there exists J 2 models(') such that tw(J) is finite
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Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

• Consider a database D, a set Σ 2 LINEAR, and a BCQ Q

• Clearly, D ^ Σ ² Q iff D ^ Σ ^ ¬Q ² ?

• Thus, it suffices to show that, if D ^ Σ ^ ¬Q  is satisfiable, then it has a model of 

finite treewidth

• By universality, D ^ Σ ^ ¬Q is satisfiable implies chase(D,Σ) ^ ¬Q is satisfiable

• Therefore, D ^ Σ ^ ¬Q is satisfiable implies chase(D,Σ) is a model of D ^ Σ ^ ¬Q 

• The claim follows since tw(chase(D,Σ)) is finite
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Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

…but, what about the complexity of the problem?

we need new techniques
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Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a,b), S(b)}

8X8Y (R(X,Y) ^ S(Y) ® 9Z R(Z,X))

8X8Y (R(X,Y) ® S(X)) 
Σ =

R(a,b) S(b)

R(z1,a) S(a)

R(z2,z1) S(z1)

R(z3,z2) S(z2)

For LINEAR, the chase graph is a forest
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Bounded Derivation-Depth Property
D

Q

depth k
k does not depend on D

chase(D,Σ) ² Q   ) chasek(D,Σ) ² Q

h

chase(D,Σ)

chase graph up to depth k

For LINEAR, k = |Q| · m

with m = |sch(Σ)| · (2 · maxarity)maxarity
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The Blocking Algorithm for LINEAR

• The blocking algorithm shows that BCQ-Answering under LINEAR is

o in PTIME w.r.t. the data complexity

o in 2EXPTIME w.r.t. the combined complexity

…we can do better than the blocking algorithm

D

Q

h

chase(D,Σ)

k = |Q| · |sch(Σ)| · (2 · maxarity)maxarity
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Data Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in LOGSPACE w.r.t. the data 

complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject 

of the second part of our course.
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined  

complexity

Proof: We first need to establish the so-called small witness property
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Small Witness Property for LINEAR

Lemma: chase(D,Σ) ² Q ) there exists a chase sequence 

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn

of D w.r.t. Σ with 

n = (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

such that Jn ² Q

Proof:

• By hypothesis, there exists a homomorphism h 

such that h(Q) µ chase(D, Σ)

• By the bounded-derivation depth property

D

Q

h

chase(D,Σ)

depth k
k = |Q| · |sch(Σ)| · (2 · maxarity)maxarity
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Small Witness Property for LINEAR
Proof (cont.):

• Let us focus on depth i of the chase graph

• How many atoms do we need?

• No more than |Q|
D

Q

depth k
h

depth i
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Small Witness Property for LINEAR
Proof (cont.):

• Let us focus on depth i of the chase graph

• How many atoms do we need?

• No more than |Q|

• Thus, to entail the query we need at most
depth i

D

Q

depth k
h

k · |Q|

= |Q| · |sch(Σ)| · (2 · maxarity)maxarity · |Q|

= (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined  

complexity

Proof: Consider a database D, a set Σ2 LINEAR, and a BCQ Q

Having the small witness property in place, we can exploit the following algorithm:

1. Non-deterministically construct a chase sequence 

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn

of D w.r.t. Σ with n = (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

2. Check for the existence of a homomorphism h such that h(Q) µ Jn

Can we do better? Any ideas?
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Key Observation

at most |Q| atoms

D

Q

depth k
h

depth i

level-by-level construction
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined  

complexity

Proof:

L1

L0 = D
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined  

complexity

Proof:

L1

L2
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined  

complexity

Proof:

L2

L3
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined  

complexity

Proof:

Ln

…
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined  

complexity

Proof (cont.):

At each step we need to maintain

• O(|Q|) atoms

• A counter ctr · (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

• Thus, we need polynomial space 

• The claim follows since NPSPACE = PSPACE
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Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined 
complexity

Proof : By simulating a deterministic polynomial space Turing machine 

We cannot do better than the previous algorithm
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PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input 

string I using a database D, a set Σ 2 LINEAR, and a BCQ Q such that 

D ^ Σ ² Q iff M accepts I using at most n = (|I|)k cells
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PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0)

n - m n - 1

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0
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Transition rule - δ(s1,α) = (s2,β,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

¬ 8Χ (Config(s1,X1,…,Xi-1,α,Xi+1,…,Xn,0,…,0,1, 0,…,0) ®

n - ii - 1

Config(s2,X1,…,Xi-1,β, Xi+1,…,Xn,0,…,0,1, 0,…,0))

i n - i - 1
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PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

D ^ Σ ² 9X Config(sacc,X) iff M accepts I

…but, the rules are not constant-free

we can eliminate the constants by applying a simple trick
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PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0,s1,…s`,0,1, t)

n - m n - 1

auxiliary constants for the states 

and the tape alphabet
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Transition rule - δ(s1,0) = (s2,t,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

¬ Config(S1,X1,…,Xi-1,Z,Xi+1,…,Xn,Z,…,Z,O,Z,…,Z,S1,…S`,Z,O,B) ®

n - ii - 1

Config(S2,X1,…,Xi-1,B, Xi+1,…,Xn,Z,…,Z,O,Z,…,Z, S1,…S`,Z,O,B) 

i n - i - 1

(8-quantifiers are omitted)
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Sum Up
Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC
in LOGSPACE Second part of our course

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM
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Forward Chaining Techniques
D

Q

h

chase(D,Σ)

Useful techniques for establishing optimal upper bounds

…but not practical - we need to store instances of very large size 


