
Computational
Logic ∴ Group

Existential Rules – Lecture 6

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 2

BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox)

Q = 9Y (' (Y))

knowledge base

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 3

Query Answering via the Chase

Theorem: D ^ Σ ² Q iff U ² Q, where U is a universal model of D ^ Σ

+

Theorem: chase(D, Σ) is a universal model of D ^ Σ

=

Corollary: D ^ Σ ² Q iff chase(D,Σ) ² Q

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 4

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

…syntactic restrictions are needed!!!

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 5

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 6

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 7

Acyclic Existential Rules

• The definition of a predicate P does not depend on P - formal definition via the

predicate graph

• The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph

(V,E), where

o V = {P | P 2 sch(Σ)}

o Ε = {(P,R) | 8X8Y (… ^ P(X,Y) ^ … ® 9Z (… ^ R(X,Z) ^ …)) 2 Σ}

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

Person hasParent

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 8

Acyclic Existential Rules

• The definition of a predicate P does not depend on P - formal definition via the

predicate graph

• The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph

(V,E), where

o V = {P | P 2 sch(Σ)}

o Ε = {(P,R) | 8X8Y (… ^ P(X,Y) ^ … ® 9Z (… ^ R(X,Z) ^ …)) 2 Σ}

• A set Σ of existential rules is acyclic if the graph PG(Σ) is acyclic

• We denote ACYCLIC the class of acyclic existential rules

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 9

The Naïve Algorithm for ACYCLIC

• The naïve algorithm shows that BCQ-Answering under ACYCLIC is

o in PTIME w.r.t. the data complexity

o in 2EXPTIME w.r.t. the combined complexity

…can we do better than the naïve algorithm?

YES!!!

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 10

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined

complexity

Proof: We first need to establish the so-called small witness property

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 11

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

We cannot do better than the previous algorithm:

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined
complexity

Proof: Guess-and-check, using the so-called small witness property

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 12

Tiling Problem

1 2 3 2n

1

2

3

2n

…

…

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 13

Tiling Problem

1 2 3 2n

1 t0
2

3

2n

…

…

(1,1) = t0

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 14

Tiling Problem

1 2 3 2n

1 t0
2 t t'

3

2n

…

…

(1,1) = t0
(t,t') 2 H

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 15

Tiling Problem

Tiling:

Input: T = {t0,…,tk}, a set of square tile types,

 H,V µ T £ T, the horizontal and vertical compatibility relations
 n, an integer in unary

Question: decide whether a 2n £ 2n tiling exists, that is,

1 2 3 2n

1 t0
2 t t'

3 t''

2n

…

…

(t,t') 2 H

(t,t'') 2 V

(1,1) = t0

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 16

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined
complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

We cannot do better than the previous algorithm

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 17

NEXPTIME-hardness of ACYCLIC

• The database stores the horizontal and the vertical relations

D = {H(t,t') | (t,t') 2 H} [{V(t,t') | (t,t') 2 V}

• We use Σ 2 ACYCLIC to inductively construct 2k £ 2k tilings from 2k-1 £ 2k-1 tilings

• The key observation is that

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

is a 2k £ 2k tiling

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

are 2k-1 £ 2k-1 tilings

iff

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 18

NEXPTIME-hardness of ACYCLIC

X1 X2

X3 X4

The 2k £ 2k tiling is represented by an atom of the form

ID of the tiling

origin of the tiling, i.e., the upper-left tile

Tk(S, O, X1, X2, X3, X4)

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 19

NEXPTIME-hardness of ACYCLIC

Base step - construct 2 £ 2 tilings of the form
X1 X2

X3 X4

8X18X28X38X4 (H(X1,X2) ^ H(X3,X4) ^ V(X1,X3) ^ V(X2,X4) ®

9Y T1(Y,X1,X1,X2,X3,X4))

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 20

NEXPTIME-hardness of ACYCLIC

Inductive step - construct 2k £ 2k tilings from 2k-1 £ 2k-1 tilings

Tk-1(S1,O1,X1,X2,X3,X4) ^ Tk-1(S2,O2,X2,Y1,X4,Y3) ^ Tk-1(S3,O3,Y1,Y2,Y3,Y4) ^

Tk-1(S4,O4,X3,X4,Z1,Z2) ^ Tk-1(S5,O5,X4,Y3,Z2,W1) ^ Tk-1(S6,O6,Y3,Y4,W1,W2) ^

 Tk-1(S7,O7,Z1,Z2,Z3,Z4) ^ Tk-1(S8,O8,Z2,W1,Z4,W3) ^ Tk-1(S9,O9,W1,W2,W3,W4) ®

9U Tk(U,O1,S1,S3,S7,S9)

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

(8-quantifiers are omitted)

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 21

NEXPTIME-hardness of ACYCLIC

8S8O8X18X28X38X4 (Tn(S,O,X1,X2,X3,X4) ® T(S,O))

Inductive step - construct 2k £ 2k tilings from 2k-1 £ 2k-1 tilings

X1 X2

X3 X4

X2 Y1

X4 Y3

Y1 Y2

Y3 Y4

X3 X4

Z1 Z2

Z1 Z2

Z3 Z4

X4 Y3

Z2 W1

Z2 W1

Z4 W3

Y3 Y4

W1 W2

W1 W2

W3 W4

X1 X2 Y1 Y2

X3 X4 Y3 Y4

Z1 Z2 W1 W2

Z3 Z4 W3 W4

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 22

Concluding NEXPTIME-hardness of ACYCLIC

• Several rules but polynomially many) feasible in polynomial time

• D ^ Σ ² 9X T(X,t0) iff a 2n £ 2n tiling exists

• Can be formally shown by induction on n

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the

combined complexity

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 23

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P

P

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 24

Sum Up

Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC in LOGSPACE covered later…

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 25

Recall our Example

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [{hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

The above rule can be written as the DL-Lite axiom

Person v 9hasParent.Person

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 26

Recall our Example

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [{hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

Existential quantification & recursive definitions

are key features for modelling ontologies

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 27

Challenge

We need classes of existential rules such that

• Existential quantification and recursive definition coexist

) the chase may be infinite

• BCQ-Answering is decidable, and tractable w.r.t. the data complexity

+

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 28

Linear Existential Rules

• A linear existential rule is an existential rule of the form

where P(X,Y) is an atom

• We denote LINEAR the class of linear existential rules

• A local property - we can inspect one rule at a time
) given Σ, we can decide in linear time whether Σ2 LINEAR
) Σ1 2 LINEAR, Σ2 2 LINEAR) (Σ1 [Σ2) 2 LINEAR

• Strictly more expressive than DL-Lite

8X8Y (P(X,Y) ® 9Z Ã(X,Z))

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 29

LINEAR vs. DL-Lite

Existential rules and DLs rely on first-order semantics - comparable formalisms

DL-Lite Axioms Existential Rules

A v B 8X (A(X) ® B(X))

A v 9R 8X (A(X) ® 9Y R(X,Y))

9R v A 8X8Y (R(X,Y) ® A(X))

9R v 9P 8X8Y (R(X,Y) ® 9Z P(X,Z))

A v 9R.B 8X (A(X) ® 9Y (R(X,Y) ^ B(Y)))

R v P 8X8Y (R(X,Y) ® P(X,Y))

A v ¬B 8X (A(X) ^ B(X) ® ?)

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 30

Linear Existential Rules

• A linear existential rule is an existential rule of the form

where P(X,Y) is an atom

• We denote LINEAR the class of linear existential rules

• A local property - we can inspect one rule at a time
) given Σ, we can decide in linear time whether Σ2 LINEAR
) Σ1 2 LINEAR, Σ2 2 LINEAR) (Σ1 [Σ2) 2 LINEAR

• Strictly more expressive than DL-Lite

• Infinite chase - 8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

• But, BCQ-Answering is decidable - the chase has finite treewidth

8X8Y (P(X,Y) ® 9Z Ã(X,Z))

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 31

Treewidth of a Graph
Tree decomposition - a mapping of a graph into a tree

1. For each v 2 V, there exists u 2 V' such that v 2 u

2. For each (v,w) 2 E, there exists u 2 V' such that {v,w} µ u

3. For each v 2 V, {u | v 2 u} induces a connected subtree

A B F

C

D E

G

H

A B C

B C E

C D E B E G

B F G E G H

Graph G = (V,E)
Tree decomposition T = (V',E') of G

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 32

Treewidth of a Graph
Tree decomposition - a mapping of a graph into a tree

• The width of T is defined as maxu 2 V' {|u|} - 1

• The treewidth of G, denoted tw(G), is the minimum width over all tree

decompositions of G

Treewidth = 2

A B F

C

D E

G

H

A B C

B C E

C D E B E G

B F G E G H

Graph G = (V,E)
Tree decomposition T = (V',E') of G

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 33

Treewidth of an Instance

• An instance J can be represented as a graph GJ - Gaifman graph

• The treewidth of J, denoted tw(J), is defined as tw(GJ)

• Thus, we can talk about the treewidth of the chase

• Lemma: For a database D, and a set Σ 2 LINEAR, tw(chase(D,Σ)) is finite

R(a,b,c)

S(c,d)

T(c,d,e)

a

b

c

d

e

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 34

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

A fragment L of first-order logic enjoys the tree model property if: for every ' 2 L,

if ' is satisfiable, then there exists J 2 models(') such that tw(J) is finite

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 35

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

• Consider a database D, a set Σ 2 LINEAR, and a BCQ Q

• Clearly, D ^ Σ ² Q iff D ^ Σ ^ ¬Q ² ?

• Thus, it suffices to show that, if D ^ Σ ^ ¬Q is satisfiable, then it has a model of

finite treewidth

• By universality, D ^ Σ ^ ¬Q is satisfiable implies chase(D,Σ) ^ ¬Q is satisfiable

• Therefore, D ^ Σ ^ ¬Q is satisfiable implies chase(D,Σ) is a model of D ^ Σ ^ ¬Q

• The claim follows since tw(chase(D,Σ)) is finite

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 36

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth

2. The tree model property implies decidability of satisfiability - classical result

…but, what about the complexity of the problem?

we need new techniques

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 37

Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a,b), S(b)}

8X8Y (R(X,Y) ^ S(Y) ® 9Z R(Z,X))

8X8Y (R(X,Y) ® S(X))
Σ =

R(a,b) S(b)

R(z1,a) S(a)

R(z2,z1) S(z1)

R(z3,z2) S(z2)

For LINEAR, the chase graph is a forest

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 38

Bounded Derivation-Depth Property
D

Q

depth k
k does not depend on D

chase(D,Σ) ² Q) chasek(D,Σ) ² Q

h

chase(D,Σ)

chase graph up to depth k

For LINEAR, k = |Q| · m

with m = |sch(Σ)| · (2 · maxarity)maxarity

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 39

The Blocking Algorithm for LINEAR

• The blocking algorithm shows that BCQ-Answering under LINEAR is

o in PTIME w.r.t. the data complexity

o in 2EXPTIME w.r.t. the combined complexity

…we can do better than the blocking algorithm

D

Q

h

chase(D,Σ)

k = |Q| · |sch(Σ)| · (2 · maxarity)maxarity

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 40

Data Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in LOGSPACE w.r.t. the data

complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject

of the second part of our course.

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 41

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined

complexity

Proof: We first need to establish the so-called small witness property

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 42

Small Witness Property for LINEAR

Lemma: chase(D,Σ) ² Q) there exists a chase sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3 ... hσn,hniJn

of D w.r.t. Σ with

n = (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

such that Jn ² Q

Proof:

• By hypothesis, there exists a homomorphism h

such that h(Q) µ chase(D, Σ)

• By the bounded-derivation depth property

D

Q

h

chase(D,Σ)

depth k
k = |Q| · |sch(Σ)| · (2 · maxarity)maxarity

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 43

Small Witness Property for LINEAR
Proof (cont.):

• Let us focus on depth i of the chase graph

• How many atoms do we need?

• No more than |Q|
D

Q

depth k
h

depth i

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 44

Small Witness Property for LINEAR
Proof (cont.):

• Let us focus on depth i of the chase graph

• How many atoms do we need?

• No more than |Q|

• Thus, to entail the query we need at most
depth i

D

Q

depth k
h

k · |Q|

= |Q| · |sch(Σ)| · (2 · maxarity)maxarity · |Q|

= (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 45

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined

complexity

Proof: Consider a database D, a set Σ2 LINEAR, and a BCQ Q

Having the small witness property in place, we can exploit the following algorithm:

1. Non-deterministically construct a chase sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3 ... hσn,hniJn

of D w.r.t. Σ with n = (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

2. Check for the existence of a homomorphism h such that h(Q) µ Jn

Can we do better? Any ideas?

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 46

Key Observation

at most |Q| atoms

D

Q

depth k
h

depth i

level-by-level construction

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 47

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof:

L1

L0 = D

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 48

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof:

L1

L2

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 49

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof:

L2

L3

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 50

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof:

Ln

…

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 51

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof (cont.):

At each step we need to maintain

• O(|Q|) atoms

• A counter ctr · (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

• Thus, we need polynomial space

• The claim follows since NPSPACE = PSPACE

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 52

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic polynomial space Turing machine

We cannot do better than the previous algorithm

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 53

PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input

string I using a database D, a set Σ 2 LINEAR, and a BCQ Q such that

D ^ Σ ² Q iff M accepts I using at most n = (|I|)k cells

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 54

PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0)

n - m n - 1

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 55

Transition rule - δ(s1,α) = (s2,β,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

¬ 8Χ (Config(s1,X1,…,Xi-1,α,Xi+1,…,Xn,0,…,0,1, 0,…,0) ®

n - ii - 1

Config(s2,X1,…,Xi-1,β, Xi+1,…,Xn,0,…,0,1, 0,…,0))

i n - i - 1

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 56

PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

D ^ Σ ² 9X Config(sacc,X) iff M accepts I

…but, the rules are not constant-free

we can eliminate the constants by applying a simple trick

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 57

PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0,s1,…s`,0,1, t)

n - m n - 1

auxiliary constants for the states

and the tape alphabet

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 58

Transition rule - δ(s1,0) = (s2,t,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

¬ Config(S1,X1,…,Xi-1,Z,Xi+1,…,Xn,Z,…,Z,O,Z,…,Z,S1,…S`,Z,O,B) ®

n - ii - 1

Config(S2,X1,…,Xi-1,B, Xi+1,…,Xn,Z,…,Z,O,Z,…,Z, S1,…S`,Z,O,B)

i n - i - 1

(8-quantifiers are omitted)

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 59

Sum Up
Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC
in LOGSPACE Second part of our course

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM

Existential Rules – Lecture 6 – Sebastian Rudolph Slide 60

Forward Chaining Techniques
D

Q

h

chase(D,Σ)

Useful techniques for establishing optimal upper bounds

…but not practical - we need to store instances of very large size

