Sebastian Rudolph
International Center for Computational Logic
TU Dresden

Existential Rules - Lecture 6

Adapted from slides by Andreas Pieris and Michaël Thomazo
Summer Term 2023

BCQ-Answering: Our Main Decision Problem

Query Answering via the Chase

Theorem: $D \wedge \Sigma \vDash Q$ iff $U \vDash Q$, where U is a universal model of $D \wedge \Sigma$

Theorem: chase (D, Σ) is a universal model of $D \wedge \Sigma$
$=$
Corollary: $D \wedge \Sigma \vDash Q$ iff chase $(D, \Sigma) \vDash Q$

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

Termination of the Chase

- Drop the existential quantification
- We obtain the class of full existential rules
- Very close to Datalog
- Drop the recursive definitions
- We obtain the class of acyclic existential rules
- A.k.a. non-recursive existential rules

Termination of the Chase

- Drop the existential quantification
- We obtain the class of full existential rules
- Very close to Datalog

```
\checkmark
```

- Drop the recursive definitions
- We obtain the class of acyclic existential rules
- A.k.a. non-recursive existential rules

Acyclic Existential Rules

- The definition of a predicate P does not depend on P - formal definition via the predicate graph
- The predicate graph of a set Σ of existential rules, denoted $\operatorname{PG}(\Sigma)$, is the graph (V,E), where
- $\mathrm{V}=\{P \mid P \in \operatorname{sch}(\Sigma)\}$
- $\mathrm{E}=\{(P, R) \mid \forall \mathrm{X} \forall Y(\ldots \wedge P(\mathrm{X}, \mathrm{Y}) \wedge \ldots \rightarrow \exists \mathrm{Z}(\ldots \wedge R(\mathrm{X}, \mathrm{Z}) \wedge \ldots)) \in \Sigma\}$
$\forall X(\operatorname{Person}(X) \rightarrow \exists Y(\operatorname{hasParent}(X, Y) \wedge \operatorname{Person}(Y)))$

Acyclic Existential Rules

- The definition of a predicate P does not depend on P - formal definition via the predicate graph
- The predicate graph of a set Σ of existential rules, denoted $\operatorname{PG}(\Sigma)$, is the graph (V,E), where
- $V=\{P \mid P \in \operatorname{sch}(\Sigma)\}$
$\circ \mathrm{E}=\{(P, R) \mid \forall \mathrm{X} \forall \mathrm{Y}(\ldots \wedge P(\mathrm{X}, \mathrm{Y}) \wedge \ldots \rightarrow \exists \mathrm{Z}(\ldots \wedge R(\mathrm{X}, \mathrm{Z}) \wedge \ldots)) \in \Sigma\}$
- A set Σ of existential rules is acyclic if the graph $\operatorname{PG}(\Sigma)$ is acyclic
- We denote ACYCLIC the class of acyclic existential rules

The Naïve Algorithm for ACYCLIC

- The naïve algorithm shows that BCQ-Answering under ACYCLIC is
o in PTIME w.r.t. the data complexity
o in 2EXPTIME w.r.t. the combined complexity
...can we do better than the naïve algorithm?
YES!!!

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Proof: We first need to establish the so-called small witness property

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Proof: Guess-and-check, using the so-called small witness property

We cannot do better than the previous algorithm:

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

Tiling Problem

Tiling:
Input: $\mathrm{T}=\left\{\mathrm{t}_{0}, \ldots, \mathrm{t}_{\}}\right\}$, a set of square tile types, $\mathrm{H}, \mathrm{V} \subseteq \mathrm{T} \times \mathrm{T}$, the horizontal and vertical compatibility relations n, an integer in unary

Question: decide whether a $2^{n} \times 2^{n}$ tiling exists, that is,

Tiling Problem

Tiling:
Input: $T=\left\{t_{0}, \ldots, t_{k}\right\}$, a set of square tile types,
$H, V \subseteq T \times T$, the horizontal and vertical compatibility relations n, an integer in unary

Question: decide whether a $2^{n} \times 2^{n}$ tiling exists, that is,

Tiling Problem

Tiling:
Input: $T=\left\{t_{0}, \ldots, t_{k}\right\}$, a set of square tile types,
$H, V \subseteq T \times T$, the horizontal and vertical compatibility relations n, an integer in unary

Question: decide whether a $2^{n} \times 2^{n}$ tiling exists, that is,

Tiling Problem

Tiling:
Input: $T=\left\{t_{0}, \ldots, t_{k}\right\}$, a set of square tile types,
$H, V \subseteq T \times T$, the horizontal and vertical compatibility relations n, an integer in unary

Question: decide whether a $2^{n} \times 2^{n}$ tiling exists, that is,

$\left(\mathrm{t}, \mathrm{t}^{\prime \prime}\right) \in \mathrm{V}$

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

NEXPTIME-hardness of ACYCLIC

- The database stores the horizontal and the vertical relations

$$
D=\left\{H\left(t, t^{\prime}\right) \mid\left(\mathrm{t}, \mathrm{t}^{\prime}\right) \in \mathrm{H}\right\} \cup\left\{V\left(\mathrm{t}, \mathrm{t}^{\prime}\right) \mid\left(\mathrm{t}, \mathrm{t}^{\prime}\right) \in \mathrm{V}\right\}
$$

- We use $\Sigma \in$ ACYCLIC to inductively construct $2^{k} \times 2^{k}$ tilings from $2^{k-1} \times 2^{k-1}$ tilings
- The key observation is that

X_{1}	X_{2}	Y_{1}	Y_{2}
X_{3}	X_{4}	Y_{3}	Y_{4}
Z_{1}	Z_{2}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$
Z_{3}	Z_{4}	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$

is a $2^{k} \times 2^{k}$ tiling

X_{1}	X_{2}	X_{2}	Y_{1}	Y_{1}	Y_{2}
X_{3}	X_{4}	X_{4}	Y_{3}	Y_{3}	Y_{4}
X_{3}	X_{4}	X_{4}	Y_{3}	Y_{3}	Y_{4}
Z_{1}	Z_{2}	Z_{2}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$
Z_{1}	Z_{2}	Z_{2}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$
Z_{3}	Z_{4}	Z_{4}	$\mathrm{~W}_{3}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$

NEXPTIME-hardness of ACYCLIC

The $2^{k} \times 2^{k}$ tiling | X_{1} | X_{2} |
| :--- | :--- |
| | X_{3} | is represented by an atom of the form

ID of the tiling

$$
T_{k}\left(\mathrm{~S}, \mathrm{O}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)
$$

origin of the tiling, i.e., the upper-left tile

NEXPTIME-hardness of ACYCLIC

$$
\forall \mathrm{X}_{1} \forall \mathrm{X}_{2} \forall \mathrm{X}_{3} \forall \mathrm{X}_{4}\left(H\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \wedge H\left(\mathrm{X}_{3}, \mathrm{X}_{4}\right) \wedge V\left(\mathrm{X}_{1}, \mathrm{X}_{3}\right) \wedge V\left(\mathrm{X}_{2}, \mathrm{X}_{4}\right) \rightarrow\right.
$$

$$
\left.\exists \mathrm{Y} T_{1}\left(\mathrm{Y}, \mathrm{X}_{1}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)\right)
$$

NEXPTIME-hardness of ACYCLIC

Inductive step - construct $2^{k} \times 2^{k}$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X_{1}	X_{2}	X_{2}	Y_{1}	Y_{1}	Y_{2}					
X_{3}	X_{4}	X_{4}	Y_{3}	Y_{3}	Y_{4}					
X_{3}	X_{4}	X_{4}	Y_{3}	Y_{3}	Y_{4}					
Z_{1}	Z_{2}	Z_{2}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$					
Z_{1}	Z_{2}	Z_{2}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$					
Z_{3}	Z_{4}	Z_{4}	$\mathrm{~W}_{3}$	$\mathrm{~W}_{3}$	W_{4}	$\quad \longrightarrow$	X_{1}	X_{2}	Y_{1}	Y_{2}
:---:	:---:	:---:	:---:							
X_{3}	X_{4}	Y_{3}	Y_{4}							
Z_{1}	Z_{2}	$\mathrm{~W}_{1}$	W_{2}							
Z_{3}	Z_{4}	W_{3}	W_{4}							

$$
\begin{aligned}
& T_{k-1}\left(\mathrm{~S}_{1}, \mathrm{O}_{1}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right) \wedge T_{k-1}\left(\mathrm{~S}_{2}, \mathrm{O}_{2}, \mathrm{X}_{2}, \mathrm{Y}_{1}, \mathrm{X}_{4}, \mathrm{Y}_{3}\right) \wedge T_{k-1}\left(\mathrm{~S}_{3}, \mathrm{O}_{3}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}\right) \wedge \\
& T_{k-1}\left(\mathrm{~S}_{4}, \mathrm{O}_{4}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{Z}_{1}, \mathrm{Z}_{2}\right) \wedge T_{k-1}\left(\mathrm{~S}_{5}, \mathrm{O}_{5}, \mathrm{X}_{4}, \mathrm{Y}_{3}, \mathrm{Z}_{2}, \mathrm{~W}_{1}\right) \wedge T_{k-1}\left(\mathrm{~S}_{6}, \mathrm{O}_{6}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \mathrm{~W}_{1}, \mathrm{~W}_{2}\right) \wedge \\
& T_{k-1}\left(\mathrm{~S}_{7}, \mathrm{O}_{7}, \mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}, \mathrm{Z}_{4}\right) \wedge T_{k-1}\left(\mathrm{~S}_{8}, \mathrm{O}_{8}, \mathrm{Z}_{2}, \mathrm{~W}_{1}, \mathrm{Z}_{4}, \mathrm{~W}_{3}\right) \wedge T_{k-1}\left(\mathrm{~S}_{9}, \mathrm{O}_{9}, \mathrm{~W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}, \mathrm{~W}_{4}\right) \rightarrow \\
& \quad \quad \exists \mathrm{U} T_{k}\left(\mathrm{U}, \mathrm{O}_{1}, \mathrm{~S}_{1}, \mathrm{~S}_{3}, \mathrm{~S}_{7}, \mathrm{~S}_{9}\right)
\end{aligned}
$$

NEXPTIME-hardness of ACYCLIC

Inductive step - construct $2^{k} \times 2^{k}$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X_{1}	X_{2}	X_{2}	Y_{1}	Y_{1}	Y_{2}					
X_{3}	X_{4}	X_{4}	Y_{3}	Y_{3}	Y_{4}					
X_{3}	X_{4}	X_{4}	Y_{3}	Y_{3}	Y_{4}					
Z_{1}	Z_{2}	Z_{2}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{1}$	W_{2}					
Z_{1}	Z_{2}	Z_{2}	$\mathrm{~W}_{1}$	W_{1}	W_{2}					
Z_{3}	Z_{4}	Z_{4}	W_{3}	W_{3}	W_{4}	$\quad \longrightarrow$	X_{1}	X_{2}	Y_{1}	Y_{2}
:---:	:---:	:---:	:---:							
X_{3}	X_{4}	Y_{3}	Y_{4}							
Z_{1}	Z_{2}	W_{1}	W_{2}							
Z_{3}	Z_{4}	W_{3}	W_{4}							

$$
\forall S \forall O \forall X_{1} \forall X_{2} \forall X_{3} \forall X_{4}\left(T_{n}\left(\mathrm{~S}, \mathrm{O}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right) \rightarrow T(\mathrm{~S}, \mathrm{O})\right)
$$

Concluding NEXPTIME-hardness of ACYCLIC

- Several rules but polynomially many \Rightarrow feasible in polynomial time
- $\quad D \wedge \Sigma \vDash \exists \mathrm{X} T\left(\mathrm{X}, \mathrm{t}_{0}\right)$ iff a $2^{n} \times 2^{n}$ tiling exists
- Can be formally shown by induction on n

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
- We obtain the class of full existential rules
- Very close to Datalog

```
\checkmark
```

- Drop the recursive definitions
- We obtain the class of acyclic existential rules
- A.k.a. non-recursive existential rules

Sum Up

	Data Complexity	
FULL	PTIME-c	Naïve algorithm
		Reduction from Monotone Circuit Value problem
ACYCLIC	in LOGSPACE	covered later...

	Combined Complexity	
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-C	Small witness property
		Reduction from Tiling problem

Recall our Example

chase $(D, \Sigma)=D \cup\left\{\right.$ hasParent(Alice, $\left.z_{1}\right)$, Person $\left(z_{1}\right)$,

$$
\begin{aligned}
& \text { hasParent }\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \text {, Person }\left(\mathrm{z}_{2}\right) \text {, } \\
& \qquad \text { hasParent }\left(\mathrm{z}_{2}, \mathrm{z}_{3}\right), \text { Person }\left(\mathrm{z}_{3}\right), \ldots
\end{aligned}
$$

The above rule can be written as the DL-Lite axiom

$$
\text { Person } \sqsubseteq \exists h a s P a r e n t . P e r s o n
$$

Recall our Example

$$
\begin{aligned}
& \text { chase }(D, \Sigma)=D \cup\left\{\text { hasParent }\left(\text { Alice, } z_{1}\right), \operatorname{Person}\left(z_{1}\right)\right. \\
& \qquad \operatorname{hasParent}\left(z_{1}, z_{2}\right), \operatorname{Person}\left(z_{2}\right), \\
& \operatorname{hasParent}\left(z_{2}, z_{3}\right), \operatorname{Person}\left(z_{3}\right), \ldots
\end{aligned}
$$

Existential quantification \& recursive definitions are key features for modelling ontologies

Challenge

We need classes of existential rules such that

- Existential quantification and recursive definition coexist
\Rightarrow the chase may be infinite
- BCQ-Answering is decidable, and tractable w.r.t. the data complexity

$$
\Downarrow
$$

Tame the infinite chase:
Deal with infinite structures without explicitly building them

Linear Existential Rules

- A linear existential rule is an existential rule of the form

$$
\forall \mathrm{X} \forall \mathrm{Y}(P(\mathrm{X}, \mathrm{Y}) \rightarrow \exists \mathrm{Z} \psi(\mathrm{X}, \mathrm{Z}))
$$

where $P(\mathrm{X}, \mathrm{Y})$ is an atom

- We denote LINEAR the class of linear existential rules
- A local property - we can inspect one rule at a time
\Rightarrow given Σ, we can decide in linear time whether $\Sigma \in \operatorname{LINEAR}$
$\Rightarrow \Sigma_{1} \in$ LINEAR, $\Sigma_{2} \in \operatorname{LINEAR} \Rightarrow\left(\Sigma_{1} \cup \Sigma_{2}\right) \in$ LINEAR
- Strictly more expressive than DL-Lite

LINEAR vs. DL-Lite

Existential rules and DLs rely on first-order semantics - comparable formalisms

DL-Lite Axioms	Existential Rules
$A \sqsubseteq B$	$\forall \mathrm{X}(A(\mathrm{X}) \rightarrow B(\mathrm{X}))$
$A \sqsubseteq \exists R$	$\forall \mathrm{X}(A(\mathrm{X}) \rightarrow \exists \mathrm{Y} R(\mathrm{X}, \mathrm{Y}))$
$\exists R \sqsubseteq A$	$\forall \mathrm{X} \forall \mathrm{Y}(R(\mathrm{X}, \mathrm{Y}) \rightarrow A(\mathrm{X}))$
$\exists R \sqsubseteq \exists P$	$\forall \mathrm{X} \forall \mathrm{Y}(R(\mathrm{X}, \mathrm{Y}) \rightarrow \exists \mathrm{Z} P(\mathrm{X}, \mathrm{Z}))$
$A \sqsubseteq \exists R . B$	$\forall \mathrm{X}(A(\mathrm{X}) \rightarrow \exists \mathrm{Y}(R(\mathrm{X}, \mathrm{Y}) \wedge B(\mathrm{Y})))$
$R \sqsubseteq P$	$\forall \mathrm{X} \forall \mathrm{Y}(R(\mathrm{X}, \mathrm{Y}) \rightarrow P(\mathrm{X}, \mathrm{Y}))$
$A \sqsubseteq \neg B$	$\forall \mathrm{X}(A(\mathrm{X}) \wedge B(\mathrm{X}) \rightarrow \perp)$

Linear Existential Rules

- A linear existential rule is an existential rule of the form

$$
\forall X \forall \mathrm{Y}(P(\mathrm{X}, \mathrm{Y}) \rightarrow \exists \mathrm{Z} \psi(\mathrm{X}, \mathrm{Z}))
$$

where $P(\mathrm{X}, \mathrm{Y})$ is an atom

- We denote LINEAR the class of linear existential rules
- A local property - we can inspect one rule at a time
\Rightarrow given Σ, we can decide in linear time whether $\Sigma \in \operatorname{LINEAR}$
$\Rightarrow \Sigma_{1} \in$ LINEAR, $\Sigma_{2} \in \operatorname{LINEAR} \Rightarrow\left(\Sigma_{1} \cup \Sigma_{2}\right) \in$ LINEAR
- Strictly more expressive than DL-Lite
- Infinite chase $-\forall X(P e r s o n(X) \rightarrow \exists Y(h a s P a r e n t(X, Y) \wedge \operatorname{Person}(Y)))$
- But, BCQ-Answering is decidable - the chase has finite treewidth

Treewidth of a Graph

Tree decomposition - a mapping of a graph into a tree

Tree decomposition $T=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ of G

Graph $G=(\mathrm{V}, \mathrm{E})$

1. For each $v \in V$, there exists $u \in V$ ' such that $v \in u$
2. For each $(\mathrm{v}, \mathrm{w}) \in \mathrm{E}$, there exists $\mathrm{u} \in \mathrm{V}$ ' such that $\{\mathrm{v}, \mathrm{w}\} \subseteq \mathrm{u}$
3. For each $v \in V,\{u \mid v \in u\}$ induces a connected subtree

Treewidth of a Graph

Tree decomposition - a mapping of a graph into a tree

Tree decomposition $T=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ of G

Graph $G=(\mathrm{V}, \mathrm{E})$

- The width of T is defined as $\max _{u \in v^{\prime}}\{|u|\}-1$
- The treewidth of G, denoted $t w(G)$, is the minimum width over all tree decompositions of G

Treewidth of an Instance

- An instance J can be represented as a graph \mathcal{G}_{J} - Gaifman graph

$$
\begin{gathered}
R(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \\
S(\mathrm{c}, \mathrm{~d}) \\
T(\mathrm{c}, \mathrm{~d}, \mathrm{e})
\end{gathered}
$$

- The treewidth of J, denoted $\operatorname{tw}(J)$, is defined as $\operatorname{tw}\left(\mathcal{G}_{J}\right)$
- Thus, we can talk about the treewidth of the chase
- Lemma: For a database D, and a set $\Sigma \in \operatorname{LINEAR}$, tw(chase((D, Σ)) is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth
2. The tree model property implies decidability of satisfiability - classical result

A fragment \mathcal{L} of first-order logic enjoys the tree model property if: for every $\varphi \in \mathcal{L}$,
if φ is satisfiable, then there exists $J \in \operatorname{models}(\varphi)$ such that $\operatorname{tw}(J)$ is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth
2. The tree model property implies decidability of satisfiability - classical result

- Consider a database D, a set $\Sigma \in \operatorname{LINEAR}$, and a BCQ Q
- Clearly, $D \wedge \Sigma \vDash Q$ iff $D \wedge \Sigma \wedge \neg Q \vDash \perp$
- Thus, it suffices to show that, if $D \wedge \Sigma \wedge \neg Q$ is satisfiable, then it has a model of finite treewidth
- By universality, $D \wedge \Sigma \wedge \neg Q$ is satisfiable implies chase $(D, \Sigma) \wedge \neg Q$ is satisfiable
- Therefore, $D \wedge \Sigma \wedge \neg Q$ is satisfiable implies chase(D, Σ) is a model of $D \wedge \Sigma \wedge \neg Q$
- The claim follows since tw(chase (D, Σ)) is finite

Decidability of LINEAR

Theorem: BCQ-Answering under LINEAR is decidable

Proof: The ingredients of the proof are the following:

1. The chase under LINEAR has finite treewidth
2. The tree model property implies decidability of satisfiability - classical result
...but, what about the complexity of the problem?
we need new techniques

Chase Graph

The chase can be naturally seen as a graph - chase graph

$$
\begin{aligned}
& D=\{R(\mathrm{a}, \mathrm{~b}), S(\mathrm{~b})\} \\
& \Sigma=\left\{\begin{array}{l}
\forall \mathrm{X} \forall \mathrm{Y}(R(\mathrm{X}, \mathrm{Y}) \wedge S(\mathrm{Y}) \rightarrow \exists Z R(\mathrm{Z}, \mathrm{X})) \\
\forall \mathrm{X} \forall \mathrm{Y}(R(\mathrm{X}, \mathrm{Y}) \rightarrow S(\mathrm{X}))
\end{array}\right.
\end{aligned}
$$

For LINEAR, the chase graph is a forest

Bounded Derivation-Depth Property

The Blocking Algorithm for LINEAR

- The blocking algorithm shows that BCQ-Answering under LINEAR is
o in PTIME w.r.t. the data complexity
o in 2EXPTIME w.r.t. the combined complexity

...we can do better than the blocking algorithm

Data Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in LOGSPACE w.r.t. the data complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject of the second part of our course.

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined complexity

Proof: We first need to establish the so-called small witness property

Small Witness Property for LINEAR

Lemma: chase $(D, \Sigma) \vDash Q \Rightarrow$ there exists a chase sequence

$$
D\left\langle\sigma_{1}, \mathrm{~h}_{1}\right\rangle J_{1}\left\langle\sigma_{2}, \mathrm{~h}_{2}\right\rangle J_{2}\left\langle\sigma_{3}, \mathrm{~h}_{3}\right\rangle J_{3} \ldots\left\langle\sigma_{n}, \mathrm{~h}_{n}\right\rangle J_{n}
$$

of D w.r.t. Σ with

$$
n=(|Q|)^{2} \cdot|\operatorname{sch}(\Sigma)| \cdot(2 \cdot \text { maxarity })^{\text {maxarity }}
$$

such that $J_{n} \vDash Q$

Proof:

- By hypothesis, there exists a homomorphism h such that $h(Q) \subseteq$ chase (D, Σ)
- By the bounded-derivation depth property

$$
k=|Q| \cdot|\operatorname{sch}(\Sigma)| \cdot(2 \cdot \text { maxarity })^{\text {maxarity }}
$$

Small Witness Property for LINEAR

Proof (cont.):

- Let us focus on depth i of the chase graph
- How many atoms do we need?
- No more than |Q|

Small Witness Property for LINEAR

Proof (cont.):

- Let us focus on depth i of the chase graph
- How many atoms do we need?
- No more than |Q|
- Thus, to entail the query we need at most
$k \cdot|Q|$

$=|Q| \cdot|\operatorname{sch}(\Sigma)| \cdot(2 \cdot \text { maxarity })^{\text {maxarity }} \cdot|Q|$
$=(|Q|)^{2} \cdot|\operatorname{sch}(\Sigma)| \cdot(2 \cdot \text { maxarity })^{\text {maxarity }}$

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in NEXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set $\Sigma \in \operatorname{LINEAR}$, and a BCQ Q
Having the small witness property in place, we can exploit the following algorithm:

1. Non-deterministically construct a chase sequence

$$
D\left\langle\sigma_{1}, \mathrm{~h}_{1}\right\rangle J_{1}\left\langle\sigma_{2}, \mathrm{~h}_{2}\right\rangle J_{2}\left\langle\sigma_{3}, \mathrm{~h}_{3}\right\rangle J_{3} \ldots\left\langle\sigma_{n}, \mathrm{~h}_{n}\right\rangle J_{n}
$$

of D w.r.t. Σ with $n=(|Q|)^{2} \cdot|\operatorname{sch}(\Sigma)| \cdot(2 \cdot \text { maxarity })^{\text {maxarity }}$
2. Check for the existence of a homomorphism h such that $h(Q) \subseteq J_{n}$

Can we do better? Any ideas?

Key Observation

level-by-level construction

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Proof:

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Proof:

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Proof:

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Proof:

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined complexity

Proof (cont.):

At each step we need to maintain

- $O(|Q|)$ atoms
- A counter $\operatorname{ctr} \leq(|Q|)^{2} \cdot|\operatorname{sch}(\Sigma)| \cdot(2 \cdot \text { maxarity })^{\text {maxarity }}$
- Thus, we need polynomial space
- The claim follows since NPSPACE = PSPACE

Combined Complexity of LINEAR

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined complexity

Proof : By simulating a deterministic polynomial space Turing machine

PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input
string / using a database D, a set $\Sigma \in \operatorname{LINEAR}$, and a BCQ Q such that
$D \wedge \Sigma \vDash Q$ iff M accepts / using at most $n=(|/|)^{k}$ cells

PSPACE-hardness of LINEAR

- Assume that the tape alphabet is $\{0,1, \sqcup\}$
- Suppose that M halts on $I=\alpha_{1} \ldots \alpha_{m}$ using $n=m^{k}$ cells, for $k>0$

Initial configuration - the database D

PSPACE-hardness of LINEAR

- Assume that the tape alphabet is $\{0,1, \sqcup\}$
- Suppose that M halts on $I=\alpha_{1} \ldots \alpha_{m}$ using $n=m^{k}$ cells, for $k>0$

Transition rule - $\delta\left(\mathrm{s}_{1}, \alpha\right)=\left(\mathrm{s}_{2}, \beta,+1\right)$
for each $i \in\{1, \ldots, n\}$:

$$
\forall X(\operatorname{Config}(\mathrm{~s}_{1}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{i-1}, \alpha, \mathrm{X}_{i+1}, \ldots, \mathrm{X}_{n}, \overbrace{0, \ldots, 0,1}, \overbrace{0, \ldots, 0}) \rightarrow
$$

$\operatorname{Config}(\mathrm{s}_{2}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{i-1}, \beta, X_{i+1}, \ldots, X_{n}, \underbrace{0, \ldots, 0}_{i}, 1, \underbrace{0, \ldots, 0}_{n-i-1}))$

PSPACE-hardness of LINEAR

- Assume that the tape alphabet is $\{0,1, \sqcup\}$
- Suppose that M halts on $I=\alpha_{1} \ldots \alpha_{m}$ using $n=m^{k}$ cells, for $k>0$

$$
D \wedge \Sigma \vDash \exists X \text { Config }\left(\mathrm{s}_{\mathrm{acc}}, \mathrm{X}\right) \text { iff } M \text { accepts } /
$$

...but, the rules are not constant-free we can eliminate the constants by applying a simple trick

PSPACE-hardness of LINEAR

Initial configuration - the database D
auxiliary constants for the states and the tape alphabet

PSPACE-hardness of LINEAR

Transition rule - $\delta\left(\mathrm{s}_{1}, 0\right)=\left(\mathrm{s}_{2}, \sqcup,+1\right)$
for each $i \in\{1, \ldots, n\}$:

Config $(\mathrm{S}_{2}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{i-1}, \mathrm{~B}, \mathrm{X}_{i+1}, \ldots, \mathrm{X}_{n}, \underbrace{\mathrm{Z}, \ldots, \mathrm{Z}}_{i}, \mathrm{O}, \underbrace{\mathrm{Z}, \ldots, \mathrm{Z}}_{n-i-1}, \mathrm{~S}_{1}, \ldots \mathrm{~S}_{\ell}, \mathrm{Z}, \mathrm{O}, \mathrm{B})$
(\forall-quantifiers are omitted)

Sum Up

	Data Complexity	
FULL	PTIME-c	Naïve algorithm
		Reduction from Monotone Circuit Value problem
ACYCLIC		
LINEAR	in LOGSPACE	Second part of our course

	Combined Complexity	
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-C	Small witness property
		Reduction from Tiling problem
LINEAR n	PSPACE-c	Level-by-level non-deterministic algorithm
		Simulation of a deterministic polynomial space TM

Forward Chaining Techniques

Useful techniques for establishing optimal upper bounds
...but not practical - we need to store instances of very large size

