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Abstract

We introduce a constructive method applicable to a
large number of description logics (DLs) for estab-
lishing the concept-based Beth definability prop-
erty (CBP) based on sequent systems. Using the
highly expressive DL RIQ as a case study, we in-
troduce novel sequent calculi for RIQ-ontologies
and show how certain interpolants can be computed
from sequent calculus proofs, which permit the ex-
traction of explicit definitions of implicitly defin-
able concepts. To the best of our knowledge, this
is the first sequent-based approach to computing
interpolants and definitions within the context of
DLs, as well as the first proof that RIQ enjoys
the CBP. Moreover, due to the modularity of our
sequent systems, our results hold for restrictions of
RIQ, and are applicable to other DLs by suitable
modifications.

1 Introduction
Defining new concepts in terms of given concepts and re-
lations is an important operation within the context of de-
scription logics (DLs), and logic more generally. Typically,
a new concept NewC can be defined in one of two ways: (1)
implicitly, by specifying a set of axioms such that the inter-
pretation of NewC is uniquely determined by the interpreta-
tion of the given concepts and relations, or (2) explicitly, by
writing a definition NewC ≡ D where NewC does not ap-
pear in D. Description logics for which implicit definability
implies explicit definability are said to be definitorially com-
plete [Baader and Nutt, 2003; ten Cate et al., 2006], or to ex-
hibit the concept-based Beth definability property (CBP) [ten
Cate et al., 2013]. This is Beth’s definability property [Beth,
1956] from first-order logic rephrased for DLs.

Beth definability and variations thereof have found numer-
ous applications in DLs. For example, the property has been
used in ontology engineering to extract acyclic terminologies
from general ones [Baader and Nutt, 2003; ten Cate et al.,
2006]. This is of particular importance since reasoning with
acyclic terminologies is usually less complex than with gen-
eral ones, e.g. satisfiability over acyclic ALC-terminologies
is PSPACE-complete while being EXPTIME-complete over

general ALC-terminologies [Donini, 2003]. Other applica-
tions include, rewriting ontology-mediated queries [Franconi
and Kerhet, 2019; Seylan et al., 2009; Toman and Weddell,
2022], learning concepts separating positive and negative ex-
amples [Artale et al., 2023; Funk et al., 2019], and com-
puting referring expressions, which is of value in computa-
tional linguistics and data management [Areces et al., 2008;
Borgida et al., 2016; Artale et al., 2021].

A number of methods have been used to confirm the exis-
tence of, or actually compute, explicit definitions of implicitly
definable concepts for expressive DLs; e.g. model-theoretic
mosaic-based methods have been employed to decide the
existence of explicit definitions for ALCH, ALCO, and
ALCHOI [Artale et al., 2023; Jung et al., 2022]. However,
as noted in these works, these methods are non-constructive,
confirming the existence of explicit definitions without nec-
essarily providing them. Thus, interest has been expressed in
developing constructive methods that actually compute ex-
plicit definitions. We note that constructive methods have
been employed in the literature, e.g. methods relying on the
computation of normal forms and uniform interpolants [ten
Cate et al., 2006] or which compute explicit definitions us-
ing tableau-based algorithms [ten Cate et al., 2013]. With the
aim of furthering this programme, we present a constructive
method applicable to a large number of DLs, which computes
explicit concept-based definitions of implicitly definable con-
cepts and establishes the CBP by means of sequent systems.

Since its introduction in the 1930’s, Gentzen’s sequent
calculus has become one of the preferred formalisms for
the construction of proof calculi [Gentzen, 1935a; Gentzen,
1935b]. A sequent calculus is a set of inference rules operat-
ing over expressions (called sequents) of the form Γ ⊢ ∆
with Γ and ∆ sequences or (multi)sets of formulae. Se-
quent systems have found fruitful applications, being ex-
ploited in the development of automated reasoning meth-
ods [Slaney, 1997] and being used to establish non-trivial
properties of logics such as consistency [Gentzen, 1935a;
Gentzen, 1935b], decidability [Dyckhoff, 1992], and interpo-
lation [Maehara, 1960]. Regarding this last point, it was first
shown by Maehara that sequent systems could be leveraged to
constructively prove the Craig interpolation property [Craig,
1957] of a logic. Since this seminal work, Maehara’s interpo-
lation method has been extended and adapted in a variety of
ways to prove Craig interpolation for diverse classes of logics



with sequent-style systems, including modal logics [Fitting
and Kuznets, 2015], intermediate logics [Kuznets and Lell-
mann, 2018], and temporal logics [Lyon et al., 2020]. As
Craig interpolation implies Beth definability, it follows that
the sequent-based methodology is applicable to the latter.

In this paper, we provide the first sequent calculi for RIQ-
ontologies and show how these calculi can be used to com-
pute interpolants, explicit definitions, and to confirm the CBP.
Although our work is inspired by Maehara’s method, we note
that it is a non-trivial generalization of that method. As dis-
cussed in [Lyon et al., 2020], Maehara’s original method is
quite restricted, being inapplicable in many cases to even ba-
sic modal logics, which a fortiori means the method is inap-
plicable to expressive DLs. To overcome these difficulties,
we use a generalized notion of sequent and interpolant that
encodes a tree whose nodes are multisets of DL concepts ac-
companied by (in)equalities over nodes. Given a proof with
such sequents, we show that all axiomatic sequents can be
assigned interpolants—which are themselves sequents—and
that such interpolants can be ‘propagated’ through the proof
yielding an interpolant of the conclusion. Explicit definitions
can then be readily extracted from these interpolants. We note
that our method is constructive in the sense that interpolants
are computed relative to a given proof of a general concept
inclusion implied by a RIQ-ontology. Although such proofs
are in principle computable, we left the specification of an ex-
plicit proof-search algorithm that builds such proofs to future
work, noting that such algorithms can be written by adapting
known techniques; e.g. [Horrocks and Sattler, 2004].

Finally, we remark that although our work shares similari-
ties with that of [ten Cate et al., 2013], our method goes be-
yond this work as we establish the CBP for the highly ex-
pressive DL RIQ, and due to the modularity of our sequent
systems, our method is applicable to restrictions of RIQ. By
modularity we mean that the deletion of inference rules or
modification of side conditions on rules allows for sequent
systems to be provided for fragments of RIQ. Our work also
intersects that of [ten Cate et al., 2006], which establishes the
CBP for ALC extended with PUR Horn conditions, but dif-
fers both in terms of methodology and our consideration of
qualified number restrictions.

Outline of Paper: In Section 2, we define the logic RIQ,
define the CBP and related notions, and explicate certain
grammar theoretic concepts used in formulating inference
rules. In Section 3, we present our sequent systems and es-
tablish that each system enjoys fundamental properties. Sec-
tion 4 develops and explains our new sequent-based method
that computes explicit definitions of implicitly definable con-
cepts and establishes the CBP, using RIQ as case study. To
the best of our knowledge, this is the first proof that RIQ has
the CBP. In Section 5, we conclude and discuss future work.
We note that all proofs have been deferred to the appendix.

2 Preliminaries
In the first part of this section, we introduce the language and
semantics for the description logic RIQ, which subsumes
various DLs [Calvanese and De Giacomo, 2003]. Subse-
quently, we discuss and define a notion of interpolation and

concept-based Beth definability, which will be of pivotal in-
terest in this paper. In the last part of this section, we in-
troduce special types of semi-Thue systems [Post, 1947], re-
ferred to as R-systems, which are essential in the formulation
of our sequent calculi.

2.1 Language and Semantics: RIQ
The description logic RIQ is defined relative to a vocabulary
V = (NR,NC), which is a pair containing pairwise disjoint,
countable sets. The set NR contains role names used to denote
binary relations and the set NC contains concept names used
to denote classes of entities. We use the (potentially anno-
tated) symbols r, s, . . . to denote role names, and A, B, . . . to
denote concept names. We define a role to be a role name or
an inverse role r− such that r ∈ NR. We define the inverse of
a role to be Inv(r) = r− and Inv(r−) = r given that r ∈ NR.
We let R := NR ∪ {Inv(r) | r ∈ NR} denote the set of roles.

A complex role inclusion axiom (RIA) is an expression
r1 ◦ · · · ◦ rn ⊑ s such that r1, . . . , rn and s are roles, and
◦ denotes the usual composition operation over binary rela-
tions; we assume n-ary compositions r1 ◦ · · · ◦ rn associate
to the left. We define an RBox R to be a finite collection of
RIAs. As identified by Horrocks and Sattler [Horrocks and
Sattler, 2004], to ensure the decidability of reasoning with
RIQ, only regular RBoxes may be used in ontologies (de-
fined below).1 Let ≺ be a strict partial order on the set NR

of role names; we define an RIA w ⊑ r to be ≺-regular
iff r is a role name, and either (1) w = rr, (2) w = r−,
(3) w = s1 ◦ · · · ◦ sn and si ≺ r for all 1 ≤ i ≤ n, (4)
w = r ◦ s1 ◦ · · · ◦ sn and si ≺ r for all 1 ≤ i ≤ n, or (5)
w = s1 ◦ · · · ◦ sn ◦ r and si ≺ r for all 1 ≤ i ≤ n. An RBox
R is defined to be regular iff a strict partial order ≺ over NR

exists such that every RIA in R is ≺-regular.
We recursively define a role name r to be simple (with re-

spect to an RBox R) iff either (1) no RIA of the form w ⊑ r
occurs in R, or (2) for each s ⊑ r ∈ R, s is a simple role
name or its inverse is. Also, an inverse role r− is defined to
be simple if r is simple.

We define complex concepts to be formulae in negation
normal form generated by the following grammar in BNF:

C ::= A | ¬A | (C ⊙ C) | (Q.C) | (⩽ns.C) | (⩾ns.C)

where A ∈ NC, ⊙ ∈ {⊔,⊓}, Q ∈ {∃r, ∀r | r ∈ R}, s
is a simple role, and n ∈ N. We use the symbols C, D,
. . . (potentially annotated) to denote complex concepts. We
define ⊤ = A⊔¬A and ⊥ = A⊓¬A for a fixed A ∈ NC, and
define a literal L to be either a concept name or its negation,
i.e. L ∈ {A,¬A | A ∈ NC}. For a concept name A, we
define ¬̇A := ¬A and ¬̇¬A := A, and we lift the definition
of negation to complex concepts in the usual way, noting that
¬̇(⩽nr.C) := (⩾(n+1)r.C), and

¬̇(⩾nr.C) :=

{
⊥ if n = 0,
⩽(n−1)r.C otherwise.

We recursively define the weight of a concept C as follows:
(1) w(L) = 1 with L ∈ {A,¬A | A ∈ NC}, (2) w(C ⊙D) =

1Note, our interpolation results go through for general RBoxes,
i.e. this restriction is not needed for the work in Sections 3 and 4.



w(C)+w(D)+1 with ⊙ ∈ {⊓,⊔}, (3) w(Q.C) = w(C)+1
with Q ∈ {∃r, ∀r | r ∈ R}, (4) w(⩽ns.C) = w(C) +n+1,
and (5) w(⩾ns.C) = w(C) + n.

A general concept inclusion axiom (GCI) is a formula of
the form C ⊑ D such that C and D are complex concepts. A
TBox T is a finite set of GCIs and we make the simplifying
assumption that every GCI in a TBox T is of the form ⊤ ⊑ C.
We define a RIQ-ontology O (which we refer to as an on-
tology for short) to be the union of an RBox R and TBox T ,
that is, O = R∪ T . For a set X of concepts, GCIs, or RIAs,
we let con(X) denote the set of all concept names occurring
in X , and we let sig(X) denote the set of all concept names
and roles occurring in X . Symbols from a vocabulary V are
interpreted accordingly:

Definition 1 (Interpretation). An interpretation I = (∆I , ·I)
is a pair consisting of a non-empty set ∆I called the domain
and a map ·I such that

• if A ∈ NC, then AI ⊆ ∆I with ¬AI = ∆I \AI;

• if r ∈ NR, then rI ⊆ ∆I ×∆I .

We define (r−)
I
= {(b, a) | (a, b) ∈ rI} and interpret com-

positions over roles in the usual way. We lift interpretations
to complex concepts accordingly:

• (C ⊔D)
I
= CI ∪DI;

• (C ⊓D)
I
= CI ∩DI;

• ∃r.CI = {a ∈ ∆I | ∃b ∈ ∆I , (a, b) ∈ rI & b ∈ CI};

• ∀r.CI = {a ∈ ∆I | ∀b ∈ ∆I , (a, b) ∈ rI ⇒ b ∈ CI};

• ⩽ns.CI :={a∈∆I : |{b : (a, b) ∈ sI & b ∈ CI}| ≤ n};

• ⩾ns.CI :={a∈∆I : |{b : (a, b) ∈ sI & b ∈ CI}| ≥ n}.

An interpretation satisfies C ⊑ D or r1 ◦· · ·◦rn ⊑ s, written
I ⊨ C ⊑ D and I ⊨ r1 ◦ · · · ◦ rn ⊑ s iff CI ⊆ DI and
(r1 ◦ · · · ◦ rn)I ⊆ sI , respectively. An interpretation I is
defined to be a model of an ontology O, written I ⊨ O, iff it
satisfies all GCIs and RIAs in O. We write O ⊨ C ⊑ D iff for
every interpretation I, if I ⊨ O, then I ⊨ C ⊑ D, and we
write O ⊨ C ≡ D when O ⊨ C ⊑ D and O ⊨ D ⊑ C.

2.2 Definability and Interpolation
The notion of Beth definability, first defined within the con-
text of first-order logic [Beth, 1956], takes on a number of dis-
tinct formulations within the context of DLs. In [Baader and
Nutt, 2003; ten Cate et al., 2006], Beth definability is reinter-
preted as the notion of definitorial completeness, which has
also been named concept-based Beth definability (CBP) [ten
Cate et al., 2013]. Intuitively, a DL L has the CBP when the
implicit definability of a concept C under an L-ontology O
using a signature Θ = Ξ ∪ NR with Ξ ⊆ con(C,O) implies
its explicit definability using symbols from Θ. This is dis-
tinct from the projective Beth definability property (PBDP),
which is defined in the same way but relative to a signa-
ture Θ ⊆ sig(C,O), or the weaker Beth definability property
(BDP) where the signature Θ is the set of all symbols distinct
from the concept defined [Artale et al., 2023]. In this paper,

we focus on the CBP, and leave the investigation of sequent-
based methodologies for establishing other definability prop-
erties to future work. Let us now formally define the CBP.

Let L be a DL, C be a complex concept in L, O an L-
ontology, and Θ ⊆ con(C,O).2 We define C to be implicitly
concept-definable from Θ under O iff for any two models I
and J of O such that ∆I = ∆J and for each P ∈ Θ ∪ NR,
P I = PJ , it follows that CI = CJ . We remark that this
notion can be reformulated as a standard reasoning problem,
that is, C is implicitly concept-definable from Θ under O iff

O ∪OΘ ⊨ C ⊑ CΘ (1)

where OΘ and CΘ are obtained from O and C, respectively,
by uniformly replacing every concept name A ̸∈ Θ by a fresh
concept name. We define C to be explicitly concept-definable
from Θ under O iff there exists a complex concept D (called
an explicit concept-definition) such that O ⊨ C ≡ D and
con(D) ⊆ Θ.
Definition 2 (Concept-Based Beth Definability). Let L be
a DL, C be a complex concept in L, O be an L-ontology,
and Θ ⊆ con(C,O). We say that L has the concept-name
Beth definability property (CBP) iff if C is implicitly concept-
definable from Θ under O, then C is explicitly concept-
definable from Θ under O.

It is typical to establish definability properties by means
of an interpolation theroem (cf. [ten Cate et al., 2013;
Craig, 1957; Jung et al., 2022]). We therefore define a suit-
able notion of interpolation that implies the CBP, which we
call concept interpolation.
Definition 3 (Concept Interpolation Property). Let L be a
DL, O1 and O2 be L-ontologies with O = O1 ∪ O2, and
C and D be L-concepts. We define an L-concept I to be a
concept interpolant for C ⊑ D under O iff (1) con(I) ⊆
con(O1, C) ∩ con(O2, D), (2) O ⊨ C ⊑ I , and (3) O ⊨ I ⊑
D. A DL L enjoys the concept interpolation property if for all
L-ontologies O1, O2 with O = O1 ∪ O2 and L-concepts C,
D such that O ⊨ C ⊑ D there exists a concept interpolant
for C ⊑ D under O.
Lemma 1. If a DL L enjoys the concept interpolation prop-
erty, then it enjoys the CBP.

2.3 R-Systems
We let R serve as our alphabet with each role serving as a
character. The set R∗ of strings over R is defined to be the
smallest set satisfying the following conditions: (i) R∪{ε} ⊆
R∗ with ε the empty string, and (ii) If S ∈ R∗ and r ∈
R, then Sr ∈ R∗, where Sr represents the concatenation
of S and r. We use S,R, . . . (potentially annotated) to de-
note strings from R∗, and we have Sε = εS = S, for the
empty string ε. The inverse operation on strings is defined
as: (1) Inv(ε) := ε, and (2) If S = r1 · · · rn, then Inv(S) :=
Inv(rn) · · · Inv(r1).

We now define R-systems, which are special types of Semi-
Thue systems [Post, 1947], relative to ontologies. These will
permit us to derive strings of roles from a given role and en-
code the information present in a given ontology.

2In this paper, we take a DL L to be RIQ or a fragment thereof.



Definition 4 (R-system). Let O be an ontology. We define
the R-system G(O) to be the smallest set of production rules
of the form r −→ S, where r ∈ R and S ∈ R∗, such that if
r1 ◦ · · · ◦ rn ⊑ s ∈ O, then

(s −→ r1 · · · rn), (Inv(s) −→ Inv(rn) · · · Inv(r1)) ∈ G(O).

Definition 5 (Derivation, Language). Let O be an ontology
and G(O) be its R-system. We write S −→G(O) R and say
that the string R may be derived from the string S in one-step
iff there are strings S′, R′ ∈ R∗ and r −→ T ∈ G(O) such
that S = S′rR′ and R = S′TR′. We define the derivation
relation −→∗

G(O) to be the reflexive and transitive closure of
−→G(O). For S,R ∈ R∗, we call S −→∗

G(O) R a derivation
of R from S, and define the length of a derivation to be the
minimal number of one-step derivations required to derive R
from S in G(O). Last, we define the language LG(O)(r) :=
{S | r −→∗

G(O) S}, where r ∈ R.

3 Sequent Systems
We let Lab = {x, y, z, . . .} be a countably infinite set of la-
bels, define a role atom to be an expression of the form r(x, y)
with r ∈ R and x, y ∈ Lab, define an equality atom and in-
equality atom to be an expression of the form x =̇ y and x ̸=̇ y
with x, y ∈ Lab, respectively, and define a labeled concept
to be an expression x : C with x ∈ Lab and C a complex
concept. We refer to role, equality, and inequality atoms as
structural atoms more generally. For a (multi)set X and Y of
structural atoms and/or labeled concepts, we let X,Y repre-
sent their union and let Lab(X) be the set of labels occurring
therein. We say that a set Γ of structural atoms forms a tree iff
the graph T (Γ) = (V,E) is a directed tree with V = Lab(Γ),
and (x, y) ∈ E iff r(x, y) ∈ Γ. A sequent is defined to be
an expression of the form S := Γ ⊢ ∆ such that (1) Γ is a
set of structural atoms that forms a tree, (2) ∆ is a multiset
of labeled concepts, (3) if Γ ̸= ∅, then Lab(∆) ⊆ Lab(Γ),
and (4) if Γ = ∅, then |Lab(∆)| = 1. In a sequent Γ ⊢ ∆,
we refer to Γ as the antecedent, ∆ as the consequent, and we
define ∆↾x := {C | x : C ∈ ∆}.

Recall that every GCI in an ontology O is assumed to be
of the form ⊤ ⊑ C. For an ontology O = R ∪ T and label
x ∈ Lab, we let x : ¬̇TO = x : ¬̇C1, . . . , x : ¬̇Cn such that
T = {⊤ ⊑ C1, . . . ,⊤ ⊑ Cn}. For labels x1, . . . , xn ∈ Lab,
we define Γ ̸=̇(x1, . . . , xn) = {xi ̸=̇xj | 1 ≤ i < j ≤ n}. We
let x ≈ y ∈ {x =̇ y, y =̇x} and write x =∗

Γ y iff there exist
z1, . . . , zn ∈ Lab(Γ) such that z1 ≈ z2, . . . , zn−1 ≈ zn with
x = z1 and y = zn. We make use of equivalence classes of
labels in the formulation of certain inference rules below and
define [x]Γ := {y | x =∗

Γ y} for a sequent Γ ⊢ ∆.
A uniform presentation of our sequent systems in pre-

sented in Figure 1. We note that each sequent calculus
S(O) takes a RIQ-ontology O as an input parameter, which
determines the functionality of certain inference rules de-
pending on the contents of O. The calculus S(O) con-
tains the initial rules (id) and (id=̇), which generate ax-
ioms that are used to begin a proof, the logical rules (⊔),
(⊓), (∃r), (∀r), (⩽nr), and (⩾nr), which introduce com-
plex concepts, and the substitution rule (s=̇). We note that
A ∈ NC in the (id) rule and L is a literal in the (s=̇) rule.

The (id=̇) and (s=̇) rules are subject to a side condition,
namely, each rule is applicable only if x =∗

Γ y. The (∀r)
and (⩽nr) rules are subject to side conditions as well: the
label y and the labels y0, . . . , yn must be fresh in (∀r) and
(⩽nr), respectively, meaning such labels may not occur in
the conclusion of a rule application. Last, we note that the
(∃r) and (⩾nr) rules are special types of logical rules, re-
ferred to as propagation rules; cf. [Castilho et al., 1997;
Fitting, 1972]. These rules operate by viewing sequents as
types of automata, referred to as propagation graphs, which
bottom-up propagate formulae along special paths, referred
to as propagation paths (see Example 1 below).
Definition 6 (Propagation Graph). We define the propagation
graph PG(Γ) = (V,E) of a sequent Γ ⊢ ∆ such that [x]Γ ∈
V iff x ∈ Lab(Γ), and ([x]Γ, r, [y]Γ), ([y]Γ, Inv(r), [x]Γ) ∈ E
iff there exist z ∈ [x]Γ and w ∈ [y]Γ such that r(z, w) ∈ Γ.
If we write [x]Γ ∈ PG(Γ), then we mean [x]Γ ∈ V , and if we
write ([x]Γ, r, [y]Γ) ∈ PG(Γ), we mean ([x]Γ, r, [y]Γ) ∈ E.

We note that our propagation graphs are generalizations
of those employed in sequent systems for modal and non-
classical logics [Ciabattoni et al., 2021; Goré et al., 2011;
Lyon, 2021]. In particular, due to the inclusion of equality
atoms, we must define propagation graphs over equivalence
classes of labels, rather than over labels themselves. This lets
us define novel and correct propagation rules in the presence
of (in)equalities and counting quantifiers.
Definition 7 (Propagation Path). Given a propagation graph
PG(Γ) = (V,E), [x]Γ, [y]Γ ∈ V , and r ∈ R, we write
PG(Γ) ⊨ [x]Γ r

⇝ [y]Γ iff ([x]Γ, r, [y]Γ) ∈ E. Given a string
rS ∈ R∗ where r ∈ R, we define PG(Γ) ⊨ [x]Γ rS

⇝ [y]Γ as
‘∃[z]Γ∈V PG(Γ) ⊨ [x]Γ r

⇝ [z]Γ and PG(Γ) ⊨ [z]Γ S
⇝ [y]Γ’,

and we take PG(Γ) ⊨ [x]Γ ε
⇝ [y]Γ to mean that [x]Γ = [y]Γ.

Additionally, when PG(Γ) is clear from the context we may
simply write [x]Γ S

⇝ [y]Γ to express PG(Γ) ⊨ [x]Γ S
⇝ [y]Γ.

Finally, given a language LG(O)(r) of some R-system G(O)

and r ∈ R, we use [x]Γ L
⇝ [y]Γ with L = LG(O)(r) iff there

is a string S ∈ LG(O)(r) such that [x]Γ S
⇝ [y]Γ.

To provide intuition concerning the functionality of propa-
gation rules, we illustrate a (bottom-up) application of (⩾nr).
Example 1. Let us consider the sequent Γ ⊢ x : ⩾2r.C with
Γ = r(x, y), r(x, z), r(x,w), z =̇w. A pictorial representa-
tion of the propagation graph PG(Γ) is shown below.

{y} {x} {z, w}

r

Inv(r)

r

Inv(r)

One can see that there are two labels y and z such that
[x]Γ r
⇝ [y]Γ and [x]Γ r

⇝ [z]Γ. Note that r ∈ LG(O)(r) by
definition. Therefore, we may (bottom-up) apply the (⩾nr)
rule to obtain the three premises Γ ⊢ x : ⩾2r.C, y : C,
Γ ⊢ x : ⩾2r.C, z : C, and Γ, y =̇ z ⊢ x : ⩾2r.C.

We define a proof in S(O) inductively: (1) each instance
of an initial rule (r), as shown below left, is a proof with
conclusion S, and (2) if n proofs exist with the respective



(id)
Γ ⊢ x : A, x : ¬A,∆

(id=̇)
†1

Γ, x ̸=̇ y ⊢ ∆
Γ ⊢ x : L, y : L,∆

(s=̇)
†1

Γ ⊢ x : L,∆

Γ ⊢ x : C, x : D,∆
(⊔)

Γ ⊢ x : C ⊔D,∆

Γ ⊢ x : C,∆ Γ ⊢ x : D,∆
(⊓)

Γ ⊢ x : C ⊓D,∆

Γ ⊢ x : ∃r.C, y : C,∆
(∃r)†2

Γ ⊢ x : ∃r.C,∆
Γ, r(x, y) ⊢ y : C, y : ¬̇TO,∆

(∀r)†3
Γ ⊢ x : ∀r.C,∆

Γ′ ⊢ y0 : ¬̇C, y0 : ¬̇TO, . . . , yn : ¬̇C, yn : ¬̇TO,∆
(⩽nr)†4

Γ ⊢ x : ⩽nr.C,∆

Γ′ = Γ,Γ ̸=̇(y0, . . . , yn), r(x, y0), . . . , r(x, yn)

Γ ⊢ yi : C, x : ⩾nr.C,∆ | 1 ≤ i ≤ n

Γ, yi =̇ yj ⊢ x : ⩾nr.C,∆ | 1 ≤ i < j ≤ n
(⩾nr)†5

Γ ⊢ x : ⩾nr.C,∆

Side Conditions:
†1 = ‘x =∗

Γ y.’

†2 = ‘PG(Γ) ⊨ [x]Γ L
⇝ [y]Γ with L = LG(O)(r).’

†3 = ‘y is fresh.’

†4 = ‘For each 0 ≤ i ≤ n, yi is fresh.’

†5 = ‘For each 1 ≤ i ≤ n, PG(Γ) ⊨ [x]Γ L
⇝ [yi]Γ with

L = LG(O)(r).’

Figure 1: The calculus S(O) for the RIQ-ontology O. The rules with side conditions †1 – †5 are applicable only if that side condition holds.

conclusions S1, . . ., Sn, then applying an n-ary rule (r′), as
shown below right, yields a new proof with conclusion S.

(r)
S

S1 · · · Sn (r′)
S

We use π (potentially annotated) to denote proofs, and we say
a sequent S is provable with π in S(O), written S(O), π ⊩ S
iff S is the conclusion of π. We write S(O) ⊩ S to indi-
cate that S is provable with some π in S(O). Observe that
each proof is a tree of sequents with the conclusion as the
root. We define the height of a proof to be the number of
sequents along a maximal branch from the conclusion to an
initial rule of the proof. The size of a proof π is defined to
be the sum of the weights of the sequents it contains; in other
words, s(π) :=

∑
S∈π w(S), where the weight of a sequent

S = Γ ⊢ ∆ is defined to be w(S) := |Γ| +
∑

x:C∈∆ w(C).
Ignoring labeled concepts of the form x : ¬̇TO, we refer to
the formulae that are explicitly mentioned in the premises of
a rule as active, and those explicitly mentioned in the conclu-
sion as principal. For example, r(x, y) and y : C are active
in (∀r) while x : ∀r.C is principal.

We now define a semantics for our sequents, which is used
to establish our sequent systems sound and complete.
Definition 8 (Sequent Semantics). Let I = (∆I , ·I) be an
interpretation, S = Γ ⊢ ∆ a sequent, λ : Lab(Γ,∆) → ∆I

a label assignment, and O an ontology.
• I, λ ⊨∀ Γ iff for each r(x, y), x =̇ y, x ̸=̇ y ∈ Γ, we have

(λ(x), λ(y)) ∈ rI , λ(x) = λ(y), and λ(x) ̸= λ(y);
• I, λ ⊨∃ ∆ iff for some x : C ∈ ∆, λ(x) ∈ CI .
A sequent S = Γ ⊢ ∆ is satisfied in I with λ relative to
O, written I, λ ⊨O S, iff if I ⊨ O and I, λ ⊨∀ Γ, then
I, λ ⊨∃ ∆. A sequent S = Γ ⊢ ∆ is true in I relative to O,
written I ⊨O S, iff I, λ ⊨O S for all label assignments λ. A
sequent S = Γ ⊢ ∆ is valid relative to O, written ⊨O S, iff
I ⊨O S for all interpretations I, and we say that S is invalid
relative to O otherwise, writing ̸⊨O S.
Lemma 2. Let I = (∆I , ·I) be an interpretation, O be
a RIQ ontology, λ be a label assignment, and Γ be a set
of structural atoms. If I ⊨ O, I, λ ⊨∀ Γ, and PG(Γ) ⊨
[x]Γ L
⇝ [y]Γ with L = LG(O)(r), then (λ(x), λ(y)) ∈ rI .

Theorem 1 (Soundness). If S(O) ⊩ Γ ⊢ ∆, then ⊨O Γ ⊢ ∆.

We now confirm that S(O) enjoys desirable proof-theoretic
properties, viz. certain rules are height-preserving admissi-
ble or invertible. A rule is (height-preserving) admissible,
i.e. (hp-)admissible, if the premises of the rule have proofs
(of heights h1, . . . , hn), then the conclusion of the rule has
a proof (of height h ≤ max{h1, . . . , hn}). If we let (r−1)
be the inverse of the rule (r) whose premise is the conclu-
sion of (r) and conclusion is the premises of (r), then we say
that (r) is (height-preserving) invertible, i.e. (hp-)invertible
iff (r−1) is (hp-)admissible. For a sequent S = Γ ⊢ ∆,
we let S(x/y) = Γ(x/y) ⊢ ∆(x/y) denote the sequent ob-
tained by substituting each occurrence of the label y in S
by x; for example, if S = r(x, y), x ̸= y ⊢ y : A, then
S(z/y) = r(x, z), x ̸= z ⊢ z : A. Important (hp-)admissible
rules are displayed in Figure 2.

Lemma 3. The (⊤) rule is provable in S(O), and the (ℓxy),
(w =̇ ), (w ̸=̇ ), (w), (c), and (s ̸=̇ ) rules are hp-admissible.

Lemma 4. All non-initial rules in S(O) are hp-invertible.

The completeness of S(O) (stated below) is shown by tak-
ing a sequent of the form ∅ ⊢ x : ¬̇TO, x : C as input and
showing that if the sequent is not provable, then S(O) can
be used to construct a counter-model thereof, witnessing the
invalidity of the sequent relative to O.

Theorem 2 (Completeness). If ⊨O ∅ ⊢ x : C, then S(O) ⊩
∅ ⊢ x : ¬̇TO, x : C.

The following corollary is a consequence of Theorem 1
and Theorem 2. We write S(O) ⊩ C ⊑ D as shorthand for
S(O) ⊩ ∅ ⊢ x : ¬̇TO, x : ¬̇C ⊔D.

Corollary 1. O ⊨ C ⊑ D iff S(O) ⊩ C ⊑ D.

Last, we emphasize the modularity of our sequent systems
and approach. By omitting inference rules for certain con-
nectives and/or only accepting certain ontologies as the in-
put parameter O, sequent calculi can be obtained for DLs
serving as fragments of RIQ; cf. [Calvanese and De Gia-
como, 2003]. For example, sequent calculi for ALC ontolo-
gies are easily obtained by omitting the (id=̇), (s=̇), (⩾nr),



(⊤)
Γ ⊢ ∆, x : ⊤

Γ ⊢ ∆ (ℓxy)
†1

Γ(x/y) ⊢ ∆(x/y)
Γ ⊢ ∆

(w =̇ )†2
Γ, x =̇ y ⊢ ∆

Γ ⊢ ∆
(w ̸=̇ )†2

Γ, x ̸=̇ y ⊢ ∆

Γ ⊢ ∆
(w)†3

Γ ⊢ ∆, x : C
Γ ⊢ ∆, x : C, x : C

(c)
Γ ⊢ ∆, x : C

Γ, x ̸=̇ y, y ̸=̇x ⊢ ∆
(s ̸=̇ )

Γ, x ̸=̇ y ⊢ ∆

Figure 2: (Hp-)admissible rules in S(O). The side conditions are: †1 = ‘x is fresh,’ †2 = ‘x, y ∈ Lab(Γ,∆),’ and †3 = ‘x ∈ Lab(Γ,∆).’

and (⩽nr) rules. The constructive method presented next ap-
plies to fragments of RIQ by leveraging this feature, thus
demonstrating its generality.

4 Constructive Sequent-Based Method
We now describe our methodology for computing concept in-
terpolants, and by extension, explicit concept-definitions of
implicitly defined concepts (by Lemma 1). The central idea
is to generalize the notion of a concept interpolant from GCIs
to sequents. Then, given a proof of a sequent S, we assign
concept interpolants to all initial sequents of the proof, and
show how a concept interpolant can be defined for the con-
clusion of a rule application from those of its premises, cul-
minating in a concept interpolant for S. As sequents are more
general than GCIs, this approach will establish, in a construc-
tive manner, that RIQ (and its various sublogics) enjoy the
concept interpolation property and the CBP.
Definition 9 (Interpolant). We define an interpolant to be a
set G := {Γi ⊢ ∆i | 1 ≤ i ≤ n} such that Γi is a set of
(in)equalities of the form x =̇ y and x ̸=̇ y with x, y ∈ Lab
distinct labels, and ∆i is a set of labeled concepts. Given an
interpolant G of the above form, we define its orthogonal G as
follows: Γ ⊢ ∆ ∈ G iff for each 1 ≤ i ≤ |Γ,∆|, one and only
one of the following holds: (1) x =̇ y ∈ Γ with x ̸=̇ y ∈ Γi,
(2) x ̸=̇ y ∈ Γ with x =̇ y ∈ Γi, or (3) x : ¬̇C ∈ ∆ with x :
C ∈ ∆i. We use G and annotated versions for interpolants.
Example 2. Let G = {(x =̇ y ⊢ x : A), (z ̸=̇u ⊢ z : ¬B)}.
Then, the orthogonal G is the set containing (x ̸=̇ y, z =̇u ⊢ ),
(x ̸=̇ y ⊢ z : B), (z =̇u ⊢ x : ¬A), and ( ⊢ x : ¬A, z : B),
that is, each member of G is formed by including a negated
element from each member of G.

In order to fully specify our interpolant construction algo-
rithm, we need to define two special interpolants, named ∀r.G
and ⩽nr.G, which appear in quantifier and qualified number
restriction rules. We let

#»

C denote a set of complex concepts,
define x :

#»

C := {x : C | C ∈ #»

C}, and define
d #»

C ,
⊔ #»

C ,
and ¬̇ #»

C to be the conjunction, disjunction, and negation of
all complex concepts in

#»

C , respectively.

Definition 10. Let G = {Γ ⊢ ∆i, y :
#»

C i | 1 ≤ i ≤ m} such
that y ̸∈ Lab(Γ) and ∆i↾y = ∅, then we define:

∀r.G := {Γ ⊢ ∆i, x : ∀r.
⊔

#»

C i | 1 ≤ i ≤ m}.

Let G = {Γ,Γ′ ⊢ ∆i, y0 :
#»

C0,i, . . . , yn :
#»

Cn,i | 1 ≤ i ≤ m}
such that Lab(Γ) ∩ {y0, . . . , yn} = ∅, Γ′ ⊆ Γ ̸=̇(y0, . . . , yn),
∆i↾yj = ∅ for 0 ≤ j ≤ n, and

#»

C i =
#»

C0,i, . . . ,
#»

Cn,i. Then,

⩽nr.G := {(Γ ⊢ ∆i, x : ⩽nr.¬̇
⊔

#»

C i) | 1 ≤ i ≤ m}.

An interpolation sequent is defined to be an expression of
the form Γ;Φ a|b Ψ ⊢ ∆ a|b Σ ∥ G such that Γ is a set of
role and equality atoms, Φ,Ψ is a set of inequality atoms,
∆,Σ is a multiset of labeled concepts, G is an interpolant,
and a, b ∈ {1, 2} with a ̸= b. For an interpolation sequent
of the aforementioned form, we refer to Γ,Φ ⊢ ∆ as the left
partition and Γ,Ψ ⊢ Σ as the right partition. Recall that
for a concept interpolant I of a GCI C ⊑ D under O, the
ontology O is the union of two ontologies O1 and O2 such
that con(I) ⊆ con(O1, C) ∩ con(O2, D) (see Definition 3).
The use of a, b ∈ {1, 2} in an interpolation sequent is to keep
track of which partition is associated with which ontology,
e.g. in Γ;Φ 1|2 Ψ ⊢ ∆ 1|2 Σ ∥ G the left (right) partition is
associated with O1 (O2, respectively).

Definition 11 (Interpolant Preserving Rules). Let (r) be
a rule in the set {(s=̇), (⊔), (⊓), (∃r), (⩾nr)} of the form
shown below and assume that the active equalities and/or la-
beled concepts occur in Γi and/or Σi, respectively, with the
principal formula in Σ.

Γi,Φ,Ψ ⊢ ∆,Σi | 1 ≤ i ≤ n
(r)

Γ,Φ,Ψ ⊢ ∆,Σ

We define its corresponding interpolant rule as follows:

Γi; Φ
a|b Ψ ⊢ ∆ a|b Σi ∥ Gi | 1 ≤ i ≤ n

(rI)
Γ;Φ a|b Ψ ⊢ ∆ a|b Σ ∥ G1 ∪ · · · ∪ Gn

We refer to a rule (sI=̇), (⊔I), (⊓I), (∃rI), or (⩾nrI) as an
interpolant preserving rule, or IP-rule. We stipulate that (∃rI)
and (⩾nrI) are subject to the same side conditions as (∃r)
and (⩾nr), respectively, w.r.t. the propagation graph PG(Γ).

For each sequent calculus S(O), we define its correspond-
ing interpolation calculus accordingly:

SI(O) := {(idI1), (idI2), (O)} ∪ {(rI) | (r) ∈ S(O) \ (id)}

Observe that interpolation calculi contain IP-rules as well as
rules from Figure 3. In an interpolation calculus SI(O), the
(idI1), (id

I
2), and (idI=̇) rules are the initial rules, (O) is the

orthogonal rule, (sI=̇) is the substitution rule, and all remain-
ing rules are logical rules. The orthogonal rule cuts the num-
ber of rules needed in SI(O) roughly in half as it essentially
‘swaps’ the left and right partition permitting rules to be de-
fined that only operate within the right partition; cf. [Lyon et
al., 2020]. A proof, its height, and the provability relation ⊩
are defined in SI(O) in the same manner as for S(O).

We now put forth a sequence of lemmas culminating in
the main interpolation theorem (Theorem 3), which implies
that RIQ has the CBP (Corollary 2). We remark that Lem-
mas 5 and 7 describe proof transformation algorithms be-
tween S(O) and SI(O). In particular, Lemma 5 states that



(idI1)
Γ;Φ a|b Ψ ⊢ ∆, x : A a|b x : ¬A,Σ ∥ {( ⊢ x : ¬A)}

(idI2)
Γ;Φ a|b Ψ ⊢ ∆ a|b x : A, x : ¬A,Σ ∥ {( ⊢ x : ⊤)}

(idI=̇)
Γ;Φ a|b Ψ, x ̸=̇ y ⊢ ∆ a|b Σ ∥ {(x ̸=̇ y ⊢ )}

Γ;Φ a|b Ψ ⊢ ∆ a|b Σ ∥ G
(O)

Γ;Ψ b|a Φ ⊢ Σ b|a ∆ ∥ G
Γ, r(x, y); Φ a|b Ψ ⊢ ∆ a|b y : C, y : ¬̇TO,Σ ∥ G

(∀rI)
Γ;Φ a|b Ψ ⊢ ∆ a|b x : ∀r.C,Σ ∥ ∀r.G

Γ, r(x, y0), . . . , r(x, yn); Φ
a|b Ψ, Γ̸=̇(y0, . . . , yn) ⊢ ∆ a|b y0 : ¬̇C, y0 : ¬̇TO, . . . , yn : ¬̇C, yn : ¬̇TO,Σ ∥ G

(⩽nrI)
Γ;Φ a|b Ψ ⊢ ∆ a|b x : ⩽nr.C,Σ ∥ ⩽nr.G

Figure 3: Rules in SI(O). The (idI=̇), (∀rI), and (⩽nrI) rules satisfy the same side conditions as (id=̇), (∀r), and (⩽nr), respectively.

each proof in S(O) of a sequent Γ,Φ,Ψ ⊢ ∆,Σ in a spe-
cial form can be transformed into a proof in SI(O) of a
specific interpolation sequent Γ;Φ a|b Ψ ⊢ ∆ a|b Σ ∥ G.
Then, via Lemma 7, this proof can be transformed into two
proofs in S(O) witnessing that the interpolant G is ‘implied
by’ the left partition Γ,Φ ⊢ ∆ and ‘implies’ the right par-
tition Γ,Ψ ⊢ Σ. Both Lemmas 5 and 7 are shown by in-
duction on the height of the given proof. Last, when we use
the notation Γ,Φa,Φb ⊢ ¬̇TOa ,∆a,∆b, ¬̇TOb

or the nota-
tion Γ;Φa

a|b Φb ⊢ ¬̇TOa ,∆a
a|b ∆b, ¬̇TOb

∥ G, we as-
sume that ¬̇TOc := x1 : ¬̇TOc , . . . , xn : ¬̇TOc such that
Lab(Γ,Φc,∆c) = {x1, . . . , xn} and c ∈ {a, b}. The use of
¬̇TOc ensures each partition satisfies its respective ontology.
Lemma 5. Let O = O1 ∪ O2 be an ontology and suppose
that Γ,Φ,Ψ ⊢ ¬̇TOa ,∆,Σ, ¬̇TOb

has a proof π in S(O) with
Φ∩Ψ = ∅. Then, π can be transformed into a proof in SI(O)
of Γ;Φ a|b Ψ ⊢ ¬̇TOa ,∆

a|b Σ, ¬̇TOb
∥ G such that:

(1) If x =̇ y occurs in G, then x ̸=̇ y ∈ Φ;
(2) If x ̸=̇ y occurs in G, then x ̸=̇ y ∈ Ψ;
(3) Lab(G) ⊆ Lab(Γ,Φ,Ψ, ¬̇TOa

,∆,Σ, ¬̇TOb
);

(4) con(G) ⊆ con(Oa,∆) ∩ con(Σ,Ob).
The following lemma states that a double orthogonal trans-

formation always ‘preserves’ some of the sequents from the
original interpolant. As shown in the appendix, the lemma is
helpful in proving Lemma 7.

Lemma 6. If (Σ ⊢ Π) ∈ G, then there exists a (Γ ⊢ ∆) ∈ G
such that Γ ⊆ Σ and ∆ ⊆ Π.
Lemma 7. If SI(O) ⊩ Γ;Φ a|b Ψ ⊢ ∆ a|b Σ ∥ G, then
(1) For each (Γ′ ⊢ Πi) ∈ G, S(O) ⊩ Γ,Γ′,Φ ⊢ ∆,Πi;

(2) For each (Γ′ ⊢ Πi) ∈ G, S(O) ⊩ Γ,Γ′,Ψ ⊢ Πi,Σ.
Next, we prove that an interpolant containing at most a sin-

gle label, i.e. an interpolant of the form

G := {( ⊢ x : Ci,1, . . . , x : Ci,ki) | 1 ≤ i ≤ n}

can be transformed into a single labeled concept within the
context of a proof. Toward this end, we define x :

d⊔
G :=

x :
d

1≤i≤n

⊔
1≤j≤ki

Ci,j , where G is as above. The follow-
ing two lemmas are straightforward and follow by applying
the (⊔) and (⊓) rules in S(O) a sufficient number of times.
Lemma 8. If Γ ⊢ ∆,Σ is provable in S(O) for all ( ⊢ Σ) ∈ G
and Lab(G) = {x}, then S(O) ⊩ Γ ⊢ ∆, x :

d⊔
G.

Lemma 9. If Γ ⊢ ∆,Σ is provable in S(O) for all ( ⊢ Σ) ∈ G
and Lab(G) = {x}, then S(O) ⊩ Γ ⊢ ∆, x : ¬̇

d⊔
G.

Our main theorem below is a consequence of Lemmas 4–9.
Given a proof of ⊢ x : ¬̇TO, x : ¬̇C ⊔D, we obtain proofs of
⊢ x : ¬̇TO1

, x : ¬̇C, x : I and ⊢ x : ¬̇TO2
, x : D,x : ¬̇I in

S(O) by Lemmas 4, 5, and 7–9 with I =
d⊔

G. The concept
interpolant I is computed in EXPTIME due to the potential
use of the (O) rule, which may exponentially increase the size
of interpolants.
Theorem 3. Let O = O1 ∪ O2 be a RIQ ontology. If O ⊨
C ⊑ D, i.e. S(O), π ⊩ C ⊑ D, then a concept interpolant
I can be computed in EXPTIME relative to s(π) such that
S(O) ⊩ C ⊑ I and S(O) ⊩ I ⊑ D, i.e. O ⊨ C ⊑ I and
O ⊨ I ⊑ D.

Let C be a complex concept, O be a RIQ ontology, Θ ⊆
con(C,O), and suppose C is implicitly concept-definable
from Θ under O. If we want to find the explicit concept-
definition of C from Θ under O, we utilize the sequent calcu-
lus S(O′) with O′ = O∪OΘ. Since C is implicitly concept-
definable, we know by (1) in Section 2.2 and Corollary 1 that
S(O′) ⊩ C ⊑ CΘ. By applying Theorem 3, we obtain a con-
cept interpolant I for C ⊑ CΘ under O, which serves as an
explicit concept-definition by Lemma 1. Therefore, we have
a constructive proof of the following corollary.
Corollary 2. RIQ has the concept interpolation property
and the CBP.

5 Concluding Remarks
We have provided novel sequent calculi for RIQ ontolo-
gies, showing them sound and complete, as well as show-
ing that each calculus enjoys useful hp-admissibility and hp-
invertibility properties. Our sequent systems are modular as
the omission of certain rules or constructs from ontologies
yields sequent systems for restrictions of RIQ. Moreover,
we presented a sequent-based methodology for computing
concept interpolants and explicit definitions of implicitly de-
finable concepts using RIQ as a case study, thus satisfying
a demand for developing constructive interpolation and de-
finability methods. To the best of our knowledge, we have
provided the first proof of the CBP for RIQ.

There are various avenues of future research. First, it
would be interesting to know the size and complexity of com-
puting a concept interpolant I relative to C ⊑ D rather than
from a proof π witnessing O ⊨ C ⊑ D. This can be achieved



by supplying a proof-search algorithm that generates a proof
of C ⊑ D, whose relative complexity and size can then be
determined. Second, we aim to generalize our methodology
to decide and compute the existence of Craig interpolants
for RIQ and related DLs, which is a non-trivial problem
(see [ten Cate et al., 2013]). Last, we could generalize our
method to consider constructs beyond those in RIQ, e.g.
negations over roles, intersections of roles, nominals, or the
@ operator; it is known that for some of these extensions,
e.g. nominals, even concept interpolation fails [Artale et al.,
2023], requiring an increase in complexity to decide the exis-
tence of interpolants.
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A Proofs for Section 2
Lemma 1. If a DL L enjoys the concept interpolation property, then it enjoys the CBP.

Proof. Let O be an L-ontology, C be an L-concept, and Θ ⊆ con(C,O). Suppose L enjoys the concept interpolation property
and let C be implicitly concept-definable from Θ under O, that is, O ∪ OΘ ⊨ C ⊑ CΘ (see (1) on p. 3). Then, a concept
interpolant I exists such that (i) con(I) ⊆ con(O, C) ∩ con(OΘ, CΘ), (ii) O ∪ OΘ ⊨ C ⊑ I , and (iii) O ∪ OΘ ⊨ I ⊑ D. By
(i) and the definitions of OΘ and CΘ, we have that con(I) ⊆ Θ. We now establish that O ⊨ C ≡ I . We argue that O ⊨ C ⊑ I ,
and note that the argument showing O ⊨ I ⊑ C is similar.

Suppose I ⊨ O. We aim to show that I ⊨ C ⊑ I . First, recall that each concept name B ∈ con(C,O) such that B ̸∈ Θ
is replaced by a fresh concept name in CΘ and OΘ, which we denote by B′. Now, let us define J = (∆J , ·J ) such that
∆J := ∆I , for each B ∈ con(C,O) such that B ̸∈ Θ, (B′)J := BI , and for all other symbols P , let PJ := P I . Observe
that J ⊨ O ∪ OΘ, meaning J ⊨ C ⊑ I by (ii) above. Furthermore, observe that for P ∈ con(C,O) ∪ NR, PJ = P I ,
meaning I ⊨ C ⊑ I as C and I are only composed of symbols from con(C,O)∪NR. It can be argued in a similar fashion that
O ⊨ I ⊑ C, meaning, O ⊨ C ≡ I .

Therefore, I serves as an explicit concept-definition of C, showing that C is explicitly concept-definable from Θ under O,
that is, L has the CBP.

B Proofs for Section 3
Lemma 2. Let I = (∆I , ·I) be an interpretation, O be a RIQ ontology, λ be a label assignment, and Γ be a set of structural
atoms. If I ⊨ O, I, λ ⊨∀ Γ, and PG(Γ) ⊨ [x]Γ L

⇝ [y]Γ with L = LG(O)(r), then (λ(x), λ(y)) ∈ rI .

Proof. Suppose I ⊨ O, I, λ ⊨∀ Γ, and [x]Γ L
⇝ [y]Γ with L = LG(O)(r). We prove the claim by induction on the length of the

derivation of the string S ∈ L such that [x]Γ S
⇝ [y]Γ.

Base Case. For the base case, we suppose that the derivation of S is of length 0. By Definition 5, we know that the only
derivation in G(O) from r of length 0 is the derivation of the form r, that is, the derivation consisting solely of r. Therefore,
[x]Γ r
⇝ [y]Γ, which implies that either r(z, w) ∈ Γ or Inv(r)(w, z) ∈ Γ for z ∈ [x]Γ and w ∈ [y]Γ by Definition 6. In either

case, since I, λ ⊨∀ Γ, we have that (λ(x), λ(y)) ∈ rI .
Inductive Step. Let the derivation of S be of length n+1. By Definition 5, there is a derivation r −→∗

G(O) RsT of length n and
production rule s −→ s1 · · · sm ∈ G(O) such that S = Rs1 · · · smT . As S is a string encoding a propagation path in PG(Γ),
it follows that [z1]Γ s1⇝ [z2]Γ · · · [zm]Γ sm⇝ [zm+1]Γ occurs in PG(Γ). By Definition 6, ŝ1(z′1, z

′
2), . . . , ŝm(z′m, z′m+1) ∈ Γ with

z′i ∈ [zi]Γ and
ŝi+1(z

′
i, z

′
i+1) ∈ {si+1(z

′
i, z

′
i+1), Inv(si+1)(z

′
i+1, z

′
i)}

for 1 ≤ i ≤ m. This implies that (λ(z1), λ(zm+1)) ∈ (s1 ◦ · · · ◦ sm)
I because I, λ ⊨∀ Γ. Furthermore, since s −→

s1 · · · sm ∈ G(O), either s1 ◦ · · · ◦ sm ⊑ s ∈ O or Inv(sm) ◦ · · · ◦ Inv(s1) ⊑ Inv(s) ∈ O, by Definition 4. Regardless of the
case, (λ(z1), λ(zm+1)) ∈ sI . We will use this fact to complete the proof of the inductive step below.

Let us consider the set Γ′ = Γ, s(z′1, z
′
m+1) of relational atoms. We know that I, λ ⊨∀ Γ′ because I ′, λ ⊨∀ Γ by assumption

and (λ(z0), λ(zm+1)) ∈ sI by what was argued above. Moreover, we have that PG(Γ′) ⊨ [x]Γ′ R
⇝ [z1]Γ′ s

⇝ [zm+1]Γ′ T
⇝ [y]Γ′ .

Observe that RsT has a derivation of length n by what was said above. Therefore, we may invoke the induction hypothesis,
from which it follows that (λ(x), λ(y)) ∈ rI .

Theorem 1 (Soundness). If S(O) ⊩ Γ ⊢ ∆, then ⊨O Γ ⊢ ∆.

Proof. By induction on the height of the proof of Γ ⊢ ∆.

Base Case. If the height of the proof is 1, then our proof is an instance of (id) or (id=̇), as shown below.
(id)

Γ ⊢ x : A, x : ¬A,∆
(id=̇)

Γ, x ̸=̇ y ⊢ ∆

We argue the (id) case first, and assume for a contradiction that Γ ⊢ x : A, x : ¬A,∆ is invalid relative to O. From this, it
follows that there exists an interpretation I and a label assignment λ such that I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : A, x : ¬A,∆. Hence,
λ(x) /∈ AI and λ(x) ∈ AI , which is a contradiction. For the (id=̇) case, we assume for a contradiction that Γ, x ̸=̇ y ⊢ ∆ is
invalid relative to O. Then, there exists an interpretation I and label assignment λ such that I, λ ⊨∀ Γ, x ̸=̇ y and I, λ ̸⊨∃ ∆.
By the side condition x =∗

Γ y, we have that λ(x) = λ(y). However, we also have that λ(x) ̸= λ(y), which is a contradiction.

Inductive Step. Assume soundness holds for proofs of height n. We now show that it holds for proofs of height n + 1. We
prove each case by contraposition and argue that if the conclusion of the last inference of the proof is invalid relative to O, then
at least one premise of the inference must be invalid relative to O.

The (s=̇) rule:



Γ ⊢ x : L, y : L,∆
(s=̇)

Γ ⊢ x : L,∆

Suppose there exists an interpretation I and label assignment λ such that I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : L,∆. By the side condition
x =∗

Γ y imposed on (s=̇), we know that λ(x) = λ(y). Since we have that λ(x) ̸∈ LI , it follows that λ(y) ̸∈ LI , which shows
the premise invalid relative to O.

The (⊔) rule:

Γ ⊢ x : C, x : D,∆
(⊔)

Γ ⊢ x : C ⊔D,∆

Assume Γ ⊢ x : C ⊔D,∆ is invalid relative to O. By Definition 8, it follows that there exists an interpretation I and a label
assignment λ such that I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : C ⊔ D,∆. Hence, λ(x) /∈ CI and λ(x) /∈ DI . Moreover, it holds that
I, λ ̸⊨∃ ∆. Since I, λ ⊨ Γ and I, λ ̸⊨∃ x : C, x : D,∆, the premise is invalid relative to O as well.

The (⊓) rule:

Γ ⊢ x : C,∆ Γ ⊢ x : D,∆
(⊓)

Γ ⊢ x : C ⊓D,∆

Assume Γ ⊢ x : C ⊓D,∆ is invalid relative to O. By Definition 8, it follows that there exists an interpretation I and a label
assignment λ such that I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : C ⊓D,∆. Either λ(x) /∈ CI or λ(x) /∈ DI . Also, I, λ ̸⊨∃ ∆. Therefore,
either I, λ ̸⊨∃ x : C,∆ or I, λ ̸⊨∃ x : D,∆, meaning, at least one of the premises must be invalid relative to O as well.

The (∃r) rule:

Γ ⊢ x : ∃r.C, y : C,∆
(∃r)

Γ ⊢ x : ∃r.C,∆

Suppose there exists an interpretation I and label assignment λ such that I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : ∃r.C,∆. By the side
condition imposed on (∃r), we know that [x]Γ L

⇝ [y]Γ with L = LG(O)(r). By Lemma 2, we know that (λ(x), λ(y)) ∈ rI . As
λ(x) /∈ ∃r.CI , we know that λ(y) /∈ CI , showing that the premise is invalid relative to O.

The (∀r) rule:

Γ, r(x, y) ⊢ y : C, y : ¬̇TO,∆
(∀r)

Γ ⊢ x : ∀r.C,∆
Suppose, Γ ⊢ x : ∀r.C,∆ is invalid relative to O. From this, it follows that there exists an interpretation I and a label
assignment λ such that I ⊨ O, I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : ∀r.C,∆. Thus, there is at least one domain element a ∈ ∆I such that
(λ(x), a) ∈ rI and a /∈ CI . We now define a new label assignment λ′ such that λ′(z) = λ(z) if z ̸= y and λ′(y) = a. Hence,
I, λ′ ⊨∀ Γ, r(x, y) and λ′(y) /∈ CI . Moreover, let yi : ¬̇TO = y : ¬̇D1, . . . y : ¬̇Dk. Since ⊤ ⊑ Dj ∈ O for 1 ≤ j ≤ k, we
have that I, λ′ ̸⊨∃ y : ¬̇TO as I ⊨ O. Therefore, the premise is invalid relative to O.

The (⩽nr) rule, where Γ′ = Γ,Γ ̸=̇(y0, . . . , yn), r(x, y0), . . . , r(x, yn):

Γ′ ⊢ y0 : ¬̇C, y0 : ¬̇TO, . . . , yn : ¬̇C, yn : ¬̇TO,∆
(⩽nr)

Γ ⊢ x : ⩽nr.C,∆

Assume, Γ ⊢ x : ⩽nr.C,∆ is invalid relative to O. From this, it follows that there exists an interpretation I and a label assign-
ment λ such that I ⊨ O, I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : ⩽nr.C,∆. It follows that λ(x) ∈ (⩾(n+1)r.C)

I . Thus, there are at least
n+ 1 many distinct elements a0, . . . , an ∈ ∆I such that (λ(x), ai) ∈ rI and ai ∈ CI . We now define a new label assignment
λ′ such that λ′(z) = λ(z) if z ̸= yi with 0 ≤ i ≤ n and λ′(yi) = ai. Hence, I, λ′ ⊨∀ Γ,Γ ̸=̇(y0, . . . , yn), r(x, y0), . . . , r(x, yn)
and I, λ′ ̸⊨∃ y0 : ¬̇C, . . . , yn : ¬̇C,∆ as λ′(yi) ∈ CI for each 0 ≤ i ≤ n. Moreover, let yi : ¬̇TO = yi : ¬̇D1, . . . yi : ¬̇Dk

for 0 ≤ i ≤ n. Since ⊤ ⊑ Dj ∈ O for 1 ≤ j ≤ k, we have that I, λ ̸⊨∃ y0 : ¬̇TO, . . . , yn : ¬̇TO as I ⊨ O. Therefore, the
premise is invalid relative to O.

The (⩾nr) rule:

Γ ⊢ yi : C, x : ⩾nr.C,∆ | 1 ≤ i ≤ n

Γ, yi =̇ yj ⊢ x : ⩾nr.C,∆ | 1 ≤ i < j ≤ n
(⩾nr)

Γ ⊢ x : ⩾nr.C,∆



Assume, Γ ⊢ x : ⩾nr.C,∆ is invalid relative to O. It follows that there exists an interpretation I and a label assignment λ
such that I, λ ⊨∀ Γ and I, λ ̸⊨∃ x : ⩾nr.C,∆. We note that if n = 0, then λ(x) /∈ (⩾0r.C)

I , which cannot be the case, and
hence, we may suppose that n > 0. Then, we have that λ(x) ∈ (⩽(n−1)r.C)

I . From the side condition on (⩾nr), there are
labels y1, . . . , yn such that [x]Γ L

⇝ [yi]Γ with L = LG(O)(r), which, by Lemma 2, implies that (λ(x), λ(yi)) ∈ rI for each
1 ≤ i ≤ n. If λ(yi) ̸= λ(yj) for each 1 ≤ i < j ≤ n, then for some 1 ≤ i ≤ n, we have that λ(yi) /∈ CI ; otherwise, we have
λ(yi) = λ(yj) for some 1 ≤ i < j ≤ n. The former cases show that at least one premise in the first set is invalid relative to O
and the latter case shows that at least one premise in the second set of premises is invalid relative to O.

Lemma 3. The (⊤) rule is provable in S(O), and the (ℓxy), (w =̇ ), (w ̸=̇ ), (w), (c), and (s ̸=̇ ) rules are hp-admissible.

Proof. Recall that ⊤ = A ⊔ ¬A for some fixed A ∈ NC. The proof below shows that (⊤) provable in S(O).

(id)
Γ ⊢ ∆, x : A, x : ¬A

(⊔)
Γ ⊢ ∆, x : A ⊔ ¬A

The hp-admissibility of (ℓxy) is shown by induction on the height of the given proof. The base cases are trivial as any
application of (ℓxy) to an initial rule yields another instance of the initial rule. In the inductive step, with the exception of the
(∀r) and (⩽nr) cases, all cases are resolved by invoking IH and then applying the rule. In the (∀r) and (⩽nr) cases, the label
substituted into the sequent may be fresh in the (∀r) or (⩽nr) inference, requiring two applications of IH in order for the case
to go through. To demonstrate this, we show how a problematic (∀r) case is resolved and note that the (⩽nr) case is similar.
Suppose we have an instance of (∀r) followed by (ℓyz) as shown below left, where y is fresh in (∀r). The case is resolved as
shown below right, where (ℓvy) is applied in the first IH application with v fresh due to the side condition of the rule, (ℓyz) is
then applied in the second IH application, and last, (∀r) is applied.

Γ, r(x, y) ⊢ y : C, y : ¬̇TO,∆
(∀r)

Γ ⊢ x : ∀r.C,∆
(ℓyz)Γ(y/z) ⊢ x : ∀r.C,∆(y/z)

Γ, r(x, y) ⊢ y : C, y : ¬̇TO,∆
IH

Γ, r(x, v) ⊢ v : C, v : ¬̇TO,∆
IH

Γ(y/z), r(x, v) ⊢ v : C, v : ¬̇TO,∆(y/z)
(∀r)

Γ(y/z) ⊢ x : ∀r.C,∆(y/z)

The hp-admissibility of (w =̇ ), (w ̸=̇ ), and (w) are shown by induction on the height of the given proof while making a case
distinction on the last rule applied. The base cases are trivial as any application of either rule to (id) or (id=̇) yields another
instance of the rule, and with the exception of the (⩾nr) case, every case of the inductive step may be resolved by applying IH
followed by the corresponding rule. The (⩾nr) case is trivial when showing the hp-admissibility of (w ̸=̇ ) and (w), however, an
interesting case arises when showing the hp-admissibility of (w =̇ ). Suppose we have an application of (⩾nr) as shown below,
which weakens in an equality yi =̇ yj that is active in the (⩾nr) application. Observe that the desired conclusion is obtained
by taking the proof of the premise Γ, yi =̇ yj ⊢ x : ⩾nr.C,∆. All other cases where (⩾nr) is followed by an application of
(w =̇ ) are simple or resolved similarly.

Γ ⊢ yi : C, x : ⩾nr.C,∆ | 1 ≤ i ≤ n

Γ, yi =̇ yj ⊢ x : ⩾nr.C,∆ | 1 ≤ i < j ≤ n
(⩾nr)

Γ ⊢ x : ⩾nr.C,∆
(w =̇ )

Γ, yi =̇ yj ⊢ x : ⩾nr.C,∆

The hp-admissibility of (c) is also shown by induction on the height of the given proof. We note that the hp-admissibility
of (c) relies on the hp-admissibility of another contraction rule (cr), shown below left, which ‘fuses’ two children nodes in a
sequent. The hp-admissibility of (c) and (cr) is shown simultaneously by induction on the height of the given proof, though
we focus on the (c) case as the (cr) case is similar. Returning back to the proof that (c) is hp-admissible, we note that the base
cases are trivial since any application of (c) to (id) or (id=̇) yields another instance of the rule. In the inductive step, if neither
of the contraction formulae x : C, x : C are principal in the conclusion of a rule application (r), as shown in the example below
right, then the case is resolved by applying IH (i.e. the (c) rule) and then the rule (r).

Γ, r(x, y), r(x, z) ⊢ ∆
(cr)

Γ(y/z), r(x, y) ⊢ ∆(y/z)

Γ′ ⊢ ∆′, x : C, x : C
(r)

Γ ⊢ ∆, x : C, x : C
(c)

Γ ⊢ ∆, x : C

Therefore, let us suppose that one of the contraction formulae x : C, x : C is principal. We consider the case where the last rule
applied above (c) is the (∀r) rule, as shown below left. To resolve the case, we apply the hp-invertibility of (∀r), followed by
the an application of (cr) which applies (y/z), followed by a sufficient number of applications of IH for (c) to contract all of
the displayed formulae in the consequent, and finally, an application of (∀r), as shown below right.



Γ, r(x, y) ⊢ ∆, y : C, y : ¬̇TO, x : ∀r.C
(∀r)

Γ ⊢ ∆, x : ∀r.C, x : ∀r.C
(c)

Γ ⊢ ∆, x : ∀r.C

Γ, r(x, y) ⊢ ∆, y : C, y : ¬̇TO, x : ∀r.C
Lem. 4

Γ, r(x, y), r(x, z) ⊢ ∆, y : C, y : ¬̇TO, z : C, z : ¬̇TO
(cr)

Γ, r(x, y) ⊢ ∆, y : C, y : ¬̇TO, y : C, y : ¬̇TO
IH

Γ, r(x, y) ⊢ ∆, y : C, y : ¬̇TO
(∀r)

Γ ⊢ ∆, x : ∀r.C

The remaining cases are solved in a similar fashion. Also, note that the proof of Lemma 4 does not rely on the hp-admissibility
of (c) or (cr), and therefore, the above argument is not circular.

Last, we argue the hp-admissibility of (s ̸=̇ ) by induction on the height of the given proof. The only interesting case is the
(id=̇) case in the base case; the base case for (id) is trivial, and the inductive step follows in each case by applying IH followed
by the rule. Suppose we have an instance of (id=̇) as shown below left, where the side condition x =∗

Γ y holds. Since x =∗
Γ y

holds iff y =∗
Γ x by definition, we have that the application of (id=̇) shown below right is a valid application of (id=̇), thus

showing (s ̸=̇ ) hp-admissible in this case.

(id=̇)
Γ, x ̸=̇ y, y ̸=̇x ⊢ ∆

(s ̸=̇ )
Γ, y ̸=̇x ⊢ ∆

(id=̇)
Γ, y ̸=̇x ⊢ ∆

The other case when (s ̸=̇ ) is applied to a non-principal inequality in (id=̇) is trivial.

Lemma 4. All non-initial rules in S(O) are hp-invertible.

Proof. The hp-invertibility of (s=̇), (∃r), and (⩾nr) follows from the fact that (w) (and (w =̇ ) in the (⩾nr) case) are
hp-admissible (see Lemma 3 above). The remaining cases are shown by induction on the height of the given proof. We only
consider the (⩽nr) case since all other cases are analogous.

Base case. Suppose we have instances of (id) and (id=̇) as shown below.

(id)
Γ ⊢ x : A, x : ¬A,∆, z : ⩽nr.C

(id=̇)
Γ, x ̸=̇ y ⊢ ∆, z : ⩽nr.C

The instance of (id) shown below top and the instance of (id=̇) shown below bottom resolve the base case. Note that we take
Γ′ = Γ, Γ̸=̇(w0, . . . , wn), r(z, w0), . . . , r(z, wn).

(id)
Γ′ ⊢ x : A, x : ¬A,∆, w0 : ¬̇C,w0 : ¬̇TO, . . . , wn : ¬̇C,wn : ¬̇TO

(id=̇)
Γ′, x ̸=̇ y ⊢ ∆, w0 : ¬̇C,w0 : ¬̇TO, . . . , wn : ¬̇C,wn : ¬̇TO

Inductive Step. We only consider the (s=̇) and (⩽nr) cases as the remaining cases are similar.

(s=̇). Suppose we have an instance of (s=̇) as shown below left. We can resolve the case as shown below right, where
Γ′ = Γ, Γ̸=̇(w0, . . . , wn), r(z, w0), . . . , r(z, wn).

Γ ⊢ x : L, y : L,∆, z : ⩽nr.C
(s=̇)

Γ ⊢ x : L,∆, z : ⩽nr.C

Γ ⊢ x : L, y : L,∆, z : ⩽nr.C
IH

Γ′ ⊢ x : L, y : L,∆, w0 : ¬̇C,w0 : ¬̇TO, . . . , wn : ¬̇C,wn : ¬̇TO
(s=̇)

Γ′ ⊢ x : L,∆, w0 : ¬̇C,w0 : ¬̇TO, . . . , wn : ¬̇C,wn : ¬̇TO

(⩽nr). There are two cases to consider when the last rule applied is (⩽nr). Either, the principal formula is the for-
mula we want to invert, or it is not. In the first case, shown below, we simply take the proof of the premise, where
Γ′ = Γ, Γ̸=̇(y0, . . . , yn), r(x, y0), . . . , r(x, yn).

Γ′ ⊢ y0 : ¬̇C, y0 : ¬̇TO, . . . , yn : ¬̇C, yn : ¬̇TO,∆
(⩽nr)

Γ ⊢ x : ⩽nr.C,∆

In the second case, we simply apply IH and then the (⩽nr) rule to resolve the case.

Theorem 2 (Completeness). If ⊨O ∅ ⊢ x : C, then S(O) ⊩ ∅ ⊢ x : ¬̇TO, x : C.



Proof. We describe a proof-search algorithm Prove that takes a sequent ⊢ x : ¬̇T,x : C as input and attempts to construct
a proof thereof. We assume that ⊢ x : ¬̇T,x : C is not provable in S(O) and show how to construct an interpretation
I = (∆I , ·I) and define a label assignment λ such that I, λ ̸⊨O ∅ ⊢ x : ¬̇T,x : C, meaning I ⊨ O and λ(x) ̸∈ CI , that is,
̸⊨O ∅ ⊢ x : C. Let us now begin our description of Prove.

Prove. We take ⊢ x : ¬̇TO, x : C as input and move to the step below.

(id) and (id=̇). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top
sequents of each branch, respectively. For each 1 ≤ i ≤ n, if Si is an instance of (id) or (id=̇), then apply (id) and (id=̇),
respectively, bottom-up on Bi and close that branch, i.e. halt Prove on the branch Bi. If Prove has halted on every branch,
then return True. Otherwise, if a sequent Si exists such that no rule from S(O) is bottom-up applicable to it, copy it above
itself and continue to step (s=̇) below.

(s=̇). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top sequents
of each branch, respectively. We consider each branch and its top sequent in turn. Let us suppose we have already considered
B1, . . . ,Bi so that Bi+1 is currently under consideration. Let the top sequent Si+1 be of the form:

Γ ⊢ ∆, x1 : L1, . . . , xk : Lk

with all labeled literals displayed. For each 1 ≤ i ≤ k and each y ∈ Lab(Γ) such that xi =
∗
Γ y, repeatedly apply the (s=̇) rule

bottom-up, extending Bi+1. After all branches have been processed in this way, we move onto the (⊔) case below.

(⊔). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top sequents
of each branch, respectively. We consider each branch and its top sequent in turn. Let us suppose we have already considered
B1, . . . ,Bi so that Bi+1 is currently under consideration. Let the top sequent Si+1 be of the form:

Γ ⊢ x1 : C1 ⊔D1, . . . , xk : Ck ⊔Dk,∆

with all disjunctive formulae displayed. We repeatedly apply the (⊔) rule bottom-up, extending Bi+1 so that it now has a top
sequent of the form:

Γ ⊢ x1 : C1, x1 : D1, . . . , xk : Ck, xk : Dk,∆

After all branches have been processed in this way, we move onto the (⊓) case below.

(⊓). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top sequents
of each branch, respectively. We consider each branch and its top sequent in turn. Let us suppose we have already considered
B1, . . . ,Bi so that Bi+1 is currently under consideration. Let the top sequent Si+1 be of the form:

Γ ⊢ x1 : C1 ⊓D1, . . . , xk : Ck ⊓Dk,∆

with all conjunctive formulae displayed. We repeatedly apply the (⊓) rule bottom-up, extending Bi+1 with 2k new branches
with each having a top sequent of the form:

Γ ⊢ x1 : E1, . . . , xk : Ek,∆

where Ej ∈ {Cj , Dj} for 1 ≤ j ≤ k. After all branches have been processed in this way, we move onto the (∃r) case below.

(∃r). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top sequents
of each branch, respectively. We consider each branch and its top sequent in turn. Let us suppose we have already considered
B1, . . . ,Bi so that Bi+1 is currently under consideration. Let the top sequent Si+1 be of the form:

Γ ⊢ x1 : ∃r1.C1, . . . , xk : ∃rk.Ck,∆

with all existential formulae displayed. For each 1 ≤ j ≤ k and every label y ∈ Lab(Γ) such that [xj ]Γ L
⇝ [y]Γ with

L = LG(O)(rj), repeatedly apply the (∃r) rule bottom-up, extending Bi+1. After all branches have been processed in this way,
we move onto the (∀r) case below.

(∀r). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top sequents
of each branch, respectively. We consider each branch and its top sequent in turn. Let us suppose we have already considered
B1, . . . ,Bi so that Bi+1 is currently under consideration. Let the top sequent Si+1 be of the form:

Γ ⊢ x1 : ∀r1.C1, . . . , xk : ∀rk.Ck,∆

with all universal formulae displayed. For each 1 ≤ j ≤ k, repeatedly apply the (∀r) rule bottom-up, extending Bi+1, and so
the top sequent contains rj(xj , y) in the antecedent and y : Cj , y : ¬̇TO in the consequent, where y is fresh for each j. After



all branches have been processed in this way, we move onto the (⩽nr) case below.

(⩽nr). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top sequents
of each branch, respectively. We consider each branch and its top sequent in turn. Let us suppose we have already considered
B1, . . . ,Bi so that Bi+1 is currently under consideration. Let the top sequent Si+1 be of the form:

Γ ⊢ x1 : (⩽ n1r1.C1), . . . , xk : (⩽ nkrk.Ck),∆

with all qualified number restrictions of the form xj : (⩽ njrj .Cj) displayed and where 1 ≤ j ≤ k. We repeatedly apply the
(⩽nr) rule bottom-up, extending Bi+1 so that the top sequent contains Γ̸=̇(y0, . . . , ynj ) and r(xj , y0), . . . , r(xj , ynj ) in the
antecedent and y0 : ¬̇Cj , y0 : ¬̇TO, . . . , ynj : ¬̇Cj , ynj : ¬̇TO in the consequent with y0, . . . , ynj fresh for each considered
qualified number restriction of the above form. After all branches have been processed in this way, we move onto the (⩾nr)
case below.

(⩾nr). Let B1, . . . ,Bn be all branches of the pseudo-proof π currently under construction. Let S1, . . . , Sn be the top sequents
of each branch, respectively. We consider each branch and its top sequent in turn. Let us suppose we have already considered
B1, . . . ,Bi so that Bi+1 is currently under consideration. Let the top sequent Si+1 be of the form:

Γ ⊢ x1 : (⩾ n1r1.C1), . . . , xk : (⩾ nkrk.Ck),∆

with all qualified number restrictions of the form xj : (⩾ njrj .Cj) displayed and where 1 ≤ j ≤ k. For each collection
{y1, . . . , ynj

} ⊆ Lab(Si+1) of labels such that [xj ]Γ L
⇝ [yt]Γ with L = LG(O)(rj) and 1 ≤ t ≤ nj , we apply the (⩾nr) rule

bottom-up, extending Bi+1. After all branches have been processed in this way, we cycle back to the (id) and (id=̇) case.

This concludes the description of Prove.

We know that Prove cannot return True since then a proof of ⊢ x : ¬̇TO, x : C would exist, contrary to our assumption.
Therefore, Prove will not terminate, meaning that it constructs an infinite pseudo-proof π in the form of an infinite tree. Since
only finite branches occurs within this pseudo-proof, by König’s lemma we know that an infinite branch of the following form
exists in π:

B = (Γ0 ⊢ ∆0), (Γ1 ⊢ ∆1), . . . , (Γn ⊢ ∆n), . . .

such that Γ0 = ∅ and ∆0 = x : ¬̇TO, x : C. Let us define Γ∗ =
⋃

i∈N Γi and ∆∗ =
⋃

i∈N ∆i. We use B to construct
an interpretation I = (∆I , ·I) and define a label assigment λ such that I ⊨ O, I, λ ⊨∀ Γ∗, but I, λ ̸⊨∃ ∆∗, meaning
̸⊨O ∅ ⊢ x : C. We define ∆I = {[y] | y ∈ Lab(B)}, where we use [y] = [y]Γ∗ for simplicity. In other words, ∆I contains
all equivalence classes modulo the =∗

Γ∗ relation on labels occurring in the sequents of the branch B. We define λ and ·I
accordingly:

• yI = [y] for y ∈ Lab(B);
• [y] ∈ AI iff y : ¬A ∈ ∆∗;

• ([y], [z]) ∈ rI iff either (1) there exist w ∈ [y] and u ∈ [z] such that r(w, u) ∈ Γ∗, or (2) r1 ◦ · · · ◦ rn ⊑ r ∈ O and
([x]i−1, [x]i) ∈ rIi for 1 ≤ i ≤ n with y ∈ [x0] and z ∈ [xn].

Based on the definition above and the definition of an R-system G(O), we note that if ([y], [z]) ∈ rI , then there exist roles
r1, . . . , rn and [z1], . . . , [zn−1] such that

PG(Γ∗) ⊨ [y] r1⇝ [z1] r2⇝ · · · [zn−1] rn⇝ [z]

and r1 · · · rn ∈ LG(O)(r). It is straightforward to show that I satisfies all RIAs r1 ◦ · · · ◦ rn ⊑ r in O. We now argue that
I, λ ⊨∀ Γ∗. If r(y, z) ∈ Γ∗, then ([y], [z]) ∈ rI holds by the definition above, showing that (λ(y), λ(z)) ∈ rI . If y =̇ z ∈ Γ∗,
then by definition [y] = [z], showing λ(y) = λ(z). Also, observe that if y ̸=̇ z ∈ Γ∗, then it cannot be the case that [y] = [z]
since then the (id=̇) rule would be applied in B, implying that B is finite, which is a contradiction as B is infinite; hence,
λ(y) ̸= λ(z). We will now show that I, λ ̸⊨∃ ∆∗, and afterward, we will argue that I satisfies all GCIs in O, thus establishing
that I ⊨ O. We argue by induction on the complexity of D that if y : D ∈ ∆∗, then λ(y) ̸∈ DI .

y : A ∈ ∆∗. If y : A ∈ ∆∗, then for every z ∈ [y], z : ¬A ̸∈ ∆∗ since otherwise (s=̇) would have been applied, eventually
followed by (id) and B would be finite, contrary to our assumption. Therefore, y : ¬A ̸∈ ∆∗, implying that λ(y) /∈ AI

by the definition of I.

y : ¬A ∈ ∆∗. Then, λ(y) ∈ AI , by the definition of I.



y : E ⊔ F ∈ ∆∗. Then, eventually the (⊔) rule will be applied in Prove, meaning y : E, y : F ∈ ∆∗, showing that λ(y) ∈ EI

and λ(y) ∈ F I by IH. Therefore, λ(y) ∈ (E ⊔ F )
I .

y : E ⊓ F ∈ ∆∗. If y : E ⊓ F ∈ ∆, then eventually the (⊓) rule will be applied in Prove, meaning either y : E ∈ ∆ or
y : D ∈ ∆. Hence, either λ(y) ∈ EI or λ(y) ∈ F I by IH, implying λ(y) ∈ (E ⊓ F )

I .

y : ∃r.E ∈ ∆∗. Suppose (λ(y), λ(z)) ∈ rI , i.e. ([y], [z]) ∈ rI . It follows that [y] L
⇝ [z] with L = LG(O)(r), mean-

ing at some step in B, we have that [y]Γ L
⇝ [z]Γ with L = LG(O)(r). Hence, the (∃r) rule will be bottom-up applied,

ensuring that z : E ∈ ∆∗. By IH, we have that λ(z) /∈ EI , so since z was assumed arbitrary, we have that λ(y) /∈ (∃r.E)
I .

y : ∀r.E ∈ ∆∗. If y : ∀r.E ∈ ∆∗, then eventually the (∀r) rule will be bottom-up applied in Prove, ensuring that for some
label z, r(y, z) ∈ Γ∗ and z : E ∈ ∆∗. By the definition of rI , ([y], [z]) ∈ rI , and by IH λ(z) /∈ EI , thus λ(y) /∈ ∀r.EI .

y : ⩽nr.E ∈ ∆∗. If y : ⩽nr.E ∈ ∆, then eventually the (⩽nr) rule will be applied bottom-up in Prove. It follows that
Γ ̸=̇(z0, . . . , zn), r(y, z0), . . . , r(y, zn) ∈ Γ∗ and y0 : ¬̇E, . . . , yn : ¬̇E ∈ ∆∗. Therefore, there exist at least n+1 distinct
elements in ∆I , namely [y0], . . . , [yn], such that for 0 ≤ i ≤ n, ([y], [zi]) ∈ rI and where λ(zi) /∈ Ei

I by IH. Hence,
λ(y) /∈ (⩽nr.E)

I .

y : ⩾nr.E ∈ ∆∗. Assume that distinct [z1], . . . , [zn] ∈ ∆I exist such that for 1 ≤ i ≤ n, ([y], [zi]) ∈ rI . It follows that for
1 ≤ i ≤ n, [y] L

⇝ [zi] with L = LG(O)(r) and z1, . . . , zn pairwise, distinct labels. Hence, at some step in B, we have that
[y]Γ L
⇝ [zi]Γ with L = LG(O)(r), and so, the (⩾nr) rule will be applied bottom-up, ensuring that zi : E ∈ ∆∗ for some

1 ≤ i ≤ n. By IH, λ(zi) /∈ EI . Since the elements [z1], . . . , [zn] ∈ ∆I were assumed to be arbitrary and distinct, this
shows that for any n elements that λ(y) relates to via rI , at least one must not be an element of EI , i.e. λ(y) /∈ (⩾nr.E)

I .

Let us now argue that I |= O by arguing that all GCIs in O are satisfied on I (note that all RIAs are satisfied on I as stated
above). Observe that our input is of the form ⊢ x : ¬̇TO, x : C and every time a fresh label is added by the (∀r) or (⩽nr) step
of Prove, the concepts in ¬̇TO are introduced at that label, meaning such concepts will occur at every label in Lab(Γ∗,∆∗).
Therefore, by the argument above, we know that for every GCI ⊤ ⊑ E ∈ O and λ(y) = [y] ∈ ∆I , λ(y) /∈ ¬̇EI , showing that
λ(y) ∈ EI , and hence, every GCI is satisfied on I. As x : C ∈ ∆∗, all of the above implies that ⊨O ∅ ⊢ x : C, completing the
proof.

C Proofs for Section 4
Lemma 5. Let O = O1 ∪ O2 be an ontology and suppose that Γ,Φ,Ψ ⊢ ¬̇TOa

,∆,Σ, ¬̇TOb
has a proof π in S(O) with

Φ ∩Ψ = ∅. Then, π can be transformed into a proof in SI(O) of Γ;Φ a|b Ψ ⊢ ¬̇TOa
,∆ a|b Σ, ¬̇TOb

∥ G such that:

(1) If x =̇ y occurs in G, then x ̸=̇ y ∈ Φ ;

(2) If x ̸=̇ y occurs in G, then x ̸=̇ y ∈ Ψ;

(3) Lab(G) ⊆ Lab(Γ,Φ,Ψ, ¬̇TOa ,∆,Σ, ¬̇TOb
);

(4) con(G) ⊆ con(Oa,∆) ∩ con(Σ,Ob).

Proof. By induction on the height of the proof. The base cases are trivial, so we focus on the inductive step. We argue one of
the (⩽nr) cases as the remaining cases are simple or similar. Suppose we have a proof in S(O) ending with an application of
(⩽nr), as shown below, where Γ′ = Γ, r(x, y0), . . . , r(x, yn) and let c ∈ {a, b}.

Γ′,Φ,Γ ̸=̇(y0, . . . , yn),Ψ ⊢ ¬̇TOa
,∆, y0 : ¬̇C, . . . , yn : ¬̇C,Σ, ¬̇TOb (⩽nr)

Γ,Φ,Ψ ⊢ ¬̇T ′
Oa

,∆, x : ⩽nr.C,Σ, ¬̇T ′
Ob

By IH, the premise of the inference shown below has a proof in SI(O), where ¬̇TOc
= ¬̇T ′

Oc
, y0 : ¬̇TOc

, . . . , yn : ¬̇TOc
for

c ∈ {a, b}. Since properties (1) and (2) hold for the premise below, and Φ∩ (Γ̸=̇(y0, . . . , yn),Ψ) = ∅ by assumption, we know
y0, . . . , yn ̸∈ Lab(Φ,Ψ) since otherwise the side condition of the (⩽nr) application above would be violated. Hence, G will
be in the form dictated by Definition 10, meaning we obtain a proof of the desired conclusion in SI(O) by a single application
of (⩽nr), as shown below.

Γ′; Φ a|b Γ ̸=̇(y0, . . . , yn),Ψ ⊢ ¬̇TOa ,∆
a|b y0 : ¬̇C, . . . , yn : ¬̇C,Σ, ¬̇TOb

∥ G
(⩽nr)

Γ;Φ a|b Ψ ⊢ ¬̇T ′
Oa

,∆ a|b x : ⩽nr.C,Σ, ¬̇T ′
Ob

∥ ⩽nr.G



Lab(G) ⊆ Lab(Γ,Φ,Ψ, ¬̇T ′
Oa

,∆,Σ, ¬̇T ′
Ob

)∪{y0, . . . , yn} and con(G)⊆con(Oa,∆)∩con(y0:¬̇C0, . . . , yn:¬̇Cn,Σ,Ob) fol-
low from IH with the latter also following from the fact that con(¬̇TOc

) ⊆ con(Oc). (1) and (2) easily hold, and as shown
below, property (3) follows from the former fact:

Lab(⩽nr.G) = Lab(G) \ {y0, . . . , yn}
⊆ Lab(Γ,Φ,Ψ, ¬̇T ′

Oa
,∆,Σ, ¬̇T ′

Ob
)

⊆ Lab(Γ,Φ,Ψ, ¬̇T ′
Oa

,∆, x : ⩽nr.C,Σ, ¬̇T ′
Ob

)

while property (4) follows from the latter fact:

con(⩽nr.G) = con(G)
⊆ con(Oa,∆) ∩ con(y0 : ¬̇C0, . . . , yn : ¬̇Cn,Σ,Ob)

= con(Oa,∆) ∩ con(x : ⩽nr.C,Σ,Ob)

Lemma 6. If (Σ ⊢ Π) ∈ G, then there exists a (Γ ⊢ ∆) ∈ G such that Γ ⊆ Σ and ∆ ⊆ Π.

Proof. Let (Σ ⊢ Π) ∈ G and suppose for a contradiction that no (Γ ⊢ ∆) ∈ G exists such that Γ ⊆ Σ and ∆ ⊆ Π. Then, for
each (Γ ⊢ ∆) ∈ G, either Γ ̸⊆ Σ or ∆ ̸⊆ Π. Let G = {(Γ1 ⊢ ∆1), . . . , (Γn ⊢ ∆n)} and define Γ′ ⊢ ∆′ such that for each
1 ≤ i ≤ n, one and only one of the following holds: (1) x =̇ y ∈ Γ′ and x ̸=̇ y ∈ Γi \ Σ, (2) x ̸=̇ y ∈ Γ′ and x =̇ y ∈ Γi \ Σ, or
(3) x : ¬̇C ∈ ∆′ and x : C ∈ ∆i \Π. Observe that Σ ∩ Γ′ = ∅ and Π ∩∆′ = ∅ by construction. However, since Γ′ ⊢ ∆′ ∈ G
by Definition 9, we have that either Σ ∩ Γ′ ̸= ∅ or Π ∩∆′ ̸= ∅, which gives a contradiction and proves the lemma.

Lemma 7. If SI(O) ⊩ Γ;Φ a|b Ψ ⊢ ∆ a|b Σ ∥ G, then

1. For each (Γ′ ⊢ Πi) ∈ G, S(O) ⊩ Γ,Γ′,Φ ⊢ ∆,Πi;

2. For each (Γ′ ⊢ Πi) ∈ G, S(O) ⊩ Γ,Γ′,Ψ ⊢ Πi,Σ.

Proof. We prove both claims simultaneously by induction on the height of the proof and make a case distinction on the last
rule applied.

Base case. Suppose we have a proof of height 1, i.e. an instance of an initial rule. Let us first consider the (idI2) case and then
we will consider the (idI=̇) case, noting that the (idI1) case is similar.

(idI2)
Γ;Φ a|b Ψ ⊢ ∆ a|b x : A, x : ¬A,Σ ∥ {( ⊢ x : ⊤)}

Claim 1 is resolved as shown below left, and relies on Lemma 3, whereas claim 2 is resolved by applying the (id) rule. Note
that we use the interpolant G = {( ⊢ x : ⊥)} in claim 2 (see Definition 9 above) and Σ′ = Σ, x : A, x : ¬A.

(⊤)
Γ,Φ ⊢ ∆, x : ⊤

(id)
Γ,Ψ ⊢ Σ′, x : ⊥

For the (idI=̇) case, suppose we have a proof consisting of a single application of the (idI=̇) rule, as shown below.
(idI=̇)

Γ;Φ a|b Ψ, x ̸=̇ y ⊢ ∆ a|b Σ ∥ {(x ̸=̇ y ⊢ )}

By the side condition on the rule, we know that x =∗
Γ y holds for (idI=̇) above. Therefore, the application of (id=̇) shown below

left is warranted as is the application of (id=̇) shown below right, thus resolving the case.
(idI=̇)Γ,Φ, x ̸=̇ y ⊢ ∆

(idI=̇)Γ,Ψ, x ̸=̇ y, x =̇ y ⊢ Σ

Inductive step. For the inductive step, we consider the (O), (⊓I), (∀rI), and (⩽nrI) cases as the remaining cases are similar.

(O). Let our proof in SI(O) end with an (O) application:

Γ;Φ a|b Ψ ⊢ ∆ a|b Σ ∥ G
(O)

Γ;Ψ b|a Φ ⊢ Σ b|a ∆ ∥ G

Observe that if (Γ′ ⊢ Πi) ∈ G, then Γ,Ψ,Γ′ ⊢ Σ,Πi is provable in S(O) by IH, which demonstrates claim (1). To
prove claim (2), let (Γ′ ⊢ Πi) ∈ G. Then, by Lemma 6, there exists a (Σ′ ⊢ Π′

i) ∈ G such that Σ′ ⊆ Γ′ and Π′
i ⊆ Πi. By

IH, S(O) ⊩ Γ,Φ,Σ′ ⊢ Π′
i,∆, implying S(O) ⊩ Γ,Φ,Γ′ ⊢ Πi,∆ by the hp-admissibility of (w =̇ ), (w ̸=̇ ), and (w) (Lemma 3).

(⊓I). Suppose we have a proof in SI(O) ending with an application of (⊓I), as shown below.



Γ;Φ a|b Ψ ⊢ ∆ a|b x : C,Σ ∥ G1 Γ;Φ a|b Ψ ⊢ ∆ a|b x : D,Σ ∥ G2
(⊓I)

Γ;Φ a|b Ψ ⊢ ∆ a|b x : C ⊔D,Σ ∥ G1 ∪ G2

We prove claim (1) first. Let (Γ′ ⊢ Π) ∈ G1 ∪ G2. Regardless of if (Γ′ ⊢ Π) ∈ G1 or (Γ′ ⊢ Π) ∈ G2, we have a proof
of Γ,Φ,Γ′ ⊢ ∆,Π by IH, which proves the claim. To prove claim (2), suppose that (Γ1,Γ2 ⊢ Π1,Π2) ∈ G1 ∪ G2 such
that (Γ1 ⊢ Π1) ∈ G1 and (Γ2 ⊢ Π2) ∈ G2. By IH, the top two sequents below are provable in S(O). We then apply the
hp-admissibility of (w =̇ ), (w ̸=̇ ), and (w) (Lemma 3) a sufficient number of times (indicated by the asterisk) to ensure the
contexts match. Last, we apply the (⊓) to obtain the desired conclusion.

Γ,Γ1,Ψ ⊢ x : C,Σ,Π1 (w =̇ )∗, (w ̸=̇ )∗, (w)∗
Γ,Γ1,Γ2,Ψ ⊢ x : C,Σ,Π1,Π2

Γ,Γ2,Ψ ⊢ x : D,Σ,Π2 (w =̇ )∗, (w ̸=̇ )∗, (w)∗
Γ,Γ1,Γ2,Ψ ⊢ x : D,Σ,Π1,Π2

(⊓)
Γ,Γ1,Γ2Ψ ⊢ x : C ⊔D,Σ,Π1,Π2

(∀rI). Suppose our proof ends with an (∀rI) application:

Γ, r(x, y); Φ a|b Ψ ⊢ ∆ a|b y : C, y : ¬̇TO,Σ ∥ G
(∀rI)

Γ;Φ a|b Ψ ⊢ ∆ a|b x : ∀r.C,Σ ∥ ∀r.G

We first argue claim (1). Let (Γ′ ⊢ Π, y : C1, . . . , y : Cn) ∈ G such that all concepts labeled with y are displayed and
y ̸∈ Lab(Γ′) by assumption, and let

#»

C = C1, . . . , Cn. By IH, we obtain a proof in S(O) ending as shown below:

Γ,Γ′, r(x, y) ⊢ ∆,Π, y : C1, . . . , y : Cn
(⊔)× (n−1)

Γ,Γ′, r(x, y) ⊢ ∆,Π, y :
⊔ #»

C
(∀r)

Γ,Γ′ ⊢ ∆,Π, x : ∀r.
⊔ #»

C

We now argue claim (2). Observe that for any (Γ′ ⊢ Π) ∈ G, the multiset Π contains zero or more labeled concepts of
the form x : ∃r.(¬̇C1 ⊓ · · · ⊓ ¬̇Cn). We suppose Π contains one such formula as the other cases are analogous, and let
Π = Π′, x : ∃r.(¬̇C1⊓· · ·⊓ ¬̇Cn). The case is resolved as shown below, where (⊓)∗ denotes n−1 applications of (⊓) between
the n premises obtained from IH and Σ′ = y : C, y : ¬̇TO,Σ.

Γ,Γ′, r(x, y) ⊢ Σ′,Π′, y : ¬̇Ci | 1 ≤ i ≤ n
(⊓)∗

Γ,Γ′, r(x, y) ⊢ Σ′,Π′, y :
d
¬̇ #»

C
(w)

Γ,Γ′, r(x, y) ⊢ x : ∃r.
d
¬̇ #»

C,Σ′,Π′, y :
d
¬̇ #»

C
(∃r)

Γ,Γ′, r(x, y) ⊢ x : ∃r.
d
¬̇ #»

C,Σ′,Π′
(∀r)

Γ,Γ′ ⊢ x : ∃r.
d
¬̇ #»

C, x : ∀r.C,Σ,Π′

(⩽nrI). Let us suppose that we have a proof in SI(O) ending with an application of (⩽nrI) as shown below such that
Γ′ = Γ, r(x, y0), . . . , r(x, yn) and where Σ′ = y0 : ¬̇C, y0 : ¬̇TO, . . . , yn : ¬̇C, yn : ¬̇TO,Σ.

Γ′; Φ a|b Ψ, Γ̸=̇(y0, . . . , yn) ⊢ ∆ a|b Σ′ ∥ G
(⩽nrI)

Γ;Φ a|b Ψ ⊢ ∆ a|b x : (⩽ nr.C),Σ ∥ ⩽nr.G

We argue claim (1) first and suppose we have the following: (Γ1,Γ2 ⊢ Π, y0 :
#»

C0, . . . , yn :
#»

Cn) ∈ G such that Γ2 ⊆
Γ ̸=̇(y0, . . . , yn), Lab(Γ1)∩{y0, . . . , yn} = ∅, and we let

#»

C =
#»

C0, . . . ,
#»

Cn. By IH, the top sequent shown below has a proof in
S(O). We invoke Lemma 3 and apply the hp-admissible (w) and (w ̸=̇ ) rules a sufficient number of times to derive the second
sequent from the first, and then apply the (⊔) rule a sufficient number of times to obtain the third sequent from the second,
using an asterisk ∗ to indicate these sequential rule applications.

Γ′,Φ,Γ1,Γ2 ⊢ ∆,Π, y0 :
#»

C0, . . . , yn :
#»

Cn (w)∗, (w ̸=̇ )∗

Γ′,Φ,Γ1,Γ
̸=̇(y0, . . . , yn) ⊢ ∆,Π, y0 :

#»

C, . . . , yn :
#»

C
(⊔)∗

Γ′,Φ,Γ1, Γ̸
=̇(y0, . . . , yn) ⊢ ∆,Π, y0 :

⊔ #»

C, . . . , yn :
⊔ #»

C
(⩽nr)

Γ,Φ,Γ1 ⊢ ∆,Π, x : ⩽nr.¬̇
⊔ #»

C



Let us now argue claim (2). Observe if (Γ′′ ⊢ Π) ∈ ⩽nr.G, then Π contains zero or more labeled concepts of the form
x : ⩾(n+1)r.

⊔ #»

C . We suppose Π contains one such formula and remark that the remaining cases are similar. Therefore,
Π = Π′, x : ⩾(n+1)r.

⊔ #»

C . We let
#»

C i = Ci,1, . . . , Ci,ki with 0 ≤ i ≤ n and
#»

C =
#»

C0, . . . ,
#»

Cn. By IH, for each 0 ≤ i ≤ n,
each top sequent shown below is provable in S(O). We apply the (⊓) rule ki−1 times, indicated by (⊓)∗, to derive the second
sequent from the first.

Γ′,Ψ,Γ ̸=̇(y0, . . . , yn),Γ
′′ ⊢ Σ′,Π′, yi : ¬̇Ci,j | 1 ≤ j ≤ ki

(⊓)∗
Γ′,Ψ, Γ̸=̇(y0, . . . , yn),Γ

′′ ⊢ Σ′,Π′, yi :
d
¬̇ #»

C i

We denote the concluding sequent in the proof above as S′
i. Let us pick an 1 ≤ i ≤ n and let 1 ≤ ℓ ̸= i ≤ n. We then take

S′
ℓ and apply the hp-admissible rules (ℓzyℓ

), (ℓyℓ
yi
), and (ℓyi

z ) with z fresh to obtain the sequent S′′
ℓ , shown below top, where

the labels yi and yℓ have been ‘swapped’. Observe that some inequalities of the form yt ̸=̇ ys in Γ̸=̇(y0, . . . , yn) may have
‘flipped’ to ys ̸=̇ yt, yielding the set Γ ̸=̇

i,ℓ(y0, . . . , yn). By applying (w ̸=̇ ) a sufficient number of times, one can weaken in all
inequalities from Γ ̸=̇(y0, . . . , yn) not occurring in Γ ̸=̇

i,ℓ(y0, . . . , yn), and then apply (s ̸=̇ ) a sufficient number of times so that
only Γ ̸=̇(y0, . . . , yn) occurs in the antecedent.

Γ′,Ψ,Γ ̸=̇
i,ℓ(y0, . . . , yn),Γ

′′ ⊢ Σ′,Π′, yi :
d
¬̇ #»

Cℓ
(w ̸=̇ )∗

Γ′,Ψ,Γ ̸=̇
i,ℓ(y0, . . . , yn),Γ

̸=̇(y0, . . . , yn),Γ
′′ ⊢ Σ′,Π′, yi :

d
¬̇ #»

Cℓ
(s ̸=̇ )∗

Γ′,Ψ, Γ̸=̇(y0, . . . , yn),Γ
′′ ⊢ Σ′,Π′, yi :

d
¬̇ #»

Cℓ

For each 1 ≤ i ≤ n, we take S′
i and each sequent proven as shown above, apply the (⊓) rule n−1 times, and then (w) to obtain

a proof of the sequent Si as shown in the proof below.

Γ′,Ψ,Γ ̸=̇(y0, . . . , yn),Γ
′′ ⊢ Σ′,Π′, yi :

d
¬̇ #»

Cℓ | 1 ≤ ℓ ≤ n
(⊓)× n−1

Γ′,Ψ, Γ̸=̇(y0, . . . , yn),Γ
′′ ⊢ Σ′,Π′, yi :

d
¬̇ #»

C
(w)

Γ′,Ψ, Γ̸=̇(y0, . . . , yn),Γ
′′ ⊢ Σ′,Π′, x : ⩾(n+1)r.¬̇

⊔ #»

C, yi : ¬̇
⊔ #»

C

Note that the last inference inference above is warranted since
d
¬̇ #»

C = ¬̇
⊔ #»

C by definition, and because (w) is hp-admissible
by Lemma 3. Next, observe that for each i and j such that 0 ≤ i < j ≤ n, the following sequent Si,j is provable by (id=̇).

(id=̇)
Γ′,Ψ, Γ̸=̇(y0, . . . , yn),Γ

′′, yi =̇ yj ⊢ Σ′,Π′, x : ⩾(n+1)r.¬̇
⊔ #»

C

We can finish the proof of claim (2) as follows:

S0 · · · Sn S0,1 · · · Sn,n+1
(⩾(n+1)r)

Γ′,Ψ, Γ̸=̇(y0, . . . , yn),Γ
′′ ⊢ Σ′,Π′, x : ⩾(n+1)r.¬̇

⊔ #»

C
(⩽nr)

Γ,Ψ,Γ′′ ⊢ x : ⩽nr.C,Σ,Π′, x : ⩾(n+1)r.¬̇
⊔ #»

C

This completes the proof of the lemma.

Lemma 8. If Γ ⊢ ∆,Σ is provable in S(O) for all ( ⊢ Σ) ∈ G and Lab(G) = {x}, then S(O) ⊩ Γ ⊢ ∆, x :
d⊔

G.

Proof. Let G := {( ⊢ x : Ci,1, . . . , x : Ci,ki
) | 1 ≤ i ≤ n} and suppose that Γ ⊢ ∆, x : Ci,1, . . . , x : Ci,ki

is provable in S(O)
for 1 ≤ i ≤ n. By repeated application of the (⊔) rule, we obtain Γ ⊢ ∆, x :

⊔
1≤j≤ki

Ci,j for each 1 ≤ i ≤ n. Applying the
(⊓) rule n−1 times lets us prove Γ ⊢ ∆, x :

d
1≤i≤n

⊔
1≤j≤ki

Ci,j , which gives us the desired conclusion.

Lemma 9. If Γ ⊢ ∆,Σ is provable in S(O) for all ( ⊢ Σ) ∈ G and Lab(G) = {x}, then S(O) ⊩ Γ ⊢ ∆, x : ¬̇
d⊔

G.

Proof. Let G = {( ⊢ Σ1), . . . , ( ⊢ Σn)} such that Σi = {x : Ci,1, . . . , x : Ci,ki
} for each 1 ≤ i ≤ n. We show

Γ ⊢ ∆, x : ¬̇
d⊔

G is provable in S(O) by induction on the cardinality of G.

Base case. Let us suppose that G is a singleton. Then, by assumption Γ ⊢ ∆, x : ¬C1,j is provable for all 1 ≤ j ≤ k1, and so,
the conclusion follows by k1−1 applications of (⊓).



Inductive Step. Suppose that G = {( ⊢ Σ1), . . . , ( ⊢ Σn+1)} contains n + 1 elements and assume that Γ ⊢ ∆,Π is provable
in S(O) for all Π ∈ G. Then, for each 1 ≤ j ≤ kn+1, the sequent Γ ⊢ ∆, x : ¬̇Cn+1,j ,Σ

′ is provable in S(O) for each
( ⊢ Σ′) ∈ (G \ {( ⊢ Σn+1)}). By IH, for each 1 ≤ j ≤ kn+1, the following sequent is provable in S(O).

Γ ⊢ ∆, x :
⊔l

¬̇(G \ {( ⊢ Σn+1)}), x : ¬̇Cn+1,j

By applying the (⊓) rule kn+1−1 times between each of the sequents above, followed by a single application of the (⊔) rule,
we obtain a proof of

Γ ⊢ ∆, x :
⊔l

¬̇(G \ {( ⊢ Σn+1)}) ⊔
l

1≤j≤kn+1

¬̇Cn+1,j ,

which gives our desired conclusion because

¬̇
l⊔

G =
⊔l

¬̇(G \ {( ⊢ Σn+1)}) ⊔
l

1≤j≤kn+1

¬̇Cn+1,j .

Theorem 3. Let O = O1 ∪ O2 be a RIQ ontology. If O ⊨ C ⊑ D, i.e. S(O), π ⊩ C ⊑ D, then a concept interpolant I can
be computed in EXPTIME relative to s(π) such that S(O) ⊩ C ⊑ I and S(O) ⊩ I ⊑ D, i.e. O ⊨ C ⊑ I and O ⊨ I ⊑ D.

Proof. By our assumption and Corollary 1, it follows that S(O), π ⊩ C ⊑ D, meaning ⊢ x : ¬̇TO, x : ¬̇C⊔D is the conclusion
of π by definition. By Lemma 4, namely, the hp-invertibility of the (⊔) rule, ⊢ x : ¬̇TO, x : ¬̇C, x : D is provable in S(O)
with a proof π′. By Lemma 5, the interpolation sequent ∅; ∅ 1|2 ∅ ⊢ x : ¬̇TO1

, x : ¬̇C 1|2 x : D,x : ¬̇TO2
∥ G is provable

in SI(O) with Lab(G) = {x} and con(G) ⊆ con(O1, ¬̇C) ∩ con(D,O2). Moreover, as this interpolation sequent is free of
(in)equalities, i.e. Γ,Φ,Ψ = ∅, we note that by the first two properties of Lemma 5, G must be of the following form:

G = {( ⊢ x : Ci,1, . . . , x : Ci,ki) | 1 ≤ i ≤ n}.

By Lemmas 7 – 9, we have ⊢ x : ¬̇TO1 , x : ¬̇C, x : I and ⊢ x : ¬̇TO2 , x : D,x : ¬̇I are provable in S(O) such that I =
d⊔

G.
Both of the sequents ⊢ x : ¬̇TO1 , x : ¬̇C ⊔ I and ⊢ x : ¬̇TO2 , x : ¬̇I ⊔ D are provable with proofs π1 and π2 in S(O) by
applying (⊔), respectively. By Corollary 1, O ⊨ C ⊑ I and O ⊨ I ⊑ D.

Last, we argue that the computation of I is in EXPTIME relative to the size of π. Note that applying Lemma 5 is composed
of the following steps: first, we partition the sequents in π′ by starting with the conclusion of π′ and working our way up the
proof toward the initial sequents placing active formulae of rule instances within the same component of the partition as their
corresponding principal formulae. Second, we assign interpolants to all of the initial sequents and work our way back down
toward the conclusion of the proof by computing the interpolant of the conclusion of a rule from the interpolants of its premises,
and applying the (O) when needed. The only problematic operation is the (O) rule as it may exponentially increase the size of
interpolants, meaning the calculation of I may be exponential in the worst-case.
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