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Abstract

We propose an approach for extending both the ter-

concerned with a different quality dimensiocompleteness
We provide a basis for formally well-founded techniques and
tools that support the ontology engineer in checking whether
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minological and the assertional part of a Descrip-
tion Logic knowledge base by using information
provided by the knowledge base and by a domain
expert. The use of techniques from Formal Con-
cept Analysis ensures that, on the one hand, the
interaction with the expert is kept to a minimum,
and, on the other hand, we can show that the ex-
tended knowledge base is complete in a certain,
well-defined sense.

Introduction

an ontology contains all the relevant information about the
application domain, and to extend the ontology appropriately
if this is not the case.

A DL knowledge base (howadays often called ontology)
usually consists of two parts, the terminological part (TBox),
which defines concepts and also states additional constraints
(so-called general concept inclusions, GCIs) on the interpre-
tation of these concepts, and the assertional part (ABox),
which describes individuals and their relationship to each
other and to concepts. Given an application domain and a DL
knowledge base (KB) describing it, we can ask whether the

o ] KB contains all the relevant informatibbout the domain:
Description Logics (DLs)Baaderet al., 2003 are a suc- ,

cessful family of logic-based knowledge representation for- Are aI_I the fe'e"afﬁt constraints that hold getween con-
malisms, which can be used to represent the conceptual CePts in the domain captured by the TBox®

knowledge of an application domain in a structured and for- ¢ Are all the relevant individuals existing in the domain
mally W(e_ll-understooq way. They are employed in vari- represented in the ABox?

ous application domains, such as natural language process- .

ing, configuration, databases, and bio-medical ontologies, byt AS @n €xample, consider the OWL ontology for human pro-
their most notable success so far is due to the fact that DLEIN phosphatases that has been described and uéétbin
provide the logical underpinning of OWL, the standard ontol-Stencroftet al, 200§. This ontology was developed based
ogy language for the semantic wiHorrockset al, 2003.  ©N information from peer-reviewed publications. The human
As a consequence of this standardization, several ontolodﬁ%;me'n phosphatase family has been well characterised exper-
editors support OWIKnublauchet al, 2004; Oberleet al. entally, and detailed knowledge about different classes of
2004; Kalyanpuret al, 20064, and ,ontolo:qies written in Such proteins is available. This knowledge is represented in
OWL are employed in more and more applications. As thehe terminological part of the ontology. Moreover, a large set
size of these ontologies grows, tools that support improvingf Numan phosphatases has been identified and documented
their quality become more important. The tools available un®Y expert biologists. These are described as individuals in the

til now use DL reasoning to detect inconsistencies and to infefSSertional part of the ontology. One can now ask whether the
consequences, i.e., implicit knowledge that can be deducefiformation about protein phosphatases contained in this on-
from the explicitly represented knowledge. There are alsd?ogY is complete. Are all the relationships that hold among
promising approaches that allow to pinpoint the reasons fol€ introduced classes of phosphatases captured by the con-
inconsistencies and for certain consequences, and that hefg@ints in the TBox, or are there relationships that hold in the
the ontology engineer to resolve inconsistencies and to rédomain, but do not follow from the TBox? Are all possible
move unwanted consequend&shlobach and Cornet, 2003; inds of human protein phosphatases represented by individ-

Kalyanpuret al, 2006f). These approaches address the qualS in the ABox, or are there phosphatases that have not yet
ity dimension ofsoundnes®f an ontology, both within it- been included in the ontology or even not yet been identified?

self (consistency) and w.r.t. the intended application domain Such questions cannot be answered by an automated tool

*Supported by DFG (GRK 334/3) and the EU (IST-2005-7603
FET project TONES and NoE 507505 Semantic Mining).

The notion of “relevant information” must, of course, be formal-
ized appropriately for this problem to be addressed algorithmically.



concepts—which does not follow from the TBox—holds in ing the exploration process.
the domain, one needs to ask a domain expert, and the sameln the next section, we introduce our variant of FCA that
is true for questions regarding the existence of individuals notan deal with partial contexts, and describe an attribute ex-
described in the ABox. Thedlte of the automated tool is to ploration procedure that works with partial contexts. In Sec-
ensure that the expert is asked as few questions as possibten 3, we show how a DL knowledge base gives rise to a
in particular, she should not be asked trivial questions, i.e.partial context, define the notion of a completion of a knowl-
guestions that could actually be answered based on the repege base w.r.t. a fixed model, and show that the attribute
resented knowledge. In the above example, answering a noexploration algorithm developed in the previous section can
trivial question regarding human protein phosphatases malye used to complete a knowledge base. In Section 4 we de-
require the biologist to study the relevant literature, queryscribe ongoing and future work. This paper is accompanied
existing protein databases, or even to carry out new expeby a technical reporiBaaderet al, 2006 containing more
iments. Thus, the expert may be prompted to acquire newletails and in particular full proofs of our results.
biological knowledge.

Attribute exploration is an approach developed in Formal2 Exploring Partial Contexts

Concept Analysis (FCAJGanter and Wille, 1999that can 1, s section, we extend the classical approach to Formal

.'&oncept Analysis (FCA), as described in detail[®anter

f‘etproat%h is desc(;il:;ﬁd [NViIIIe,flfr)]82], erleret_the domain i_s ¢ in FCA) that have only a partial description in the sense that,
ffd dlce (;ory, anh g g(ﬁa ?. 4 el exp O;? |onbprocess 'S 1901 some properties (called attributes in FCA), it is not known
ind, on the one hand, all valid relationships between propy,pqer they are satisfied by the individual or not. The con-
erties of lattices (like being distributive), and, on the otherp s ion petween this approach and the classical approach is
hand, to find counterexamples to all the relationships that d%xplained in[Baaderet al, 2004. In the following, we as-

not hold. To answer a query whether a certain relationshigy, o that we have a finite séf of attributes and a (possibly
holds, the lattice theory expert must either confirm the rela;

. . X . . infinite) set of objects.

tionship (by using results from the literature or carrying out a

new proof for this fact), or give a counterexample (again, byDefinition 2.1 A partial object description (pod} a tuple

either finding one in the literature or constructing a new one)(4, S) whereA, S C M are such thatd N S = @. We call
Although this sounds very similar to what is needed in oursuch a pod &ull object description (fod)f AU S = M. A

context, we cannot directly use this approach. The main rez3€t of pods is called partial contexiand a set of fods &l

son is the open-world semantics of description logic knowl-CONtext

edge bases. Consider an individudtom an ABox.A and  |ntuitively, the pod(A, S) says that the object it describes

a conceptC' occurring in a TBox7 . If we cannot deduce satisfies all attributes from and does not satisfy any attribute

from the TBox7 and.A thati is an instance of’, then we  from S. For the attributes not contained.ihU S, nothing is

do not assume thatdoes not belong t¢’. Instead, we only  known w.r.t. this object. A partial context can be extended by

accept this as a consequence/ifand A imply that: is an  either adding new pods or by extending existing pods.

instance of~C'. Thus, our knowledge about the relationships , .. ..
g =S ; Definition 2.2 We say that the po@l4’, S’) extendsthe pod
between individuals and concepts is incompleteZ iénd A (4,5), and write this ag 4, ) < (A",S"), if A C A’ and

imply neitherC' () nor —=C (i), then we do not know the re- L :
: ; . : S C S’. Similarly, we say that the partial conteit extends
lationship betweer andC. In contrast, classical FCA and the partial contexiC, and write this asc < K, if every pod

attribute exploration assume that the knowledge about indi- ~ ™. , =
; ; . i ; K is extended by some podAii. If K is a full context and
viduals is complete: the basic datastructure is that of a form < K, thenk is called arealizerof K. If (4,S) is a fod

context, i.e., a crosstable between individuals and properties: i i )
A cross says that the property holds, and the absence of@d (4,5) < (4, 5), then we also say that4, 5) realizes
cross is interpreted as saying that the property does not hold4: 5)-

There has been some work on how to extend FCA and at- Next, we introduce the notion of an implication between
tribute exploration from complete knowledge to the case ofattributes which formalizes the informal notion “relationship
partial knowledgd Obiedkov, 2002; Burmeister and Holzer, between properties” used in the introduction.

2009. However, this work is based on assumptions that argyefinition 2.3 An implicationis of the formL — R where
different from ours. In particular, it assumes that the experty » « 17, This implication isrefutedby the pod(A4, S) if

cannot answer all queries and, as a consequence, the knowl: — AandRN S £ . Itis refutedby the partial (;ontext
edge obtained after the exploration process may still be inx- if it is refuted by at least one element &t The set of
complete and the relationships between concepts that are P'Prplications that are not refuted by a given partial contéxt

duced in the end fall into two categories: relationships that are; janoted bymp(K). The set of all fods that do not refute a
valid no matter how the incomplete part of the knowledge isgiven set of implication£ is denoted byVod (L).

completed, and relationships that are valid only in some com= o o
pletions of the incomplete part of the knowledge. In contrast0r & set of implication< and a set” C M, theimplica-
our intention is to complete the KB, i.e., in the end we wanttional closureof P with respect tC, denoted byC(P), is the
to have complete knowledge about these relationships. Wh&nallest subsep of M such that

may be incomplete is the description of individuals used dur- e P C @, and



e L ReLandL CQimply R C Q. How can we find—and let the expert decide—all unde-
AsetP C M is called(-closedif £(P) = P. cided _implication_s_ without_ considering all imp!iqations? The
Definition 2.4 The implicationl, — R is said tofollow from  [olowing proposition motivates why it is sufficient to con-
a setJ of implications ifR C J(L). The set of implica- sider implications whose left-hand sides drelosed.
tions .7 is calledcompletefor a set of implication if every ~ Proposition 2.8 Let £ be a set of implications anfi — R
implication in £ follows from.7. It is calledsoundfor £ if ~ animplication. Then/. — R follows fromZ iff £L(L) — R
every implication that follows frony is contained inC. Aset  follows from..

of implications.7 is called abasefor a set of implicationsC Concerning right-hand sides, Proposition 2.5 says that the
if it is both sound and complete fdl, and no strict subset of |5rgest right-hand sid&® such thatl — R is not refuted
J satisfies this property. by K is R = K(L). Putting these two observations together,

The following is a trivial fact regarding the connection be- we only need to consider implications of the fofm— K (L)
tween partial contexts and the implications they do not refutewhereL is £-closed. In order to enumerate all left-hand sides,
but it will turn out to be crucial for our attribute exploration we can thus use the well-known approach from FCA for enu-
algorithm. merating closed sets in the lectic ord&anter and Wille,
Proposition 2.5 For a given setP C M and a partial con-  1999.
textC, K(P) := M\ U{S | (4,5) € K,P C A}isthe Definition 2.9 Assume thatM = {m,,...,m,} and fix
largest subset o/ such thatP — K(P) is not refuted byc. some linear ordem; < ms < ---m, on M. Thelectic
Attribute exploration with partial contexts order < is defined as follows: fom; ¢ M andA, B € M

The classical attribute exploration algorithm of FCA assumedVe define

that there is a domain expert that can answer questions rey . B iff m, ¢ B \ Aand

garding the validity of implications in the application do- An{my,...,mi1}=Bn{m,...,mi_1}.
main. Accordingly, our approach requires an expert that )

can decide whether an implication is refuted in the applicaThe order< is the union of the orders;;.

tion domain or not. In contrast to existing work on extend- opyiously,< extends the strict subset order, and thus the
ing FCA to the case of partial knowled§®biedkov, 2002;  gmallest and\/ the largest set w.r.k.

Burmeister and Holzer, 2005w~ve donot assume that the ex- - ) S

pert has only partial knowledge and thus cannot answer affroposition 2.10 Given a set of implication£ and an L-

implication questions. closed setd C M, the nextC-closed set followingd in the
To be more precise, we consider the following setting. Weectic orderisC((A N {my,...,m;_1}) U {m;}) wherej is
are given an initial (possibly empty) partial contéxtan ini- ~ maximal such thatl <; L((A N {my,...,m;1}) U{m;}.
tially empty set of implications, and a full contextC that If an implication is added because the expert has stated that

is a realizer ofC. The expert answers implication questionsit holds in &, then we can extend the current contéby

“L — R?" w.rt. the full context’C. More precisely, if the  closing the first component of every podhw.r.t. the new

answer is “yes,” therk does not refutd, — R. The im-  set of implicationsC. In fact, £ C Imp(K) makes sure that

plication . — R is then added td. Otherwise, the expert ihe extended context is still realized Ky To allow for this

extends the current contekt such that the extended context 54 possible other ways of extending the partial context, the

refutesL. — R and still haskC as a realizer. Consequently, formuylation of the algorithm just says that, in case an implica-

the following invariant will be satisfied by, K, L: tion is added, the partial context can also be extended. When-
K <K C Mod(L). ever an implication is not accepted by the exp&itwill be

Our aim is to enrichC and £ such that eventually is not extended to a context that refutes the implication and still has

only sound, but also complete fémp(K), andK refutes all K as arealizer.

other implications (i.., all the implications refuted Y. As Based on these considerations, our attribute exploration al-

; - ; - orithm for partial contexts is described in Algorithm 1. It
in the cIassma[ case, we want to do this by asking as few & es a partial contexty and a setM of attributes to be
possible questions to the expert. : X . .
. o ] explored, and interacts with an expert who has information
Definition 2.6 Let L be a set of implications ankl a partial  gpout a full contexk that realizesC,. It goes through the set
context. An implication is calledndecidedv.r.t. K andL if  of implications overM! in the lectic order of their left hand
it neither follows fromZ nor is refuted byC. Itis decided  gjges and, in case they are undecided in the current partial
w.rt. € and £ if itis not undecided w.r.tC and . context, asks the expert to decide them. In case an implica-
In principle, our attribute exploration algorithm tries to de- tion holds in/C, (a less redundant version of) it is added to
cide each undecided implications by either adding i€tor ~ the implication base. Otherwise, the partial context is extend
extending/C such that it refutes the implication. If all impli- with a counterexample frorik provided by the expert.
cations are decided, then our goal is achieved. The following theorem states that this algorithm always

Proposition 2.7 Assume that < K C Mod (L) and that all terminates, and in which sense it is correct. In Section 4,
implications are decided w.rk and £. ThenZ is complete ~ We Will briefly remark on its complexity.

for Imp(K) and K refutes all implications not belonging to  Theorem 2.11 Let M be a finite set of attributes, arid and
Imp(K). KCo respectively a full and a partial context over the attributes



Algorithm 1 Attribute exploration for partial contexts | Name of constructor | Syntax | Semantics |

1: Input: M = {mq,...,my}, Ko {attribute set and negation -C AT\ CT
partial context, realized by full contexi} conjunction cnD | c*fnD?
2: K:=Ko ~{initialize partial context | general conceptinclusohnCC D | CfCDf |
I L=0 {initial empty set of implications concept assertion C@) L2
4: P:=g {lectically smallestZ-closed set role assertion Ha.) | (@ 57) €7
5: while P # M do ’ 2
? ﬁ‘:c}?mgultce(];(ﬁ%en (P — K(P) is undecided Table 1: Conjunction, negation, GCls, and ABox assertions.
8: Ask the expert if? — IC(P) is refuted by
9: if nothen {P — KC(P) not refuted ABox. The semantics of concept descriptions, TBoxes, and
10: K := K’ whereK' is a partial context such that ~ ABoxes is given in terms of aimterpretationZ = (A%, %),
K<K <K {optionally extendC} ~ where AZ (the domair) is a non-empty set, and (the in-
11: L:=LU{P— K(P)\ P} terpretation functioph maps each concept narec N¢ to a
12: Prew:= L((PN{my,...,mj_1})U{m;}) setAT C A’ each role name € Ny to a binary relation
for the max.;j that satisfies rT C AT x AZ, and each individual name € N; to an el-
P <; L((PN{my,...,mj_1})U{m;}) ementa? € AZ. Concept description§' are also interpreted
13: else{P — K(P) refuted as set©? C AZ, which are defined inductively, as seen in
14: Get a partial context’’ from the expert such that the semantics column of Table 1 for the constructors conjunc-
K <K'<KandP — K(P) is refuted by’ tion and negation. An interpretatidnis amodelof the TBox
15: K:=K T (the ABox A) if it satisfies all its GCls (assertions) in the
16: Prew:=P {P notchangeyl sense shown in the semantics column of the table. InZase
17: end if is a model of both/” and A, it is also called a model of the
18:  else{trivial implication} knowledge bas€T , A). If there is such a model, we call the
19: Prew:=L((PN{m1,...,mj_1})U{m;}) KB consistent.
for the max.j that satisfies Given a KB(7T, .A), concept description§, D, and an in-
P <; L(PN{mq,...,mj_1})U{m;}) dividual namez, the inference problemsibsumptiorandin-
20: endif stanceare defined as followsc' is subsumedby D w.r.t. 7
21: P := Prew (C T+ D) if T C D* holds for all modelg of 7; anda is
22: end while aninstanceof C w.r.t. 7 and A (7, A |= C(a)) if a7 € CT

holds for all models of 7", .A). For most DLs, these problems
_ are decidable, and there exist highly optimized DL reasoners
in M such that'Co < K. Then Algorithm 1 terminates and, such as FaCT, RCER, and Pellet that can solve these prob-
upon termination, it outputs a partial contektand a set of  lems for very expressive DLs on large practical KBs.

implications£ such that As mentioned above, our approach for completing DL
1. £ is a base formp(K), and knowledge bases applies to arbitary DLs, provided that the
_ description language allows at least for conjunction and nega-
2. K refutes every implication that is refuted Ky tion, the TBox formalism allows for GCls, the ABox formal-
ism allows for concept assertions, and the subsumption and
3 Completing DL Knowledge Bases the instance problem are decidable.

In order to represent knowledge about an application domaifPLs and partial contexts

using Description Logics (DLs) (séBaaderet al,, 2009 for Let (7,.A) be a consistent DL knowledge base, aWdbe
more details and references), one usually first defines the rele-finite set of concept descriptions. An individual name
vant concepts of this domain, and then describes relationshipsccurring in.A gives rise to thepartial object description
between concepts and between individuals and concepts iwd, 4(a, M) := (A, S) where

the knowledge base. To construct concepts, one starts with a

setN¢ of concept nameg&inary predicates) and a s&t; of A={CeM|T,AEC(a)} and

role nameg(binary predicates), and builds compleancept S={CeM|T,AE-C(a)},
descriptionsout of them by using theoncept constructors
provided by the particuladescription languagd®eing used.
In addition, a setV; of individual namess used to referto  jc- A(M) := {pod s 4(a, M) | a an individual name ind}.
domain elements. In this paper, we do not fix a specific set of ~’ '

constructors since ouesults apply to arbitrary DLss long  Note thatpod+ 4(a, M) is indeed a pod sinc€7, A) was

as they allow for the constructors conjunction and negatiossumed to be consistent. Similarly, any elemért AZ

(see the upper part of Table 1). PBoxis a finite set of gen-  of an interpretatiorf gives rise to théull object description
eral concept inclusions (GCls), and ABoxis a finite setof 7,4 (4, M) := (4, ) where

concept and role assertions (see the lower part of Table 1). -
A knowledge base (KBjonsists of a TBox together withan A :={C e M |dec C?}, S:={Cec M |dc (-C)*},

and the whole ABox induces the partial context



and the whole interpretation induces the full context
Kz(M) := {fod;(d, M) | d € AT}.

Proposition 3.1 Let (7, .4), (7', A’) be DL KBs such that
T C7'and A C A’, M a set of concept descriptions, an

T AN, < ' A <
ia(]rvr}g)del of(7", A'). Thenkr (M) < Kzva(M) < whether 1L C MR already follows from the current TBox. If
z ' _ _ . this is the case, then we know that— R cannot be refuted
Next, we straightforwardly transfer the notion of refutation of by 7. This completion algorithm for DL knowledge bases is

way. If the answer is “yes,” then the expert is asked to extend
the current ABox (by adding appropriate assertions on either
old or new individual names) such that the extended ABox
refutesL. — R andZ is still a model of this ABox. Because

d of Proposition 3.3, before actually asking the expert whether
the implicationL — R is refuted byZ, we can first check

an implication from partial (full) contexts to knowledge basesdescribed in more detail in Algorithm 2.

(interpretations).

Definition 3.2 The implicationL — R over the attributes

Algorithm 2 Completion of DL knowledge bases

M is refutedby the knowledge basé, A) if it is refuted by
K1 4(M), and it isrefutedby the interpretatior¥ if it is re-

1

futed byKz(M). If an implication is not refuted bg, then 2
we say that iholds inZ. In addition, we say that — R fol- 3
lows from7 if 1L T MR, whererL and MR respectively 4.
stand for the conjunctionfs].., C and[ ], 5 D. 5
Obviously, the implication, — R holds inZ iff (ML)* C 65
(MR)Z. As an immediate consequence of this fact, we obtain: ”*
Proposition 3.3 Let7 be a TBox and be a model of. If 8:
L — R follows from7, then it holds irZ. 9:
Completion of DL KBs: formal definition and algorithm 10:
We are now ready to define what we mean by a completion of

a DL knowledge base. Intuitively, the knowledge base is sup-
posed to describe an intended model. For a fixed&ef “in- E

teresting” concepts, the knowledge base is complete if it con=<

tains all the relevant knowledge about implications between3
these concepts. To be more precise, if an implication holdg*4
in the intended interpretation, then it should follow from the 15
TBox, and if it does not hold in the intended interpretation,

then the ABox should contain a counterexample. Based on

the notions introduced above, this is formalized as follows.

Definition 3.4 Let (7,.A) be a consistent DL knowledge 1g:

base,M a finite set of concept descriptions, afica model

of (T, A). Then(T,A) is M-complete(or completeif M

is clear from the contexty.r.t. 7 if the following three state- 19:

ments are equivalent for all implicatiorls — R overM: 20:
1. L — R holds inZ; 21
2. L — Rfollows from7; gg
3. L — Risnotrefuted by{7, A). 24:

Let (75, Ag) be a DL knowledge base aril a model of
(7o, Ag). Then(7,A) is a completionof (7p,.Ao) if it is
complete and extendqy, Ao), i.e.,7o C 7 and Ay C A.

26:
An adaptation of the attribute exploration algorithm for o7

sInput: M = {m4,...,my}, (7o, Ag) {attribute set and
knowledge base, with mod&Il}
T =Ty,

T L=g

A=A
{initial empty set of implications
P=g {lectically smallest_-closed subset a¥/ }
: while P # M do
ComputelCr 4(P)
if P # K7 4(P) then {check whether the implication
follows from 7'}
if P C7 MKz 4(P) then
L:= L:U{P—> ’CT’A(P)\P}
Prew:= E((P N {ml, o ,mj_l}) U {m]})
for the max.j that satisfies
P < ﬁ((P n {ml, Ce 7m]‘,1}) @] {mj})
else
Ask expertifP — K7 4(P) is refuted byZ.
if nothen {MP C MKy _4(P) is satisfied inZ}
L :=£U{P—>K;T7A(P)\P}
Prew:= L((PN{ma,...,m;_1}) U{m;})
for the max.j that satisfies
P < ,C((P N {ml, . ,mj_l}) U {mj})
T =7 U{NP CN(Kr.a(P)\ P)}
else
Get an ABoxA’ from the expert such that
A C A, T is amodel of4’, and

P — K7, 4(P) is refuted byA’
=A {extend the ABo¥
Prew:=P {P not changedl
end if
end if
else

Pnew = ﬁ((P n {ml, . 7mj,1}) U {mj})
for the max.j that satisfies
P < E((P N {ml, e ,mj_l}) @] {mJ})
end if
P = Phew
. end while

partial contexts presented above can be used to compute—=a
completion of a given knowledge batg), .4,) w.r.t. a fixed
modelZ of this knowledge base. It is assumed thatdkpert
has or can obtain enough information about this model to b
able to answer questions of the form ‘Is— R refuted by
Z7?". If the answer is “no,” ther. — R holds according to
the expert’s opinion, and is thus added to the implication bas
computed by the algorithm. In addition, the GTCL C MR

is added to the TBox. Sincé — R is not refuted byZ, the M

Note that Algorithm 2 applied t@y, Ay, M with the un-

gerlying modelZ of (7p,.Ap) is an instance of Algorithm 1
applied to the partial contex€r, 4, (M) with the underly-
ing full context/Cz(M) as realizer. This shows that Theo-
fem 2.11 applies also to Algorithm 2, which implies:

Theorem 3.5 Let (7y,.Ap) be a consistent knowledge base,

a finite set of concept descriptions, afida model of

interpretatiort is still a model of the new TBox obtained this (7o,.4), and let(7, .A) be the knowledge base computed by



Algorithm 2. Ther(7, A) is a completion of 7y, Ay). scription Logic Handbook: Theory, Implementation, and
Applications Cambridge University Press, 2003.

4 Conclusion [Baaderet al, 200§ F. Baader, B. Ganter, U. Sattler, and

We have extended the attribute exploration algorithm from B. Sertkaya. Completing description logic knowledge
FCA to partial contexts, and have shown how the extended bases using formal concept analysis. LTCS Report 06-02,
algorithm can be used to complete DL knowledge bases, us- Theoretical Computer Science, TU Dresden, 2006. Avail-
ing both DL reasoning and answers given by a domain ex- able at http://lat.inf.tu-dresden.de/research/reports.html
pert. This algorithm inherits its complexity from “classical” [Burmeister and Holzer, 2005P. Burmeister and R. Holzer.
attribute exploratioiGanter and Wille, 1999 in the worst Treating incomplete knowledge in formal concept analy-
case, which occurs if there are few or many relationships be- sis. InFormal Concept Analysjs/olume 3626 0lLNCS
tween attributes, it is exponential in the number of attributes.  Springer, 2005.

Regarding the number of questions asked to the expert, it a8 anter and Wille, 1999B. Ganter and R. Wille. Formal

ily follows from results shown in the technical report that our - ; . .
method asks the minimum number of questions with posi- (fgoggept Analysis: Mathematical FoundationSpringer,

tive answers. For the questions with negative answers, the
behaviour depends on the answers given by the expert: FCAHorrockset al, 2003 I. Horrocks, P. F. Patel-Schneider,
theory implies that there always exist counterexamples that, and F. van Harmelen. From SHIQ and RDF to OWL: The
if taken in each step, ensure a minimal number of questions Making of a web ontology languagé. of Web Semantics
with negative answers. In general, however, one cannot as- 1(1), 2003.
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