
Completing Description Logic Knowledge Bases using Formal Concept Analysis∗

Franz Baader,1 Bernhard Ganter,1 Barış Sertkaya,1 and Ulrike Sattler 2

1TU Dresden, Germany and2The University of Manchester, UK

Abstract

We propose an approach for extending both the ter-
minological and the assertional part of a Descrip-
tion Logic knowledge base by using information
provided by the knowledge base and by a domain
expert. The use of techniques from Formal Con-
cept Analysis ensures that, on the one hand, the
interaction with the expert is kept to a minimum,
and, on the other hand, we can show that the ex-
tended knowledge base is complete in a certain,
well-defined sense.

1 Introduction
Description Logics (DLs)[Baaderet al., 2003] are a suc-
cessful family of logic-based knowledge representation for-
malisms, which can be used to represent the conceptual
knowledge of an application domain in a structured and for-
mally well-understood way. They are employed in vari-
ous application domains, such as natural language process-
ing, configuration, databases, and bio-medical ontologies, but
their most notable success so far is due to the fact that DLs
provide the logical underpinning of OWL, the standard ontol-
ogy language for the semantic web[Horrockset al., 2003].
As a consequence of this standardization, several ontology
editors support OWL[Knublauchet al., 2004; Oberleet al.,
2004; Kalyanpuret al., 2006a], and ontologies written in
OWL are employed in more and more applications. As the
size of these ontologies grows, tools that support improving
their quality become more important. The tools available un-
til now use DL reasoning to detect inconsistencies and to infer
consequences, i.e., implicit knowledge that can be deduced
from the explicitly represented knowledge. There are also
promising approaches that allow to pinpoint the reasons for
inconsistencies and for certain consequences, and that help
the ontology engineer to resolve inconsistencies and to re-
move unwanted consequences[Schlobach and Cornet, 2003;
Kalyanpuret al., 2006b]. These approaches address the qual-
ity dimension ofsoundnessof an ontology, both within it-
self (consistency) and w.r.t. the intended application domain
(no unwanted consequences). In the present paper, we are

∗Supported by DFG (GRK 334/3) and the EU (IST-2005-7603
FET project TONES and NoE 507505 Semantic Mining).

concerned with a different quality dimension:completeness.
We provide a basis for formally well-founded techniques and
tools that support the ontology engineer in checking whether
an ontology contains all the relevant information about the
application domain, and to extend the ontology appropriately
if this is not the case.

A DL knowledge base (nowadays often called ontology)
usually consists of two parts, the terminological part (TBox),
which defines concepts and also states additional constraints
(so-called general concept inclusions, GCIs) on the interpre-
tation of these concepts, and the assertional part (ABox),
which describes individuals and their relationship to each
other and to concepts. Given an application domain and a DL
knowledge base (KB) describing it, we can ask whether the
KB contains all the relevant information1 about the domain:

• Are all the relevant constraints that hold between con-
cepts in the domain captured by the TBox?

• Are all the relevant individuals existing in the domain
represented in the ABox?

As an example, consider the OWL ontology for human pro-
tein phosphatases that has been described and used in[Wol-
stencroftet al., 2005]. This ontology was developed based
on information from peer-reviewed publications. The human
protein phosphatase family has been well characterised exper-
imentally, and detailed knowledge about different classes of
such proteins is available. This knowledge is represented in
the terminological part of the ontology. Moreover, a large set
of human phosphatases has been identified and documented
by expert biologists. These are described as individuals in the
assertional part of the ontology. One can now ask whether the
information about protein phosphatases contained in this on-
tology is complete. Are all the relationships that hold among
the introduced classes of phosphatases captured by the con-
straints in the TBox, or are there relationships that hold in the
domain, but do not follow from the TBox? Are all possible
kinds of human protein phosphatases represented by individ-
uals in the ABox, or are there phosphatases that have not yet
been included in the ontology or even not yet been identified?

Such questions cannot be answered by an automated tool
alone. Clearly, to check whether a given relationship between

1The notion of “relevant information” must, of course, be formal-
ized appropriately for this problem to be addressed algorithmically.

concepts—which does not follow from the TBox—holds in
the domain, one needs to ask a domain expert, and the same
is true for questions regarding the existence of individuals not
described in the ABox. The rôle of the automated tool is to
ensure that the expert is asked as few questions as possible;
in particular, she should not be asked trivial questions, i.e.,
questions that could actually be answered based on the rep-
resented knowledge. In the above example, answering a non-
trivial question regarding human protein phosphatases may
require the biologist to study the relevant literature, query
existing protein databases, or even to carry out new exper-
iments. Thus, the expert may be prompted to acquire new
biological knowledge.

Attribute exploration is an approach developed in Formal
Concept Analysis (FCA)[Ganter and Wille, 1999] that can
be used to acquire knowledge about an application domain
by querying an expert. One of the earliest applications of this
approach is described in[Wille, 1982], where the domain is
lattice theory, and the goal of the exploration process is to
find, on the one hand, all valid relationships between prop-
erties of lattices (like being distributive), and, on the other
hand, to find counterexamples to all the relationships that do
not hold. To answer a query whether a certain relationship
holds, the lattice theory expert must either confirm the rela-
tionship (by using results from the literature or carrying out a
new proof for this fact), or give a counterexample (again, by
either finding one in the literature or constructing a new one).

Although this sounds very similar to what is needed in our
context, we cannot directly use this approach. The main rea-
son is the open-world semantics of description logic knowl-
edge bases. Consider an individuali from an ABoxA and
a conceptC occurring in a TBoxT . If we cannot deduce
from the TBoxT andA that i is an instance ofC, then we
do not assume thati does not belong toC. Instead, we only
accept this as a consequence ifT andA imply that i is an
instance of¬C. Thus, our knowledge about the relationships
between individuals and concepts is incomplete: ifT andA
imply neitherC(i) nor ¬C(i), then we do not know the re-
lationship betweeni andC. In contrast, classical FCA and
attribute exploration assume that the knowledge about indi-
viduals is complete: the basic datastructure is that of a formal
context, i.e., a crosstable between individuals and properties.
A cross says that the property holds, and the absence of a
cross is interpreted as saying that the property does not hold.

There has been some work on how to extend FCA and at-
tribute exploration from complete knowledge to the case of
partial knowledge[Obiedkov, 2002; Burmeister and Holzer,
2005]. However, this work is based on assumptions that are
different from ours. In particular, it assumes that the expert
cannot answer all queries and, as a consequence, the knowl-
edge obtained after the exploration process may still be in-
complete and the relationships between concepts that are pro-
duced in the end fall into two categories: relationships that are
valid no matter how the incomplete part of the knowledge is
completed, and relationships that are valid only in some com-
pletions of the incomplete part of the knowledge. In contrast,
our intention is to complete the KB, i.e., in the end we want
to have complete knowledge about these relationships. What
may be incomplete is the description of individuals used dur-

ing the exploration process.
In the next section, we introduce our variant of FCA that

can deal with partial contexts, and describe an attribute ex-
ploration procedure that works with partial contexts. In Sec-
tion 3, we show how a DL knowledge base gives rise to a
partial context, define the notion of a completion of a knowl-
edge base w.r.t. a fixed model, and show that the attribute
exploration algorithm developed in the previous section can
be used to complete a knowledge base. In Section 4 we de-
scribe ongoing and future work. This paper is accompanied
by a technical report[Baaderet al., 2006] containing more
details and in particular full proofs of our results.

2 Exploring Partial Contexts
In this section, we extend the classical approach to Formal
Concept Analysis (FCA), as described in detail in[Ganter
and Wille, 1999], to the case of individuals (called objects
in FCA) that have only a partial description in the sense that,
for some properties (called attributes in FCA), it is not known
whether they are satisfied by the individual or not. The con-
nection between this approach and the classical approach is
explained in[Baaderet al., 2006]. In the following, we as-
sume that we have a finite setM of attributes and a (possibly
infinite) set of objects.

Definition 2.1 A partial object description (pod)is a tuple
(A,S) whereA,S ⊆ M are such thatA ∩ S = ∅. We call
such a pod afull object description (fod)if A ∪ S = M . A
set of pods is called apartial contextand a set of fods afull
context.

Intuitively, the pod(A,S) says that the object it describes
satisfies all attributes fromA and does not satisfy any attribute
from S. For the attributes not contained inA ∪ S, nothing is
known w.r.t. this object. A partial context can be extended by
either adding new pods or by extending existing pods.

Definition 2.2 We say that the pod(A′, S′) extendsthe pod
(A,S), and write this as(A,S) ≤ (A′, S′), if A ⊆ A′ and
S ⊆ S′. Similarly, we say that the partial contextK′ extends
the partial contextK, and write this asK ≤ K′, if every pod
in K is extended by some pod inK′. If K is a full context and
K ≤ K, thenK is called arealizerof K. If (A,S) is a fod
and (A,S) ≤ (A,S), then we also say that(A,S) realizes
(A,S).

Next, we introduce the notion of an implication between
attributes which formalizes the informal notion “relationship
between properties” used in the introduction.

Definition 2.3 An implication is of the formL → R where
L,R ⊆ M . This implication isrefutedby the pod(A,S) if
L ⊆ A andR ∩ S 6= ∅. It is refutedby the partial context
K if it is refuted by at least one element ofK. The set of
implications that are not refuted by a given partial contextK
is denoted byImp(K). The set of all fods that do not refute a
given set of implicationsL is denoted byMod(L).
For a set of implicationsL and a setP ⊆ M , the implica-
tional closureof P with respect toL, denoted byL(P), is the
smallest subsetQ of M such that

• P ⊆ Q, and

• L → R ∈ L andL ⊆ Q imply R ⊆ Q.
A setP ⊆ M is calledL-closedif L(P) = P .
Definition 2.4 The implicationL → R is said tofollow from
a setJ of implications ifR ⊆ J (L). The set of implica-
tionsJ is calledcompletefor a set of implicationsL if every
implication inL follows fromJ . It is called soundfor L if
every implication that follows fromJ is contained inL. A set
of implicationsJ is called abasefor a set of implicationsL
if it is both sound and complete forL, and no strict subset of
J satisfies this property.

The following is a trivial fact regarding the connection be-
tween partial contexts and the implications they do not refute,
but it will turn out to be crucial for our attribute exploration
algorithm.
Proposition 2.5 For a given setP ⊆ M and a partial con-
textK, K(P) := M \

⋃
{S | (A,S) ∈ K, P ⊆ A} is the

largest subset ofM such thatP → K(P) is not refuted byK.

Attribute exploration with partial contexts
The classical attribute exploration algorithm of FCA assumes
that there is a domain expert that can answer questions re-
garding the validity of implications in the application do-
main. Accordingly, our approach requires an expert that
can decide whether an implication is refuted in the applica-
tion domain or not. In contrast to existing work on extend-
ing FCA to the case of partial knowledge[Obiedkov, 2002;
Burmeister and Holzer, 2005], we donot assume that the ex-
pert has only partial knowledge and thus cannot answer all
implication questions.

To be more precise, we consider the following setting. We
are given an initial (possibly empty) partial contextK, an ini-
tially empty set of implicationsL, and a full contextK that
is a realizer ofK. The expert answers implication questions
“L → R?” w.r.t. the full contextK. More precisely, if the
answer is “yes,” thenK does not refuteL → R. The im-
plicationL → R is then added toL. Otherwise, the expert
extends the current contextK such that the extended context
refutesL → R and still hasK as a realizer. Consequently,
the following invariant will be satisfied byK,K,L:

K ≤ K ⊆ Mod(L).
Our aim is to enrichK andL such that eventuallyL is not
only sound, but also complete forImp(K), andK refutes all
other implications (i.e., all the implications refuted byK). As
in the classical case, we want to do this by asking as few as
possible questions to the expert.

Definition 2.6 LetL be a set of implications andK a partial
context. An implication is calledundecidedw.r.t.K andL if
it neither follows fromL nor is refuted byK. It is decided
w.r.t.K andL if it is not undecided w.r.t.K andL.

In principle, our attribute exploration algorithm tries to de-
cide each undecided implications by either adding it toL or
extendingK such that it refutes the implication. If all impli-
cations are decided, then our goal is achieved.

Proposition 2.7 Assume thatK ≤ K ⊆ Mod(L) and that all
implications are decided w.r.t.K andL. ThenL is complete
for Imp(K) andK refutes all implications not belonging to
Imp(K).

How can we find—and let the expert decide—all unde-
cided implications without considering all implications? The
following proposition motivates why it is sufficient to con-
sider implications whose left-hand sides areL-closed.

Proposition 2.8 LetL be a set of implications andL → R
an implication. Then,L → R follows fromL iff L(L) → R
follows fromL.

Concerning right-hand sides, Proposition 2.5 says that the
largest right-hand sideR such thatL → R is not refuted
byK is R = K(L). Putting these two observations together,
we only need to consider implications of the formL → K(L)
whereL isL-closed. In order to enumerate all left-hand sides,
we can thus use the well-known approach from FCA for enu-
merating closed sets in the lectic order[Ganter and Wille,
1999].

Definition 2.9 Assume thatM = {m1, . . . ,mn} and fix
some linear orderm1 < m2 < · · ·mn on M . The lectic
order< is defined as follows: formi ∈ M andA,B ⊆ M
we define

A <i B iff mi ∈ B \A and
A ∩ {m1, . . . ,mi−1} = B ∩ {m1, . . . ,mi−1}.

The order< is the union of the orders<i.

Obviously,< extends the strict subset order, and thus∅ is the
smallest andM the largest set w.r.t.<.

Proposition 2.10 Given a set of implicationsL and anL-
closed setA (M , the nextL-closed set followingA in the
lectic order isL((A ∩ {m1, . . . ,mj−1}) ∪ {mj}) wherej is
maximal such thatA <j L((A ∩ {m1, . . . ,mj−1}) ∪ {mj}.

If an implication is added because the expert has stated that
it holds inK, then we can extend the current contextK by
closing the first component of every pod inK w.r.t. the new
set of implicationsL. In fact,L ⊆ Imp(K) makes sure that
the extended context is still realized byK. To allow for this
and possible other ways of extending the partial context, the
formulation of the algorithm just says that, in case an implica-
tion is added, the partial context can also be extended. When-
ever an implication is not accepted by the expert,K will be
extended to a context that refutes the implication and still has
K as a realizer.

Based on these considerations, our attribute exploration al-
gorithm for partial contexts is described in Algorithm 1. It
takes a partial contextK0 and a setM of attributes to be
explored, and interacts with an expert who has information
about a full contextK that realizesK0. It goes through the set
of implications overM in the lectic order of their left hand
sides and, in case they are undecided in the current partial
context, asks the expert to decide them. In case an implica-
tion holds inK, (a less redundant version of) it is added to
the implication base. Otherwise, the partial context is extend
with a counterexample fromK provided by the expert.

The following theorem states that this algorithm always
terminates, and in which sense it is correct. In Section 4,
we will briefly remark on its complexity.

Theorem 2.11 LetM be a finite set of attributes, andK and
K0 respectively a full and a partial context over the attributes

Algorithm 1 Attribute exploration for partial contexts

1: Input: M = {m1, . . . ,mn},K0 {attribute set and
partial context, realized by full contextK}

2: K := K0 {initialize partial context}
3: L := ∅ {initial empty set of implications}
4: P := ∅ {lectically smallestL-closed set}
5: while P 6= M do
6: ComputeK(P)
7: if P 6= K(P) then {P → K(P) is undecided}
8: Ask the expert ifP → K(P) is refuted byK
9: if no then {P → K(P) not refuted}

10: K := K′ whereK′ is a partial context such that
K ≤ K′ ≤ K {optionally extendK}

11: L := L ∪ {P → K(P) \ P}
12: Pnew := L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

for the max.j that satisfies
P <j L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

13: else{P → K(P) refuted}
14: Get a partial contextK′ from the expert such that

K ≤ K′ ≤ K andP → K(P) is refuted byK′

15: K := K′

16: Pnew := P {P not changed}
17: end if
18: else{trivial implication}
19: Pnew := L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

for the max.j that satisfies
P <j L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

20: end if
21: P := Pnew
22: end while

in M such thatK0 ≤ K. Then Algorithm 1 terminates and,
upon termination, it outputs a partial contextK and a set of
implicationsL such that

1. L is a base forImp(K), and

2. K refutes every implication that is refuted byK.

3 Completing DL Knowledge Bases
In order to represent knowledge about an application domain
using Description Logics (DLs) (see[Baaderet al., 2003] for
more details and references), one usually first defines the rele-
vant concepts of this domain, and then describes relationships
between concepts and between individuals and concepts in
the knowledge base. To construct concepts, one starts with a
setNC of concept names(unary predicates) and a setNR of
role names(binary predicates), and builds complexconcept
descriptionsout of them by using theconcept constructors
provided by the particulardescription languagebeing used.
In addition, a setNI of individual namesis used to refer to
domain elements. In this paper, we do not fix a specific set of
constructors since ourresults apply to arbitrary DLsas long
as they allow for the constructors conjunction and negation
(see the upper part of Table 1). ATBoxis a finite set of gen-
eral concept inclusions (GCIs), and anABoxis a finite set of
concept and role assertions (see the lower part of Table 1).
A knowledge base (KB)consists of a TBox together with an

Name of constructor Syntax Semantics

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

general concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 1: Conjunction, negation, GCIs, and ABox assertions.

ABox. The semantics of concept descriptions, TBoxes, and
ABoxes is given in terms of aninterpretationI = (∆I , ·I),
where∆I (the domain) is a non-empty set, and·I (the in-
terpretation function) maps each concept nameA ∈ NC to a
setAI ⊆ ∆I , each role namer ∈ NR to a binary relation
rI ⊆ ∆I × ∆I , and each individual namea ∈ NI to an el-
ementaI ∈ ∆I . Concept descriptionsC are also interpreted
as setsCI ⊆ ∆I , which are defined inductively, as seen in
the semantics column of Table 1 for the constructors conjunc-
tion and negation. An interpretationI is amodelof the TBox
T (the ABoxA) if it satisfies all its GCIs (assertions) in the
sense shown in the semantics column of the table. In caseI
is a model of bothT andA, it is also called a model of the
knowledge base(T ,A). If there is such a model, we call the
KB consistent.

Given a KB(T ,A), concept descriptionsC,D, and an in-
dividual namea, the inference problemssubsumptionandin-
stanceare defined as follows:C is subsumedby D w.r.t. T
(C vT D) if CI ⊆ DI holds for all modelsI of T ; anda is
an instanceof C w.r.t. T andA (T ,A |= C(a)) if aI ∈ CI

holds for all models of(T ,A). For most DLs, these problems
are decidable, and there exist highly optimized DL reasoners
such as FaCT, RACER, and Pellet that can solve these prob-
lems for very expressive DLs on large practical KBs.

As mentioned above, our approach for completing DL
knowledge bases applies to arbitary DLs, provided that the
description language allows at least for conjunction and nega-
tion, the TBox formalism allows for GCIs, the ABox formal-
ism allows for concept assertions, and the subsumption and
the instance problem are decidable.

DLs and partial contexts
Let (T ,A) be a consistent DL knowledge base, andM be
a finite set of concept descriptions. An individual namea
occurring inA gives rise to thepartial object description
podT ,A(a,M) := (A,S) where

A := {C ∈ M | T ,A |= C(a)} and
S := {C ∈ M | T ,A |= ¬C(a)},

and the whole ABox induces the partial context

KT ,A(M) := {podT ,A(a,M) | a an individual name inA}.

Note thatpodT ,A(a,M) is indeed a pod since(T ,A) was
assumed to be consistent. Similarly, any elementd ∈ ∆I

of an interpretationI gives rise to thefull object description
fodI(d,M) := (A,S) where

A := {C ∈ M | d ∈ CI}, S := {C ∈ M | d ∈ (¬C)I},

and the whole interpretation induces the full context

KI(M) := {fodI(d,M) | d ∈ ∆I}.

Proposition 3.1 Let (T ,A), (T ′,A′) be DL KBs such that
T ⊆ T ′ andA ⊆ A′, M a set of concept descriptions, and
I a model of(T ′,A′). ThenKT ,A(M) ≤ KT ′,A′(M) ≤
KI(M).

Next, we straightforwardly transfer the notion of refutation of
an implication from partial (full) contexts to knowledge bases
(interpretations).

Definition 3.2 The implicationL → R over the attributes
M is refutedby the knowledge base(T ,A) if it is refuted by
KT ,A(M), and it isrefutedby the interpretationI if it is re-
futed byKI(M). If an implication is not refuted byI, then
we say that itholds inI. In addition, we say thatL → R fol-
lows fromT if uL vT uR, whereuL anduR respectively
stand for the conjunctions

d
C∈L C and

d
D∈R D.

Obviously, the implicationL → R holds inI iff (uL)I ⊆
(uR)I . As an immediate consequence of this fact, we obtain:

Proposition 3.3 LetT be a TBox andI be a model ofT . If
L → R follows fromT , then it holds inI.

Completion of DL KBs: formal definition and algorithm
We are now ready to define what we mean by a completion of
a DL knowledge base. Intuitively, the knowledge base is sup-
posed to describe an intended model. For a fixed setM of “in-
teresting” concepts, the knowledge base is complete if it con-
tains all the relevant knowledge about implications between
these concepts. To be more precise, if an implication holds
in the intended interpretation, then it should follow from the
TBox, and if it does not hold in the intended interpretation,
then the ABox should contain a counterexample. Based on
the notions introduced above, this is formalized as follows.

Definition 3.4 Let (T ,A) be a consistent DL knowledge
base,M a finite set of concept descriptions, andI a model
of (T ,A). Then(T ,A) is M -complete(or completeif M
is clear from the context)w.r.t. I if the following three state-
ments are equivalent for all implicationsL → R overM :

1. L → R holds inI;

2. L → R follows fromT ;

3. L → R is not refuted by(T ,A).
Let (T0,A0) be a DL knowledge base andI a model of
(T0,A0). Then(T ,A) is a completionof (T0,A0) if it is
complete and extends(T0,A0), i.e.,T0 ⊆ T andA0 ⊆ A.

An adaptation of the attribute exploration algorithm for
partial contexts presented above can be used to compute a
completion of a given knowledge base(T0,A0) w.r.t. a fixed
modelI of this knowledge base. It is assumed that theexpert
has or can obtain enough information about this model to be
able to answer questions of the form “IsL → R refuted by
I?”. If the answer is “no,” thenL → R holds according to
the expert’s opinion, and is thus added to the implication base
computed by the algorithm. In addition, the GCIuL v uR
is added to the TBox. SinceL → R is not refuted byI, the
interpretationI is still a model of the new TBox obtained this

way. If the answer is “yes,” then the expert is asked to extend
the current ABox (by adding appropriate assertions on either
old or new individual names) such that the extended ABox
refutesL → R andI is still a model of this ABox. Because
of Proposition 3.3, before actually asking the expert whether
the implicationL → R is refuted byI, we can first check
whetheruL v uR already follows from the current TBox. If
this is the case, then we know thatL → R cannot be refuted
by I. This completion algorithm for DL knowledge bases is
described in more detail in Algorithm 2.

Algorithm 2 Completion of DL knowledge bases

1: Input : M = {m1, . . . ,mn}, (T0,A0) {attribute set and
knowledge base, with modelI}

2: T := T0, A := A0

3: L := ∅ {initial empty set of implications}
4: P := ∅ {lectically smallestL-closed subset ofM}
5: while P 6= M do
6: ComputeKT ,A(P)
7: if P 6= KT ,A(P) then {check whether the implication

follows fromT }
8: if uP vT uKT ,A(P) then
9: L := L ∪ {P → KT ,A(P) \ P}

10: Pnew := L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})
for the max.j that satisfies
P <j L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

11: else
12: Ask expert ifP → KT ,A(P) is refuted byI.
13: if no then {uP v uKT ,A(P) is satisfied inI}
14: L := L ∪ {P → KT ,A(P) \ P}
15: Pnew := L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

for the max.j that satisfies
P <j L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

16: T := T ∪ {uP v u(KT ,A(P) \ P)}
17: else
18: Get an ABoxA′ from the expert such that

A ⊆ A′, I is a model ofA′, and
P → KT ,A(P) is refuted byA′

19: A := A′ {extend the ABox}
20: Pnew := P {P not changed}
21: end if
22: end if
23: else
24: Pnew := L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

for the max.j that satisfies
P <j L((P ∩ {m1, . . . ,mj−1}) ∪ {mj})

25: end if
26: P := Pnew
27: end while

Note that Algorithm 2 applied toT0,A0,M with the un-
derlying modelI of (T0,A0) is an instance of Algorithm 1
applied to the partial contextKT0,A0(M) with the underly-
ing full contextKI(M) as realizer. This shows that Theo-
rem 2.11 applies also to Algorithm 2, which implies:

Theorem 3.5 Let (T0,A0) be a consistent knowledge base,
M a finite set of concept descriptions, andI a model of
(T0,A0), and let(T ,A) be the knowledge base computed by

Algorithm 2. Then(T ,A) is a completion of(T0,A0).

4 Conclusion
We have extended the attribute exploration algorithm from
FCA to partial contexts, and have shown how the extended
algorithm can be used to complete DL knowledge bases, us-
ing both DL reasoning and answers given by a domain ex-
pert. This algorithm inherits its complexity from “classical”
attribute exploration[Ganter and Wille, 1999]: in the worst
case, which occurs if there are few or many relationships be-
tween attributes, it is exponential in the number of attributes.
Regarding the number of questions asked to the expert, it eas-
ily follows from results shown in the technical report that our
method asks the minimum number of questions with posi-
tive answers. For the questions with negative answers, the
behaviour depends on the answers given by the expert: FCA-
theory implies that there always exist counterexamples that,
if taken in each step, ensure a minimal number of questions
with negative answers. In general, however, one cannot as-
sume that the expert provides these “best” counterexamples.

Based on the results presented in the previous two sec-
tions, we have implemented a first experimential version of
a tool for completing DL knowledge bases as an extension of
the ontology editor Swoop[Kalyanpuret al., 2006a], which
uses the system Pellet as underlying reasoner[Sirin and Par-
sia, 2004]. We have just started to evaluate our tool on the
OWL ontology for human protein phosphatases mentioned in
the introduction, with biologists as experts, and hope to get
first significant results on its usefulness and performance in
the near future. Unsurprisingly, we have observed that the
experts sometimes make errors when answering implication
questions. Hence we will extend the completion tool such that
it supports detecting such errors and also allows to correct er-
rors without having to restart the exploration from scratch.

From a theoretical point of view, we will also look at exten-
sions of our definition of a complete KB. As a formalization
of what “all relationships between interesting concepts” re-
ally means, we have used subsumption relationships between
conjunctions of elements of the set of interesting concepts
M . One could also consider more complex relationships by
fixing a specific DLD, and then taking, as attributes, allD-
concept descriptions over the concept “names” fromM . The
immediate disadvantage of this extension is that, in general,
the set of attributes becomes infinite, and thus termination of
the exploration process is no longer guaranteed. An exten-
sion of classical attribute exploration (i.e., for full contexts)
in this direction is described in[Rudolph, 2004]. The main
idea to deal with the problem of an infinite attribute set used
there is to restrict the attention to concept descriptions with a
bounded role depth. But even though this makes the attribute
set finite, its size is usually too large for practical purposes.
Thus, an adaptation of Rudolph’s method to our purposes not
only requires extending this method to partial contexts, but
also some new approach to reduce the number of attributes.

References
[Baaderet al., 2003] F. Baader, D. Calvanese, D. McGuin-

ness, D. Nardi, and P. F. Patel-Schneider, editors.The De-

scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[Baaderet al., 2006] F. Baader, B. Ganter, U. Sattler, and
B. Sertkaya. Completing description logic knowledge
bases using formal concept analysis. LTCS Report 06-02,
Theoretical Computer Science, TU Dresden, 2006. Avail-
able at http://lat.inf.tu-dresden.de/research/reports.html

[Burmeister and Holzer, 2005] P. Burmeister and R. Holzer.
Treating incomplete knowledge in formal concept analy-
sis. InFormal Concept Analysis, volume 3626 ofLNCS.
Springer, 2005.

[Ganter and Wille, 1999] B. Ganter and R. Wille. Formal
Concept Analysis: Mathematical Foundations. Springer,
1999.

[Horrockset al., 2003] I. Horrocks, P. F. Patel-Schneider,
and F. van Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language.J. of Web Semantics,
1(1), 2003.

[Kalyanpuret al., 2006a] A. Kalyanpur, B. Parsia, E. Sirin,
B. C. Grau, and J. Hendler. Swoop: A Web ontology edit-
ing browser.J. of Web Semantics, 4(2), 2006.

[Kalyanpuret al., 2006b] A. Kalyanpur, B. Parsia, E. Sirin,
and B. C. Grau. Repairing unsatisfiable concepts in OWL
ontologies. InProc. of ESWC’06, volume 4011 ofLNCS.
Springer, 2006.

[Knublauchet al., 2004] H. Knublauch, R. W. Fergerson,
N. F. Noy, and M. A. Musen. The Protéǵe OWL plugin:
An open development environment for semantic web ap-
plications. InProc. of ISWC 2004, volume 3298 ofLNCS.
Springer, 2004.

[Oberleet al., 2004] D. Oberle, R. Volz, B. Motik, and
S. Staab. An extensible ontology software environment.
Handbook on Ontologies, International Handbooks on In-
formation Systems. Springer, 2004.

[Obiedkov, 2002] S. A. Obiedkov. Modal logic for evalu-
ating formulas in incomplete contexts. InProc. of ICCS
2002, volume 2393 ofLNCS. Springer, 2002.

[Rudolph, 2004] S. Rudolph. Exploring relational structures
via FLE . In Proc. of ICCS’04, volume 3127 ofLNCS.
Springer, 2004.

[Schlobach and Cornet, 2003] S. Schlobach and R. Cornet.
Non-standard reasoning services for the debugging of de-
scription logic terminologies. InProc. of IJCAI 2003.
Morgan Kaufmann, 2003.

[Sirin and Parsia, 2004] E. Sirin and B. Parsia. Pellet: An
OWL DL reasoner. InProc. of DL’04, 2004.

[Wille, 1982] R. Wille. Restructuring lattice theory: An ap-
proach based on hierarchies of concepts. InOrdered Sets.
Reidel, Dordrecht-Boston, 1982.

[Wolstencroftet al., 2005] K. Wolstencroft, A. Brass, I. Hor-
rocks, P. W. Lord, U. Sattler, D. Turi, and R. Stevens. A
little semantic web goes a long way in biology. InProc. of
ISWC’05, volume 3729 ofLNCS. Springer, 2005.

