
Computing Stable Extensions of Argumentation
Frameworks using Formal Concept Analysis

Sergei Obiedkov1[0000−0003−1497−4001] and Barış Sertkaya2[0000−0002−4196−0150]

1 Knowledge-Based Systems Group, Faculty of Computer Science / cfaed / ScaDS.AI
TU Dresden, Germany

sergei.obiedkov@tu-dresden.de
2 Frankfurt University of Applied Sciences, Germany

sertkaya@fb2.fra-uas.de

Abstract. We propose an approach based on Formal Concept Analy-
sis (FCA) for computing stable extensions of Abstract Argumentation
Frameworks (AFs). To this purpose, we represent an AF as a formal
context in which stable extensions of the AF are closed sets called con-
cept intents. We make use of algorithms developed in FCA for computing
concept intents in order to compute stable extensions of AFs. Experimen-
tal results show that, on AFs with a high density of the attack relation,
our algorithms perform significantly better than the existing approaches.
The algorithms can be modified to compute other types of extensions,
in particular, preferred extensions.

1 Introduction

Abstract argumentation is a field of Artificial Intelligence (AI) dealing with for-
mal representation of arguments and relations between arguments. Its aim is,
among others, to provide methods for resolving conflicts collaboratively. The
most prominent approach in this field, Argumentation Frameworks (AFs), has
attracted increasing attention in the AI and particularly in the Knowledge Repre-
sentation communities since its introduction by Dung in [10]. In AFs, arguments
are abstracted away from their actual contents and conflicts are modelled in form
of attacks between arguments. This abstraction allows an intiutive formalization
using directed graphs. The semantics is defined through sets of arguments called
extensions. Several different types of extensions of AFs have been proposed in
the literature [3], which gave rise to interesting computational problems such as,
for instance, deciding whether a given argument appears in at least one exten-
sion of a certain type (credulous reasoning), or deciding whether it appears in all
extensions of a certain type (skeptical reasoning), or enumerating all extensions
of a certain type.

The computational complexity of these and related decision, enumeration,
and counting problems have by now been well investigated [11,21]. There are
also highly optimized solvers that can handle large problem instances. In the
bi-annually organized International Competition on Computational Models of
Argumentation (ICCMA), these solvers compete in different tracks on several

different reasoning tasks. Typically, they encode these tasks as problems from
other formalisms such as, for instance, the constraint satisfaction problem or
the satisfiability problem of propositional logic, and benefit from existing highly
optimized solvers developed there. There are also algorithms specifically tailored
for computational problems in AFs that directly solve these problems without re-
ducing them to another formalism. A detailed survey of both types of approaches
can be found in [8].

In the present work, we propose an approach for computing extensions of AFs
based on Formal Concept Analysis (FCA) [15]. To this purpose, we characterize
an AF as a formal context. Such a characterization was first noted in [2]. We
exploit the similarity between an AF and a formal context and employ algorithms
from FCA to compute stable extensions. Our algorithms can be modified to
compute extensions of other types, such as preferred extensions.

The paper is organized as follows. In Section 2, we introduce basic notions of
AFs and FCA. In Section 3, we present a translation from AF to FCA and show
that stable extensions are closed sets (called concept intents) in this translation
with some special properties. We then modify two well-known algorithms from
FCA to compute stable extensions. In Section 4, we present an evaluation of our
algorithms on randomly generated AFs and provide a comparison with existing
tools. In Section 5, we conclude with a summary and future work.

2 Preliminaries

2.1 Abstract Argumentation Frameworks

We recall some basic notions from abstract argumentation frameworks as intro-
duced in [10]. An AF is a directed graph F = (A,R), where A is a finite set of
arguments and R ⊆ A×A is the attack relation. An edge (a, b) ∈ R denotes that
the argument a attacks the argument b (in the AF F). A set of arguments S ⊆ A
attacks b if there is a ∈ S such that (a, b) ∈ R, and b attacks S if (b, a) ∈ R for
some a ∈ S. We say that S ⊆ A defends a ∈ A if every argument attacking a is
attacked by S.

Figure 1 gives an example of an argumentation framework over arguments
A = {a, b, c, d, e}. Here, for example, a attacks b and c; the set {b, c} attacks a
and d; the argument d attacks the set {a, e} and, in fact, every set containing c
or e; and {a, e} defends d, since it attacks both its attackers, c and e.

a b c d e

Fig. 1. Example of an argumentation framework.

Given an AF F = (A,R), a set S ⊆ A is said to be conflict-free (in F) if S
does not attack any of its elements. We denote the set of conflict-free subsets of
A as cf(F). That is, cf(F) = {S ⊆ A | ∀a, b ∈ S : (a, b) 6∈ R}.

Several different types of semantics expressing different properties of sets of
arguments have been considered in the literature [10,3]. We introduce only those
of them that are relevant for our work.

Let F = (A,R) be an argumentation framework and S ∈ cf(F). Then S is
called

– an admissible extension if every a ∈ S is defended by S;
– a preferred extension if it is a maximal (w.r.t. set inclusion) admissible ex-

tension;
– a stable extension if S attacks every a ∈ A \ S.

Since a stable extension S attacks all other elements including all those that
attack S, every stable extension is also a preferred extension.

The preferred extensions of the AF from Figure 1 are {a, d}, {b, c}, and {b, d},
and its stable extensions are {a, d} and {b, d}.

Several interesting decision, counting, and enumeration problems in abstract
argumentation have been considered in the literature [11,4,21]. Here we list only
two of them that are relevant for us. For an AF F = (A,R), an argument a ∈ A,
and a semantic σ:

– Find a σ-extension of F if there is one.
– Enumerate all σ-extensions of F .

It is known that these problems are intractable for many of the interesting
semantics [11,21]. Existing approaches typically solve these problems by reduc-
ing them to other formalisms such as constraint-satisfaction problem (CSP),
propositional logic, or answer-set programming, and benefit from highly opti-
mized solvers developed for these formalisms. To name a few, µ-toksia [27] en-
codes these problems as the Boolean satisfiability problem and makes use of a
SAT-solver; pyglaf [1] reduces these problems to circumscription and employs an
existing solver for circumscription; and ConArg [5] reduces them to constraints
and uses a CSP-solver.

2.2 Formal Concept Analysis

Formal Concept Analysis [15] is a field of mathematics used for identifying clus-
ters in data and for building a hierarchy of these clusters with tools originating
from lattice theory. It has found application in several domains including biol-
ogy [18], data mining [26], information retrieval [19], knowledge processing [31],
and machine learning [24,9,6,30].

We will introduce only those notions and results from FCA that are relevant
for our purposes. In FCA, one represents data using a formal context specifying
which objects have which attributes. A formal context is usually denoted by
K = (G,M, I), where G is a set of objects, M is a set of attributes, and I ⊆ G×M

is an incidence relation between the objects and the attributes. A finite context
can be visualized as a cross table, where the rows represent the objects and the
columns represent the attributes of the context. A cross in column m of row g
means that the object g has the attribute m, and the absence of a cross means
that g does not have the attribute m.

For a set of objects A ⊆ G, the derivation operator (·)↑ applied to A produces
the set of attributes that are common to all objects in A:

A↑ = {m ∈M | ∀g ∈ A: (g,m) ∈ I}.

Similarly, for a set of attributes B ⊆M , the derivation operator (·)↓ applied to
B yields the set of objects that have all attributes in B:

B↓ = {g ∈ G | ∀m ∈ B: (g,m) ∈ I}.

We sometimes abuse the notation and write x↑ (resp. x↓) instead of {x}↑ (resp.
{x}↓) for an object (resp. attribute) x.

Proposition 1. For A1 ⊆ A2 ⊆ G (resp. B1 ⊆ B2 ⊆M), it holds that

– A↑2 ⊆ A
↑
1 (resp. B↓2 ⊆ B

↓
1);

– A1 ⊆ A↑↓1 and A↑1 = A↑↓↑1 (resp. B1 ⊆ B↓↑1 and B↓1 = B↓↑↓1).

As a consequence of this, the combined operator (·)↑↓ is a closure operator on
G and (·)↓↑ is a closure operator on M . Using these closure operators, one can
describe “natural clusters” in data, which are called formal concepts. A formal
concept of K = (G,M, I) is a pair (A,B), where A ⊆ G and B ⊆ M , such that
A↑ = B and B↓ = A. A is called the extent, and B is called the intent of the
formal concept (A,B).

When ordered w.r.t. subset inclusion of their extents (or, equivalently, w.r.t.
inverse inclusion of their intents), formal concepts yield a complete lattice called
the concept lattice of K. The concept lattice obtained from a dataset allows an
intuitive visualization of the data and enables domain experts to spot dependen-
cies between clusters in the data.

For A ⊆ G, the set A↑ is the intent of some formal concept, since (A↑↓, A↑) is
always a formal concept. A↑↓ is the smallest extent containing A. Consequently,
a set A ⊆ G is an extent if and only if A = A↑↓. The same applies to intents. The
intersection of any number of extents (respectively, intents) is always an extent
(intent). Hence, the set of all extents forms a closure system on G, and the set
of all intents forms a closure system on M [15].

It is well known that the set of all formal concepts of a context can be expo-
nential in the size of the context and determining the number of formal concepts
is #p-complete [23]. There are several algorithms for enumerating formal con-
cepts [28,12,13,7,22,17,29,32], some of which do this with a polynomial delay [20].
For an analysis and evaluation of such algorithms, see [25].

3 An FCA Characterization of AF Semantics

We consider semantics of AFs from the viewpoint of FCA and make use of
algorithms developed there for solving the abovementioned problems. To this
purpose, we formulate argumentation frameworks as formal contexts, following
the connection first noted in [2].

Definition 1. Let (A,R) be an argumentation framework. The induced formal
context of (A,R) is K(A,R) = (A,A, (A×A) \R).

Note that such induced contexts are special in that their sets of objects and
attributes coincide, which is not the case in general. Figure 2 shows the induced
formal context of the argumentation framework from Figure 1.

K(A,R) a b c d e

a × × ×
b × × × ×
c × × × ×
d × × ×
e × × ×

Fig. 2. The induced formal context of the argumentation framework in Figure 1. Its
concept intents are ∅, {e}, {d}, {d, e}, {b}, {b, d}, {b, c}, {b, c, e}, {b, c, d, e}, {a}, {a, e},
{a, d}, {a, d, e}, {a, b}, {a, b, d}, {a, b, c}, {a, b, c, e}, and {a, b, c, d, e}.

Following the definitions from Section 2.2, an application of the derivation
operators of K(A,R) to S ⊆ A yields the following sets:

S↑ = {a ∈ A | ∀s ∈ S: (s, a) 6∈ R}

and

S↓ = {a ∈ A | ∀s ∈ S: (a, s) 6∈ R}.

Obviously, for a, b ∈ A, a attacks b if and only if b /∈ a↑ or, equivalently, a 6∈ b↓.
More generally, for S ⊆ A, the set S↑ consists of arguments not attacked by S,
and S↓ is the set of arguments that do not attack S.

For example, in the context shown in Figure 2, we have {a, b}↑ = {d, e} and
{a, b}↓ = {c, d, e}. Indeed, d and e are the only arguments attacked neither by a
nor by b in the AF from Figure 1, while c, d, and e are the only arguments that
attack neither a nor b.

Proposition 2. Let (A,R) be an AF. A set S ⊆ A defends c ∈ A if and only if
S↑ ⊆ c↓ holds in K(A,R).

Proof. By definition, S↑ ⊆ c↓ reads as follows: every a ∈ A not attacked by S
does not attack c, which is equivalent to S defending c.

More formally, let b, c ∈ A and (b, c) ∈ R. Then, by definition, b 6∈ c↓.
Assuming S↑ ⊆ c↓, we have b /∈ S↑ and S attacks b. Thus, S attacks all attackers
of c, or, in other words, S defends c.

Conversely, suppose that S defends c. Take b ∈ S↑, i.e., some b not attacked
by S. Since S defends c, we have (b, c) /∈ R, which is equivalent to b ∈ c↓.
Consequently, S↑ ⊆ c↓ holds in K(A,R). ut

Proposition 3. Given an AF (A,R), a set S ⊆ A is conflict-free if and only if
S ⊆ S↑ (or, equivalently, S ⊆ S↓) holds in K(A,R). S is a maximal conflict-free
set if and only if S = S↑ ∩ S↓ ∩ {a ∈ A | a ∈ a↓}.

Proof. The first statement holds by definition. To prove the second one, assume
that S is a conflict-free set and there is some b ∈ (S↑∩S↓∩{a ∈ A | a ∈ a↓})\S.
It holds that b ∈ S↑, b ∈ S↓, and b does not attack itself. Then S ∪ {b} is
also conflict-free, and S cannot be a maximal conflict-free set. Conversely, if
S = S↑ ∩ S↓ ∩ {a ∈ A | a ∈ a↓}, then, for every b 6∈ S, either b 6∈ S↑ and b is
attacked by S, or b 6∈ S↓ and b attacks S, or b 6∈ b↓ and b attacks itself. In none
of these case, S ∪ {b} is conflict-free. Hence, S is a maximal conflict-free set.

Proposition 4. Given an AF (A,R), a set S ⊆ A is an admissible extension if
and only if S ⊆ S↑ ⊆ S↓. A preferred (i.e., maximal admissible) extension S is
always a concept intent of K(A,R), i.e., S = S↓↑.

Proof. The first statement follows from Propositions 3 and 2. In particular, since
S↓ =

⋂
{c↓ | c ∈ S}, Proposition 2 implies that S↑ ⊆ S↓ is equivalent to S

defending all its elements.
To prove the second statement, assume that S is admissible. Then it holds

that S ⊆ S↑ ⊆ S↓. Due to Proposition 1, this implies S↓↑ ⊆ S↑. Now, suppose
that S 6= S↓↑, and take any b ∈ (S↓↑ \ S). It holds that b ∈ S↑ and thus b ∈ S↓,
i.e., S and b do not attack each other. Additionally, b ∈ S↓ = S↓↑↓ ⊆ b↓, the
last inclusion holding due to {b} ⊆ S↓↑ and Proposition 1. Therefore, b does not
attack itself and S ∪ {b} is conflict-free.

To see that S defends b, take an a ∈ A that attacks b, i.e., b 6∈ a↑. If S
does not attack a, then a ∈ S↑ ⊆ S↓. Hence, S↓↑ ⊆ a↑ and b ∈ a↑, which is a
contradiction. Thus, S attacks a.

We have shown that S does not attack, is not attacked by, and defends every
element of S↓↑. No such element a can attack another such element b, since,
otherwise, a would have been attacked by S, which defends b. Therefore, if S
is an admissible set, then so is S↓↑. This means that preferred extensions are
concept intents (the reverse is not necessarily true). ut

Indeed, the three preferred extensions of the argumentation framework in
Figure 1, {a, d}, {b, c}, and {b, d}, are among concept intents of the induced con-
text from Figure 2. Since every stable extension S is also a preferred extension,
from Proposition 4, we have

Corollary 1. Given an AF (A,R), a stable extension S ⊆ A is always a concept
intent of K(A,R), i.e., S = S↓↑.

It turns out that we can give a compact and precise characterization of stable
extensions in terms of derivation operators of the induced formal context. Note
that S = S↑ reads as follows: “The set of elements not attacked by S is equal to
S,” which is the definition of a stable extension. Thus, we have

Proposition 5. Given an AF (A,R), a set S ⊆ A is a stable extension if and
only if S = S↑.

It is easy to see that no proper subset of a stable extension can be a stable ex-
tension; therefore, stable extensions form an antichain (a subset of incomparable
elements) in the lattice of concept intents.

3.1 Enumerating Stable Extensions using Next-Closure Algorithm

Proposition 5 suggests that we can enumerate stable extensions of an AF (A,R)
by computing concept intents of the induced context K(A,R) and outputting
only those intents S for which S = S↑. One well-known way of enumerating con-
cept intents in FCA is enumerating them in a so-called lectic order, which helps
avoiding multiple computation of the same intent. The lectic order is defined as
follows:

Definition 2. Let K = (G,M, I) be a formal context. Fix some some linear
order m1 < m2 < · · · < mn on the set of attributes M = {m1, . . . ,mn}. This
order induces a linear order on the power set of M , called the lectic order, which
we also denote by <. For mi ∈M and A,B ⊆M , we define:

A <i B iff mi ∈ B, mi 6∈ A and ∀j < i (mj ∈ A⇔ mj ∈ B).

The order < is the union of these orders <i, i.e.,

A < B iff A <i B for some i ∈M.

Note this is the same order as the one obtained when we map sets to binary
numbers in a standard way, so that attribute mi adds 2n−1 to the number.
Obviously, < extends the strict subset order, and thus ∅ is the smallest and M
is the largest set w.r.t. <. The following proposition from [12,14] shows how to
compute the lectically next concept intent set for a given set.

Proposition 6. Given a formal context K = (G,M, I) and a set A (M , the
smallest concept intent greater than A w.r.t. the lectic order is

((A ∩ {m1, . . . ,mj−1}) ∪ {mj})↓↑,

where j is the maximal attribute satisfying A <j ((A∩{m1, . . . ,mj−1})∪{mj})↓↑.

In order to enumerate all concept intents of K, one starts with the lectically
smallest intent ∅↓↑ and applies the proposition successively until the lectically
largest intent M is reached. This algorithm, known as the next-closure algorithm,
enumerates all concept intents of a given context with polynomial delay [12], and,

although the proposition may suggest otherwise, the algorithm is quite easy to
understand and implement.

Roughly speaking, the algorithm follows a computation tree, where a node
corresponds to an intent and a child is formed by adding an attribute to the
intent, computing the closure of the resulting set, and keeping it only if it does
not contain an attribute smaller than the one that was added. Along every branch
of the tree, attributes are added in the increasing order; that is, if an intent S
results from adding an attribute mi to its parent, its children are formed by
adding only attributes mj , where j > i, to S. For a more detailed explanation
and analysis of the algorithm, see [14].

To enumerate stable extensions of an argumentation framework, we can com-
pute the concept intents of the induced context with the next-closure algorithm,
cutting a computation branch as soon as we reach an intent that is not conflict-
free. Algorithm 1 enumerates all stable extensions of a given AF using this idea.

Algorithm 1 All Stable Extensions(A,R)

Input: Argumentation framework (A,R) with A = {a1, . . . an}.
Output: Stable extensions of (A,R) in the lectic order.
1: Construct the induced context K(A,R)
2: Fix a total order a1 < a2 < . . . < an on A
3: S = ∅↓↑ {lectically smallest intent}
4: while S 6= A do
5: if S = S↑ then {Check if S is a stable extension}
6: output S
7: S := Next-Conflict-Free-Intent(K(A,R), S)

Termination of Algorithm 1 is guaranteed since A is finite. It is correct due to
Proposition 5. Termination and correctness of Algorithm 2 is guaranteed due to
Proposition 6 [14]. The only modification we have done is checking for conflicts
in line 6 of Algorithm 2, which does not influence termination and correctness.

Algorithm 1 computes all conflict-free concept intents S ⊆ A of the induced
context K(A,R) with polynomial delay. However, only those that are stable
extensions are output. Between two stable extensions there can potentially be
exponentially many concept intents S that do not satisfy the criteria S = S↑ and,
hence, are not stable extensions. The runtime of our algorithm heavily depends
on the number of concept intents of K(A,R), which can be exponential in the
size of K(A,R). It is known that determining the number of concept intents is
#p-complete [23]. It was shown in [21] that enumerating stable extensions is not
output-polynomial unless p = np; thus we cannot expect to enumerate them
efficiently. On a positive side, it is easy to see that the memory requirements of
the algorithm depend only linearly on the number of arguments, since it needs
to store a constant number of sets and maintain a constant number of indices.

Algorithm 2 Next Conflict Free Intent(K(A,R), S)

Input: Induced context K(A,R) with a total order a1 < a2 < . . . < an on A and a set
S ⊆ A.

Output: Lectically next conflict-free intent of K coming after S.
1: for ai := an to ai := a1 do {iterate in reverse order}
2: if ai ∈ S then
3: remove ai from S
4: else
5: T := (S ∪ {ai})↓↑
6: if T ⊆ T ↓ then {check for conflict}
7: if aj 6∈ (T \ S) holds for every aj < ai then {lectic-order check}
8: return T {lectically next conflict-free intent}

3.2 Norris-based Algorithm for Stable Extensions

Next, we present an adaptation of an algorithm that was originally developed by
E.M. Norris for computing the maximal rectangles in a binary relation [28]. This
algorithm, being used in the FCA community for enumerating concept intents,
has proven to be fast for different types of formal contexts in practice [25].
Similar to the next-closure algorithm, it uses the lectic-order check to avoid
multiple generation of the same intent. Unlike next-closure, it keeps a list of
candidates from which intents are incrementally computed, which makes closure
computation more efficient.

Algorithm 3 is an adaptation of this approach. It iteratively processes sub-
contexts (A,B, (A × B) ∩ R), where B ⊆ A, of the context K(A,R), starting
with B = ∅ and adding one argument at a time in an arbitrary order. The
algorithm maintains a list of 4-tuples of the form (S↓, S, S↑, S↓∩S↑), where S is
potentially a subset of a stable extension and the derivation operators are taken
with respect to the current subcontext.

Algorithm 3 Incremental Stable Extensions(A,R)

Input: Argumentation framework (A,R).
Output: Stable extensions of (A,R) yielded by the Add subrprocedure.
1: B := ∅
2: C := {(A,∅, A,A)}
3: for all a ∈ A do
4: Add((A,R), B, a, C) {Add modifies C}
5: B := B ∪ {a}

When processing an argument a, the algorithm attempts to extend every set
S on the list with a if this does not cause a conflict (see line 1 of Algorithm 4).
Two cases are possible then. If arguments not attacking S do not attack a either,

then every stable extension containing S must contain a, and the algorithm
simply updates the components of the tuple corresponding to S (lines 2–11).
Otherwise (lines 12–22), the algorithm generates a new tuple corresponding to
S ∪ {a} and, unless it cannot be further extended without introducing conflicts,
the algorithm adds the new tuple to the list (lines 21–22). This new tuple is not
further processed in the current call to Algorithm 4. Note also the lectic-order
check in line 14. In both cases, if S ∪ {a} turns out to be a stable extension,
it is reported as such (lines 6 and 18) and the corresponding tuple is removed
from (or not added to) the list since, in this case, supersets of S ∪ {a} cannot
be stable extensions.

Algorithm 4 Add((A,R), B, a, C)
Input: Argumentation framework (A,R), B ⊆ A, a ∈ A \B, and set C,

which, at the point of the call, must be equal to
{(S↓, S, S↑, S↓ ∩ S↑) | S↓↑ ∩B = S ⊆ B and S (S↓ ∩ S↑}.

Output: Stable extensions S ⊆ B ∪ {a} of (A,R) containing a and updated C.
1: for all (X,S, Y, Z) ∈ C such that a ∈ Z do {S ∪ {a} is conflict-free}
2: if X ⊆ a↓ then {arguments not attacking S do not attack a}
3: S := S ∪ {a} {update the components of the existing tuple}
4: Y := Y ∩ a↑
5: if Y = S then {S attacks everything but itself}
6: output S
7: remove (X,S, Y, Z) from C
8: else
9: Z := Z ∩ a↑

10: if Z = S then
11: remove (X,S, Y, Z) from C
12: else
13: U := X ∩ a↓ {arguments not attacking S ∪ {a}}
14: if U ⊆ b↓ for no b ∈ B \ S then {(S ∪ {a})↓↑ ∩B = S ∪ {a}}
15: T := S ∪ {a}
16: V := Y ∩ a↑ {arguments not attacked by T}
17: if T = V then {T attacks everything but itself}
18: output T
19: else
20: W := U ∩ V
21: if W 6= T then {T can be extended}
22: add (U, T, V,W) to C

Termination of Algorithm 4 is guaranteed, since C is finite. Termination of
Algorithm 3 is guaranteed, since Algorithm 4 is invoked exactly once for every
a ∈ A.

Algorithm 4 differs from the original algorithm for computing concept intents
in several aspects. It stores additional information in the last two components
of tuples in list C; however, if memory is an issue, this information can be re-

computed from the second component and the original framework. In line 1, it
is checked if adding a to S causes a conflict. In line 5, it is checked whether S
is a stable extension; in this case, it is removed from the list, since its supersets
cannot be stable extensions. Finally, a new tuple generated after line 12 is added
to the list only if the corresponding intent is not a stable extension (which is
checked in line 17) and there remain arguments that can be added to it without
causing conflicts (which is checked in line 21). Apart from these changes, the
algorithm acts as the original algorithm. Therefore, Algorithm 3 generates all
conflict-free intents, which guarantees its correctness.

3.3 Preferred Extensions

With some effort, the Algorithms 1 and 3 can be adapted to other semantics. In
this subsection, we outline a possible adaptation to preferred semantics.

As shown in Proposition 4, every preferred (i.e., maximal admissible) exten-
sion is a concept intent. Each of the two presented algorithms implicitly builds
a tree of intents, from small to large, cutting a branch as soon as it stumbles
upon a maximal conflict-free set, which may or may not be a stable extension.
While doing so, it necessarily generates all preferred extensions. To identify them
among generated intents, one can check admissibility for every generated intent
and keep track of the largest generated admissible extension on each branch. If
a branch terminates with a stable extension, it is the only preferred extension
on this branch. The other preferred extensions are among admissible extensions
that are either terminal nodes in the tree or intermediate nodes with no admis-
sible extensions among descendants. Let us call nodes satisfying this condition
preferred candidates. They have to be checked for subset-maximality (unless they
are stable).

If the goal is to compute a single preferred extension, the maximality check
can be avoided. Traversing the tree of intents in the left-to-right depth-first-
order, we can be sure that the first preferred candidate S is, in fact, a maximal
admissible extension. This is so, because all intents containing S as a subset
are either among its descendants in the tree or precede S in this order. Neither
of the two presented algorithms follows this left-to-right depth-first-order when
computing intents; so, some care should taken when implementing this trick with
them. Alternatively, it is possible to modify the algorithms so that they follow
this order (resulting in an algorithm similar to what is known as Close by One
in the FCA community [22]), and then the first preferred candidate as computed
by the algorithm will be a preferred extension.

If the goal is to enumerate all preferred extensions, we do need to check for
maximality. A simple way to do this is as follows: we start with an empty list
L of potentially preferred extensions and, as soon as we obtain a new preferred
candidate S, we check if it is a subset of any set from L (in which case we ignore
S; otherwise, we add S to L) or a superset of some sets from L (in which case,
these sets are removed from L). Upon the termination of the algorithm, L will
be the set of all preferred extensions.

4 Experimental results

Most of the available tools for argumentation frameworks do no support enumer-
ating all stable extensions, but only allow finding a single extension. The latter
problem is called “SE-ST” at the ICCMA competitions, and, in this section, we
evaluate the performance of our algorithms on this problem. This means that
we terminate our algorithms as soon as they produce the first extension or allow
them to run to completion if the AF contains no stable extensions.

We have evaluated the runtime performance of Algorithms 1 and 3 from
Section 3 on randomly generated AFs with different sizes and densities. By
the size of an AF (A,R), we mean the number of arguments of the AF, i.e.,
|A|. By its density, we mean the proportion |R|/|A|2. We have generated test
frameworks containing 200, 600, 800, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, and 10k
arguments, each with densities ranging from 0.1 to 0.9. Thus we have generated
altogether 117 test files.3 While generating the test frameworks, we did not allow
arguments to attack themselves. Our implementation4 supports the new input
format introduced for ICCMA 2023. The tools used for the comparison accept
input in the apx-format. Therefore, the test data contains each framework in
both formats.

The tests were performed under Ubuntu Linux on a hardware with a 32
core-CPU running at 2.9 GHz and 256 GB of main memory. For comparing
our approach with the existing ones, we have evaluated three other tools from
the ICCMA competitions with the same test frameworks. These are µ-toksia5,
pyglaf6, and a-folio-dpdb7. As time limit, we fixed five minutes for all the five
approaches. We did not put any constraints on their memory usage.

The results of the experiments on frameworks with densities from 0.2 to
0.9 are shown in Figure 3, which refers to Algorithm 1 as affca-nc and to
Algorithm 3 as affca-norris. For density 0.1, all approaches failed with a
timeout on almost all framework sizes. In the diagrams, discontinued lines are
due to timeouts for some framework sizes. For instance, for density 0.9, pyglaf
terminated within the time limit for frameworks of sizes 200, 600, 2k, 3k, 4k,
and 5k but not for frameworks of sizes 800, 1k, and greater than 5k. Therefore,
there is a gap in the corresponding line between the framework sizes 600 and 2k.

The results of the evaluation show that Algorithm 3 performs significantly
better than all other four approaches on test frameworks with density of 0.5
and above (the exceptions being the 4k-framework with density 0.6, and the
2k-framework with density 0.5, which only µ-toksia was able to process within
the time limit). The performance difference is most visible on frameworks with
large densities. For instance, for density 0.9 and size 9k, Algorithm 3 is almost
ten times faster than µ-toksia and two times faster than Algorithm 1; the other

3 The test frameworks are available via the GitHub Repository of the project.
4 https://github.com/sertkaya/afca
5 https://bitbucket.org/andreasniskanen/mu-toksia/src/master/
6 https://alviano.com/software/pyglaf
7 https://github.com/gorczyca/dp_on_dbs

https://github.com/sertkaya/afca
https://bitbucket.org/andreasniskanen/mu-toksia/src/master/
https://alviano.com/software/pyglaf
https://github.com/gorczyca/dp_on_dbs

Fig. 3. Experimental results

tools get timeout. As the density of the frameworks decreases, the performance
of our algorithms deteriorates. For density 0.3 and below, they terminate within
the time limit only for the framework with the smallest number of arguments,
namely, 200 arguments. For such test frameworks, µ-toksia is the only tool that
still terminates within the time limit.

The reason why our algorithms perform better on AFs with denser attack
relations is, in fact, clear: for such AFs, the induced context representing the
not-attack relation is sparser, and the number of concepts in a sparse context is
usually small.

5 Conclusion and Future Work

We have presented a characterization of AFs as formal contexts and adapted
two algorithms from FCA for computing stable extensions of AFs. Experimen-
tal results with randomly generated test data show that our approach performs
significantly better than the existing approaches for AFs with dense attack rela-
tions. Our Algorithm 1, based on the Next Closure algorithm, has the advantage
that its memory requirements depend linearly on the number of arguments and
do not depend on any other parameters of the argumentation framework. The
other one, Algorithm 3, can more efficiently prune the search tree and, therefore,
often has the best performance among all approaches we have evaluated. How-
ever, it has the disadvantage that it stores all stable-extension candidates and,
because of this, has a high memory requirement, in the worst case, exponential
in the number of arguments.

We plan to improve the algorithms so that they could skip larger number of
intents when searching for stable extensions and, in particular, prune larger parts
of the search tree that will not lead to stable extensions. Various heuristics could
be used to speed up the computation [16]. One heuristic that could work for both
algorithms when run on frameworks with self-attacking arguments would be to
fix the linear order on arguments so that such arguments (which cannot be part of
any stable extension) are easily skipped. Another option would be to fix an order
where arguments that are more likely to appear in stable extensions are used
first. These can be, for instance, arguments that are attacked by a small number
of arguments but attack a large number of other arguments. This heuristic can
especially be useful for the problem of finding a single stable extension.

Acknowledgements This work is partly supported by Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) in project 389792660 (TRR
248, Center for Perspicuous Systems), by the Bundesministerium für Bildung
und Forschung (BMBF, Federal Ministry of Education and Research) in the
Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), and
by BMBF and DAAD (German Academic Exchange Service) in project 57616814
(SECAI, School of Embedded Composite AI).

https://www.perspicuous-computing.science/
https://www.scads.de

References

1. Alviano, M.: The pyglaf argumentation reasoner (ICCMA2021). CoRR
abs/2109.03162 (2021), https://arxiv.org/abs/2109.03162

2. Amgoud, L., Prade, H.: A formal concept view of abstract argumentation. In:
van der Gaag, L.C. (ed.) Symbolic and Quantitative Approaches to Reasoning with
Uncertainty - 12th European Conference, ECSQARU 2013, Utrecht, The Nether-
lands, July 8-10, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7958,
pp. 1–12. Springer (2013). https://doi.org/10.1007/978-3-642-39091-3_1,
https://doi.org/10.1007/978-3-642-39091-3_1

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). https://doi.org/10.1017/

S0269888911000166, https://doi.org/10.1017/S0269888911000166

4. Baroni, P., Dunne, P.E., Giacomin, M.: On extension counting problems in ar-
gumentation frameworks. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R.
(eds.) Computational Models of Argument: Proceedings of COMMA 2010, Desen-
zano del Garda, Italy, September 8-10, 2010. Frontiers in Artificial Intelligence and
Applications, vol. 216, pp. 63–74. IOS Press (2010). https://doi.org/10.3233/
978-1-60750-619-5-63, https://doi.org/10.3233/978-1-60750-619-5-63

5. Bistarelli, S., Santini, F.: Conarg: A constraint-based computational framework
for argumentation systems. In: IEEE 23rd International Conference on Tools with
Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, November 7-9, 2011.
pp. 605–612. IEEE Computer Society (2011). https://doi.org/10.1109/ICTAI.
2011.96, https://doi.org/10.1109/ICTAI.2011.96

6. Borchman, D., Hanika, T., Obiedkov, S.: Probably approximately correct learning
of Horn envelopes from queries. Discrete Applied Mathematics 273, 30–42 (2020),
https://doi.org/10.1016/j.dam.2019.02.036

7. Bordat, J.P.: Calcul pratique du treillis de Galois d’ une correspondance.
Mathématiques, Informatique et Sciences Humaines 96, 31–47 (1986)

8. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of im-
plementations for formal argumentation. FLAP 4(8) (2017), http://www.

collegepublications.co.uk/downloads/ifcolog00017.pdf

9. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. Journal of Artificial Intelligence Research 24(1),
305–339 (2005)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. In-
tell. 77(2), 321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X,
https://doi.org/10.1016/0004-3702(94)00041-X

11. Dunne, P.E., Wooldridge, M.J.: Complexity of abstract argumentation. In:
Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 85–
104. Springer (2009). https://doi.org/10.1007/978-0-387-98197-0_5, https:
//doi.org/10.1007/978-0-387-98197-0_5

12. Ganter, B.: Two basic algorithms in concept analysis. Tech. Rep. Preprint-Nr. 831,
Technische Hochschule Darmstadt, Darmstadt, Germany (1984)

13. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B.
(eds.) Proceedings of the 8th International Conference on Formal Concept Analy-
sis, (ICFCA 2010). Lecture Notes in Artificial Intelligence, vol. 5986, pp. 329–359.
Springer-Verlag (2010), reprint of [12]

https://arxiv.org/abs/2109.03162
https://doi.org/10.1007/978-3-642-39091-3_1
https://doi.org/10.1007/978-3-642-39091-3_1
https://doi.org/10.1007/978-3-642-39091-3_1
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.3233/978-1-60750-619-5-63
https://doi.org/10.3233/978-1-60750-619-5-63
https://doi.org/10.3233/978-1-60750-619-5-63
https://doi.org/10.3233/978-1-60750-619-5-63
https://doi.org/10.3233/978-1-60750-619-5-63
https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1016/j.dam.2019.02.036
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/978-0-387-98197-0_5
https://doi.org/10.1007/978-0-387-98197-0_5
https://doi.org/10.1007/978-0-387-98197-0_5
https://doi.org/10.1007/978-0-387-98197-0_5

14. Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer (2016).
https://doi.org/10.1007/978-3-662-49291-8, https://doi.org/10.1007/

978-3-662-49291-8

15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin, Germany (1999)

16. Geilen, N., Thimm, M.: Heureka: A general heuristic backtracking solver for
abstract argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) Theory and
Applications of Formal Argumentation - 4th International Workshop, TAFA
2017, Melbourne, VIC, Australia, August 19-20, 2017, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 10757, pp. 143–149. Springer (2017).
https://doi.org/10.1007/978-3-319-75553-3_10, https://doi.org/10.1007/

978-3-319-75553-3_10

17. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on Galois (concept) lattices. Computational Intelligence 11(2), 246–267
(1995)

18. Grissa, D., Comte, B., Pétéra, M., Pujos-Guillot, E., Napoli, A.: A hybrid and ex-
ploratory approach to knowledge discovery in metabolomic data. Discrete Applied
Mathematics 273, 103–116 (2020). https://doi.org/https://doi.org/10.1016/
j.dam.2018.11.025, advances in Formal Concept Analysis: Traces of CLA 2016

19. Ignatov, D.I.: Introduction to formal concept analysis and its applications in
information retrieval and related fields. CoRR abs/1703.02819 (2017), http:

//arxiv.org/abs/1703.02819

20. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Information Processing Letters 27(3), 119–123 (1988)

21. Kröll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the ex-
tensions of abstract argumentation frameworks. In: Sierra, C. (ed.) Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017. pp. 1145–1152. ij-
cai.org (2017). https://doi.org/10.24963/ijcai.2017/159, https://doi.org/

10.24963/ijcai.2017/159

22. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a
finite semi-lattice. Automatic Documentation and Mathematical Linguistics 27(5),
11–21 (1993)

23. Kuznetsov, S.O.: On computing the size of a lattice and related decision prob-
lems. Order 18(4), 313–321 (2001). https://doi.org/10.1023/A:1013970520933,
https://doi.org/10.1023/A:1013970520933

24. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.W.
(ed.) Concept Lattices, Second International Conference on Formal Concept Anal-
ysis, ICFCA 2004, Sydney, Australia, February 23-26, 2004, Proceedings. Lecture
Notes in Computer Science, vol. 2961, pp. 287–312. Springer (2004)

25. Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generat-
ing concept lattices. Journal of Experimental and Theoretical Artificial Intelligence
14(2-3), 189–216 (2002)

26. Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal con-
cept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analy-
sis, Foundations and Applications. Lecture Notes in Computer Science, vol. 3626,
pp. 180–195. Springer (2005)

27. Niskanen, A., Järvisalo, M.: µ-toksia: An efficient abstract argumentation reasoner.
In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,

https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/https://doi.org/10.1016/j.dam.2018.11.025
https://doi.org/https://doi.org/10.1016/j.dam.2018.11.025
https://doi.org/https://doi.org/10.1016/j.dam.2018.11.025
https://doi.org/https://doi.org/10.1016/j.dam.2018.11.025
http://arxiv.org/abs/1703.02819
http://arxiv.org/abs/1703.02819
https://doi.org/10.24963/ijcai.2017/159
https://doi.org/10.24963/ijcai.2017/159
https://doi.org/10.24963/ijcai.2017/159
https://doi.org/10.24963/ijcai.2017/159
https://doi.org/10.1023/A:1013970520933
https://doi.org/10.1023/A:1013970520933
https://doi.org/10.1023/A:1013970520933

KR 2020, Rhodes, Greece, September 12-18, 2020. pp. 800–804 (2020). https:

//doi.org/10.24963/kr.2020/82, https://doi.org/10.24963/kr.2020/82
28. Norris, E.M.: An algorithm for computing the maximal rectangles in a binary

relation. Revue Roumaine de Mathématiques Pures et Appliquées 23(2), 243–250
(1978)

29. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information Pro-
cessing Letters 71(5-6), 199–204 (1999)

30. Obiedkov, S.: Learning implications from data and from queries. In: Cristea, D.,
Ber, F.L., Sertkaya, B. (eds.) Proceedings of the 15th International Conference on
Formal Concept Analysis, (ICFCA 2019). Lecture Notes in Artificial Intelligence
(2019)

31. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis
in knowledge processing: A survey on applications. Expert Syst. Appl. 40(16),
6538–6560 (2013)

32. Valtchev, P., Missaoui, R.: Building concept (Galois) lattices from parts: General-
izing the incremental methods. In: Delugach, H.S., Stumme, G. (eds.) Proceedings
of the 9th International Conference on Conceptual Structures (ICCS 2001). Lec-
ture Notes in Computer Science, vol. 2120, pp. 290–303. Springer-Verlag, Stanford,
CA, USA (2001)

https://doi.org/10.24963/kr.2020/82
https://doi.org/10.24963/kr.2020/82
https://doi.org/10.24963/kr.2020/82
https://doi.org/10.24963/kr.2020/82
https://doi.org/10.24963/kr.2020/82

	Computing Stable Extensions of Argumentation Frameworks using Formal Concept Analysis

