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Abstract
The Description Logic EL is used to formulate
several large biomedical ontologies. Fuzzy exten-
sions of EL can express the vagueness inherent in
many biomedical concepts. We study the reasoning
problem of deciding positive subsumption in fuzzy
EL with semantics based on general t-norms. We
show that the complexity of this problem depends
on the specific t-norm chosen. More precisely, if
the t-norm has zero divisors, then the problem is
co-NP-hard; otherwise, it can be decided in poly-
nomial time. We also show that the best subsump-
tion degree cannot be computed in polynomial time
if the t-norm contains the Łukasiewicz t-norm.

1 Introduction
Description Logics [Baader et al., 2007] (DLs) are a fam-
ily of knowledge representation formalisms that are specially
suited for the representation of the conceptual knowledge of
an application domain. In these logics, concepts represent
sets of individuals in the domain, and roles state binary rela-
tions between domain elements. From a formal point of view,
concepts and roles correspond to unary and binary predicates
from first-order logic, respectively. Different DLs are moti-
vated by a trade-off between expressivity and complexity.
EL is a light-weight description logic capable of express-

ing conjunctions and existential restrictions, but no nega-
tions. In this logic, domain knowledge is expressed through a
TBox: a finite set of so-called general concept inclusion ax-
ioms (GCIs) that express causal relations between concepts.
The relevant reasoning task is then to decide subsumption be-
tween concepts, i.e. whether one concept is always a sub-
class of another. Computing all the subsumption relations
between basic concepts is called classification. One of the
main features of EL is that TBoxes can be classified in poly-
nomial time [Baader, 2003; Brandt, 2004]. Its low complex-
ity has been a driving force for the development of very large
TBoxes, such as SNOMED CT1 and the Gene Ontology,2 for
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1http://www.ihtsdo.org/snomed-ct/
2http://www.geneontology.org

representing knowledge from the biomedical domain. Its suc-
cess as a knowledge representation language is witnessed by
it being the basis for the OWL 2 EL profile of the standard on-
tology language for the Semantic Web,3 and the implementa-
tion of highly optimized classification tools, such as jcel4 and
ELK.5

In their classical form, DLs cannot deal with the im-
precision that is endemic to biomedical knowledge. For
example, the current version of SNOMED CT defines the
disorder “Perinatal Cyanotic Attack” as a cardiovascular
disorder occurring in the perinatal period and manifested
through cyanosis. This definition depends on two vague
notions, namely the perinatal period—the period of time
around birth—and cyanosis—a bluish discoloration of the
skin. While it is possible to say that one year after birth is
not perinatal, and a few hours from birth is, there is no pre-
cise threshold on the end of the perinatal period. However,
it makes sense to say that every child is less in its perinatal
period as time goes by. A similar consideration can be made
for skin turning from red to blue in cases of cyanosis. The use
of several degrees of truth has been proposed for dealing with
these gradual changes, as well as other kinds of imprecisions.

Mathematical Fuzzy Logic [Hájek, 2001] generalizes clas-
sical logic by allowing all real numbers from the interval [0, 1]
to act as truth degrees. It is then possible to express, e.g. that
a newborn child is in the perinatal period with degree 1, but
a three-week-old belongs to this period only with degree 0.3.
In Fuzzy Logic, the interpretation of the logical constructors,
such as conjunction, disjunction, and implication, is deter-
mined by the choice of a binary triangular norm (or t-norm
for short). Fuzzy Description Logics combine DLs with
Mathematical Fuzzy Logic as a means of formally represent-
ing and reasoning with vague conceptual knowledge [Tresp
and Molitor, 1998; Straccia, 2001]. So far, research on fuzzy
DLs was mainly focused on the expressive side of the spec-
trum, considering fuzzy extensions of propositionally closed
DLs. Unfortunately, in fuzzy DLs with a negation construc-
tor, it is often undecidable whether a set of GCIs is consis-
tent, i.e. non-contradictory [Borgwardt and Peñaloza, 2012b;
Cerami and Straccia, 2013].

3http://www.w3.org/TR/owl2-overview/
4http://jcel.sourceforge.net/
5http://www.cs.ox.ac.uk/isg/tools/ELK/



To the best of our knowledge, the only fuzzy extension
of EL that has been studied so far is based on the Gödel
t-norm [Mailis et al., 2012].6 In that paper, the authors de-
scribe a polynomial-time algorithm for deciding fuzzy sub-
sumption between concepts. Beyond this tractable case, very
little is known about the complexity of subsumption with gen-
eral t-norms. If we restrict the set of membership degrees
to be finite, then subsumption can be decided in exponential
time [Borgwardt and Peñaloza, 2013; Bobillo and Straccia,
2013], but for the interval [0, 1] nothing is known, even for
more expressive fuzzy DLs in which consistency is decid-
able [Borgwardt et al., 2012b].

We consider fuzzy extensions of EL with general t-norm
semantics and identify for which cases reasoning remains
polynomial. As for the classical case, we are interested in
deciding subsumption between concepts. However, the dif-
ferent membership degrees must also be taken into account.
For that reason, we consider the positive subsumption prob-
lem: deciding whether the (fuzzy) implication between two
concepts is always greater than 0. Intuitively, a positive sub-
sumption between two fuzzy concepts expresses that they are
causally related to some degree. We show that the complexity
of this problem depends on the properties of the t-norm cho-
sen: if the t-norm has zero divisors, then positive subsumption
is co-NP-hard; otherwise, the problem is reducible in linear
time to classical subsumption. We also consider the computa-
tion problem of finding the best lower bound for the subsump-
tion degree and show that the corresponding decision problem
is co-NP-hard if the t-norm contains the Łukasiewicz t-norm.

2 Fuzzy EL
In this section we introduce the fuzzy Description Logic
⊗-EL and its reasoning tasks, along with some of the prop-
erties that will be used throughout the paper. The semantics
of ⊗-EL depend on the choice of a t-norm ⊗.

A t-norm is an associative, commutative, and monotone bi-
nary operator ⊗ : [0, 1] × [0, 1] → [0, 1] that has unit 1 [Kle-
ment et al., 2000]. We consider only continuous t-norms,
i.e. those that are continuous as a function. Every continuous
t-norm defines a unique residuum⇒ : [0, 1] × [0, 1] → [0, 1]
where x ⇒ y := sup{z | x ⊗ z ≤ y}. From this it fol-
lows that (i) x ⇒ y = 1 iff x ≤ y, and (ii) 1 ⇒ y = y
hold for all x, y ∈ [0, 1]. The residual negation 	 is defined
as 	x := x ⇒ 0. Table 1 lists three important continu-
ous t-norms and their residua. It is well known that all other
continuous t-norms can be described as the ordinal sums of
copies of these three t-norms, as described next.

Let ((ai, bi))i∈I be a (possibly infinite) family of non-
empty, disjoint open subintervals of [0, 1] and (⊗i)i∈I be a
family of continuous t-norms over the same index set I . The
ordinal sum of (((ai, bi),⊗i))i∈I is the t-norm ⊗, where

x⊗ y := ai + (bi − ai)
(
x−ai
bi−ai ⊗i

y−ai
bi−ai

)
if x, y ∈ [ai, bi] for some i ∈ I , and x ⊗ y := min{x, y}
otherwise. This yields a continuous t-norm, whose residuum

6Mailis et al. consider an extension of EL called EL++.

Table 1: The three fundamental continuous t-norms.
Name t-norm (x⊗ y) residuum (x⇒ y)

Gödel min{x, y}
{

1 if x ≤ y
y otherwise

Product x · y
{

1 if x ≤ y
y/x otherwise

Łukasiewicz max{x+ y − 1, 0} min{1− x+ y, 1}

x⇒ y is given by
1 if x ≤ y,

ai + (bi − ai)
(
x−ai
bi−ai ⇒i

y−ai
bi−ai

)
if ai ≤ y < x ≤ bi,

y otherwise,

where⇒i is the residuum of ⊗i, for each i ∈ I . Intuitively,
this means that the t-norm ⊗ and its residuum “behave like”
⊗i and its residuum in each of the intervals [ai, bi], and like
the Gödel t-norm and residuum everywhere else.

Theorem 1 ([Mostert and Shields, 1957]). Every continu-
ous t-norm is isomorphic to the ordinal sum of copies of the
Łukasiewicz and product t-norms.

Let ⊗ be a continuous t-norm and (((ai, bi),⊗i))i∈I be its
representation as ordinal sum given by Theorem 1.7 Note that
the only elements x ∈ [0, 1] that are idempotent w.r.t. ⊗, i.e.
that satisfy x ⊗ x = x, are those that are not in (ai, bi) for
any i ∈ I . Thus, every continuous t-norm except the Gödel
t-norm has infinitely many non-idempotent elements. We call
(((ai, bi),⊗i))i∈I the components of ⊗. We further say that
⊗ contains a t-norm ⊗′ if it has a component of the form
((ai, bi),⊗′). It starts with Łukasiewicz if it has a component
of the form ((0, b),⊗Ł), where⊗Ł is the Łukasiewicz t-norm;
and is product-free if it does not contain the product t-norm.

A value x ∈ (0, 1] is called a zero divisor for a t-norm ⊗ if
there is a y ∈ (0, 1] such that x⊗y = 0. It can be shown [Kle-
ment et al., 2000] that for every t-norm without zero divi-
sors, the residual negation corresponds to the Gödel negation.
More precisely, if ⊗ has no zero divisors, then

	x =

{
0 if x > 0,
1 otherwise.

Of the three continuous t-norms from Table 1, only the
Łukasiewicz t-norm has zero divisors: every value x ∈ (0, 1)
is a zero divisor for this t-norm since 1 − x > 0 and
x⊗ (1− x) = 0. In fact, a continuous t-norm can only have
zero divisors if it starts with the Łukasiewicz t-norm.

Lemma 2 ([Klement et al., 2000]). A continuous t-norm has
zero divisors iff it starts with the Łukasiewicz t-norm.

Every continuous t-norm ⊗ defines a fuzzy DL ⊗-EL. The
syntax of ⊗-EL is identical to the one of the classical DL
EL, which allows only for the top concept, conjunctions, and
existential restrictions. Formally, from two disjoint sets NC

7For ease of presentation, we treat the isomorphism as equality.



and NR of concept names and role names, respectively,⊗-EL-
concepts are built through the syntactic rule

C ::= A | > | C1 u C2 | ∃r.C

where A ∈ NC and r ∈ NR. We use the abbreviation Cn for
the n-ary conjunction of a ⊗-EL-concept C with itself, i.e.

Cn :=

nu
i=1

C.

A ⊗-EL-TBox is a finite set of general concept inclusion ax-
ioms (GCIs) of the form 〈C v D ≥ q〉, where C,D are
⊗-EL-concepts and q ∈ [0, 1]. A ⊗-EL-TBox is called crisp
if it contains only GCIs of the form 〈C v D ≥ 1〉. In the fol-
lowing we will often drop the prefix ⊗-EL and speak simply
of, e.g. concepts and TBoxes.

The semantics of this logic extends the classical DL se-
mantics by interpreting concepts and roles as fuzzy sets and
fuzzy binary relations, respectively, over some interpretation
domain. Given a non-empty domain ∆, a fuzzy set is a func-
tion F : ∆ → [0, 1]. The intuition of this function is that an
element δ ∈ ∆ belongs to the fuzzy set F with degree F (δ).

Formally, an interpretation is a pair I = (∆I , ·I) where
∆I is a non-empty domain, and the interpretation function ·I
maps each concept name A to a function AI : ∆I → [0, 1]
and each role name r to a function rI : ∆I × ∆I → [0, 1].
The interpretation function is extended to ⊗-EL-concepts by
setting, for every δ ∈ ∆,

>I(δ) := 1,

(C1 u C2)I(δ) := CI1 (δ)⊗ CI2 (δ),

(∃r.C)I(δ) := sup
γ∈∆I

rI(δ, γ)⊗ CI(γ).

Such an interpretation I satisfies the GCI 〈C v D ≥ q〉 iff
infδ∈∆I (CI(δ)⇒ DI(δ)) ≥ q. It is a model of the TBox T
if it satisfies all the GCIs in T . An interpretation I is called
crisp if AI(δ) ∈ {0, 1} and rI(δ, γ) ∈ {0, 1} hold for every
concept name A, role name r, and δ, γ ∈ ∆I .
Example 3. The concept of perinatal cyanotic attacks (PCA)
can be described using the GCI

〈PCA v CardiovascularDisorder u
∃occurrence.PerinatalPeriod u
∃manifestation.Cyanosis ≥ 1〉,

which is in fact very close to the definition found in
SNOMED CT. Under the Łukasiewicz t-norm, an individual
that belongs to each of the three concepts on the right-hand
side with degree 0.7 will belong to PCA with degree at most
0.7 + 0.7 + 0.7 − 2 = 0.1. While this makes sense from a
diagnostic point of view—lesser symptomatic manifestations
should yield a weaker diagnosis—, SNOMED CT is meant
to describe clinical terms, rather than diagnose them. It thus
makes sense to divide the previous GCI into the three axioms

〈PCA v CardiovascularDisorder ≥ 1〉,
〈PCA v ∃occurrence.PerinatalPeriod ≥ 1〉, and
〈PCA v ∃manifestation.Cyanosis ≥ 1〉.

In fuzzy description logics, it is customary to restrict rea-
soning to so-called witnessed interpretations I only [Hájek,
2005]. Witnessed interpretations are those in which the supre-
mum (∃r.C)I(δ) is in fact a maximum; formally, there is a
γ ∈ ∆I such that (∃r.C)I(δ) = rI(δ, γ) ⊗ CI(γ). This
assumption is often needed to simplify reasoning and was in
fact introduced in [Hájek, 2005] to correct the existing algo-
rithm for fuzzy ALC in [Tresp and Molitor, 1998]. In this
paper we do not need this additional assumption; all our re-
sults are valid w.r.t. general and witnessed semantics.

As in classical EL, every ⊗-EL-TBox has the trivial model
I = ({δ}, ·I) where AI(δ) = 1 for every concept name A
and rI(δ, δ) = 1 for every role name r. Thus, TBox con-
sistency is trivial in this logic. We are therefore interested in
deciding subsumption between two concepts.
Definition 4. Let T be a TBox, C,D be two concepts, and
p ∈ (0, 1]. C is p-subsumed by D w.r.t. T (C vpT D) if
every model of T satisfies 〈C v D ≥ p〉. C is positively
subsumed by D w.r.t. T (C v>0

T D) if every model I of T
and every δ ∈ ∆I satisfies CI(δ) ⇒ DI(δ) > 0. The best
subsumption degree of C v D w.r.t. T is

bsdT (C v D) := sup{p | C vpT D}.

Clearly, if bsdT (C v D) > 0, then C v>0
T D. However,

the converse does not necessarily hold (see Example 15).

3 Positive Subsumption
We first analyze the complexity of deciding positive sub-
sumption in ⊗-EL, which depends on the existence of zero
divisors for the t-norm ⊗. In Section 4, we will consider the
problem of computing the best subsumption degree.

3.1 T-norms with Zero Divisors
For t-norms with zero divisors, positive subsumption is co-
NP-hard. We show this by reducing the NP-hard vertex cover
problem [Karp, 1972] to the complement of our problem.
Definition 5. Let V = {v1, . . . , vm} be a finite set, and E a
set of subsets of V of cardinality 2. A vertex cover is a set
S ⊆ V such that S ∩ E 6= ∅ holds for all E ∈ E . The vertex
cover problem consists in deciding, given a natural number
k ≤ m, whether there is a vertex cover of cardinality ≤ k.

Observe that every superset of a vertex cover is also a ver-
tex cover, and thus one can equivalently ask for a vertex cover
of size exactly k. Let ⊗ be a t-norm with zero divisors, i.e.
it starts with the Łukasiewicz t-norm in an interval [0, b] with
0 < b ≤ 1 (see Lemma 2). Given an instance V := (V, E , k)
of the vertex cover problem, we construct a ⊗-EL-TBox TV
such that > is not positively subsumed by the concept name
A w.r.t. TV iff there is a vertex cover of size k.

Let Vi, 0 ≤ i ≤ m, be concept names, where m = |V |, i.e.
we have a concept name Vi for every element vi ∈ V , and an
additional concept name V0. For each i, 1 ≤ i ≤ m, we set

Ti := {〈V m−ki v V m−k+1
i ≥ 1〉, 〈> v Vi ≥ b · m−k−1

m−k 〉}

and T0 := {〈> v V0 ≥ b · m−k−1
m−k 〉}. Every model I of⋃m

i=0 Ti and δ ∈ ∆I satisfies that V I0 (δ) ≥ b · m−k−1
m−k and



V Ii (δ) ∈ {b · m−k−1
m−k } ∪ [b, 1] for 1 ≤ i ≤ n. We now define

TV :=

m⋃
i=0

Ti ∪ {〈V1 u . . . u Vm v A ≥ 1〉} ∪

{〈V0 v Vj1 u Vj2 ≥ 1〉 | {vj1 , vj2} ∈ E}. (1)

Theorem 6. There is a vertex cover of V, E of size k iff > is
not positively subsumed by A w.r.t. TV .

Proof. Let S = {vi1, . . . , vik} be a vertex cover of size k.
Build the interpretation IS := ({δ}, ·IS ) with AIS (δ) := 0,
V IS0 (δ) := b · m−k−1

m−k , and for i, 1 ≤ i ≤ m,

V ISi (δ) :=

{
1 if vi ∈ S
b · m−k−1

m−k otherwise.

It is easy to verify that IS is a model of TV and we have
>IS (δ)⇒ AIS (δ) = 0.

For the converse, let I be a model of TV and δ ∈ ∆I be
such that AI(δ) = >I(δ)⇒ AI(δ) = 0. We define

SI := {vi | V Ii (δ) ≥ b, 1 ≤ i ≤ m}.

Since V I1 (δ) ⊗ . . . ⊗ V Im(δ) = 0, there must be at least
m− k concept names Vj such that V Ij (δ) = b · m−k−1

m−k , and
hence SI has at most k elements. Moreover, since I satisfies
the axioms in (1), for every {vj1 , vj2} ∈ E , at least one of
V Ij1(δ), V Ij2(δ) is ≥ b. Thus, SI is a vertex cover.

Corollary 7. If ⊗ has zero divisors, then positive subsump-
tion in ⊗-EL is co-NP-hard.

If we consider only the sublogic⊗-L of⊗-EL in which ex-
istential restrictions are not allowed, we can use complexity
results for propositional fuzzy logics [Hájek, 2006] to show
that for certain strongly r-admissible t-norms this complex-
ity bound is tight. Strongly r-admissible t-norms satisfy sev-
eral restrictions that limit reasoning to the rational numbers
in [0, 1] (see [Hájek, 2006] for details). Additionally, ⊗ must
be a product-free t-norm with finitely many components.

We map every concept name A to a unique propositional
variable pA, each conjunction C of concept names to the
propositional conjunction ϕC of the corresponding variables,
and a GCI α = 〈C v D ≥ q〉 to ϕα := q → (ϕC → ϕD),
where q is a constant that is interpreted as q. Finally, we ex-
press a TBox T by the conjunction of all ϕα for α ∈ T .
Let now C0, D0 be concepts and T be a TBox containing
only rational numbers in its GCIs. It follows that C0 is
not positively subsumed by D0 w.r.t. T iff the conjunction
of ϕT and (ϕC0

→ ϕD0
) → 0 is satisfiable in the fuzzy

propositional logic RL(⊗). Since the latter problem is NP-
complete [Hájek, 2006], the former is in co-NP.

Proposition 8. If ⊗ is strongly r-admissible, product-free,
and has only finitely many components, then positive sub-
sumption in ⊗-L is in co-NP.

3.2 T-norms without Zero Divisors
If the underlying t-norm⊗ has no zero divisors, i.e. it does not
start with the Łukasiewicz t-norm, then positive subsumption
turns out to be decidable in polynomial time, as in the crisp
case [Brandt, 2004; Baader et al., 2005]. Under Gödel seman-
tics, positive subsumption is equivalent to deciding whether
the best subsumption degree is greater than zero. Thus, a
consequence of the polynomial time algorithm for comput-
ing best subsumption degree from [Mailis et al., 2012] is
that positive subsumption is polynomial for the Gödel t-norm.
We generalize this result to all t-norms without zero divi-
sors. To show this, we provide a reduction similar to the one
from [Borgwardt et al., 2012b], where consistency in expres-
sive fuzzy DLs is reduced to the corresponding crisp DLs.
Our reduction transforms in linear time a ⊗-EL-TBox into a
crisp TBox that describes all positive subsumption relations.
Given a TBox T , we define
T >0 := {〈C v D ≥ 1〉 | 〈C v D ≥ q〉 ∈ T , q > 0}.

Notice that every model of T >0 is also a model of T , since
the axioms where q = 0 are satisfied by all interpretations.
We thus have the following theorem.
Theorem 9. Let T be a TBox andC0, D0 two concepts. Then
C0 is positively subsumed by D0 w.r.t. T iff for every crisp
model J of T >0 and δ ∈ ∆J it holds that CJ0 (δ) ≤ DJ0 (δ).

Proof. First, assume that there is a crisp model J of T >0

and a δ0 ∈ ∆J with CJ0 (δ0) = 1 and DJ0 (δ0) = 0, and thus
CJ0 (δ0) ⇒ DJ0 (δ0) = 0. Since J is also a model of T , we
know that C0 is not positively subsumed by D0 w.r.t. T .

For the converse direction, let I be a model of T and
δ0 ∈ ∆I such that CI0 (δ0) ⇒ DI0 (δ0) = 0. We construct
the crisp interpretation J over the domain ∆J := ∆I as
follows. Let 1 : [0, 1] → {0, 1} be the function defined by
1(0) := 0 and 1(q) := 1 for all q > 0 (cf. [Cignoli and Tor-
rens, 2003]). For all A ∈ NC, r ∈ NR, and δ, γ ∈ ∆J , we set
AJ (δ) := 1(AI(δ)) and rJ (δ, γ) := 1(rI(δ, γ)).

We first show that CJ (δ) = 1(CI(δ)) holds for all con-
cepts C and all δ ∈ ∆I . If C is a concept name, the claim
holds by definition of J , and for C = > the claim is trivial.
If C = C1 u C2, then CI(δ) = CI1 (δ) ⊗ CI2 (δ) = 0 iff we
have CI1 (δ) = 0 or CI2 (δ) = 0 since ⊗ has no zero divisors.
Thus, we have CJ (δ) = 1(CI1 (δ))⊗1(CI2 (δ)) = 1(CI(δ)).
Finally, if C = ∃r.C1, then

CJ (δ) = sup
γ∈∆I

1(rI(δ, γ))⊗ 1(CI1 (γ))

= 1( sup
γ∈∆I

rI(δ, γ)⊗ CI1 (γ)) = 1(CI(δ))

by similar arguments as above and the fact that the supremum
over a set of values is 0 iff all of these values are 0.

We now show that J is a model of T >0. Consider a
GCI 〈C v D ≥ q〉 ∈ T . For all δ ∈ ∆I , we have
CI(δ) ⇒ DI(δ) ≥ q since I is a model of T . If q = 0,
then CJ (δ) ⇒ DJ (δ) ≥ 0 = q. If q > 0, then CI(δ) > 0
implies that DI(δ) > 0. Indeed, CI(δ) > 0 and DI(δ) = 0
would yield that CI(δ)⇒ DI(δ) = 0 < q, contradicting the
assumption.8 Thus, 〈C v D ≥ 1〉 is satisfied by J .

8Recall that the residual negation is the Gödel negation.



Finally, since DI0 (δ0) ≤ CI0 (δ0)⇒ DI0 (δ0) = 0, we have
CI0 (δ0) > 0, and thus CJ0 (δ0) = 1 and DJ0 (δ0) = 0.

The latter condition in this theorem is equivalent to sub-
sumption between C0 and D0 in classical EL, which can be
decided in polynomial time [Brandt, 2004].

Corollary 10. If ⊗ has no zero divisors, then positive sub-
sumption in ⊗-EL is decidable in polynomial time.

We have so far focused on deciding positive subsumption
between concepts. A related problem of interest in the con-
text of fuzzy DLs is the computation of the best subsumption
degree between concepts. In the following section, we show
that the picture of the best subsumption degree is more elab-
orate than that of positive subsumption.

4 The Best Subsumption Degree
We consider the problem of computing the best subsumption
degree of two concepts C,D w.r.t. a TBox T , and the corre-
sponding decision problem of whether C vpT D holds for a
given p ∈ (0, 1]. We again make a distinction on the structure
of the underlying t-norm. We show that for any t-norm con-
taining the Łukasiewicz t-norm, the problem is co-NP-hard.
We then argue why we believe this problem to be hard also
for all other t-norms, except for the Gödel t-norm.

4.1 T-norms Containing Łukasiewicz
For t-norms with zero divisors, deciding p-subsumption is
also co-NP-hard. Consider the reduction presented in the
proof of Theorem 6 to show co-NP-hardness of positive sub-
sumption. Since none of the concept names Vi, 1 ≤ i ≤ m,
can be interpreted with any degree between b · m−k−1

m−k and b,
if the conjunction of these concept names is smaller than b,
then it must be of the form b · n

m−k for some natural num-
ber n. It thus follows that > is positively subsumed by A,
and hence there is no vertex cover of size k, if and only if >
is b
m−k -subsumed by A.

Proposition 11. If ⊗ has zero divisors, then p-subsumption
in ⊗-EL is co-NP-hard.

Again, this bound is tight if we restrict to ⊗-L, where ⊗ is
a t-norm as in Proposition 8. Indeed,C0 is p-subsumed byD0

w.r.t. T iff the propositional formula p→ (ϕC0
→ ϕD0

) is a
semantic consequence of ϕT in RL(⊗). The latter problem
is co-NP-complete [Hájek, 2006].

Proposition 12. If ⊗ is strongly r-admissible, product-free,
and has only finitely many components, then p-subsumption
in ⊗-L is in co-NP.

Contrary to positive subsumption, p-subsumption is also
co-NP-hard for some t-norms without zero divisors. In-
deed, hardness arises as soon as ⊗ contains the Łukasiewicz
t-norm. This is a consequence of the following result.

Theorem 13. Let ⊗1,⊗2 be continuous t-norms, b ∈ (0, 1),
and ⊗ be the ordinal sum of ((0, b),⊗1), ((b, 1),⊗2). Then
p-subsumption in ⊗-EL is at least as hard as p-subsumption
in ⊗2-EL.

Proof. Let h : [0, 1] → [b, 1] be the bijective function where
h(x) = b+(1− b)x, T be a⊗2-EL-TBox, and⇒,⇒2 be the
residua of ⊗,⊗2, respectively. We construct the TBox

T⊗ :={〈C v D ≥ h(q)〉 | 〈C v D ≥ q〉 ∈ T }.

Given two concepts C0, D0 and p ∈ (0, 1], we show that
C0 vpT D0 over ⊗2 iff C0 vh(p)

T⊗ D0 over ⊗.
Let I be a model of T with CI0 (δ0)⇒2 D

I
0 (δ0) < p for a

δ0 ∈ ∆I . We construct J = (∆I , ·J ), where, for δ, γ ∈ ∆I ,

AJ (δ) := h(AI(δ)), rJ (δ, γ) := h(rI(δ, γ)).

Using an induction argument similar to the one of Theo-
rem 9, we can show CJ (δ) = h(CI(δ)) for every concept C
and δ ∈ ∆I , and in particular J is a model of T⊗ with
CJ0 (δ0) ⇒ DJ0 (δ0) < h(p) since h is strictly increasing
(recall the definition of ordinal sums from Section 2).

Conversely, let J be a model of T⊗ and δ0 ∈ ∆J such that
CJ0 (δ0) ⇒ DJ0 (δ0) < h(p). A similar argument shows that
the interpretation I = (∆J , ·I) where, for every δ, γ ∈ ∆I ,

AI(δ) =

{
h−1(AJ (δ)) if AJ (δ) ≥ b,
0 otherwise

rI(δ, γ) =

{
h−1(rJ (δ, γ)) if rJ (δ, γ) ≥ b,
0 otherwise

is a model of T such that

CI0 (δ0)⇒2 D
I
0 (δ0) < h−1(h(p)) = p.

Since |T⊗| is linear in |T |, this yields the result.

Every t-norm that contains the Łukasiewicz t-norm can be
expressed as the ordinal sum of two components ((0, b),⊗1),
((b, 1),⊗2), where ⊗2 starts with Łukasiewicz. Thus, Propo-
sition 11 and Theorem 13 yield the following.
Corollary 14. If ⊗ contains the Łukasiewicz t-norm, then
p-subsumption in ⊗-EL is co-NP-hard.

In particular, this shows that the best subsumption degree
in⊗-EL cannot be computed in polynomial time if⊗ contains
the Łukasiewicz t-norm (unless P = NP).

4.2 T-norms without Łukasiewicz
From Theorem 1 it follows that every t-norm that does not
contain Łukasiewicz must be expressible as the ordinal sum
of copies of the product t-norm. In particular, it either is the
Gödel t-norm, or has at least one component using the product
t-norm. For the Gödel t-norm, it is known that the best sub-
sumption degree can be computed in polynomial time using
a variant of the completion algorithm for classical EL [Mailis
et al., 2012]. The only remaining cases are those t-norms that
contain the product t-norm.

Recall that all t-norms different from the Gödel t-norm
have infinitely many elements that are not idempotent. For
those cases, the approach used in [Mailis et al., 2012] can-
not be applied directly. We now provide some arguments that
suggest that p-subsumption is in fact hard for all t-norms con-
taining the product t-norm. We consider first the basic case of
the product t-norm itself. If p-subsumption is indeed hard for



this t-norm, then similar arguments should be applicable to
t-norms starting with the product t-norm, and by Theorem 13
to all other elements of this family.

The following example shows that under product t-norm
semantics C v>0

T D does not imply that bsdT (C,D) > 0. In
other words, although positive subsumption can be decided in
polynomial time, this result cannot be used to decide whether
the best subsumption degree is greater than zero.
Example 15. Consider the product t-norm and A ∈ NC. For
every interpretation I and δ ∈ ∆I , it holds that ifAI(δ) > 0,
thenAI(δ)⇒ (A2)I(δ) = AI(δ) > 0.9 ThusA is positively
subsumed by A2. However, for every p > 0 we can build
an interpretation I = ({δ}, ·I) with AI(δ) = p/2. Then,
AI(δ) ⇒ (A2)I(δ) = AI(δ) = p/2 < p. As this holds for
every p > 0, it follows that bsd(A v A2) = 0.

This example also shows that a direct crispification ap-
proach, akin to the one presented in Section 3.2 cannot be
used to decide whether the best subsumption degree is zero
or not. Indeed, no TBox was used in the example, and over
crisp interpretations A is always subsumed by A2 (with de-
gree 1). Thus, if p-subsumption is decidable in polynomial
time, one would need to find an algorithm that can deal with
the different degrees appearing in the axioms, without using
more than a polynomial number of combinations of them.

An obvious approach is to generalize the completion algo-
rithm for classical EL from [Baader et al., 2005] in the style of
Mailis et al. to allow for product operations. The algorithms
from [Baader et al., 2005; Mailis et al., 2012] first transform
the TBox into an equivalent one in normal form. A TBox T
is in normal form if all the GCIs in T are of the form

〈A1 uA2 v B ≥ q〉, 〈A v ∃r.B ≥ q〉, or 〈∃r.A v B ≥ q〉,

with A,A1, A2, B ∈ NC ∪ {>} and r ∈ NR. It is well known
that in classical EL and ⊗-EL using the Gödel t-norm any
TBox T can be transformed to an equivalent one in normal
form of size linear in the size of T [Brandt, 2004; Baader et
al., 2005; Mailis et al., 2012]. We show that this is not true for
⊗-EL in general with the help of the following proposition,
which holds for any t-norm ⊗. The proof is by a simple case
analysis on the shape of the axioms in T .
Proposition 16. Let T be a TBox in normal form, p ∈ [0, 1],
I = (∆I , ·I) an interpretation and Ip = (∆I , ·Ip) the inter-
pretation where for every δ, γ ∈ ∆I , A ∈ NC and r ∈ NR

AIp(δ) = max{AI(δ), p}, rIp(δ, γ) = max{rI(δ, γ), p}.

If I is a model of T , then Ip is also a model of T .
We now prove that for any t-norm ⊗ except the Gödel

t-norm it is impossible to construct a ⊗-EL TBox in normal
form that is equivalent to the GCI 〈A v BuC ≥ 1〉. Suppose
that such a TBox T exists. The interpretation I = ({δ}, ·I)
with AI(δ) = BI(δ) = CI(δ) = 0 must then be a model
of T . Since ⊗ has non-idempotent elements, there must be
a value p ∈ (0, 1) with p ⊗ p < p. By Proposition 16, the
interpretation Ip is also a model of T . However,

AIp(δ)⇒ (B u C)Ip(δ) = p⇒ p⊗ p < 1,

9Recall that A2 stands for A uA.

which violates the axiom 〈A v B u C ≥ 1〉. Thus Ip cannot
be a model of T , yielding a contradiction.

Even if the input TBox T is already in normal form, the
completion rules from [Mailis et al., 2012] cannot be di-
rectly transformed to handle the product t-norm. For instance,
the correctness of the rule that handles conjunctions on the
left-hand side (rule CR2 in [Baader et al., 2005, p. 366]
and [Mailis et al., 2012, p. 417]) is based on the intuition that
ifA v1

T B andA v1
T C hold, then alsoA v1

T BuC. While
this is true for classical semantics and the Gödel t-norm, it
fails for the product t-norm, as depicted in Example 15. The
only deduction one can make from the two premises is that
A2 v1

T B u C holds. Applying this idea, it is not hard to
find a TBox T of size n such that A2n vpT B holds for some
p ∈ (0, 1], but Ak 6v1

T B for every k, 1 ≤ k < 2n.
Any algorithm that can decide p-subsumption would need

to keep track of the subsumers of concepts of the form An,
since, e.g. An vq1T B and > vq2T B together imply A vpT B,

where p := n

√
qn−1
2 · q1. This suggests that no deterministic

algorithm that decides p-subsumption can avoid the applica-
tion of exponentially many steps. Although we have not been
able to prove that this problem is indeed hard, we have strong
reasons to suspect it.

5 Conclusions
We have analyzed subsumption problems in fuzzy extensions
of EL with semantics based on general t-norms. For the com-
plexity of positive subsumption, we have shown a dichotomy
between polynomial for t-norms without zero divisors, and
co-NP-hard (and therefore probably not polynomial) for all
t-norms with zero divisors. For the former case, positive sub-
sumption is linearly reducible to subsumption in the clas-
sical DL EL. This dichotomy goes well in hand with the
complexity of deciding TBox consistency in more expressive
fuzzy DLs: for t-norms without zero divisors, the problem
is linearly reducible to classical reasoning [Borgwardt et al.,
2012a; 2012b], and in particular decidable, but becomes un-
decidable for all other t-norms [Cerami and Straccia, 2013;
Borgwardt and Peñaloza, 2012a; 2012b].

The problem of deciding p-subsumption exhibits a differ-
ent complexity pattern. We showed that there exist t-norms
without zero divisors for which this problem is also co-NP-
hard. In fact, this lower bounds holds for any t-norm con-
taining the Łukasiewicz t-norm. So far, we have not been
able to obtain complexity results for other t-norms, beyond
the previously known case of the Gödel t-norm. However, we
presented some arguments that suggest that p-subsumption
is probably intractable for these t-norms as well. As future
work, we plan to prove this claim and find matching upper
bounds for all our hardness results.

Although our hardness results cast a shadow on the possi-
bility of reasoning in large fuzzy ontologies, we believe that
for well-structured ontologies, such as SNOMED CT, which
contains no cyclic relations between concepts and where most
axioms can be normalized without affecting their intended se-
mantics, tractability can be regained. A deeper analysis of
this situation is part of our plans for future work.
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Rafael Peñaloza. Undecidability of fuzzy description
logics. In Gerhard Brewka, Thomas Eiter, and Sheila A.
McIlraith, editors, Proc. KR’12, pages 232–242. AAAI
Press, 2012.
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