
Concurrency Theory

Lecture 1: Introduction

Stephan Mennicke
Knowledge-Based Systems Group

April 4, 2023



Organization

Lecture

Tuesday, DS 4 (13:00–14:30), APB E005
Exception: April 5 (tomorrow)

Exercise

Wednesday, DS 3 (11:10–12:40), APB E005

Website

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2023)/en

Concurrency Theory – Introduction 2

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2023)/en


Exercise Sessions

• Proving technical results (sometimes even during lecture time)

• Formalizing definitions in LEAN

• Proving theorems and propositions in LEAN

Concurrency Theory – Introduction 3







Course Material

+ Lecture Notes regularly uploaded to the Website

Concurrency Theory – Introduction 6





Outline

• Introduce basic notions of concurrency theory

• Learn the features of common equivalence relations for concurrent processes

• Connect to other fields: computability and complexity theory

• Learn and apply the bisimulation proof method (coinduction)

• Study different synchronization paradigms to understand how concurrent
(programming) languages are designed and analyzed

Concurrency Theory – Introduction 8



A Classic: Vending Machine

Consider a coffee/tea vending machine having a red color:

• you may insert money (say 1e)

• you may press the button for tea (req-tea) or the button for coffee (req-coffee)

• after pressing req-tea a tea beverage can be collected

• after pressing req-coffee a coffee beverage can be collected

• finally, the machine restarts its service

Concurrency Theory – Introduction 9



A Scenario

Your friend buys a similar vending machine, it is also red and behaves as follows:

• after inserting money (1e),

• the machine nondeterministically decides if the tea or coffee button can be pressed;

• and the respective beverage can be collected.

Of course, your friend is disappointed and would like to have a machine like you.

What is the difference? How can we describe the difference? How can we describe the
specifications anyway?

Concurrency Theory – Introduction 10



Outline for First Lectures

1. How to formally describe the behavior of machines/systems?

2. What does "the same" behavior mean? What does it mean to have "different"
behavior?

3. How to prove that two systems do not have the same behavior?

Answers:

1. Automata to the rescue: labeled transitions systems

2. Several answers, but the most important one: bisimulation

3. In case of bisimulation, coinduction

Concurrency Theory – Introduction 11



On Parallel Programs

Concurrent languages deal with language constructs to express that several program
parts run in parallel (e. g., by an explicit parallel operator).

What is a parallel program?

Answer for sequential programs: functions.

Does the characterization lift to parallel programs?

X := 0

vs.

X := 1; X := X-1

Concurrency Theory – Introduction 12



Programs as Functions
P :

X := 0

Q:

X := 1; X := X-1

Viewed as functions, these two program snippets are the same function
f : (V → Z) → (V → Z) where V is the set of all variables like X: For a variable
valuation s : V → Z, f(s) := s[X 7→ 0]. Here, s[X 7→ 0] is function s′ with

s′(x) =

{
0 if x = X

s(x) otherwise.

In (denotational) semantics of programming languages we write

JP K = JQK = f .

Concurrency Theory – Introduction 13



Issues with Functions

Lack of Compositionality

Suppose we use the following program context:

[.] | X := 0

Filling in P or Q for [.] makes a difference.

We say that the semantics is not compositional w. r. t. parallel composition.

Alternatively, program equality is not a congruence.

Termination Issues

Inherent Nondeterminism

Concurrency Theory – Introduction 14



What are Parallel Programs?

Parallel (or concurrent) programs are not functions, they are processes.

The question what a process actually is at the heart of concurrency theory.

Concurrency theory is the study of interacting processes and their (combined) behavior.

Key questions: When are two processes equal? When do they show the same behavior?

The two programs from before are distinguished by analyzing their interaction with the
memory.

Therefore, a process formalism must allow for specifying when and how a process may
interact with the outside world – also known as the environment.

Concurrency Theory – Introduction 15



Labeled Transition Systems (LTSs) – Definition and Notation

The most common formalism to study concurrent languages and, most importantly,
their semantics is Labeled Transition Systems (LTSs).LTSs consist of

• states (or processes) and

• transitions between states.

Transitions are labeled by actions.

Definition 1 (LTS)
A labeled transition system is a triple (Pr ,Act ,−→) where Pr is a set of states (or
processes), Act is a set of actions, and −→⊆ Pr ×Act × Pr .

Instead of (p, a, q) ∈−→ we often write p
a−→ q. Likewise, p a−→ means there is a q ∈ Pr

with p
a−→ q and p ̸ a−→ means there is no such q ∈ Pr .

Concurrency Theory – Introduction 16



LTS – An Example

Consider the following LTS

T = ({P1, P2, P3, P4}, {1e, req-coffee, req-tea, coffee, tea},−→)

with P1
1e−→ P2, P2

req-coffee−−−−−→ P3, P2
req-tea−−−−→ P4, P3

coffee−−−→ P1, P4
tea−−→ P1.

An LTS is usually depicted as a directed edge-labeled graph, called the process graph:

P1 P2
1e

P3

req-coffee

coffee

P4

req-tea

tea
Concurrency Theory – Introduction 17



Wording

P1 P2
1e

P3

req-coffee

coffee

P4

req-tea

tea

• Process P1 has action 1e enabled;

• P1 performs action 1e and, afterwards, behaves like P2;

Concurrency Theory – Introduction 18



LTS – Further Notation

Definition 2
Given an LTS T = (Pr ,Act ,−→) and a process P ∈ Pr . The set of reachable states
from P , Reach(T , P ), is defined recursively:

• P ∈ Reach(T , P ) and

• if Q ∈ Reach(T , P ) and Q
a−→ Q′, then Q′ ∈ Reach(T , P ).

The LTS generated by P is the LTS T (P ) = (Reach(T , P ),Act ,−→′) such that
−→′:=−→ ∩(Reach(T , P )×Act × Reach(T , P )).

This allows us to speak about the behavior of process P (P is part of a bigger LTS).

Concurrency Theory – Introduction 19



LTS Classes

Definition 3
An LTS (Pr ,Act ,−→) is

• image-finite if for each a ∈ Act and each p ∈ Pr , the set {p′ ∈ Pr | p a−→ p′} is
finite;

• finitely branching if for each p ∈ Pr , the set {p′ ∈ Pr | ∃a ∈ Act : p
a−→ p′} is

finite;

• finite-state if Pr is finite;

• finite if it is finite-state and acyclic;

• deterministic if for each p ∈ Pr , p a−→ q and p
a−→ q′ imply q = q′.

These notions canonically carry over to processes.

Concurrency Theory – Introduction 20



Summary and Outlook

• Functions vs. processes
• LTSs for specification of process behaviors
• Misconception? Sequential formalism for process behaviors?

Next: P1 vs. Q1

P1 P2
1e

P3

req-coffee

coffee

P4

req-tea

tea

Q1

Q2

1e

Q3

1e

Q4

req-tea

tea

Q5
req-coffee

coffee

Concurrency Theory – Introduction 21


