Concurrency Theory

Lecture 1: Introduction

Stephan Mennicke
Knowledge-Based Systems Group

April 4, 2023

Organization

Lecture

Tuesday, DS 4 (13:00-14:30), APB E005
Exception: April 5 (tomorrow)

Exercise
Wednesday, DS 3 (11:10-12:40), APB E005
Website

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2023)/en

MR International Center
UNIVERSITAT . 3 : '
DRESDEN Concurrency Theory — Introduction ;V' for Computational Logic

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2023)/en

Exercise Sessions

e Proving technical results (sometimes even during lecture time)
e Formalizing definitions in LEAN

e Proving theorems and propositions in LEAN

MR International Center
UNIVERSITAT . 3 : '
DRESDEN Concurrency Theory — Introduction %' for Computational Logic

I_:I\V/N ABOUT DOWNLOAD DOCUMENTATION PUBLICATIONS LINKS PEOPLE

—
V

THEOREM PROVER

Microsoft Research

sch ®

< International Center i}
"% for Computational Logic Uber ICCL

Theorem Proving with LEAN

Course with SWS 0/0/4 (lecture/exercise/practical) in SS 2023

Lecturer

Lukas Gerlach
Stephan Mennicke

SWs
0/0/4
Modules

INF-B-510
INF-B-520
INF-MA-PR

Examination method
Seminar presentation
Matrix channel

#lean:tu-dresden.de

Information Literature Dates and Materials

il Subscribe to events of this course (icalendar)

Kick-off Meeting DS4, April 19, 2023 in APB 3027

Calendar

Monat = Woche Tag

April 2023

Mo Di Mi Do Fr

Studium ~

Edit tools [# Acco

Forschung ~ Kooperation ~

< > Heute U $

Sa So

Course Material

Introduction to
BISIMULATION
AND COINDUCTION

communicating '
Skenete | Reactive
(]-calculus Syste ms

Robin Milner Hodelling,

Specification and Petl’i Nets

verification

Understanding

+ Lecture Notes regularly uploaded to the Website

TECHNISCHE termotional Gent
UNIVERSITAT . nternational Center
DRESDE Concurrency Theory — Introduction for Computational Logic

International Center
for Computational Logic

Concurrency Theory

Course with SWS 2/2/0 (lecture/exercise/practical) in SS 2023

Lecturer
Information Literature Dates and Materials

Stephan Mennicke
il Subscribe to events of this course (icalendar)

SwWs
21210 Introduction
Modules Towards Bisimulation

CMS-LM-ADV . . e
Lecture Coinduction: Examples, Duality Fixpoints

CMS-LM-MOC

INF-B-510 m no exercise session

INF-B-520

INF-BAS6 Coinduction: Proof Techniques

INF-PM-FOR

INF-VERT6 Introduction to LEAN

MCL-TCSL
Algebraic Properties of Bisimulation
Examination method w

Formalizing Bisimilarity in LEAN

Oral exam

Uber ICCL ~ Studium ~ Forschung ~

DS4, April 4, 2023 in APB 3027

DS3, April 5, 2023 in APB EQ05

DS4, April 11, 2023 in APB E005

DS3, April 12,2023 in APB E005

DS4, April 18, 2023 in APB E005

DS3, April 19, 2023 in APB E005

DS54, April 25,2023 in APB E005

DS3, April 26, 2023 in APB E005

Kooperation ~

BiFile

Qutline

Introduce basic notions of concurrency theory

Learn the features of common equivalence relations for concurrent processes

Connect to other fields: computability and complexity theory

Learn and apply the bisimulation proof method (coinduction)

Study different synchronization paradigms to understand how concurrent

(programming) languages are designed and analyzed

ECHNISCHE International Center
UNIVERSITAT . ;)
DRESDEN Concurrency Theory — Introduction %' for Computational Logic

A Classic: Vending Machine

Consider a coffee/tea vending machine having a red color:

e you may insert money (say 1€)
e you may press the button for tea (reg-tea) or the button for coffee (reg-coffee)

e after pressing reg-tea a tea beverage can be collected

after pressing req-coffee a coffee beverage can be collected

finally, the machine restarts its service

R International Center
UNIVERSITAT . 3 :)
DRESDEN Concurrency Theory — Introduction A for Computationl Logic

A Scenario

Your friend buys a similar vending machine, it is also red and behaves as follows:

e after inserting money (1€),
e the machine nondeterministically decides if the tea or coffee button can be pressed;
e and the respective beverage can be collected.

Of course, your friend is disappointed and would like to have a machine like you.

What is the difference? How can we describe the difference? How can we describe the
specifications anyway?

ECHNISCHE International Center
UNIVERSITAT . ;) 10
DRESDEN Concurrency Theory — Introduction %' for Computational Logic

Outline for First Lectures

1. How to formally describe the behavior of machines/systems?

2. What does "the same" behavior mean? What does it mean to have "different"
behavior?

3. How to prove that two systems do not have the same behavior?
Answers:

1. Automata to the rescue: labeled transitions systems
2. Several answers, but the most important one: bisimulation

3. In case of bisimulation, coinduction

R International Center
UNIVERSITAT . 3 : ' 11
DRESDEN Concurrency Theory — Introduction " for Computational Logic

On Parallel Programs

Concurrent languages deal with language constructs to express that several program

parts run in parallel (e.g., by an explicit parallel operator).
What is a parallel program?
Answer for sequential programs: functions.

Does the characterization lift to parallel programs?

X :=0

VS.

TECHNISCHE
UNIVERSITAT .
DRESDEN Concurrency Theory — Introduction

i

International Center
for Computational Logic

12

Programs as Functions

2% Q:

Viewed as functions, these two program snippets are the same function
[:(V—=Z)— (V— Z) where V is the set of all variables like X: For a variable
valuation s : V — Z, f(s) := s[X + 0]. Here, s[X — 0] is function s’ with

s’(m)—{ 0 ifz =X
s

s(z) otherwise.

In (denotational) semantics of programming languages we write

[Pl =[Q] = /.

TECHNISCHE International Center

UNIVERSITAT . 3 ;)
DRESDEN Concurrency Theory — Introduction ;V' for Computational Logic 13

Issues with Functions

Lack of Compositionality

Suppose we use the following program context:

Filling in P or Q for [.] makes a difference.

We say that the semantics is not compositional w. r.t. parallel composition.
Alternatively, program equality is not a congruence.

Termination Issues

Inherent Nondeterminism

MR International Center
UNIVERSITAT . 3 :)
DRESDEN Concurrency Theory — Introduction " for Computational Logic

What are Parallel Programs?

Parallel (or concurrent) programs are not functions, they are processes.

The question what a process actually is at the heart of concurrency theory.
Concurrency theory is the study of interacting processes and their (combined) behavior.
Key questions: When are two processes equal? When do they show the same behavior?

The two programs from before are distinguished by analyzing their interaction with the

memory.

Therefore, a process formalism must allow for specifying when and how a process may
interact with the outside world — also known as the environment.

R International Center
UNIVERSITAT . 3 : ' 1
DRESDEN Concurrency Theory — Introduction %' for Computational Logic 5

Labeled Transition Systems (LTSs) — Definition and Notation

The most common formalism to study concurrent languages and, most importantly,
their semantics is Labeled Transition Systems (LTSs).LTSs consist of

e states (or processes) and

e transitions between states.

Transitions are labeled by actions.

Definition 1 (LTS)
A labeled transition system is a triple (Pr, Act,—) where Pr is a set of states (or

processes), Act is a set of actions, and —C Pr x Act x Pr.

Instead of (p, a,q) €— we often write p = ¢. Likewise, p =+ means there is a ¢ € Pr
with p % ¢ and p £ means there is no such ¢ € Pr.

ECHNISCHE International Center
UNIVERSITAT . 3 ;)
DRESDEN Concurrency Theory — Introduction for Computational Logic 16

LTS — An Example

Consider the following LTS
T = ({P1, P2, P3, Py}, {1€, req-coffee, reg-tea, coffee, tea}, —)

req-coffee reg-tea coffee tea

with P, 2% Py, P, Py, P, =% popy < pp 2 P

An LTS is usually depicted as a directed edge-labeled graph, called the process graph:
coffee P

1e A;—coffee

P1—>P2

Yj}—tea

tea 2
ECHNISCHE International Center
UNIVERSITAT . 3 ;)
DRESDEN Concurrency Theory — Introduction ;V' for Computational Logic 17

Wording

1e A;—coffee

P — P
“-tea
tea Py

e Process P; has action 1€ enabled;

e P performs action 1€ and, afterwards, behaves like P;

MR International Center
UNIVERSITAT . 3 : ' 18
DRESDEN Concurrency Theory — Introduction for Computational Logic

LTS — Further Notation

Definition 2
Given an LTS 7 = (Pr, Act,—) and a process P € Pr. The set of reachable states

from P, Reach(T, P), is defined recursively:

e P € Reach(T,P) and
o if Q € Reach(T,P) and Q % @', then Q' € Reach(T, P).

The LTS generated by P is the LTS T (P) = (Reach(T, P), Act,—') such that
—':=— N(Reach(T, P) x Act x Reach(T, P)).

This allows us to speak about the behavior of process P (P is part of a bigger LTS).

TECHNISCHE International Center

UNIVERSITAT . 3 ;)
DRESDEN Concurrency Theory — Introduction ;V' for Computational Logic 19

LTS Classes

Definition 3
An LTS (Pr, Act,—) is

e image-finite if for each a € Act and each p € Pr, the set {p' € Pr|p % p'}is
finite;

finitely branching if for each p € Pr, the set {p € Pr |Ja € Act : p % p'} is
finite;

finite-state if Pr is finite;

e finite if it is finite-state and acyclic;

e deterministic if for each p € Pr, p = g and p = ¢ imply ¢ = ¢'.

These notions canonically carry over to processes.

TECHNISCHE International Center

UNIVERSITAT . 3 : '
DRESDEN Concurrency Theory — Introduction ;V' for Computational Logic

20

Summary and Outlook

e Functions vs. processes
e LTSs for specification of process behaviors
e Misconception? Sequential formalism for process behaviors?

Next: P vs. (01

req-tea
2 —> (4

coffee Ps 1€
tea
req-coffee Q
5 p :
! 2 \ coffee
req-tea
\ 1€
X Q-?) - = Q5
tea Py reg-coffee

International Center

I \ 21
DRESDEN Concurrency Theory — Introduction for Computational Logic

